summaryrefslogtreecommitdiff
path: root/numpy/lib/tests/test_index_tricks.py
diff options
context:
space:
mode:
Diffstat (limited to 'numpy/lib/tests/test_index_tricks.py')
-rw-r--r--numpy/lib/tests/test_index_tricks.py296
1 files changed, 209 insertions, 87 deletions
diff --git a/numpy/lib/tests/test_index_tricks.py b/numpy/lib/tests/test_index_tricks.py
index 919791ae5..3246f68ff 100644
--- a/numpy/lib/tests/test_index_tricks.py
+++ b/numpy/lib/tests/test_index_tricks.py
@@ -1,19 +1,49 @@
from __future__ import division, absolute_import, print_function
+import pytest
+
import numpy as np
from numpy.testing import (
- run_module_suite, TestCase, assert_, assert_equal, assert_array_equal,
- assert_almost_equal, assert_array_almost_equal, assert_raises
+ assert_, assert_equal, assert_array_equal, assert_almost_equal,
+ assert_array_almost_equal, assert_raises, assert_raises_regex,
+ assert_warns
)
from numpy.lib.index_tricks import (
- mgrid, ndenumerate, fill_diagonal, diag_indices, diag_indices_from,
+ mgrid, ogrid, ndenumerate, fill_diagonal, diag_indices, diag_indices_from,
index_exp, ndindex, r_, s_, ix_
)
-class TestRavelUnravelIndex(TestCase):
+class TestRavelUnravelIndex(object):
def test_basic(self):
assert_equal(np.unravel_index(2, (2, 2)), (1, 0))
+
+ # test backwards compatibility with older dims
+ # keyword argument; see Issue #10586
+ with assert_warns(DeprecationWarning):
+ # we should achieve the correct result
+ # AND raise the appropriate warning
+ # when using older "dims" kw argument
+ assert_equal(np.unravel_index(indices=2,
+ dims=(2, 2)),
+ (1, 0))
+
+ # test that new shape argument works properly
+ assert_equal(np.unravel_index(indices=2,
+ shape=(2, 2)),
+ (1, 0))
+
+ # test that an invalid second keyword argument
+ # is properly handled
+ with assert_raises(TypeError):
+ np.unravel_index(indices=2, hape=(2, 2))
+
+ with assert_raises(TypeError):
+ np.unravel_index(2, hape=(2, 2))
+
+ with assert_raises(TypeError):
+ np.unravel_index(254, ims=(17, 94))
+
assert_equal(np.ravel_multi_index((1, 0), (2, 2)), 2)
assert_equal(np.unravel_index(254, (17, 94)), (2, 66))
assert_equal(np.ravel_multi_index((2, 66), (17, 94)), 254)
@@ -47,6 +77,27 @@ class TestRavelUnravelIndex(TestCase):
[[3, 6, 6], [4, 5, 1]])
assert_equal(np.unravel_index(1621, (6, 7, 8, 9)), [3, 1, 4, 1])
+ def test_big_indices(self):
+ # ravel_multi_index for big indices (issue #7546)
+ if np.intp == np.int64:
+ arr = ([1, 29], [3, 5], [3, 117], [19, 2],
+ [2379, 1284], [2, 2], [0, 1])
+ assert_equal(
+ np.ravel_multi_index(arr, (41, 7, 120, 36, 2706, 8, 6)),
+ [5627771580, 117259570957])
+
+ # test overflow checking for too big array (issue #7546)
+ dummy_arr = ([0],[0])
+ half_max = np.iinfo(np.intp).max // 2
+ assert_equal(
+ np.ravel_multi_index(dummy_arr, (half_max, 2)), [0])
+ assert_raises(ValueError,
+ np.ravel_multi_index, dummy_arr, (half_max+1, 2))
+ assert_equal(
+ np.ravel_multi_index(dummy_arr, (half_max, 2), order='F'), [0])
+ assert_raises(ValueError,
+ np.ravel_multi_index, dummy_arr, (half_max+1, 2), order='F')
+
def test_dtypes(self):
# Test with different data types
for dtype in [np.int16, np.uint16, np.int32,
@@ -89,11 +140,20 @@ class TestRavelUnravelIndex(TestCase):
def test_writeability(self):
# See gh-7269
x, y = np.unravel_index([1, 2, 3], (4, 5))
- self.assertTrue(x.flags.writeable)
- self.assertTrue(y.flags.writeable)
+ assert_(x.flags.writeable)
+ assert_(y.flags.writeable)
+
+ def test_0d(self):
+ # gh-580
+ x = np.unravel_index(0, ())
+ assert_equal(x, ())
+
+ assert_raises_regex(ValueError, "0d array", np.unravel_index, [0], ())
+ assert_raises_regex(
+ ValueError, "out of bounds", np.unravel_index, [1], ())
-class TestGrid(TestCase):
+class TestGrid(object):
def test_basic(self):
a = mgrid[-1:1:10j]
b = mgrid[-1:1:0.1]
@@ -125,8 +185,33 @@ class TestGrid(TestCase):
assert_array_almost_equal(d[1, :, 1] - d[1, :, 0],
0.2*np.ones(20, 'd'), 11)
-
-class TestConcatenator(TestCase):
+ def test_sparse(self):
+ grid_full = mgrid[-1:1:10j, -2:2:10j]
+ grid_sparse = ogrid[-1:1:10j, -2:2:10j]
+
+ # sparse grids can be made dense by broadcasting
+ grid_broadcast = np.broadcast_arrays(*grid_sparse)
+ for f, b in zip(grid_full, grid_broadcast):
+ assert_equal(f, b)
+
+ @pytest.mark.parametrize("start, stop, step, expected", [
+ (None, 10, 10j, (200, 10)),
+ (-10, 20, None, (1800, 30)),
+ ])
+ def test_mgrid_size_none_handling(self, start, stop, step, expected):
+ # regression test None value handling for
+ # start and step values used by mgrid;
+ # internally, this aims to cover previously
+ # unexplored code paths in nd_grid()
+ grid = mgrid[start:stop:step, start:stop:step]
+ # need a smaller grid to explore one of the
+ # untested code paths
+ grid_small = mgrid[start:stop:step]
+ assert_equal(grid.size, expected[0])
+ assert_equal(grid_small.size, expected[1])
+
+
+class TestConcatenator(object):
def test_1d(self):
assert_array_equal(r_[1, 2, 3, 4, 5, 6], np.array([1, 2, 3, 4, 5, 6]))
b = np.ones(5)
@@ -141,6 +226,11 @@ class TestConcatenator(TestCase):
g = r_[-10.1, np.array([1]), np.array([2, 3, 4]), 10.0]
assert_(g.dtype == 'f8')
+ def test_complex_step(self):
+ # Regression test for #12262
+ g = r_[0:36:100j]
+ assert_(g.shape == (100,))
+
def test_2d(self):
b = np.random.rand(5, 5)
c = np.random.rand(5, 5)
@@ -153,15 +243,20 @@ class TestConcatenator(TestCase):
assert_array_equal(d[:5, :], b)
assert_array_equal(d[5:, :], c)
+ def test_0d(self):
+ assert_equal(r_[0, np.array(1), 2], [0, 1, 2])
+ assert_equal(r_[[0, 1, 2], np.array(3)], [0, 1, 2, 3])
+ assert_equal(r_[np.array(0), [1, 2, 3]], [0, 1, 2, 3])
+
-class TestNdenumerate(TestCase):
+class TestNdenumerate(object):
def test_basic(self):
a = np.array([[1, 2], [3, 4]])
assert_equal(list(ndenumerate(a)),
[((0, 0), 1), ((0, 1), 2), ((1, 0), 3), ((1, 1), 4)])
-class TestIndexExpression(TestCase):
+class TestIndexExpression(object):
def test_regression_1(self):
# ticket #1196
a = np.arange(2)
@@ -175,9 +270,9 @@ class TestIndexExpression(TestCase):
assert_equal(a[:, :3, [1, 2]], a[s_[:, :3, [1, 2]]])
-class TestIx_(TestCase):
+class TestIx_(object):
def test_regression_1(self):
- # Test empty inputs create ouputs of indexing type, gh-5804
+ # Test empty inputs create outputs of indexing type, gh-5804
# Test both lists and arrays
for func in (range, np.arange):
a, = np.ix_(func(0))
@@ -191,7 +286,7 @@ class TestIx_(TestCase):
for k, (a, sz) in enumerate(zip(arrays, sizes)):
assert_equal(a.shape[k], sz)
assert_(all(sh == 1 for j, sh in enumerate(a.shape) if j != k))
- assert_(np.issubdtype(a.dtype, int))
+ assert_(np.issubdtype(a.dtype, np.integer))
def test_bool(self):
bool_a = [True, False, True, True]
@@ -217,71 +312,90 @@ def test_c_():
assert_equal(a, [[1, 2, 3, 0, 0, 4, 5, 6]])
-def test_fill_diagonal():
- a = np.zeros((3, 3), int)
- fill_diagonal(a, 5)
- yield (assert_array_equal, a,
- np.array([[5, 0, 0],
- [0, 5, 0],
- [0, 0, 5]]))
-
- #Test tall matrix
- a = np.zeros((10, 3), int)
- fill_diagonal(a, 5)
- yield (assert_array_equal, a,
- np.array([[5, 0, 0],
- [0, 5, 0],
- [0, 0, 5],
- [0, 0, 0],
- [0, 0, 0],
- [0, 0, 0],
- [0, 0, 0],
- [0, 0, 0],
- [0, 0, 0],
- [0, 0, 0]]))
-
- #Test tall matrix wrap
- a = np.zeros((10, 3), int)
- fill_diagonal(a, 5, True)
- yield (assert_array_equal, a,
- np.array([[5, 0, 0],
- [0, 5, 0],
- [0, 0, 5],
- [0, 0, 0],
- [5, 0, 0],
- [0, 5, 0],
- [0, 0, 5],
- [0, 0, 0],
- [5, 0, 0],
- [0, 5, 0]]))
-
- #Test wide matrix
- a = np.zeros((3, 10), int)
- fill_diagonal(a, 5)
- yield (assert_array_equal, a,
- np.array([[5, 0, 0, 0, 0, 0, 0, 0, 0, 0],
- [0, 5, 0, 0, 0, 0, 0, 0, 0, 0],
- [0, 0, 5, 0, 0, 0, 0, 0, 0, 0]]))
-
- # The same function can operate on a 4-d array:
- a = np.zeros((3, 3, 3, 3), int)
- fill_diagonal(a, 4)
- i = np.array([0, 1, 2])
- yield (assert_equal, np.where(a != 0), (i, i, i, i))
+class TestFillDiagonal(object):
+ def test_basic(self):
+ a = np.zeros((3, 3), int)
+ fill_diagonal(a, 5)
+ assert_array_equal(
+ a, np.array([[5, 0, 0],
+ [0, 5, 0],
+ [0, 0, 5]])
+ )
+
+ def test_tall_matrix(self):
+ a = np.zeros((10, 3), int)
+ fill_diagonal(a, 5)
+ assert_array_equal(
+ a, np.array([[5, 0, 0],
+ [0, 5, 0],
+ [0, 0, 5],
+ [0, 0, 0],
+ [0, 0, 0],
+ [0, 0, 0],
+ [0, 0, 0],
+ [0, 0, 0],
+ [0, 0, 0],
+ [0, 0, 0]])
+ )
+
+ def test_tall_matrix_wrap(self):
+ a = np.zeros((10, 3), int)
+ fill_diagonal(a, 5, True)
+ assert_array_equal(
+ a, np.array([[5, 0, 0],
+ [0, 5, 0],
+ [0, 0, 5],
+ [0, 0, 0],
+ [5, 0, 0],
+ [0, 5, 0],
+ [0, 0, 5],
+ [0, 0, 0],
+ [5, 0, 0],
+ [0, 5, 0]])
+ )
+
+ def test_wide_matrix(self):
+ a = np.zeros((3, 10), int)
+ fill_diagonal(a, 5)
+ assert_array_equal(
+ a, np.array([[5, 0, 0, 0, 0, 0, 0, 0, 0, 0],
+ [0, 5, 0, 0, 0, 0, 0, 0, 0, 0],
+ [0, 0, 5, 0, 0, 0, 0, 0, 0, 0]])
+ )
+
+ def test_operate_4d_array(self):
+ a = np.zeros((3, 3, 3, 3), int)
+ fill_diagonal(a, 4)
+ i = np.array([0, 1, 2])
+ assert_equal(np.where(a != 0), (i, i, i, i))
+
+ def test_low_dim_handling(self):
+ # raise error with low dimensionality
+ a = np.zeros(3, int)
+ with assert_raises_regex(ValueError, "at least 2-d"):
+ fill_diagonal(a, 5)
+
+ def test_hetero_shape_handling(self):
+ # raise error with high dimensionality and
+ # shape mismatch
+ a = np.zeros((3,3,7,3), int)
+ with assert_raises_regex(ValueError, "equal length"):
+ fill_diagonal(a, 2)
def test_diag_indices():
di = diag_indices(4)
a = np.array([[1, 2, 3, 4],
- [5, 6, 7, 8],
- [9, 10, 11, 12],
- [13, 14, 15, 16]])
+ [5, 6, 7, 8],
+ [9, 10, 11, 12],
+ [13, 14, 15, 16]])
a[di] = 100
- yield (assert_array_equal, a,
- np.array([[100, 2, 3, 4],
- [5, 100, 7, 8],
- [9, 10, 100, 12],
- [13, 14, 15, 100]]))
+ assert_array_equal(
+ a, np.array([[100, 2, 3, 4],
+ [5, 100, 7, 8],
+ [9, 10, 100, 12],
+ [13, 14, 15, 100]])
+ )
# Now, we create indices to manipulate a 3-d array:
d3 = diag_indices(2, 3)
@@ -289,19 +403,31 @@ def test_diag_indices():
# And use it to set the diagonal of a zeros array to 1:
a = np.zeros((2, 2, 2), int)
a[d3] = 1
- yield (assert_array_equal, a,
- np.array([[[1, 0],
- [0, 0]],
+ assert_array_equal(
+ a, np.array([[[1, 0],
+ [0, 0]],
+ [[0, 0],
+ [0, 1]]])
+ )
+
+
+class TestDiagIndicesFrom(object):
- [[0, 0],
- [0, 1]]]))
+ def test_diag_indices_from(self):
+ x = np.random.random((4, 4))
+ r, c = diag_indices_from(x)
+ assert_array_equal(r, np.arange(4))
+ assert_array_equal(c, np.arange(4))
+ def test_error_small_input(self):
+ x = np.ones(7)
+ with assert_raises_regex(ValueError, "at least 2-d"):
+ diag_indices_from(x)
-def test_diag_indices_from():
- x = np.random.random((4, 4))
- r, c = diag_indices_from(x)
- assert_array_equal(r, np.arange(4))
- assert_array_equal(c, np.arange(4))
+ def test_error_shape_mismatch(self):
+ x = np.zeros((3, 3, 2, 3), int)
+ with assert_raises_regex(ValueError, "equal length"):
+ diag_indices_from(x)
def test_ndindex():
@@ -326,7 +452,3 @@ def test_ndindex():
# Make sure 0-sized ndindex works correctly
x = list(ndindex(*[0]))
assert_equal(x, [])
-
-
-if __name__ == "__main__":
- run_module_suite()