summaryrefslogtreecommitdiff
path: root/numpy/lib/tests/test_function_base.py
diff options
context:
space:
mode:
Diffstat (limited to 'numpy/lib/tests/test_function_base.py')
-rw-r--r--numpy/lib/tests/test_function_base.py512
1 files changed, 0 insertions, 512 deletions
diff --git a/numpy/lib/tests/test_function_base.py b/numpy/lib/tests/test_function_base.py
index 8381c2465..dbab69436 100644
--- a/numpy/lib/tests/test_function_base.py
+++ b/numpy/lib/tests/test_function_base.py
@@ -1617,518 +1617,6 @@ class TestSinc(object):
assert_array_equal(y1, y3)
-class TestHistogram(object):
-
- def setup(self):
- pass
-
- def teardown(self):
- pass
-
- def test_simple(self):
- n = 100
- v = rand(n)
- (a, b) = histogram(v)
- # check if the sum of the bins equals the number of samples
- assert_equal(np.sum(a, axis=0), n)
- # check that the bin counts are evenly spaced when the data is from
- # a linear function
- (a, b) = histogram(np.linspace(0, 10, 100))
- assert_array_equal(a, 10)
-
- def test_one_bin(self):
- # Ticket 632
- hist, edges = histogram([1, 2, 3, 4], [1, 2])
- assert_array_equal(hist, [2, ])
- assert_array_equal(edges, [1, 2])
- assert_raises(ValueError, histogram, [1, 2], bins=0)
- h, e = histogram([1, 2], bins=1)
- assert_equal(h, np.array([2]))
- assert_allclose(e, np.array([1., 2.]))
-
- def test_normed(self):
- # Check that the integral of the density equals 1.
- n = 100
- v = rand(n)
- a, b = histogram(v, normed=True)
- area = np.sum(a * diff(b))
- assert_almost_equal(area, 1)
-
- # Check with non-constant bin widths (buggy but backwards
- # compatible)
- v = np.arange(10)
- bins = [0, 1, 5, 9, 10]
- a, b = histogram(v, bins, normed=True)
- area = np.sum(a * diff(b))
- assert_almost_equal(area, 1)
-
- def test_density(self):
- # Check that the integral of the density equals 1.
- n = 100
- v = rand(n)
- a, b = histogram(v, density=True)
- area = np.sum(a * diff(b))
- assert_almost_equal(area, 1)
-
- # Check with non-constant bin widths
- v = np.arange(10)
- bins = [0, 1, 3, 6, 10]
- a, b = histogram(v, bins, density=True)
- assert_array_equal(a, .1)
- assert_equal(np.sum(a * diff(b)), 1)
-
- # Variale bin widths are especially useful to deal with
- # infinities.
- v = np.arange(10)
- bins = [0, 1, 3, 6, np.inf]
- a, b = histogram(v, bins, density=True)
- assert_array_equal(a, [.1, .1, .1, 0.])
-
- # Taken from a bug report from N. Becker on the numpy-discussion
- # mailing list Aug. 6, 2010.
- counts, dmy = np.histogram(
- [1, 2, 3, 4], [0.5, 1.5, np.inf], density=True)
- assert_equal(counts, [.25, 0])
-
- def test_outliers(self):
- # Check that outliers are not tallied
- a = np.arange(10) + .5
-
- # Lower outliers
- h, b = histogram(a, range=[0, 9])
- assert_equal(h.sum(), 9)
-
- # Upper outliers
- h, b = histogram(a, range=[1, 10])
- assert_equal(h.sum(), 9)
-
- # Normalization
- h, b = histogram(a, range=[1, 9], normed=True)
- assert_almost_equal((h * diff(b)).sum(), 1, decimal=15)
-
- # Weights
- w = np.arange(10) + .5
- h, b = histogram(a, range=[1, 9], weights=w, normed=True)
- assert_equal((h * diff(b)).sum(), 1)
-
- h, b = histogram(a, bins=8, range=[1, 9], weights=w)
- assert_equal(h, w[1:-1])
-
- def test_type(self):
- # Check the type of the returned histogram
- a = np.arange(10) + .5
- h, b = histogram(a)
- assert_(np.issubdtype(h.dtype, np.integer))
-
- h, b = histogram(a, normed=True)
- assert_(np.issubdtype(h.dtype, np.floating))
-
- h, b = histogram(a, weights=np.ones(10, int))
- assert_(np.issubdtype(h.dtype, np.integer))
-
- h, b = histogram(a, weights=np.ones(10, float))
- assert_(np.issubdtype(h.dtype, np.floating))
-
- def test_f32_rounding(self):
- # gh-4799, check that the rounding of the edges works with float32
- x = np.array([276.318359, -69.593948, 21.329449], dtype=np.float32)
- y = np.array([5005.689453, 4481.327637, 6010.369629], dtype=np.float32)
- counts_hist, xedges, yedges = np.histogram2d(x, y, bins=100)
- assert_equal(counts_hist.sum(), 3.)
-
- def test_weights(self):
- v = rand(100)
- w = np.ones(100) * 5
- a, b = histogram(v)
- na, nb = histogram(v, normed=True)
- wa, wb = histogram(v, weights=w)
- nwa, nwb = histogram(v, weights=w, normed=True)
- assert_array_almost_equal(a * 5, wa)
- assert_array_almost_equal(na, nwa)
-
- # Check weights are properly applied.
- v = np.linspace(0, 10, 10)
- w = np.concatenate((np.zeros(5), np.ones(5)))
- wa, wb = histogram(v, bins=np.arange(11), weights=w)
- assert_array_almost_equal(wa, w)
-
- # Check with integer weights
- wa, wb = histogram([1, 2, 2, 4], bins=4, weights=[4, 3, 2, 1])
- assert_array_equal(wa, [4, 5, 0, 1])
- wa, wb = histogram(
- [1, 2, 2, 4], bins=4, weights=[4, 3, 2, 1], normed=True)
- assert_array_almost_equal(wa, np.array([4, 5, 0, 1]) / 10. / 3. * 4)
-
- # Check weights with non-uniform bin widths
- a, b = histogram(
- np.arange(9), [0, 1, 3, 6, 10],
- weights=[2, 1, 1, 1, 1, 1, 1, 1, 1], density=True)
- assert_almost_equal(a, [.2, .1, .1, .075])
-
- def test_exotic_weights(self):
-
- # Test the use of weights that are not integer or floats, but e.g.
- # complex numbers or object types.
-
- # Complex weights
- values = np.array([1.3, 2.5, 2.3])
- weights = np.array([1, -1, 2]) + 1j * np.array([2, 1, 2])
-
- # Check with custom bins
- wa, wb = histogram(values, bins=[0, 2, 3], weights=weights)
- assert_array_almost_equal(wa, np.array([1, 1]) + 1j * np.array([2, 3]))
-
- # Check with even bins
- wa, wb = histogram(values, bins=2, range=[1, 3], weights=weights)
- assert_array_almost_equal(wa, np.array([1, 1]) + 1j * np.array([2, 3]))
-
- # Decimal weights
- from decimal import Decimal
- values = np.array([1.3, 2.5, 2.3])
- weights = np.array([Decimal(1), Decimal(2), Decimal(3)])
-
- # Check with custom bins
- wa, wb = histogram(values, bins=[0, 2, 3], weights=weights)
- assert_array_almost_equal(wa, [Decimal(1), Decimal(5)])
-
- # Check with even bins
- wa, wb = histogram(values, bins=2, range=[1, 3], weights=weights)
- assert_array_almost_equal(wa, [Decimal(1), Decimal(5)])
-
- def test_no_side_effects(self):
- # This is a regression test that ensures that values passed to
- # ``histogram`` are unchanged.
- values = np.array([1.3, 2.5, 2.3])
- np.histogram(values, range=[-10, 10], bins=100)
- assert_array_almost_equal(values, [1.3, 2.5, 2.3])
-
- def test_empty(self):
- a, b = histogram([], bins=([0, 1]))
- assert_array_equal(a, np.array([0]))
- assert_array_equal(b, np.array([0, 1]))
-
- def test_error_binnum_type (self):
- # Tests if right Error is raised if bins argument is float
- vals = np.linspace(0.0, 1.0, num=100)
- histogram(vals, 5)
- assert_raises(TypeError, histogram, vals, 2.4)
-
- def test_finite_range(self):
- # Normal ranges should be fine
- vals = np.linspace(0.0, 1.0, num=100)
- histogram(vals, range=[0.25,0.75])
- assert_raises(ValueError, histogram, vals, range=[np.nan,0.75])
- assert_raises(ValueError, histogram, vals, range=[0.25,np.inf])
-
- def test_bin_edge_cases(self):
- # Ensure that floating-point computations correctly place edge cases.
- arr = np.array([337, 404, 739, 806, 1007, 1811, 2012])
- hist, edges = np.histogram(arr, bins=8296, range=(2, 2280))
- mask = hist > 0
- left_edges = edges[:-1][mask]
- right_edges = edges[1:][mask]
- for x, left, right in zip(arr, left_edges, right_edges):
- assert_(x >= left)
- assert_(x < right)
-
- def test_last_bin_inclusive_range(self):
- arr = np.array([0., 0., 0., 1., 2., 3., 3., 4., 5.])
- hist, edges = np.histogram(arr, bins=30, range=(-0.5, 5))
- assert_equal(hist[-1], 1)
-
- def test_unsigned_monotonicity_check(self):
- # Ensures ValueError is raised if bins not increasing monotonically
- # when bins contain unsigned values (see #9222)
- arr = np.array([2])
- bins = np.array([1, 3, 1], dtype='uint64')
- with assert_raises(ValueError):
- hist, edges = np.histogram(arr, bins=bins)
-
-
-class TestHistogramOptimBinNums(object):
- """
- Provide test coverage when using provided estimators for optimal number of
- bins
- """
-
- def test_empty(self):
- estimator_list = ['fd', 'scott', 'rice', 'sturges',
- 'doane', 'sqrt', 'auto']
- # check it can deal with empty data
- for estimator in estimator_list:
- a, b = histogram([], bins=estimator)
- assert_array_equal(a, np.array([0]))
- assert_array_equal(b, np.array([0, 1]))
-
- def test_simple(self):
- """
- Straightforward testing with a mixture of linspace data (for
- consistency). All test values have been precomputed and the values
- shouldn't change
- """
- # Some basic sanity checking, with some fixed data.
- # Checking for the correct number of bins
- basic_test = {50: {'fd': 4, 'scott': 4, 'rice': 8, 'sturges': 7,
- 'doane': 8, 'sqrt': 8, 'auto': 7},
- 500: {'fd': 8, 'scott': 8, 'rice': 16, 'sturges': 10,
- 'doane': 12, 'sqrt': 23, 'auto': 10},
- 5000: {'fd': 17, 'scott': 17, 'rice': 35, 'sturges': 14,
- 'doane': 17, 'sqrt': 71, 'auto': 17}}
-
- for testlen, expectedResults in basic_test.items():
- # Create some sort of non uniform data to test with
- # (2 peak uniform mixture)
- x1 = np.linspace(-10, -1, testlen // 5 * 2)
- x2 = np.linspace(1, 10, testlen // 5 * 3)
- x = np.concatenate((x1, x2))
- for estimator, numbins in expectedResults.items():
- a, b = np.histogram(x, estimator)
- assert_equal(len(a), numbins, err_msg="For the {0} estimator "
- "with datasize of {1}".format(estimator, testlen))
-
- def test_small(self):
- """
- Smaller datasets have the potential to cause issues with the data
- adaptive methods, especially the FD method. All bin numbers have been
- precalculated.
- """
- small_dat = {1: {'fd': 1, 'scott': 1, 'rice': 1, 'sturges': 1,
- 'doane': 1, 'sqrt': 1},
- 2: {'fd': 2, 'scott': 1, 'rice': 3, 'sturges': 2,
- 'doane': 1, 'sqrt': 2},
- 3: {'fd': 2, 'scott': 2, 'rice': 3, 'sturges': 3,
- 'doane': 3, 'sqrt': 2}}
-
- for testlen, expectedResults in small_dat.items():
- testdat = np.arange(testlen)
- for estimator, expbins in expectedResults.items():
- a, b = np.histogram(testdat, estimator)
- assert_equal(len(a), expbins, err_msg="For the {0} estimator "
- "with datasize of {1}".format(estimator, testlen))
-
- def test_incorrect_methods(self):
- """
- Check a Value Error is thrown when an unknown string is passed in
- """
- check_list = ['mad', 'freeman', 'histograms', 'IQR']
- for estimator in check_list:
- assert_raises(ValueError, histogram, [1, 2, 3], estimator)
-
- def test_novariance(self):
- """
- Check that methods handle no variance in data
- Primarily for Scott and FD as the SD and IQR are both 0 in this case
- """
- novar_dataset = np.ones(100)
- novar_resultdict = {'fd': 1, 'scott': 1, 'rice': 1, 'sturges': 1,
- 'doane': 1, 'sqrt': 1, 'auto': 1}
-
- for estimator, numbins in novar_resultdict.items():
- a, b = np.histogram(novar_dataset, estimator)
- assert_equal(len(a), numbins, err_msg="{0} estimator, "
- "No Variance test".format(estimator))
-
- def test_outlier(self):
- """
- Check the FD, Scott and Doane with outliers.
-
- The FD estimates a smaller binwidth since it's less affected by
- outliers. Since the range is so (artificially) large, this means more
- bins, most of which will be empty, but the data of interest usually is
- unaffected. The Scott estimator is more affected and returns fewer bins,
- despite most of the variance being in one area of the data. The Doane
- estimator lies somewhere between the other two.
- """
- xcenter = np.linspace(-10, 10, 50)
- outlier_dataset = np.hstack((np.linspace(-110, -100, 5), xcenter))
-
- outlier_resultdict = {'fd': 21, 'scott': 5, 'doane': 11}
-
- for estimator, numbins in outlier_resultdict.items():
- a, b = np.histogram(outlier_dataset, estimator)
- assert_equal(len(a), numbins)
-
- def test_simple_range(self):
- """
- Straightforward testing with a mixture of linspace data (for
- consistency). Adding in a 3rd mixture that will then be
- completely ignored. All test values have been precomputed and
- the shouldn't change.
- """
- # some basic sanity checking, with some fixed data.
- # Checking for the correct number of bins
- basic_test = {
- 50: {'fd': 8, 'scott': 8, 'rice': 15,
- 'sturges': 14, 'auto': 14},
- 500: {'fd': 15, 'scott': 16, 'rice': 32,
- 'sturges': 20, 'auto': 20},
- 5000: {'fd': 33, 'scott': 33, 'rice': 69,
- 'sturges': 27, 'auto': 33}
- }
-
- for testlen, expectedResults in basic_test.items():
- # create some sort of non uniform data to test with
- # (3 peak uniform mixture)
- x1 = np.linspace(-10, -1, testlen // 5 * 2)
- x2 = np.linspace(1, 10, testlen // 5 * 3)
- x3 = np.linspace(-100, -50, testlen)
- x = np.hstack((x1, x2, x3))
- for estimator, numbins in expectedResults.items():
- a, b = np.histogram(x, estimator, range = (-20, 20))
- msg = "For the {0} estimator".format(estimator)
- msg += " with datasize of {0}".format(testlen)
- assert_equal(len(a), numbins, err_msg=msg)
-
- def test_simple_weighted(self):
- """
- Check that weighted data raises a TypeError
- """
- estimator_list = ['fd', 'scott', 'rice', 'sturges', 'auto']
- for estimator in estimator_list:
- assert_raises(TypeError, histogram, [1, 2, 3],
- estimator, weights=[1, 2, 3])
-
-
-class TestHistogramdd(object):
-
- def test_simple(self):
- x = np.array([[-.5, .5, 1.5], [-.5, 1.5, 2.5], [-.5, 2.5, .5],
- [.5, .5, 1.5], [.5, 1.5, 2.5], [.5, 2.5, 2.5]])
- H, edges = histogramdd(x, (2, 3, 3),
- range=[[-1, 1], [0, 3], [0, 3]])
- answer = np.array([[[0, 1, 0], [0, 0, 1], [1, 0, 0]],
- [[0, 1, 0], [0, 0, 1], [0, 0, 1]]])
- assert_array_equal(H, answer)
-
- # Check normalization
- ed = [[-2, 0, 2], [0, 1, 2, 3], [0, 1, 2, 3]]
- H, edges = histogramdd(x, bins=ed, normed=True)
- assert_(np.all(H == answer / 12.))
-
- # Check that H has the correct shape.
- H, edges = histogramdd(x, (2, 3, 4),
- range=[[-1, 1], [0, 3], [0, 4]],
- normed=True)
- answer = np.array([[[0, 1, 0, 0], [0, 0, 1, 0], [1, 0, 0, 0]],
- [[0, 1, 0, 0], [0, 0, 1, 0], [0, 0, 1, 0]]])
- assert_array_almost_equal(H, answer / 6., 4)
- # Check that a sequence of arrays is accepted and H has the correct
- # shape.
- z = [np.squeeze(y) for y in split(x, 3, axis=1)]
- H, edges = histogramdd(
- z, bins=(4, 3, 2), range=[[-2, 2], [0, 3], [0, 2]])
- answer = np.array([[[0, 0], [0, 0], [0, 0]],
- [[0, 1], [0, 0], [1, 0]],
- [[0, 1], [0, 0], [0, 0]],
- [[0, 0], [0, 0], [0, 0]]])
- assert_array_equal(H, answer)
-
- Z = np.zeros((5, 5, 5))
- Z[list(range(5)), list(range(5)), list(range(5))] = 1.
- H, edges = histogramdd([np.arange(5), np.arange(5), np.arange(5)], 5)
- assert_array_equal(H, Z)
-
- def test_shape_3d(self):
- # All possible permutations for bins of different lengths in 3D.
- bins = ((5, 4, 6), (6, 4, 5), (5, 6, 4), (4, 6, 5), (6, 5, 4),
- (4, 5, 6))
- r = rand(10, 3)
- for b in bins:
- H, edges = histogramdd(r, b)
- assert_(H.shape == b)
-
- def test_shape_4d(self):
- # All possible permutations for bins of different lengths in 4D.
- bins = ((7, 4, 5, 6), (4, 5, 7, 6), (5, 6, 4, 7), (7, 6, 5, 4),
- (5, 7, 6, 4), (4, 6, 7, 5), (6, 5, 7, 4), (7, 5, 4, 6),
- (7, 4, 6, 5), (6, 4, 7, 5), (6, 7, 5, 4), (4, 6, 5, 7),
- (4, 7, 5, 6), (5, 4, 6, 7), (5, 7, 4, 6), (6, 7, 4, 5),
- (6, 5, 4, 7), (4, 7, 6, 5), (4, 5, 6, 7), (7, 6, 4, 5),
- (5, 4, 7, 6), (5, 6, 7, 4), (6, 4, 5, 7), (7, 5, 6, 4))
-
- r = rand(10, 4)
- for b in bins:
- H, edges = histogramdd(r, b)
- assert_(H.shape == b)
-
- def test_weights(self):
- v = rand(100, 2)
- hist, edges = histogramdd(v)
- n_hist, edges = histogramdd(v, normed=True)
- w_hist, edges = histogramdd(v, weights=np.ones(100))
- assert_array_equal(w_hist, hist)
- w_hist, edges = histogramdd(v, weights=np.ones(100) * 2, normed=True)
- assert_array_equal(w_hist, n_hist)
- w_hist, edges = histogramdd(v, weights=np.ones(100, int) * 2)
- assert_array_equal(w_hist, 2 * hist)
-
- def test_identical_samples(self):
- x = np.zeros((10, 2), int)
- hist, edges = histogramdd(x, bins=2)
- assert_array_equal(edges[0], np.array([-0.5, 0., 0.5]))
-
- def test_empty(self):
- a, b = histogramdd([[], []], bins=([0, 1], [0, 1]))
- assert_array_max_ulp(a, np.array([[0.]]))
- a, b = np.histogramdd([[], [], []], bins=2)
- assert_array_max_ulp(a, np.zeros((2, 2, 2)))
-
- def test_bins_errors(self):
- # There are two ways to specify bins. Check for the right errors
- # when mixing those.
- x = np.arange(8).reshape(2, 4)
- assert_raises(ValueError, np.histogramdd, x, bins=[-1, 2, 4, 5])
- assert_raises(ValueError, np.histogramdd, x, bins=[1, 0.99, 1, 1])
- assert_raises(
- ValueError, np.histogramdd, x, bins=[1, 1, 1, [1, 2, 2, 3]])
- assert_raises(
- ValueError, np.histogramdd, x, bins=[1, 1, 1, [1, 2, 3, -3]])
- assert_(np.histogramdd(x, bins=[1, 1, 1, [1, 2, 3, 4]]))
-
- def test_inf_edges(self):
- # Test using +/-inf bin edges works. See #1788.
- with np.errstate(invalid='ignore'):
- x = np.arange(6).reshape(3, 2)
- expected = np.array([[1, 0], [0, 1], [0, 1]])
- h, e = np.histogramdd(x, bins=[3, [-np.inf, 2, 10]])
- assert_allclose(h, expected)
- h, e = np.histogramdd(x, bins=[3, np.array([-1, 2, np.inf])])
- assert_allclose(h, expected)
- h, e = np.histogramdd(x, bins=[3, [-np.inf, 3, np.inf]])
- assert_allclose(h, expected)
-
- def test_rightmost_binedge(self):
- # Test event very close to rightmost binedge. See Github issue #4266
- x = [0.9999999995]
- bins = [[0., 0.5, 1.0]]
- hist, _ = histogramdd(x, bins=bins)
- assert_(hist[0] == 0.0)
- assert_(hist[1] == 1.)
- x = [1.0]
- bins = [[0., 0.5, 1.0]]
- hist, _ = histogramdd(x, bins=bins)
- assert_(hist[0] == 0.0)
- assert_(hist[1] == 1.)
- x = [1.0000000001]
- bins = [[0., 0.5, 1.0]]
- hist, _ = histogramdd(x, bins=bins)
- assert_(hist[0] == 0.0)
- assert_(hist[1] == 1.)
- x = [1.0001]
- bins = [[0., 0.5, 1.0]]
- hist, _ = histogramdd(x, bins=bins)
- assert_(hist[0] == 0.0)
- assert_(hist[1] == 0.0)
-
- def test_finite_range(self):
- vals = np.random.random((100, 3))
- histogramdd(vals, range=[[0.0, 1.0], [0.25, 0.75], [0.25, 0.5]])
- assert_raises(ValueError, histogramdd, vals,
- range=[[0.0, 1.0], [0.25, 0.75], [0.25, np.inf]])
- assert_raises(ValueError, histogramdd, vals,
- range=[[0.0, 1.0], [np.nan, 0.75], [0.25, 0.5]])
-
-
class TestUnique(object):
def test_simple(self):