summaryrefslogtreecommitdiff
path: root/numpy/lib/tests/test_nanfunctions.py
diff options
context:
space:
mode:
Diffstat (limited to 'numpy/lib/tests/test_nanfunctions.py')
-rw-r--r--numpy/lib/tests/test_nanfunctions.py221
1 files changed, 148 insertions, 73 deletions
diff --git a/numpy/lib/tests/test_nanfunctions.py b/numpy/lib/tests/test_nanfunctions.py
index 2b310457b..b7261c63f 100644
--- a/numpy/lib/tests/test_nanfunctions.py
+++ b/numpy/lib/tests/test_nanfunctions.py
@@ -1,11 +1,13 @@
from __future__ import division, absolute_import, print_function
import warnings
+import pytest
import numpy as np
+from numpy.lib.nanfunctions import _nan_mask
from numpy.testing import (
- run_module_suite, TestCase, assert_, assert_equal, assert_almost_equal,
- assert_no_warnings, assert_raises, assert_array_equal, suppress_warnings
+ assert_, assert_equal, assert_almost_equal, assert_no_warnings,
+ assert_raises, assert_array_equal, suppress_warnings
)
@@ -35,7 +37,7 @@ _ndat_zeros = np.array([[0.6244, 0.0, 0.2692, 0.0116, 0.0, 0.1170],
[0.1610, 0.0, 0.0, 0.1859, 0.3146, 0.0]])
-class TestNanFunctions_MinMax(TestCase):
+class TestNanFunctions_MinMax(object):
nanfuncs = [np.nanmin, np.nanmax]
stdfuncs = [np.min, np.max]
@@ -113,47 +115,63 @@ class TestNanFunctions_MinMax(TestCase):
for f in self.nanfuncs:
assert_(f(0.) == 0.)
- def test_matrices(self):
+ def test_subclass(self):
+ class MyNDArray(np.ndarray):
+ pass
+
# Check that it works and that type and
# shape are preserved
- mat = np.matrix(np.eye(3))
+ mine = np.eye(3).view(MyNDArray)
for f in self.nanfuncs:
- res = f(mat, axis=0)
- assert_(isinstance(res, np.matrix))
- assert_(res.shape == (1, 3))
- res = f(mat, axis=1)
- assert_(isinstance(res, np.matrix))
- assert_(res.shape == (3, 1))
- res = f(mat)
- assert_(np.isscalar(res))
+ res = f(mine, axis=0)
+ assert_(isinstance(res, MyNDArray))
+ assert_(res.shape == (3,))
+ res = f(mine, axis=1)
+ assert_(isinstance(res, MyNDArray))
+ assert_(res.shape == (3,))
+ res = f(mine)
+ assert_(res.shape == ())
+
# check that rows of nan are dealt with for subclasses (#4628)
- mat[1] = np.nan
+ mine[1] = np.nan
for f in self.nanfuncs:
with warnings.catch_warnings(record=True) as w:
warnings.simplefilter('always')
- res = f(mat, axis=0)
- assert_(isinstance(res, np.matrix))
+ res = f(mine, axis=0)
+ assert_(isinstance(res, MyNDArray))
assert_(not np.any(np.isnan(res)))
assert_(len(w) == 0)
with warnings.catch_warnings(record=True) as w:
warnings.simplefilter('always')
- res = f(mat, axis=1)
- assert_(isinstance(res, np.matrix))
- assert_(np.isnan(res[1, 0]) and not np.isnan(res[0, 0])
- and not np.isnan(res[2, 0]))
+ res = f(mine, axis=1)
+ assert_(isinstance(res, MyNDArray))
+ assert_(np.isnan(res[1]) and not np.isnan(res[0])
+ and not np.isnan(res[2]))
assert_(len(w) == 1, 'no warning raised')
assert_(issubclass(w[0].category, RuntimeWarning))
with warnings.catch_warnings(record=True) as w:
warnings.simplefilter('always')
- res = f(mat)
- assert_(np.isscalar(res))
+ res = f(mine)
+ assert_(res.shape == ())
assert_(res != np.nan)
assert_(len(w) == 0)
+ def test_object_array(self):
+ arr = np.array([[1.0, 2.0], [np.nan, 4.0], [np.nan, np.nan]], dtype=object)
+ assert_equal(np.nanmin(arr), 1.0)
+ assert_equal(np.nanmin(arr, axis=0), [1.0, 2.0])
-class TestNanFunctions_ArgminArgmax(TestCase):
+ with warnings.catch_warnings(record=True) as w:
+ warnings.simplefilter('always')
+ # assert_equal does not work on object arrays of nan
+ assert_equal(list(np.nanmin(arr, axis=1)), [1.0, 4.0, np.nan])
+ assert_(len(w) == 1, 'no warning raised')
+ assert_(issubclass(w[0].category, RuntimeWarning))
+
+
+class TestNanFunctions_ArgminArgmax(object):
nanfuncs = [np.nanargmin, np.nanargmax]
@@ -197,22 +215,25 @@ class TestNanFunctions_ArgminArgmax(TestCase):
for f in self.nanfuncs:
assert_(f(0.) == 0.)
- def test_matrices(self):
+ def test_subclass(self):
+ class MyNDArray(np.ndarray):
+ pass
+
# Check that it works and that type and
# shape are preserved
- mat = np.matrix(np.eye(3))
+ mine = np.eye(3).view(MyNDArray)
for f in self.nanfuncs:
- res = f(mat, axis=0)
- assert_(isinstance(res, np.matrix))
- assert_(res.shape == (1, 3))
- res = f(mat, axis=1)
- assert_(isinstance(res, np.matrix))
- assert_(res.shape == (3, 1))
- res = f(mat)
- assert_(np.isscalar(res))
+ res = f(mine, axis=0)
+ assert_(isinstance(res, MyNDArray))
+ assert_(res.shape == (3,))
+ res = f(mine, axis=1)
+ assert_(isinstance(res, MyNDArray))
+ assert_(res.shape == (3,))
+ res = f(mine)
+ assert_(res.shape == ())
-class TestNanFunctions_IntTypes(TestCase):
+class TestNanFunctions_IntTypes(object):
int_types = (np.int8, np.int16, np.int32, np.int64, np.uint8,
np.uint16, np.uint32, np.uint64)
@@ -369,22 +390,30 @@ class SharedNanFunctionsTestsMixin(object):
for f in self.nanfuncs:
assert_(f(0.) == 0.)
- def test_matrices(self):
+ def test_subclass(self):
+ class MyNDArray(np.ndarray):
+ pass
+
# Check that it works and that type and
# shape are preserved
- mat = np.matrix(np.eye(3))
+ array = np.eye(3)
+ mine = array.view(MyNDArray)
for f in self.nanfuncs:
- res = f(mat, axis=0)
- assert_(isinstance(res, np.matrix))
- assert_(res.shape == (1, 3))
- res = f(mat, axis=1)
- assert_(isinstance(res, np.matrix))
- assert_(res.shape == (3, 1))
- res = f(mat)
- assert_(np.isscalar(res))
-
-
-class TestNanFunctions_SumProd(TestCase, SharedNanFunctionsTestsMixin):
+ expected_shape = f(array, axis=0).shape
+ res = f(mine, axis=0)
+ assert_(isinstance(res, MyNDArray))
+ assert_(res.shape == expected_shape)
+ expected_shape = f(array, axis=1).shape
+ res = f(mine, axis=1)
+ assert_(isinstance(res, MyNDArray))
+ assert_(res.shape == expected_shape)
+ expected_shape = f(array).shape
+ res = f(mine)
+ assert_(isinstance(res, MyNDArray))
+ assert_(res.shape == expected_shape)
+
+
+class TestNanFunctions_SumProd(SharedNanFunctionsTestsMixin):
nanfuncs = [np.nansum, np.nanprod]
stdfuncs = [np.sum, np.prod]
@@ -418,7 +447,7 @@ class TestNanFunctions_SumProd(TestCase, SharedNanFunctionsTestsMixin):
assert_equal(res, tgt)
-class TestNanFunctions_CumSumProd(TestCase, SharedNanFunctionsTestsMixin):
+class TestNanFunctions_CumSumProd(SharedNanFunctionsTestsMixin):
nanfuncs = [np.nancumsum, np.nancumprod]
stdfuncs = [np.cumsum, np.cumprod]
@@ -469,18 +498,6 @@ class TestNanFunctions_CumSumProd(TestCase, SharedNanFunctionsTestsMixin):
res = f(d, axis=axis)
assert_equal(res.shape, (3, 5, 7, 11))
- def test_matrices(self):
- # Check that it works and that type and
- # shape are preserved
- mat = np.matrix(np.eye(3))
- for f in self.nanfuncs:
- for axis in np.arange(2):
- res = f(mat, axis=axis)
- assert_(isinstance(res, np.matrix))
- assert_(res.shape == (3, 3))
- res = f(mat)
- assert_(res.shape == (1, 3*3))
-
def test_result_values(self):
for axis in (-2, -1, 0, 1, None):
tgt = np.cumprod(_ndat_ones, axis=axis)
@@ -501,7 +518,7 @@ class TestNanFunctions_CumSumProd(TestCase, SharedNanFunctionsTestsMixin):
assert_almost_equal(res, tgt)
-class TestNanFunctions_MeanVarStd(TestCase, SharedNanFunctionsTestsMixin):
+class TestNanFunctions_MeanVarStd(SharedNanFunctionsTestsMixin):
nanfuncs = [np.nanmean, np.nanvar, np.nanstd]
stdfuncs = [np.mean, np.var, np.std]
@@ -573,7 +590,7 @@ class TestNanFunctions_MeanVarStd(TestCase, SharedNanFunctionsTestsMixin):
assert_(len(w) == 0)
-class TestNanFunctions_Median(TestCase):
+class TestNanFunctions_Median(object):
def test_mutation(self):
# Check that passed array is not modified.
@@ -684,10 +701,10 @@ class TestNanFunctions_Median(TestCase):
def test_extended_axis_invalid(self):
d = np.ones((3, 5, 7, 11))
- assert_raises(IndexError, np.nanmedian, d, axis=-5)
- assert_raises(IndexError, np.nanmedian, d, axis=(0, -5))
- assert_raises(IndexError, np.nanmedian, d, axis=4)
- assert_raises(IndexError, np.nanmedian, d, axis=(0, 4))
+ assert_raises(np.AxisError, np.nanmedian, d, axis=-5)
+ assert_raises(np.AxisError, np.nanmedian, d, axis=(0, -5))
+ assert_raises(np.AxisError, np.nanmedian, d, axis=4)
+ assert_raises(np.AxisError, np.nanmedian, d, axis=(0, 4))
assert_raises(ValueError, np.nanmedian, d, axis=(1, 1))
def test_float_special(self):
@@ -737,7 +754,7 @@ class TestNanFunctions_Median(TestCase):
([np.nan] * i) + [-inf] * j)
-class TestNanFunctions_Percentile(TestCase):
+class TestNanFunctions_Percentile(object):
def test_mutation(self):
# Check that passed array is not modified.
@@ -843,10 +860,10 @@ class TestNanFunctions_Percentile(TestCase):
def test_extended_axis_invalid(self):
d = np.ones((3, 5, 7, 11))
- assert_raises(IndexError, np.nanpercentile, d, q=5, axis=-5)
- assert_raises(IndexError, np.nanpercentile, d, q=5, axis=(0, -5))
- assert_raises(IndexError, np.nanpercentile, d, q=5, axis=4)
- assert_raises(IndexError, np.nanpercentile, d, q=5, axis=(0, 4))
+ assert_raises(np.AxisError, np.nanpercentile, d, q=5, axis=-5)
+ assert_raises(np.AxisError, np.nanpercentile, d, q=5, axis=(0, -5))
+ assert_raises(np.AxisError, np.nanpercentile, d, q=5, axis=4)
+ assert_raises(np.AxisError, np.nanpercentile, d, q=5, axis=(0, 4))
assert_raises(ValueError, np.nanpercentile, d, q=5, axis=(1, 1))
def test_multiple_percentiles(self):
@@ -876,5 +893,63 @@ class TestNanFunctions_Percentile(TestCase):
assert_equal(np.nanpercentile(megamat, perc, axis=(1, 2)).shape, (2, 3, 6))
-if __name__ == "__main__":
- run_module_suite()
+class TestNanFunctions_Quantile(object):
+ # most of this is already tested by TestPercentile
+
+ def test_regression(self):
+ ar = np.arange(24).reshape(2, 3, 4).astype(float)
+ ar[0][1] = np.nan
+
+ assert_equal(np.nanquantile(ar, q=0.5), np.nanpercentile(ar, q=50))
+ assert_equal(np.nanquantile(ar, q=0.5, axis=0),
+ np.nanpercentile(ar, q=50, axis=0))
+ assert_equal(np.nanquantile(ar, q=0.5, axis=1),
+ np.nanpercentile(ar, q=50, axis=1))
+ assert_equal(np.nanquantile(ar, q=[0.5], axis=1),
+ np.nanpercentile(ar, q=[50], axis=1))
+ assert_equal(np.nanquantile(ar, q=[0.25, 0.5, 0.75], axis=1),
+ np.nanpercentile(ar, q=[25, 50, 75], axis=1))
+
+ def test_basic(self):
+ x = np.arange(8) * 0.5
+ assert_equal(np.nanquantile(x, 0), 0.)
+ assert_equal(np.nanquantile(x, 1), 3.5)
+ assert_equal(np.nanquantile(x, 0.5), 1.75)
+
+ def test_no_p_overwrite(self):
+ # this is worth retesting, because quantile does not make a copy
+ p0 = np.array([0, 0.75, 0.25, 0.5, 1.0])
+ p = p0.copy()
+ np.nanquantile(np.arange(100.), p, interpolation="midpoint")
+ assert_array_equal(p, p0)
+
+ p0 = p0.tolist()
+ p = p.tolist()
+ np.nanquantile(np.arange(100.), p, interpolation="midpoint")
+ assert_array_equal(p, p0)
+
+@pytest.mark.parametrize("arr, expected", [
+ # array of floats with some nans
+ (np.array([np.nan, 5.0, np.nan, np.inf]),
+ np.array([False, True, False, True])),
+ # int64 array that can't possibly have nans
+ (np.array([1, 5, 7, 9], dtype=np.int64),
+ True),
+ # bool array that can't possibly have nans
+ (np.array([False, True, False, True]),
+ True),
+ # 2-D complex array with nans
+ (np.array([[np.nan, 5.0],
+ [np.nan, np.inf]], dtype=np.complex64),
+ np.array([[False, True],
+ [False, True]])),
+ ])
+def test__nan_mask(arr, expected):
+ for out in [None, np.empty(arr.shape, dtype=np.bool_)]:
+ actual = _nan_mask(arr, out=out)
+ assert_equal(actual, expected)
+ # the above won't distinguish between True proper
+ # and an array of True values; we want True proper
+ # for types that can't possibly contain NaN
+ if type(expected) is not np.ndarray:
+ assert actual is True