summaryrefslogtreecommitdiff
path: root/numpy/lib/tests/test_function_base.py
diff options
context:
space:
mode:
Diffstat (limited to 'numpy/lib/tests/test_function_base.py')
-rw-r--r--numpy/lib/tests/test_function_base.py66
1 files changed, 36 insertions, 30 deletions
diff --git a/numpy/lib/tests/test_function_base.py b/numpy/lib/tests/test_function_base.py
index 3cc607f93..6e1c3583d 100644
--- a/numpy/lib/tests/test_function_base.py
+++ b/numpy/lib/tests/test_function_base.py
@@ -440,110 +440,116 @@ class TestSinc(TestCase):
class TestHistogram(TestCase):
def setUp(self):
- warnings.simplefilter('ignore', FutureWarning)
-
+ warnings.simplefilter('ignore', Warning)
+
def tearDown(self):
warnings.resetwarnings()
- def test_simple(self):
+ def test_simple_old(self):
n=100
v=rand(n)
- (a,b)=histogram(v)
+ (a,b)=histogram(v, new=False)
#check if the sum of the bins equals the number of samples
assert_equal(sum(a,axis=0), n)
#check that the bin counts are evenly spaced when the data is from a
# linear function
- (a,b)=histogram(linspace(0,10,100))
+ (a,b)=histogram(linspace(0,10,100), new=False)
assert_array_equal(a, 10)
- def test_simple_new(self):
+ def test_simple(self):
n=100
v=rand(n)
- (a,b)=histogram(v, new=True)
+ (a,b)=histogram(v)
#check if the sum of the bins equals the number of samples
assert_equal(sum(a,axis=0), n)
#check that the bin counts are evenly spaced when the data is from a
# linear function
- (a,b)=histogram(linspace(0,10,100), new=True)
+ (a,b)=histogram(linspace(0,10,100))
assert_array_equal(a, 10)
- def test_normed_new(self):
+ def test_one_bin(self):
+ # Ticket 632
+ hist,edges = histogram([1,2,3,4],[1,2])
+ assert_array_equal(hist,[2, ])
+ assert_array_equal(edges,[1,2])
+
+ def test_normed(self):
# Check that the integral of the density equals 1.
n = 100
v = rand(n)
- a,b = histogram(v, normed=True, new=True)
+ a,b = histogram(v, normed=True)
area = sum(a*diff(b))
assert_almost_equal(area, 1)
# Check with non constant bin width
v = rand(n)*10
bins = [0,1,5, 9, 10]
- a,b = histogram(v, bins, normed=True, new=True)
+ a,b = histogram(v, bins, normed=True)
area = sum(a*diff(b))
assert_almost_equal(area, 1)
- def test_outliers_new(self):
+ def test_outliers(self):
# Check that outliers are not tallied
a = arange(10)+.5
# Lower outliers
- h,b = histogram(a, range=[0,9], new=True)
+ h,b = histogram(a, range=[0,9])
assert_equal(h.sum(),9)
# Upper outliers
- h,b = histogram(a, range=[1,10], new=True)
+ h,b = histogram(a, range=[1,10])
assert_equal(h.sum(),9)
# Normalization
- h,b = histogram(a, range=[1,9], normed=True, new=True)
+ h,b = histogram(a, range=[1,9], normed=True)
assert_equal((h*diff(b)).sum(),1)
# Weights
w = arange(10)+.5
- h,b = histogram(a, range=[1,9], weights=w, normed=True, new=True)
+ h,b = histogram(a, range=[1,9], weights=w, normed=True)
assert_equal((h*diff(b)).sum(),1)
- h,b = histogram(a, bins=8, range=[1,9], weights=w, new=True)
+ h,b = histogram(a, bins=8, range=[1,9], weights=w)
assert_equal(h, w[1:-1])
- def test_type_new(self):
+ def test_type(self):
# Check the type of the returned histogram
a = arange(10)+.5
- h,b = histogram(a, new=True)
+ h,b = histogram(a)
assert(issubdtype(h.dtype, int))
- h,b = histogram(a, normed=True, new=True)
+ h,b = histogram(a, normed=True)
assert(issubdtype(h.dtype, float))
- h,b = histogram(a, weights=ones(10, int), new=True)
+ h,b = histogram(a, weights=ones(10, int))
assert(issubdtype(h.dtype, int))
- h,b = histogram(a, weights=ones(10, float), new=True)
+ h,b = histogram(a, weights=ones(10, float))
assert(issubdtype(h.dtype, float))
- def test_weights_new(self):
+ def test_weights(self):
v = rand(100)
w = ones(100)*5
- a,b = histogram(v,new=True)
- na,nb = histogram(v, normed=True, new=True)
- wa,wb = histogram(v, weights=w, new=True)
- nwa,nwb = histogram(v, weights=w, normed=True, new=True)
+ a,b = histogram(v)
+ na,nb = histogram(v, normed=True)
+ wa,wb = histogram(v, weights=w)
+ nwa,nwb = histogram(v, weights=w, normed=True)
assert_array_almost_equal(a*5, wa)
assert_array_almost_equal(na, nwa)
# Check weights are properly applied.
v = linspace(0,10,10)
w = concatenate((zeros(5), ones(5)))
- wa,wb = histogram(v, bins=arange(11),weights=w, new=True)
+ wa,wb = histogram(v, bins=arange(11),weights=w)
assert_array_almost_equal(wa, w)
# Check with integer weights
- wa, wb = histogram([1,2,2,4], bins=4, weights=[4,3,2,1], new=True)
+ wa, wb = histogram([1,2,2,4], bins=4, weights=[4,3,2,1])
assert_array_equal(wa, [4,5,0,1])
- wa, wb = histogram([1,2,2,4], bins=4, weights=[4,3,2,1], normed=True, new=True)
+ wa, wb = histogram([1,2,2,4], bins=4, weights=[4,3,2,1], normed=True)
assert_array_equal(wa, array([4,5,0,1])/10./3.*4)
class TestHistogramdd(TestCase):