summaryrefslogtreecommitdiff
path: root/numpy/lib/polynomial.py
diff options
context:
space:
mode:
Diffstat (limited to 'numpy/lib/polynomial.py')
-rw-r--r--numpy/lib/polynomial.py43
1 files changed, 22 insertions, 21 deletions
diff --git a/numpy/lib/polynomial.py b/numpy/lib/polynomial.py
index e3defdca2..7904092ed 100644
--- a/numpy/lib/polynomial.py
+++ b/numpy/lib/polynomial.py
@@ -110,7 +110,7 @@ def poly(seq_of_zeros):
Given a sequence of a polynomial's zeros:
>>> np.poly((0, 0, 0)) # Multiple root example
- array([1, 0, 0, 0])
+ array([1., 0., 0., 0.])
The line above represents z**3 + 0*z**2 + 0*z + 0.
@@ -119,14 +119,14 @@ def poly(seq_of_zeros):
The line above represents z**3 - z/4
- >>> np.poly((np.random.random(1.)[0], 0, np.random.random(1.)[0]))
- array([ 1. , -0.77086955, 0.08618131, 0. ]) #random
+ >>> np.poly((np.random.random(1)[0], 0, np.random.random(1)[0]))
+ array([ 1. , -0.77086955, 0.08618131, 0. ]) # random
Given a square array object:
>>> P = np.array([[0, 1./3], [-1./2, 0]])
>>> np.poly(P)
- array([ 1. , 0. , 0.16666667])
+ array([1. , 0. , 0.16666667])
Note how in all cases the leading coefficient is always 1.
@@ -295,7 +295,7 @@ def polyint(p, m=1, k=None):
>>> p = np.poly1d([1,1,1])
>>> P = np.polyint(p)
>>> P
- poly1d([ 0.33333333, 0.5 , 1. , 0. ])
+ poly1d([ 0.33333333, 0.5 , 1. , 0. ]) # may vary
>>> np.polyder(P) == p
True
@@ -310,7 +310,7 @@ def polyint(p, m=1, k=None):
0.0
>>> P = np.polyint(p, 3, k=[6,5,3])
>>> P
- poly1d([ 0.01666667, 0.04166667, 0.16666667, 3. , 5. , 3. ])
+ poly1d([ 0.01666667, 0.04166667, 0.16666667, 3. , 5. , 3. ]) # may vary
Note that 3 = 6 / 2!, and that the constants are given in the order of
integrations. Constant of the highest-order polynomial term comes first:
@@ -404,7 +404,7 @@ def polyder(p, m=1):
>>> np.polyder(p, 3)
poly1d([6])
>>> np.polyder(p, 4)
- poly1d([ 0.])
+ poly1d([0.])
"""
m = int(m)
@@ -552,28 +552,29 @@ def polyfit(x, y, deg, rcond=None, full=False, w=None, cov=False):
>>> y = np.array([0.0, 0.8, 0.9, 0.1, -0.8, -1.0])
>>> z = np.polyfit(x, y, 3)
>>> z
- array([ 0.08703704, -0.81349206, 1.69312169, -0.03968254])
+ array([ 0.08703704, -0.81349206, 1.69312169, -0.03968254]) # may vary
It is convenient to use `poly1d` objects for dealing with polynomials:
>>> p = np.poly1d(z)
>>> p(0.5)
- 0.6143849206349179
+ 0.6143849206349179 # may vary
>>> p(3.5)
- -0.34732142857143039
+ -0.34732142857143039 # may vary
>>> p(10)
- 22.579365079365115
+ 22.579365079365115 # may vary
High-order polynomials may oscillate wildly:
>>> p30 = np.poly1d(np.polyfit(x, y, 30))
- /... RankWarning: Polyfit may be poorly conditioned...
+ ...
+ >>> # RankWarning: Polyfit may be poorly conditioned...
>>> p30(4)
- -0.80000000000000204
+ -0.80000000000000204 # may vary
>>> p30(5)
- -0.99999999999999445
+ -0.99999999999999445 # may vary
>>> p30(4.5)
- -0.10547061179440398
+ -0.10547061179440398 # may vary
Illustration:
@@ -714,11 +715,11 @@ def polyval(p, x):
>>> np.polyval([3,0,1], 5) # 3 * 5**2 + 0 * 5**1 + 1
76
>>> np.polyval([3,0,1], np.poly1d(5))
- poly1d([ 76.])
+ poly1d([76.])
>>> np.polyval(np.poly1d([3,0,1]), 5)
76
>>> np.polyval(np.poly1d([3,0,1]), np.poly1d(5))
- poly1d([ 76.])
+ poly1d([76.])
"""
p = NX.asarray(p)
@@ -951,7 +952,7 @@ def polydiv(u, v):
>>> x = np.array([3.0, 5.0, 2.0])
>>> y = np.array([2.0, 1.0])
>>> np.polydiv(x, y)
- (array([ 1.5 , 1.75]), array([ 0.25]))
+ (array([1.5 , 1.75]), array([0.25]))
"""
truepoly = (isinstance(u, poly1d) or isinstance(u, poly1d))
@@ -1046,7 +1047,7 @@ class poly1d(object):
>>> p.r
array([-1.+1.41421356j, -1.-1.41421356j])
>>> p(p.r)
- array([ -4.44089210e-16+0.j, -4.44089210e-16+0.j])
+ array([ -4.44089210e-16+0.j, -4.44089210e-16+0.j]) # may vary
These numbers in the previous line represent (0, 0) to machine precision
@@ -1073,7 +1074,7 @@ class poly1d(object):
poly1d([ 1, 4, 10, 12, 9])
>>> (p**3 + 4) / p
- (poly1d([ 1., 4., 10., 12., 9.]), poly1d([ 4.]))
+ (poly1d([ 1., 4., 10., 12., 9.]), poly1d([4.]))
``asarray(p)`` gives the coefficient array, so polynomials can be
used in all functions that accept arrays:
@@ -1095,7 +1096,7 @@ class poly1d(object):
Construct a polynomial from its roots:
>>> np.poly1d([1, 2], True)
- poly1d([ 1, -3, 2])
+ poly1d([ 1., -3., 2.])
This is the same polynomial as obtained by: