summaryrefslogtreecommitdiff
path: root/numpy/lib/polynomial.py
diff options
context:
space:
mode:
Diffstat (limited to 'numpy/lib/polynomial.py')
-rw-r--r--numpy/lib/polynomial.py9
1 files changed, 6 insertions, 3 deletions
diff --git a/numpy/lib/polynomial.py b/numpy/lib/polynomial.py
index 56fcce621..23021cafa 100644
--- a/numpy/lib/polynomial.py
+++ b/numpy/lib/polynomial.py
@@ -489,8 +489,11 @@ def polyfit(x, y, deg, rcond=None, full=False, w=None, cov=False):
default) just the coefficients are returned, when True diagnostic
information from the singular value decomposition is also returned.
w : array_like, shape (M,), optional
- Weights to apply to the y-coordinates of the sample points. For
- gaussian uncertainties, use 1/sigma (not 1/sigma**2).
+ Weights. If not None, the weight ``w[i]`` applies to the unsquared
+ residual ``y[i] - y_hat[i]`` at ``x[i]``. Ideally the weights are
+ chosen so that the errors of the products ``w[i]*y[i]`` all have the
+ same variance. When using inverse-variance weighting, use
+ ``w[i] = 1/sigma(y[i])``. The default value is None.
cov : bool or str, optional
If given and not `False`, return not just the estimate but also its
covariance matrix. By default, the covariance are scaled by
@@ -498,7 +501,7 @@ def polyfit(x, y, deg, rcond=None, full=False, w=None, cov=False):
to be unreliable except in a relative sense and everything is scaled
such that the reduced chi2 is unity. This scaling is omitted if
``cov='unscaled'``, as is relevant for the case that the weights are
- 1/sigma**2, with sigma known to be a reliable estimate of the
+ w = 1/sigma, with sigma known to be a reliable estimate of the
uncertainty.
Returns