diff options
Diffstat (limited to 'numpy/lib/histograms.py')
-rw-r--r-- | numpy/lib/histograms.py | 36 |
1 files changed, 10 insertions, 26 deletions
diff --git a/numpy/lib/histograms.py b/numpy/lib/histograms.py index d2a398a0a..2922b3a86 100644 --- a/numpy/lib/histograms.py +++ b/numpy/lib/histograms.py @@ -877,12 +877,6 @@ def histogramdd(sample, bins=10, range=None, normed=False, weights=None): # bins is an integer bins = D*[bins] - # avoid rounding issues for comparisons when dealing with inexact types - if np.issubdtype(sample.dtype, np.inexact): - edge_dt = sample.dtype - else: - edge_dt = float - # normalize the range argument if range is None: range = (None,) * D @@ -896,13 +890,12 @@ def histogramdd(sample, bins=10, range=None, normed=False, weights=None): raise ValueError( '`bins[{}]` must be positive, when an integer'.format(i)) smin, smax = _get_outer_edges(sample[:,i], range[i]) - edges[i] = np.linspace(smin, smax, bins[i] + 1, dtype=edge_dt) + edges[i] = np.linspace(smin, smax, bins[i] + 1) elif np.ndim(bins[i]) == 1: - edges[i] = np.asarray(bins[i], edge_dt) - # not just monotonic, due to the use of mindiff below - if np.any(edges[i][:-1] >= edges[i][1:]): + edges[i] = np.asarray(bins[i]) + if np.any(edges[i][:-1] > edges[i][1:]): raise ValueError( - '`bins[{}]` must be strictly increasing, when an array' + '`bins[{}]` must be monotonically increasing, when an array' .format(i)) else: raise ValueError( @@ -911,13 +904,10 @@ def histogramdd(sample, bins=10, range=None, normed=False, weights=None): nbin[i] = len(edges[i]) + 1 # includes an outlier on each end dedges[i] = np.diff(edges[i]) - # Handle empty input. - if N == 0: - return np.zeros(nbin-2), edges - # Compute the bin number each sample falls into. Ncount = tuple( - np.digitize(sample[:, i], edges[i]) + # avoid np.digitize to work around gh-11022 + np.searchsorted(edges[i], sample[:, i], side='right') for i in _range(D) ) @@ -925,16 +915,10 @@ def histogramdd(sample, bins=10, range=None, normed=False, weights=None): # For the rightmost bin, we want values equal to the right edge to be # counted in the last bin, and not as an outlier. for i in _range(D): - # Rounding precision - mindiff = dedges[i].min() - if not np.isinf(mindiff): - decimal = int(-np.log10(mindiff)) + 6 - # Find which points are on the rightmost edge. - not_smaller_than_edge = (sample[:, i] >= edges[i][-1]) - on_edge = (np.around(sample[:, i], decimal) == - np.around(edges[i][-1], decimal)) - # Shift these points one bin to the left. - Ncount[i][on_edge & not_smaller_than_edge] -= 1 + # Find which points are on the rightmost edge. + on_edge = (sample[:, i] == edges[i][-1]) + # Shift these points one bin to the left. + Ncount[i][on_edge] -= 1 # Compute the sample indices in the flattened histogram matrix. # This raises an error if the array is too large. |