summaryrefslogtreecommitdiff
path: root/numpy/lib/tests
diff options
context:
space:
mode:
Diffstat (limited to 'numpy/lib/tests')
-rw-r--r--numpy/lib/tests/test__iotools.py20
-rw-r--r--numpy/lib/tests/test_arraypad.py596
-rw-r--r--numpy/lib/tests/test_arraysetops.py22
-rw-r--r--numpy/lib/tests/test_format.py96
-rw-r--r--numpy/lib/tests/test_function_base.py291
-rw-r--r--numpy/lib/tests/test_histograms.py12
-rw-r--r--numpy/lib/tests/test_index_tricks.py40
-rw-r--r--numpy/lib/tests/test_io.py217
-rw-r--r--numpy/lib/tests/test_nanfunctions.py28
-rw-r--r--numpy/lib/tests/test_packbits.py122
-rw-r--r--numpy/lib/tests/test_polynomial.py18
-rw-r--r--numpy/lib/tests/test_recfunctions.py21
-rw-r--r--numpy/lib/tests/test_regression.py6
-rw-r--r--numpy/lib/tests/test_stride_tricks.py43
-rw-r--r--numpy/lib/tests/test_twodim_base.py26
-rw-r--r--numpy/lib/tests/test_type_check.py40
-rw-r--r--numpy/lib/tests/test_utils.py46
17 files changed, 1180 insertions, 464 deletions
diff --git a/numpy/lib/tests/test__iotools.py b/numpy/lib/tests/test__iotools.py
index e04fdc808..15cd3ad9d 100644
--- a/numpy/lib/tests/test__iotools.py
+++ b/numpy/lib/tests/test__iotools.py
@@ -204,14 +204,18 @@ class TestStringConverter(object):
def test_upgrademapper(self):
"Tests updatemapper"
dateparser = _bytes_to_date
- StringConverter.upgrade_mapper(dateparser, date(2000, 1, 1))
- convert = StringConverter(dateparser, date(2000, 1, 1))
- test = convert('2001-01-01')
- assert_equal(test, date(2001, 1, 1))
- test = convert('2009-01-01')
- assert_equal(test, date(2009, 1, 1))
- test = convert('')
- assert_equal(test, date(2000, 1, 1))
+ _original_mapper = StringConverter._mapper[:]
+ try:
+ StringConverter.upgrade_mapper(dateparser, date(2000, 1, 1))
+ convert = StringConverter(dateparser, date(2000, 1, 1))
+ test = convert('2001-01-01')
+ assert_equal(test, date(2001, 1, 1))
+ test = convert('2009-01-01')
+ assert_equal(test, date(2009, 1, 1))
+ test = convert('')
+ assert_equal(test, date(2000, 1, 1))
+ finally:
+ StringConverter._mapper = _original_mapper
def test_string_to_object(self):
"Make sure that string-to-object functions are properly recognized"
diff --git a/numpy/lib/tests/test_arraypad.py b/numpy/lib/tests/test_arraypad.py
index 20f6e4a1b..b6dd3b31c 100644
--- a/numpy/lib/tests/test_arraypad.py
+++ b/numpy/lib/tests/test_arraypad.py
@@ -2,18 +2,31 @@
"""
from __future__ import division, absolute_import, print_function
+from itertools import chain
import pytest
import numpy as np
-from numpy.testing import (assert_array_equal, assert_raises, assert_allclose,
- assert_equal)
-from numpy.lib import pad
+from numpy.testing import assert_array_equal, assert_allclose, assert_equal
from numpy.lib.arraypad import _as_pairs
-class TestAsPairs(object):
+_all_modes = {
+ 'constant': {'constant_values': 0},
+ 'edge': {},
+ 'linear_ramp': {'end_values': 0},
+ 'maximum': {'stat_length': None},
+ 'mean': {'stat_length': None},
+ 'median': {'stat_length': None},
+ 'minimum': {'stat_length': None},
+ 'reflect': {'reflect_type': 'even'},
+ 'symmetric': {'reflect_type': 'even'},
+ 'wrap': {},
+ 'empty': {}
+}
+
+class TestAsPairs(object):
def test_single_value(self):
"""Test casting for a single value."""
expected = np.array([[3, 3]] * 10)
@@ -97,52 +110,31 @@ class TestAsPairs(object):
class TestConditionalShortcuts(object):
- def test_zero_padding_shortcuts(self):
+ @pytest.mark.parametrize("mode", _all_modes.keys())
+ def test_zero_padding_shortcuts(self, mode):
test = np.arange(120).reshape(4, 5, 6)
- pad_amt = [(0, 0) for axis in test.shape]
- modes = ['constant',
- 'edge',
- 'linear_ramp',
- 'maximum',
- 'mean',
- 'median',
- 'minimum',
- 'reflect',
- 'symmetric',
- 'wrap',
- ]
- for mode in modes:
- assert_array_equal(test, pad(test, pad_amt, mode=mode))
-
- def test_shallow_statistic_range(self):
+ pad_amt = [(0, 0) for _ in test.shape]
+ assert_array_equal(test, np.pad(test, pad_amt, mode=mode))
+
+ @pytest.mark.parametrize("mode", ['maximum', 'mean', 'median', 'minimum',])
+ def test_shallow_statistic_range(self, mode):
test = np.arange(120).reshape(4, 5, 6)
- pad_amt = [(1, 1) for axis in test.shape]
- modes = ['maximum',
- 'mean',
- 'median',
- 'minimum',
- ]
- for mode in modes:
- assert_array_equal(pad(test, pad_amt, mode='edge'),
- pad(test, pad_amt, mode=mode, stat_length=1))
-
- def test_clip_statistic_range(self):
+ pad_amt = [(1, 1) for _ in test.shape]
+ assert_array_equal(np.pad(test, pad_amt, mode='edge'),
+ np.pad(test, pad_amt, mode=mode, stat_length=1))
+
+ @pytest.mark.parametrize("mode", ['maximum', 'mean', 'median', 'minimum',])
+ def test_clip_statistic_range(self, mode):
test = np.arange(30).reshape(5, 6)
- pad_amt = [(3, 3) for axis in test.shape]
- modes = ['maximum',
- 'mean',
- 'median',
- 'minimum',
- ]
- for mode in modes:
- assert_array_equal(pad(test, pad_amt, mode=mode),
- pad(test, pad_amt, mode=mode, stat_length=30))
+ pad_amt = [(3, 3) for _ in test.shape]
+ assert_array_equal(np.pad(test, pad_amt, mode=mode),
+ np.pad(test, pad_amt, mode=mode, stat_length=30))
class TestStatistic(object):
def test_check_mean_stat_length(self):
a = np.arange(100).astype('f')
- a = pad(a, ((25, 20), ), 'mean', stat_length=((2, 3), ))
+ a = np.pad(a, ((25, 20), ), 'mean', stat_length=((2, 3), ))
b = np.array(
[0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5,
0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5,
@@ -166,7 +158,7 @@ class TestStatistic(object):
def test_check_maximum_1(self):
a = np.arange(100)
- a = pad(a, (25, 20), 'maximum')
+ a = np.pad(a, (25, 20), 'maximum')
b = np.array(
[99, 99, 99, 99, 99, 99, 99, 99, 99, 99,
99, 99, 99, 99, 99, 99, 99, 99, 99, 99,
@@ -190,7 +182,7 @@ class TestStatistic(object):
def test_check_maximum_2(self):
a = np.arange(100) + 1
- a = pad(a, (25, 20), 'maximum')
+ a = np.pad(a, (25, 20), 'maximum')
b = np.array(
[100, 100, 100, 100, 100, 100, 100, 100, 100, 100,
100, 100, 100, 100, 100, 100, 100, 100, 100, 100,
@@ -214,7 +206,7 @@ class TestStatistic(object):
def test_check_maximum_stat_length(self):
a = np.arange(100) + 1
- a = pad(a, (25, 20), 'maximum', stat_length=10)
+ a = np.pad(a, (25, 20), 'maximum', stat_length=10)
b = np.array(
[10, 10, 10, 10, 10, 10, 10, 10, 10, 10,
10, 10, 10, 10, 10, 10, 10, 10, 10, 10,
@@ -238,7 +230,7 @@ class TestStatistic(object):
def test_check_minimum_1(self):
a = np.arange(100)
- a = pad(a, (25, 20), 'minimum')
+ a = np.pad(a, (25, 20), 'minimum')
b = np.array(
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
@@ -262,7 +254,7 @@ class TestStatistic(object):
def test_check_minimum_2(self):
a = np.arange(100) + 2
- a = pad(a, (25, 20), 'minimum')
+ a = np.pad(a, (25, 20), 'minimum')
b = np.array(
[2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
@@ -286,7 +278,7 @@ class TestStatistic(object):
def test_check_minimum_stat_length(self):
a = np.arange(100) + 1
- a = pad(a, (25, 20), 'minimum', stat_length=10)
+ a = np.pad(a, (25, 20), 'minimum', stat_length=10)
b = np.array(
[ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
@@ -310,7 +302,7 @@ class TestStatistic(object):
def test_check_median(self):
a = np.arange(100).astype('f')
- a = pad(a, (25, 20), 'median')
+ a = np.pad(a, (25, 20), 'median')
b = np.array(
[49.5, 49.5, 49.5, 49.5, 49.5, 49.5, 49.5, 49.5, 49.5, 49.5,
49.5, 49.5, 49.5, 49.5, 49.5, 49.5, 49.5, 49.5, 49.5, 49.5,
@@ -334,7 +326,7 @@ class TestStatistic(object):
def test_check_median_01(self):
a = np.array([[3, 1, 4], [4, 5, 9], [9, 8, 2]])
- a = pad(a, 1, 'median')
+ a = np.pad(a, 1, 'median')
b = np.array(
[[4, 4, 5, 4, 4],
@@ -348,7 +340,7 @@ class TestStatistic(object):
def test_check_median_02(self):
a = np.array([[3, 1, 4], [4, 5, 9], [9, 8, 2]])
- a = pad(a.T, 1, 'median').T
+ a = np.pad(a.T, 1, 'median').T
b = np.array(
[[5, 4, 5, 4, 5],
@@ -364,7 +356,7 @@ class TestStatistic(object):
a = np.arange(100).astype('f')
a[1] = 2.
a[97] = 96.
- a = pad(a, (25, 20), 'median', stat_length=(3, 5))
+ a = np.pad(a, (25, 20), 'median', stat_length=(3, 5))
b = np.array(
[ 2., 2., 2., 2., 2., 2., 2., 2., 2., 2.,
2., 2., 2., 2., 2., 2., 2., 2., 2., 2.,
@@ -388,7 +380,7 @@ class TestStatistic(object):
def test_check_mean_shape_one(self):
a = [[4, 5, 6]]
- a = pad(a, (5, 7), 'mean', stat_length=2)
+ a = np.pad(a, (5, 7), 'mean', stat_length=2)
b = np.array(
[[4, 4, 4, 4, 4, 4, 5, 6, 6, 6, 6, 6, 6, 6, 6],
[4, 4, 4, 4, 4, 4, 5, 6, 6, 6, 6, 6, 6, 6, 6],
@@ -410,7 +402,7 @@ class TestStatistic(object):
def test_check_mean_2(self):
a = np.arange(100).astype('f')
- a = pad(a, (25, 20), 'mean')
+ a = np.pad(a, (25, 20), 'mean')
b = np.array(
[49.5, 49.5, 49.5, 49.5, 49.5, 49.5, 49.5, 49.5, 49.5, 49.5,
49.5, 49.5, 49.5, 49.5, 49.5, 49.5, 49.5, 49.5, 49.5, 49.5,
@@ -433,7 +425,7 @@ class TestStatistic(object):
assert_array_equal(a, b)
@pytest.mark.parametrize("mode", [
- pytest.param("mean", marks=pytest.mark.xfail(reason="gh-11216")),
+ "mean",
"median",
"minimum",
"maximum"
@@ -446,11 +438,65 @@ class TestStatistic(object):
a = np.pad(a, (1, 1), mode)
assert_equal(a[0], a[-1])
+ @pytest.mark.parametrize("mode", ["mean", "median", "minimum", "maximum"])
+ @pytest.mark.parametrize(
+ "stat_length", [-2, (-2,), (3, -1), ((5, 2), (-2, 3)), ((-4,), (2,))]
+ )
+ def test_check_negative_stat_length(self, mode, stat_length):
+ arr = np.arange(30).reshape((6, 5))
+ match = "index can't contain negative values"
+ with pytest.raises(ValueError, match=match):
+ np.pad(arr, 2, mode, stat_length=stat_length)
+
+ def test_simple_stat_length(self):
+ a = np.arange(30)
+ a = np.reshape(a, (6, 5))
+ a = np.pad(a, ((2, 3), (3, 2)), mode='mean', stat_length=(3,))
+ b = np.array(
+ [[6, 6, 6, 5, 6, 7, 8, 9, 8, 8],
+ [6, 6, 6, 5, 6, 7, 8, 9, 8, 8],
+
+ [1, 1, 1, 0, 1, 2, 3, 4, 3, 3],
+ [6, 6, 6, 5, 6, 7, 8, 9, 8, 8],
+ [11, 11, 11, 10, 11, 12, 13, 14, 13, 13],
+ [16, 16, 16, 15, 16, 17, 18, 19, 18, 18],
+ [21, 21, 21, 20, 21, 22, 23, 24, 23, 23],
+ [26, 26, 26, 25, 26, 27, 28, 29, 28, 28],
+
+ [21, 21, 21, 20, 21, 22, 23, 24, 23, 23],
+ [21, 21, 21, 20, 21, 22, 23, 24, 23, 23],
+ [21, 21, 21, 20, 21, 22, 23, 24, 23, 23]]
+ )
+ assert_array_equal(a, b)
+
+ @pytest.mark.filterwarnings("ignore:Mean of empty slice:RuntimeWarning")
+ @pytest.mark.filterwarnings(
+ "ignore:invalid value encountered in (true_divide|double_scalars):"
+ "RuntimeWarning"
+ )
+ @pytest.mark.parametrize("mode", ["mean", "median"])
+ def test_zero_stat_length_valid(self, mode):
+ arr = np.pad([1., 2.], (1, 2), mode, stat_length=0)
+ expected = np.array([np.nan, 1., 2., np.nan, np.nan])
+ assert_equal(arr, expected)
+
+ @pytest.mark.parametrize("mode", ["minimum", "maximum"])
+ def test_zero_stat_length_invalid(self, mode):
+ match = "stat_length of 0 yields no value for padding"
+ with pytest.raises(ValueError, match=match):
+ np.pad([1., 2.], 0, mode, stat_length=0)
+ with pytest.raises(ValueError, match=match):
+ np.pad([1., 2.], 0, mode, stat_length=(1, 0))
+ with pytest.raises(ValueError, match=match):
+ np.pad([1., 2.], 1, mode, stat_length=0)
+ with pytest.raises(ValueError, match=match):
+ np.pad([1., 2.], 1, mode, stat_length=(1, 0))
+
class TestConstant(object):
def test_check_constant(self):
a = np.arange(100)
- a = pad(a, (25, 20), 'constant', constant_values=(10, 20))
+ a = np.pad(a, (25, 20), 'constant', constant_values=(10, 20))
b = np.array(
[10, 10, 10, 10, 10, 10, 10, 10, 10, 10,
10, 10, 10, 10, 10, 10, 10, 10, 10, 10,
@@ -474,7 +520,7 @@ class TestConstant(object):
def test_check_constant_zeros(self):
a = np.arange(100)
- a = pad(a, (25, 20), 'constant')
+ a = np.pad(a, (25, 20), 'constant')
b = np.array(
[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
@@ -500,7 +546,7 @@ class TestConstant(object):
# If input array is int, but constant_values are float, the dtype of
# the array to be padded is kept
arr = np.arange(30).reshape(5, 6)
- test = pad(arr, (1, 2), mode='constant',
+ test = np.pad(arr, (1, 2), mode='constant',
constant_values=1.1)
expected = np.array(
[[ 1, 1, 1, 1, 1, 1, 1, 1, 1],
@@ -521,7 +567,7 @@ class TestConstant(object):
# the array to be padded is kept - here retaining the float constants
arr = np.arange(30).reshape(5, 6)
arr_float = arr.astype(np.float64)
- test = pad(arr_float, ((1, 2), (1, 2)), mode='constant',
+ test = np.pad(arr_float, ((1, 2), (1, 2)), mode='constant',
constant_values=1.1)
expected = np.array(
[[ 1.1, 1.1, 1.1, 1.1, 1.1, 1.1, 1.1, 1.1, 1.1],
@@ -539,7 +585,7 @@ class TestConstant(object):
def test_check_constant_float3(self):
a = np.arange(100, dtype=float)
- a = pad(a, (25, 20), 'constant', constant_values=(-1.1, -1.2))
+ a = np.pad(a, (25, 20), 'constant', constant_values=(-1.1, -1.2))
b = np.array(
[-1.1, -1.1, -1.1, -1.1, -1.1, -1.1, -1.1, -1.1, -1.1, -1.1,
-1.1, -1.1, -1.1, -1.1, -1.1, -1.1, -1.1, -1.1, -1.1, -1.1,
@@ -563,7 +609,7 @@ class TestConstant(object):
def test_check_constant_odd_pad_amount(self):
arr = np.arange(30).reshape(5, 6)
- test = pad(arr, ((1,), (2,)), mode='constant',
+ test = np.pad(arr, ((1,), (2,)), mode='constant',
constant_values=3)
expected = np.array(
[[ 3, 3, 3, 3, 3, 3, 3, 3, 3, 3],
@@ -620,11 +666,16 @@ class TestConstant(object):
assert_array_equal(arr, expected)
+ def test_pad_empty_dimension(self):
+ arr = np.zeros((3, 0, 2))
+ result = np.pad(arr, [(0,), (2,), (1,)], mode="constant")
+ assert result.shape == (3, 4, 4)
+
class TestLinearRamp(object):
def test_check_simple(self):
a = np.arange(100).astype('f')
- a = pad(a, (25, 20), 'linear_ramp', end_values=(4, 5))
+ a = np.pad(a, (25, 20), 'linear_ramp', end_values=(4, 5))
b = np.array(
[4.00, 3.84, 3.68, 3.52, 3.36, 3.20, 3.04, 2.88, 2.72, 2.56,
2.40, 2.24, 2.08, 1.92, 1.76, 1.60, 1.44, 1.28, 1.12, 0.96,
@@ -648,7 +699,7 @@ class TestLinearRamp(object):
def test_check_2d(self):
arr = np.arange(20).reshape(4, 5).astype(np.float64)
- test = pad(arr, (2, 2), mode='linear_ramp', end_values=(0, 0))
+ test = np.pad(arr, (2, 2), mode='linear_ramp', end_values=(0, 0))
expected = np.array(
[[0., 0., 0., 0., 0., 0., 0., 0., 0.],
[0., 0., 0., 0.5, 1., 1.5, 2., 1., 0.],
@@ -679,11 +730,19 @@ class TestLinearRamp(object):
])
assert_equal(actual, expected)
+ def test_end_values(self):
+ """Ensure that end values are exact."""
+ a = np.pad(np.ones(10).reshape(2, 5), (223, 123), mode="linear_ramp")
+ assert_equal(a[:, 0], 0.)
+ assert_equal(a[:, -1], 0.)
+ assert_equal(a[0, :], 0.)
+ assert_equal(a[-1, :], 0.)
+
class TestReflect(object):
def test_check_simple(self):
a = np.arange(100)
- a = pad(a, (25, 20), 'reflect')
+ a = np.pad(a, (25, 20), 'reflect')
b = np.array(
[25, 24, 23, 22, 21, 20, 19, 18, 17, 16,
15, 14, 13, 12, 11, 10, 9, 8, 7, 6,
@@ -707,7 +766,7 @@ class TestReflect(object):
def test_check_odd_method(self):
a = np.arange(100)
- a = pad(a, (25, 20), 'reflect', reflect_type='odd')
+ a = np.pad(a, (25, 20), 'reflect', reflect_type='odd')
b = np.array(
[-25, -24, -23, -22, -21, -20, -19, -18, -17, -16,
-15, -14, -13, -12, -11, -10, -9, -8, -7, -6,
@@ -731,7 +790,7 @@ class TestReflect(object):
def test_check_large_pad(self):
a = [[4, 5, 6], [6, 7, 8]]
- a = pad(a, (5, 7), 'reflect')
+ a = np.pad(a, (5, 7), 'reflect')
b = np.array(
[[7, 6, 7, 8, 7, 6, 7, 8, 7, 6, 7, 8, 7, 6, 7],
[5, 4, 5, 6, 5, 4, 5, 6, 5, 4, 5, 6, 5, 4, 5],
@@ -754,7 +813,7 @@ class TestReflect(object):
def test_check_shape(self):
a = [[4, 5, 6]]
- a = pad(a, (5, 7), 'reflect')
+ a = np.pad(a, (5, 7), 'reflect')
b = np.array(
[[5, 4, 5, 6, 5, 4, 5, 6, 5, 4, 5, 6, 5, 4, 5],
[5, 4, 5, 6, 5, 4, 5, 6, 5, 4, 5, 6, 5, 4, 5],
@@ -775,30 +834,49 @@ class TestReflect(object):
assert_array_equal(a, b)
def test_check_01(self):
- a = pad([1, 2, 3], 2, 'reflect')
+ a = np.pad([1, 2, 3], 2, 'reflect')
b = np.array([3, 2, 1, 2, 3, 2, 1])
assert_array_equal(a, b)
def test_check_02(self):
- a = pad([1, 2, 3], 3, 'reflect')
+ a = np.pad([1, 2, 3], 3, 'reflect')
b = np.array([2, 3, 2, 1, 2, 3, 2, 1, 2])
assert_array_equal(a, b)
def test_check_03(self):
- a = pad([1, 2, 3], 4, 'reflect')
+ a = np.pad([1, 2, 3], 4, 'reflect')
b = np.array([1, 2, 3, 2, 1, 2, 3, 2, 1, 2, 3])
assert_array_equal(a, b)
- def test_check_padding_an_empty_array(self):
- a = pad(np.zeros((0, 3)), ((0,), (1,)), mode='reflect')
- b = np.zeros((0, 5))
- assert_array_equal(a, b)
+
+class TestEmptyArray(object):
+ """Check how padding behaves on arrays with an empty dimension."""
+
+ @pytest.mark.parametrize(
+ # Keep parametrization ordered, otherwise pytest-xdist might believe
+ # that different tests were collected during parallelization
+ "mode", sorted(_all_modes.keys() - {"constant", "empty"})
+ )
+ def test_pad_empty_dimension(self, mode):
+ match = ("can't extend empty axis 0 using modes other than 'constant' "
+ "or 'empty'")
+ with pytest.raises(ValueError, match=match):
+ np.pad([], 4, mode=mode)
+ with pytest.raises(ValueError, match=match):
+ np.pad(np.ndarray(0), 4, mode=mode)
+ with pytest.raises(ValueError, match=match):
+ np.pad(np.zeros((0, 3)), ((1,), (0,)), mode=mode)
+
+ @pytest.mark.parametrize("mode", _all_modes.keys())
+ def test_pad_non_empty_dimension(self, mode):
+ result = np.pad(np.ones((2, 0, 2)), ((3,), (0,), (1,)), mode=mode)
+ assert result.shape == (8, 0, 4)
class TestSymmetric(object):
def test_check_simple(self):
a = np.arange(100)
- a = pad(a, (25, 20), 'symmetric')
+ a = np.pad(a, (25, 20), 'symmetric')
b = np.array(
[24, 23, 22, 21, 20, 19, 18, 17, 16, 15,
14, 13, 12, 11, 10, 9, 8, 7, 6, 5,
@@ -822,7 +900,7 @@ class TestSymmetric(object):
def test_check_odd_method(self):
a = np.arange(100)
- a = pad(a, (25, 20), 'symmetric', reflect_type='odd')
+ a = np.pad(a, (25, 20), 'symmetric', reflect_type='odd')
b = np.array(
[-24, -23, -22, -21, -20, -19, -18, -17, -16, -15,
-14, -13, -12, -11, -10, -9, -8, -7, -6, -5,
@@ -846,7 +924,7 @@ class TestSymmetric(object):
def test_check_large_pad(self):
a = [[4, 5, 6], [6, 7, 8]]
- a = pad(a, (5, 7), 'symmetric')
+ a = np.pad(a, (5, 7), 'symmetric')
b = np.array(
[[5, 6, 6, 5, 4, 4, 5, 6, 6, 5, 4, 4, 5, 6, 6],
[5, 6, 6, 5, 4, 4, 5, 6, 6, 5, 4, 4, 5, 6, 6],
@@ -870,7 +948,7 @@ class TestSymmetric(object):
def test_check_large_pad_odd(self):
a = [[4, 5, 6], [6, 7, 8]]
- a = pad(a, (5, 7), 'symmetric', reflect_type='odd')
+ a = np.pad(a, (5, 7), 'symmetric', reflect_type='odd')
b = np.array(
[[-3, -2, -2, -1, 0, 0, 1, 2, 2, 3, 4, 4, 5, 6, 6],
[-3, -2, -2, -1, 0, 0, 1, 2, 2, 3, 4, 4, 5, 6, 6],
@@ -893,7 +971,7 @@ class TestSymmetric(object):
def test_check_shape(self):
a = [[4, 5, 6]]
- a = pad(a, (5, 7), 'symmetric')
+ a = np.pad(a, (5, 7), 'symmetric')
b = np.array(
[[5, 6, 6, 5, 4, 4, 5, 6, 6, 5, 4, 4, 5, 6, 6],
[5, 6, 6, 5, 4, 4, 5, 6, 6, 5, 4, 4, 5, 6, 6],
@@ -914,17 +992,17 @@ class TestSymmetric(object):
assert_array_equal(a, b)
def test_check_01(self):
- a = pad([1, 2, 3], 2, 'symmetric')
+ a = np.pad([1, 2, 3], 2, 'symmetric')
b = np.array([2, 1, 1, 2, 3, 3, 2])
assert_array_equal(a, b)
def test_check_02(self):
- a = pad([1, 2, 3], 3, 'symmetric')
+ a = np.pad([1, 2, 3], 3, 'symmetric')
b = np.array([3, 2, 1, 1, 2, 3, 3, 2, 1])
assert_array_equal(a, b)
def test_check_03(self):
- a = pad([1, 2, 3], 6, 'symmetric')
+ a = np.pad([1, 2, 3], 6, 'symmetric')
b = np.array([1, 2, 3, 3, 2, 1, 1, 2, 3, 3, 2, 1, 1, 2, 3])
assert_array_equal(a, b)
@@ -932,7 +1010,7 @@ class TestSymmetric(object):
class TestWrap(object):
def test_check_simple(self):
a = np.arange(100)
- a = pad(a, (25, 20), 'wrap')
+ a = np.pad(a, (25, 20), 'wrap')
b = np.array(
[75, 76, 77, 78, 79, 80, 81, 82, 83, 84,
85, 86, 87, 88, 89, 90, 91, 92, 93, 94,
@@ -957,7 +1035,7 @@ class TestWrap(object):
def test_check_large_pad(self):
a = np.arange(12)
a = np.reshape(a, (3, 4))
- a = pad(a, (10, 12), 'wrap')
+ a = np.pad(a, (10, 12), 'wrap')
b = np.array(
[[10, 11, 8, 9, 10, 11, 8, 9, 10, 11, 8, 9, 10, 11, 8, 9, 10,
11, 8, 9, 10, 11, 8, 9, 10, 11],
@@ -1015,12 +1093,12 @@ class TestWrap(object):
assert_array_equal(a, b)
def test_check_01(self):
- a = pad([1, 2, 3], 3, 'wrap')
+ a = np.pad([1, 2, 3], 3, 'wrap')
b = np.array([1, 2, 3, 1, 2, 3, 1, 2, 3])
assert_array_equal(a, b)
def test_check_02(self):
- a = pad([1, 2, 3], 4, 'wrap')
+ a = np.pad([1, 2, 3], 4, 'wrap')
b = np.array([3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1])
assert_array_equal(a, b)
@@ -1029,35 +1107,25 @@ class TestWrap(object):
b = np.pad(a, (0, 5), mode="wrap")
assert_array_equal(a, b[:-5, :-5])
+ def test_repeated_wrapping(self):
+ """
+ Check wrapping on each side individually if the wrapped area is longer
+ than the original array.
+ """
+ a = np.arange(5)
+ b = np.pad(a, (12, 0), mode="wrap")
+ assert_array_equal(np.r_[a, a, a, a][3:], b)
-class TestStatLen(object):
- def test_check_simple(self):
- a = np.arange(30)
- a = np.reshape(a, (6, 5))
- a = pad(a, ((2, 3), (3, 2)), mode='mean', stat_length=(3,))
- b = np.array(
- [[6, 6, 6, 5, 6, 7, 8, 9, 8, 8],
- [6, 6, 6, 5, 6, 7, 8, 9, 8, 8],
-
- [1, 1, 1, 0, 1, 2, 3, 4, 3, 3],
- [6, 6, 6, 5, 6, 7, 8, 9, 8, 8],
- [11, 11, 11, 10, 11, 12, 13, 14, 13, 13],
- [16, 16, 16, 15, 16, 17, 18, 19, 18, 18],
- [21, 21, 21, 20, 21, 22, 23, 24, 23, 23],
- [26, 26, 26, 25, 26, 27, 28, 29, 28, 28],
-
- [21, 21, 21, 20, 21, 22, 23, 24, 23, 23],
- [21, 21, 21, 20, 21, 22, 23, 24, 23, 23],
- [21, 21, 21, 20, 21, 22, 23, 24, 23, 23]]
- )
- assert_array_equal(a, b)
+ a = np.arange(5)
+ b = np.pad(a, (0, 12), mode="wrap")
+ assert_array_equal(np.r_[a, a, a, a][:-3], b)
class TestEdge(object):
def test_check_simple(self):
a = np.arange(12)
a = np.reshape(a, (4, 3))
- a = pad(a, ((2, 3), (3, 2)), 'edge')
+ a = np.pad(a, ((2, 3), (3, 2)), 'edge')
b = np.array(
[[0, 0, 0, 0, 1, 2, 2, 2],
[0, 0, 0, 0, 1, 2, 2, 2],
@@ -1077,56 +1145,123 @@ class TestEdge(object):
# Check a pad_width of the form ((1, 2),).
# Regression test for issue gh-7808.
a = np.array([1, 2, 3])
- padded = pad(a, ((1, 2),), 'edge')
+ padded = np.pad(a, ((1, 2),), 'edge')
expected = np.array([1, 1, 2, 3, 3, 3])
assert_array_equal(padded, expected)
a = np.array([[1, 2, 3], [4, 5, 6]])
- padded = pad(a, ((1, 2),), 'edge')
- expected = pad(a, ((1, 2), (1, 2)), 'edge')
+ padded = np.pad(a, ((1, 2),), 'edge')
+ expected = np.pad(a, ((1, 2), (1, 2)), 'edge')
assert_array_equal(padded, expected)
a = np.arange(24).reshape(2, 3, 4)
- padded = pad(a, ((1, 2),), 'edge')
- expected = pad(a, ((1, 2), (1, 2), (1, 2)), 'edge')
+ padded = np.pad(a, ((1, 2),), 'edge')
+ expected = np.pad(a, ((1, 2), (1, 2), (1, 2)), 'edge')
assert_array_equal(padded, expected)
-class TestZeroPadWidth(object):
- def test_zero_pad_width(self):
- arr = np.arange(30)
- arr = np.reshape(arr, (6, 5))
- for pad_width in (0, (0, 0), ((0, 0), (0, 0))):
- assert_array_equal(arr, pad(arr, pad_width, mode='constant'))
+class TestEmpty(object):
+ def test_simple(self):
+ arr = np.arange(24).reshape(4, 6)
+ result = np.pad(arr, [(2, 3), (3, 1)], mode="empty")
+ assert result.shape == (9, 10)
+ assert_equal(arr, result[2:-3, 3:-1])
+ def test_pad_empty_dimension(self):
+ arr = np.zeros((3, 0, 2))
+ result = np.pad(arr, [(0,), (2,), (1,)], mode="empty")
+ assert result.shape == (3, 4, 4)
-class TestLegacyVectorFunction(object):
- def test_legacy_vector_functionality(self):
- def _padwithtens(vector, pad_width, iaxis, kwargs):
- vector[:pad_width[0]] = 10
- vector[-pad_width[1]:] = 10
- return vector
- a = np.arange(6).reshape(2, 3)
- a = pad(a, 2, _padwithtens)
- b = np.array(
- [[10, 10, 10, 10, 10, 10, 10],
- [10, 10, 10, 10, 10, 10, 10],
+def test_legacy_vector_functionality():
+ def _padwithtens(vector, pad_width, iaxis, kwargs):
+ vector[:pad_width[0]] = 10
+ vector[-pad_width[1]:] = 10
- [10, 10, 0, 1, 2, 10, 10],
- [10, 10, 3, 4, 5, 10, 10],
+ a = np.arange(6).reshape(2, 3)
+ a = np.pad(a, 2, _padwithtens)
+ b = np.array(
+ [[10, 10, 10, 10, 10, 10, 10],
+ [10, 10, 10, 10, 10, 10, 10],
- [10, 10, 10, 10, 10, 10, 10],
- [10, 10, 10, 10, 10, 10, 10]]
- )
- assert_array_equal(a, b)
+ [10, 10, 0, 1, 2, 10, 10],
+ [10, 10, 3, 4, 5, 10, 10],
+ [10, 10, 10, 10, 10, 10, 10],
+ [10, 10, 10, 10, 10, 10, 10]]
+ )
+ assert_array_equal(a, b)
-class TestNdarrayPadWidth(object):
- def test_check_simple(self):
+
+def test_unicode_mode():
+ a = np.pad([1], 2, mode=u'constant')
+ b = np.array([0, 0, 1, 0, 0])
+ assert_array_equal(a, b)
+
+
+@pytest.mark.parametrize("mode", ["edge", "symmetric", "reflect", "wrap"])
+def test_object_input(mode):
+ # Regression test for issue gh-11395.
+ a = np.full((4, 3), fill_value=None)
+ pad_amt = ((2, 3), (3, 2))
+ b = np.full((9, 8), fill_value=None)
+ assert_array_equal(np.pad(a, pad_amt, mode=mode), b)
+
+
+class TestPadWidth(object):
+ @pytest.mark.parametrize("pad_width", [
+ (4, 5, 6, 7),
+ ((1,), (2,), (3,)),
+ ((1, 2), (3, 4), (5, 6)),
+ ((3, 4, 5), (0, 1, 2)),
+ ])
+ @pytest.mark.parametrize("mode", _all_modes.keys())
+ def test_misshaped_pad_width(self, pad_width, mode):
+ arr = np.arange(30).reshape((6, 5))
+ match = "operands could not be broadcast together"
+ with pytest.raises(ValueError, match=match):
+ np.pad(arr, pad_width, mode)
+
+ @pytest.mark.parametrize("mode", _all_modes.keys())
+ def test_misshaped_pad_width_2(self, mode):
+ arr = np.arange(30).reshape((6, 5))
+ match = ("input operand has more dimensions than allowed by the axis "
+ "remapping")
+ with pytest.raises(ValueError, match=match):
+ np.pad(arr, (((3,), (4,), (5,)), ((0,), (1,), (2,))), mode)
+
+ @pytest.mark.parametrize(
+ "pad_width", [-2, (-2,), (3, -1), ((5, 2), (-2, 3)), ((-4,), (2,))])
+ @pytest.mark.parametrize("mode", _all_modes.keys())
+ def test_negative_pad_width(self, pad_width, mode):
+ arr = np.arange(30).reshape((6, 5))
+ match = "index can't contain negative values"
+ with pytest.raises(ValueError, match=match):
+ np.pad(arr, pad_width, mode)
+
+ @pytest.mark.parametrize("pad_width", [
+ "3",
+ "word",
+ None,
+ object(),
+ 3.4,
+ ((2, 3, 4), (3, 2)), # dtype=object (tuple)
+ complex(1, -1),
+ ((-2.1, 3), (3, 2)),
+ ])
+ @pytest.mark.parametrize("mode", _all_modes.keys())
+ def test_bad_type(self, pad_width, mode):
+ arr = np.arange(30).reshape((6, 5))
+ match = "`pad_width` must be of integral type."
+ with pytest.raises(TypeError, match=match):
+ np.pad(arr, pad_width, mode)
+ with pytest.raises(TypeError, match=match):
+ np.pad(arr, np.array(pad_width), mode)
+
+ def test_pad_width_as_ndarray(self):
a = np.arange(12)
a = np.reshape(a, (4, 3))
- a = pad(a, np.array(((2, 3), (3, 2))), 'edge')
+ a = np.pad(a, np.array(((2, 3), (3, 2))), 'edge')
b = np.array(
[[0, 0, 0, 0, 1, 2, 2, 2],
[0, 0, 0, 0, 1, 2, 2, 2],
@@ -1142,121 +1277,68 @@ class TestNdarrayPadWidth(object):
)
assert_array_equal(a, b)
-
-class TestUnicodeInput(object):
- def test_unicode_mode(self):
- constant_mode = u'constant'
- a = np.pad([1], 2, mode=constant_mode)
- b = np.array([0, 0, 1, 0, 0])
- assert_array_equal(a, b)
-
-
-class TestObjectInput(object):
- def test_object_input(self):
- # Regression test for issue gh-11395.
- a = np.full((4, 3), None)
- pad_amt = ((2, 3), (3, 2))
- b = np.full((9, 8), None)
- modes = ['edge',
- 'symmetric',
- 'reflect',
- 'wrap',
- ]
- for mode in modes:
- assert_array_equal(pad(a, pad_amt, mode=mode), b)
-
-
-class TestValueError1(object):
- def test_check_simple(self):
- arr = np.arange(30)
- arr = np.reshape(arr, (6, 5))
- kwargs = dict(mode='mean', stat_length=(3, ))
- assert_raises(ValueError, pad, arr, ((2, 3), (3, 2), (4, 5)),
- **kwargs)
-
- def test_check_negative_stat_length(self):
- arr = np.arange(30)
- arr = np.reshape(arr, (6, 5))
- kwargs = dict(mode='mean', stat_length=(-3, ))
- assert_raises(ValueError, pad, arr, ((2, 3), (3, 2)),
- **kwargs)
-
- def test_check_negative_pad_width(self):
- arr = np.arange(30)
- arr = np.reshape(arr, (6, 5))
- kwargs = dict(mode='mean', stat_length=(3, ))
- assert_raises(ValueError, pad, arr, ((-2, 3), (3, 2)),
- **kwargs)
-
- def test_check_empty_array(self):
- assert_raises(ValueError, pad, [], 4, mode='reflect')
- assert_raises(ValueError, pad, np.ndarray(0), 4, mode='reflect')
- assert_raises(ValueError, pad, np.zeros((0, 3)), ((1,), (0,)),
- mode='reflect')
-
-
-class TestValueError2(object):
- def test_check_negative_pad_amount(self):
- arr = np.arange(30)
- arr = np.reshape(arr, (6, 5))
- kwargs = dict(mode='mean', stat_length=(3, ))
- assert_raises(ValueError, pad, arr, ((-2, 3), (3, 2)),
- **kwargs)
-
-
-class TestValueError3(object):
- def test_check_kwarg_not_allowed(self):
- arr = np.arange(30).reshape(5, 6)
- assert_raises(ValueError, pad, arr, 4, mode='mean',
- reflect_type='odd')
-
- def test_mode_not_set(self):
- arr = np.arange(30).reshape(5, 6)
- assert_raises(TypeError, pad, arr, 4)
-
- def test_malformed_pad_amount(self):
- arr = np.arange(30).reshape(5, 6)
- assert_raises(ValueError, pad, arr, (4, 5, 6, 7), mode='constant')
-
- def test_malformed_pad_amount2(self):
- arr = np.arange(30).reshape(5, 6)
- assert_raises(ValueError, pad, arr, ((3, 4, 5), (0, 1, 2)),
- mode='constant')
-
- def test_pad_too_many_axes(self):
- arr = np.arange(30).reshape(5, 6)
-
- # Attempt to pad using a 3D array equivalent
- bad_shape = (((3,), (4,), (5,)), ((0,), (1,), (2,)))
- assert_raises(ValueError, pad, arr, bad_shape,
- mode='constant')
-
-
-class TestTypeError1(object):
- def test_float(self):
- arr = np.arange(30)
- assert_raises(TypeError, pad, arr, ((-2.1, 3), (3, 2)))
- assert_raises(TypeError, pad, arr, np.array(((-2.1, 3), (3, 2))))
-
- def test_str(self):
- arr = np.arange(30)
- assert_raises(TypeError, pad, arr, 'foo')
- assert_raises(TypeError, pad, arr, np.array('foo'))
-
- def test_object(self):
- class FooBar(object):
- pass
- arr = np.arange(30)
- assert_raises(TypeError, pad, arr, FooBar())
-
- def test_complex(self):
- arr = np.arange(30)
- assert_raises(TypeError, pad, arr, complex(1, -1))
- assert_raises(TypeError, pad, arr, np.array(complex(1, -1)))
-
- def test_check_wrong_pad_amount(self):
- arr = np.arange(30)
- arr = np.reshape(arr, (6, 5))
- kwargs = dict(mode='mean', stat_length=(3, ))
- assert_raises(TypeError, pad, arr, ((2, 3, 4), (3, 2)),
- **kwargs)
+ @pytest.mark.parametrize("pad_width", [0, (0, 0), ((0, 0), (0, 0))])
+ @pytest.mark.parametrize("mode", _all_modes.keys())
+ def test_zero_pad_width(self, pad_width, mode):
+ arr = np.arange(30).reshape(6, 5)
+ assert_array_equal(arr, np.pad(arr, pad_width, mode=mode))
+
+
+@pytest.mark.parametrize("mode", _all_modes.keys())
+def test_kwargs(mode):
+ """Test behavior of pad's kwargs for the given mode."""
+ allowed = _all_modes[mode]
+ not_allowed = {}
+ for kwargs in _all_modes.values():
+ if kwargs != allowed:
+ not_allowed.update(kwargs)
+ # Test if allowed keyword arguments pass
+ np.pad([1, 2, 3], 1, mode, **allowed)
+ # Test if prohibited keyword arguments of other modes raise an error
+ for key, value in not_allowed.items():
+ match = "unsupported keyword arguments for mode '{}'".format(mode)
+ with pytest.raises(ValueError, match=match):
+ np.pad([1, 2, 3], 1, mode, **{key: value})
+
+
+def test_constant_zero_default():
+ arr = np.array([1, 1])
+ assert_array_equal(np.pad(arr, 2), [0, 0, 1, 1, 0, 0])
+
+
+@pytest.mark.parametrize("mode", [1, "const", object(), None, True, False])
+def test_unsupported_mode(mode):
+ match= "mode '{}' is not supported".format(mode)
+ with pytest.raises(ValueError, match=match):
+ np.pad([1, 2, 3], 4, mode=mode)
+
+
+@pytest.mark.parametrize("mode", _all_modes.keys())
+def test_non_contiguous_array(mode):
+ arr = np.arange(24).reshape(4, 6)[::2, ::2]
+ result = np.pad(arr, (2, 3), mode)
+ assert result.shape == (7, 8)
+ assert_equal(result[2:-3, 2:-3], arr)
+
+
+@pytest.mark.parametrize("mode", _all_modes.keys())
+def test_memory_layout_persistence(mode):
+ """Test if C and F order is preserved for all pad modes."""
+ x = np.ones((5, 10), order='C')
+ assert np.pad(x, 5, mode).flags["C_CONTIGUOUS"]
+ x = np.ones((5, 10), order='F')
+ assert np.pad(x, 5, mode).flags["F_CONTIGUOUS"]
+
+
+@pytest.mark.parametrize("dtype", chain(
+ # Skip "other" dtypes as they are not supported by all modes
+ np.sctypes["int"],
+ np.sctypes["uint"],
+ np.sctypes["float"],
+ np.sctypes["complex"]
+))
+@pytest.mark.parametrize("mode", _all_modes.keys())
+def test_dtype_persistence(dtype, mode):
+ arr = np.zeros((3, 2, 1), dtype=dtype)
+ result = np.pad(arr, 1, mode=mode)
+ assert result.dtype == dtype
diff --git a/numpy/lib/tests/test_arraysetops.py b/numpy/lib/tests/test_arraysetops.py
index a17fc66e5..dd8a38248 100644
--- a/numpy/lib/tests/test_arraysetops.py
+++ b/numpy/lib/tests/test_arraysetops.py
@@ -136,8 +136,8 @@ class TestSetOps(object):
np.nan),
# should fail because attempting
# to downcast to smaller int type:
- (np.array([1, 2, 3], dtype=np.int32),
- np.array([5, 7, 2], dtype=np.int64),
+ (np.array([1, 2, 3], dtype=np.int16),
+ np.array([5, 1<<20, 2], dtype=np.int32),
None),
# should fail because attempting to cast
# two special floating point values
@@ -152,8 +152,8 @@ class TestSetOps(object):
# specifically, raise an appropriate
# Exception when attempting to append or
# prepend with an incompatible type
- msg = 'must be compatible'
- with assert_raises_regex(TypeError, msg):
+ msg = 'cannot convert'
+ with assert_raises_regex(ValueError, msg):
ediff1d(ary=ary,
to_end=append,
to_begin=prepend)
@@ -422,41 +422,41 @@ class TestUnique(object):
assert_array_equal(v, b, msg)
msg = base_msg.format('return_index', dt)
- v, j = unique(a, 1, 0, 0)
+ v, j = unique(a, True, False, False)
assert_array_equal(v, b, msg)
assert_array_equal(j, i1, msg)
msg = base_msg.format('return_inverse', dt)
- v, j = unique(a, 0, 1, 0)
+ v, j = unique(a, False, True, False)
assert_array_equal(v, b, msg)
assert_array_equal(j, i2, msg)
msg = base_msg.format('return_counts', dt)
- v, j = unique(a, 0, 0, 1)
+ v, j = unique(a, False, False, True)
assert_array_equal(v, b, msg)
assert_array_equal(j, c, msg)
msg = base_msg.format('return_index and return_inverse', dt)
- v, j1, j2 = unique(a, 1, 1, 0)
+ v, j1, j2 = unique(a, True, True, False)
assert_array_equal(v, b, msg)
assert_array_equal(j1, i1, msg)
assert_array_equal(j2, i2, msg)
msg = base_msg.format('return_index and return_counts', dt)
- v, j1, j2 = unique(a, 1, 0, 1)
+ v, j1, j2 = unique(a, True, False, True)
assert_array_equal(v, b, msg)
assert_array_equal(j1, i1, msg)
assert_array_equal(j2, c, msg)
msg = base_msg.format('return_inverse and return_counts', dt)
- v, j1, j2 = unique(a, 0, 1, 1)
+ v, j1, j2 = unique(a, False, True, True)
assert_array_equal(v, b, msg)
assert_array_equal(j1, i2, msg)
assert_array_equal(j2, c, msg)
msg = base_msg.format(('return_index, return_inverse '
'and return_counts'), dt)
- v, j1, j2, j3 = unique(a, 1, 1, 1)
+ v, j1, j2, j3 = unique(a, True, True, True)
assert_array_equal(v, b, msg)
assert_array_equal(j1, i1, msg)
assert_array_equal(j2, i2, msg)
diff --git a/numpy/lib/tests/test_format.py b/numpy/lib/tests/test_format.py
index 077507082..062c21725 100644
--- a/numpy/lib/tests/test_format.py
+++ b/numpy/lib/tests/test_format.py
@@ -287,6 +287,7 @@ from io import BytesIO
import numpy as np
from numpy.testing import (
assert_, assert_array_equal, assert_raises, assert_raises_regex,
+ assert_warns
)
from numpy.lib import format
@@ -411,6 +412,7 @@ record_arrays = [
np.array(NbufferT, dtype=np.dtype(Ndescr).newbyteorder('<')),
np.array(PbufferT, dtype=np.dtype(Pdescr).newbyteorder('>')),
np.array(NbufferT, dtype=np.dtype(Ndescr).newbyteorder('>')),
+ np.zeros(1, dtype=[('c', ('<f8', (5,)), (2,))])
]
@@ -426,7 +428,7 @@ def roundtrip(arr):
f = BytesIO()
format.write_array(f, arr)
f2 = BytesIO(f.getvalue())
- arr2 = format.read_array(f2)
+ arr2 = format.read_array(f2, allow_pickle=True)
return arr2
@@ -576,7 +578,7 @@ def test_pickle_python2_python3():
path = os.path.join(data_dir, fname)
for encoding in ['bytes', 'latin1']:
- data_f = np.load(path, encoding=encoding)
+ data_f = np.load(path, allow_pickle=True, encoding=encoding)
if fname.endswith('.npz'):
data = data_f['x']
data_f.close()
@@ -598,16 +600,19 @@ def test_pickle_python2_python3():
if sys.version_info[0] >= 3:
if fname.startswith('py2'):
if fname.endswith('.npz'):
- data = np.load(path)
+ data = np.load(path, allow_pickle=True)
assert_raises(UnicodeError, data.__getitem__, 'x')
data.close()
- data = np.load(path, fix_imports=False, encoding='latin1')
+ data = np.load(path, allow_pickle=True, fix_imports=False,
+ encoding='latin1')
assert_raises(ImportError, data.__getitem__, 'x')
data.close()
else:
- assert_raises(UnicodeError, np.load, path)
+ assert_raises(UnicodeError, np.load, path,
+ allow_pickle=True)
assert_raises(ImportError, np.load, path,
- encoding='latin1', fix_imports=False)
+ allow_pickle=True, fix_imports=False,
+ encoding='latin1')
def test_pickle_disallow():
@@ -625,6 +630,61 @@ def test_pickle_disallow():
assert_raises(ValueError, np.save, path, np.array([None], dtype=object),
allow_pickle=False)
+@pytest.mark.parametrize('dt', [
+ np.dtype(np.dtype([('a', np.int8),
+ ('b', np.int16),
+ ('c', np.int32),
+ ], align=True),
+ (3,)),
+ np.dtype([('x', np.dtype({'names':['a','b'],
+ 'formats':['i1','i1'],
+ 'offsets':[0,4],
+ 'itemsize':8,
+ },
+ (3,)),
+ (4,),
+ )]),
+ np.dtype([('x',
+ ('<f8', (5,)),
+ (2,),
+ )]),
+ np.dtype([('x', np.dtype((
+ np.dtype((
+ np.dtype({'names':['a','b'],
+ 'formats':['i1','i1'],
+ 'offsets':[0,4],
+ 'itemsize':8}),
+ (3,)
+ )),
+ (4,)
+ )))
+ ]),
+ np.dtype([
+ ('a', np.dtype((
+ np.dtype((
+ np.dtype((
+ np.dtype([
+ ('a', int),
+ ('b', np.dtype({'names':['a','b'],
+ 'formats':['i1','i1'],
+ 'offsets':[0,4],
+ 'itemsize':8})),
+ ]),
+ (3,),
+ )),
+ (4,),
+ )),
+ (5,),
+ )))
+ ]),
+ ])
+
+def test_descr_to_dtype(dt):
+ dt1 = format.descr_to_dtype(dt.descr)
+ assert_equal_(dt1, dt)
+ arr1 = np.zeros(3, dt)
+ arr2 = roundtrip(arr1)
+ assert_array_equal(arr1, arr2)
def test_version_2_0():
f = BytesIO()
@@ -879,3 +939,27 @@ def test_empty_npz():
fname = os.path.join(tempdir, "nothing.npz")
np.savez(fname)
np.load(fname)
+
+
+def test_unicode_field_names():
+ # gh-7391
+ arr = np.array([
+ (1, 3),
+ (1, 2),
+ (1, 3),
+ (1, 2)
+ ], dtype=[
+ ('int', int),
+ (u'\N{CJK UNIFIED IDEOGRAPH-6574}\N{CJK UNIFIED IDEOGRAPH-5F62}', int)
+ ])
+ fname = os.path.join(tempdir, "unicode.npy")
+ with open(fname, 'wb') as f:
+ format.write_array(f, arr, version=(3, 0))
+ with open(fname, 'rb') as f:
+ arr2 = format.read_array(f)
+ assert_array_equal(arr, arr2)
+
+ # notifies the user that 3.0 is selected
+ with open(fname, 'wb') as f:
+ with assert_warns(UserWarning):
+ format.write_array(f, arr, version=None)
diff --git a/numpy/lib/tests/test_function_base.py b/numpy/lib/tests/test_function_base.py
index 3d4b0e3b2..eae52c002 100644
--- a/numpy/lib/tests/test_function_base.py
+++ b/numpy/lib/tests/test_function_base.py
@@ -4,13 +4,15 @@ import operator
import warnings
import sys
import decimal
+import types
+from fractions import Fraction
import pytest
import numpy as np
from numpy import ma
from numpy.testing import (
assert_, assert_equal, assert_array_equal, assert_almost_equal,
- assert_array_almost_equal, assert_raises, assert_allclose,
+ assert_array_almost_equal, assert_raises, assert_allclose, IS_PYPY,
assert_warns, assert_raises_regex, suppress_warnings, HAS_REFCOUNT,
)
import numpy.lib.function_base as nfb
@@ -24,6 +26,7 @@ from numpy.lib import (
from numpy.compat import long
+PY2 = sys.version_info[0] == 2
def get_mat(n):
data = np.arange(n)
@@ -31,6 +34,17 @@ def get_mat(n):
return data
+def _make_complex(real, imag):
+ """
+ Like real + 1j * imag, but behaves as expected when imag contains non-finite
+ values
+ """
+ ret = np.zeros(np.broadcast(real, imag).shape, np.complex_)
+ ret.real = real
+ ret.imag = imag
+ return ret
+
+
class TestRot90(object):
def test_basic(self):
assert_raises(ValueError, rot90, np.ones(4))
@@ -353,9 +367,9 @@ class TestAverage(object):
assert_equal(type(np.average(a, weights=w)), subclass)
def test_upcasting(self):
- types = [('i4', 'i4', 'f8'), ('i4', 'f4', 'f8'), ('f4', 'i4', 'f8'),
+ typs = [('i4', 'i4', 'f8'), ('i4', 'f4', 'f8'), ('f4', 'i4', 'f8'),
('f4', 'f4', 'f4'), ('f4', 'f8', 'f8')]
- for at, wt, rt in types:
+ for at, wt, rt in typs:
a = np.array([[1,2],[3,4]], dtype=at)
w = np.array([[1,2],[3,4]], dtype=wt)
assert_equal(np.average(a, weights=w).dtype, np.dtype(rt))
@@ -682,6 +696,9 @@ class TestDiff(object):
assert_raises(np.AxisError, diff, x, axis=3)
assert_raises(np.AxisError, diff, x, axis=-4)
+ x = np.array(1.11111111111, np.float64)
+ assert_raises(ValueError, diff, x)
+
def test_nd(self):
x = 20 * rand(10, 20, 30)
out1 = x[:, :, 1:] - x[:, :, :-1]
@@ -931,7 +948,7 @@ class TestGradient(object):
assert_equal(type(out), type(x))
# And make sure that the output and input don't have aliased mask
# arrays
- assert_(x.mask is not out.mask)
+ assert_(x._mask is not out._mask)
# Also check that edge_order=2 doesn't alter the original mask
x2 = np.ma.arange(5)
x2[2] = np.ma.masked
@@ -1088,7 +1105,7 @@ class TestAngle(object):
np.arctan(3.0 / 1.0),
np.arctan(1.0), 0, np.pi / 2, np.pi, -np.pi / 2.0,
-np.arctan(3.0 / 1.0), np.pi - np.arctan(3.0 / 1.0)]
- z = angle(x, deg=1)
+ z = angle(x, deg=True)
zo = np.array(yo) * 180 / np.pi
assert_array_almost_equal(y, yo, 11)
assert_array_almost_equal(z, zo, 11)
@@ -1498,6 +1515,49 @@ class TestVectorize(object):
f(x)
+class TestLeaks(object):
+ class A(object):
+ iters = 20
+
+ def bound(self, *args):
+ return 0
+
+ @staticmethod
+ def unbound(*args):
+ return 0
+
+ @pytest.mark.skipif(not HAS_REFCOUNT, reason="Python lacks refcounts")
+ @pytest.mark.parametrize('name, incr', [
+ ('bound', A.iters),
+ ('unbound', 0),
+ ])
+ def test_frompyfunc_leaks(self, name, incr):
+ # exposed in gh-11867 as np.vectorized, but the problem stems from
+ # frompyfunc.
+ # class.attribute = np.frompyfunc(<method>) creates a
+ # reference cycle if <method> is a bound class method. It requires a
+ # gc collection cycle to break the cycle (on CPython 3)
+ import gc
+ A_func = getattr(self.A, name)
+ gc.disable()
+ try:
+ refcount = sys.getrefcount(A_func)
+ for i in range(self.A.iters):
+ a = self.A()
+ a.f = np.frompyfunc(getattr(a, name), 1, 1)
+ out = a.f(np.arange(10))
+ a = None
+ if PY2:
+ assert_equal(sys.getrefcount(A_func), refcount)
+ else:
+ # A.func is part of a reference cycle if incr is non-zero
+ assert_equal(sys.getrefcount(A_func), refcount + incr)
+ for i in range(5):
+ gc.collect()
+ assert_equal(sys.getrefcount(A_func), refcount)
+ finally:
+ gc.enable()
+
class TestDigitize(object):
def test_forward(self):
@@ -1860,9 +1920,9 @@ class TestCov(object):
[-np.inf, np.inf]]))
def test_1D_rowvar(self):
- assert_allclose(cov(self.x3), cov(self.x3, rowvar=0))
+ assert_allclose(cov(self.x3), cov(self.x3, rowvar=False))
y = np.array([0.0780, 0.3107, 0.2111, 0.0334, 0.8501])
- assert_allclose(cov(self.x3, y), cov(self.x3, y, rowvar=0))
+ assert_allclose(cov(self.x3, y), cov(self.x3, y, rowvar=False))
def test_1D_variance(self):
assert_allclose(cov(self.x3, ddof=1), np.var(self.x3, ddof=1))
@@ -1924,9 +1984,9 @@ class Test_I0(object):
np.array(1.0634833707413234))
A = np.array([0.49842636, 0.6969809, 0.22011976, 0.0155549])
- assert_almost_equal(
- i0(A),
- np.array([1.06307822, 1.12518299, 1.01214991, 1.00006049]))
+ expected = np.array([1.06307822, 1.12518299, 1.01214991, 1.00006049])
+ assert_almost_equal(i0(A), expected)
+ assert_almost_equal(i0(-A), expected)
B = np.array([[0.827002, 0.99959078],
[0.89694769, 0.39298162],
@@ -1940,6 +2000,26 @@ class Test_I0(object):
[1.03633899, 1.00067775],
[1.03352052, 1.13557954],
[1.05884290, 1.06432317]]))
+ # Regression test for gh-11205
+ i0_0 = np.i0([0.])
+ assert_equal(i0_0.shape, (1,))
+ assert_array_equal(np.i0([0.]), np.array([1.]))
+
+ def test_non_array(self):
+ a = np.arange(4)
+
+ class array_like:
+ __array_interface__ = a.__array_interface__
+
+ def __array_wrap__(self, arr):
+ return self
+
+ # E.g. pandas series survive ufunc calls through array-wrap:
+ assert isinstance(np.abs(array_like()), array_like)
+ exp = np.i0(a)
+ res = np.i0(array_like())
+
+ assert_array_equal(exp, res)
class TestKaiser(object):
@@ -2309,7 +2389,7 @@ class TestInterp(object):
x0 = np.nan
assert_almost_equal(np.interp(x0, x, y), x0)
- def test_non_finite_behavior(self):
+ def test_non_finite_behavior_exact_x(self):
x = [1, 2, 2.5, 3, 4]
xp = [1, 2, 3, 4]
fp = [1, 2, np.inf, 4]
@@ -2317,6 +2397,64 @@ class TestInterp(object):
fp = [1, 2, np.nan, 4]
assert_almost_equal(np.interp(x, xp, fp), [1, 2, np.nan, np.nan, 4])
+ @pytest.fixture(params=[
+ lambda x: np.float_(x),
+ lambda x: _make_complex(x, 0),
+ lambda x: _make_complex(0, x),
+ lambda x: _make_complex(x, np.multiply(x, -2))
+ ], ids=[
+ 'real',
+ 'complex-real',
+ 'complex-imag',
+ 'complex-both'
+ ])
+ def sc(self, request):
+ """ scale function used by the below tests """
+ return request.param
+
+ def test_non_finite_any_nan(self, sc):
+ """ test that nans are propagated """
+ assert_equal(np.interp(0.5, [np.nan, 1], sc([ 0, 10])), sc(np.nan))
+ assert_equal(np.interp(0.5, [ 0, np.nan], sc([ 0, 10])), sc(np.nan))
+ assert_equal(np.interp(0.5, [ 0, 1], sc([np.nan, 10])), sc(np.nan))
+ assert_equal(np.interp(0.5, [ 0, 1], sc([ 0, np.nan])), sc(np.nan))
+
+ def test_non_finite_inf(self, sc):
+ """ Test that interp between opposite infs gives nan """
+ assert_equal(np.interp(0.5, [-np.inf, +np.inf], sc([ 0, 10])), sc(np.nan))
+ assert_equal(np.interp(0.5, [ 0, 1], sc([-np.inf, +np.inf])), sc(np.nan))
+ assert_equal(np.interp(0.5, [ 0, 1], sc([+np.inf, -np.inf])), sc(np.nan))
+
+ # unless the y values are equal
+ assert_equal(np.interp(0.5, [-np.inf, +np.inf], sc([ 10, 10])), sc(10))
+
+ def test_non_finite_half_inf_xf(self, sc):
+ """ Test that interp where both axes have a bound at inf gives nan """
+ assert_equal(np.interp(0.5, [-np.inf, 1], sc([-np.inf, 10])), sc(np.nan))
+ assert_equal(np.interp(0.5, [-np.inf, 1], sc([+np.inf, 10])), sc(np.nan))
+ assert_equal(np.interp(0.5, [-np.inf, 1], sc([ 0, -np.inf])), sc(np.nan))
+ assert_equal(np.interp(0.5, [-np.inf, 1], sc([ 0, +np.inf])), sc(np.nan))
+ assert_equal(np.interp(0.5, [ 0, +np.inf], sc([-np.inf, 10])), sc(np.nan))
+ assert_equal(np.interp(0.5, [ 0, +np.inf], sc([+np.inf, 10])), sc(np.nan))
+ assert_equal(np.interp(0.5, [ 0, +np.inf], sc([ 0, -np.inf])), sc(np.nan))
+ assert_equal(np.interp(0.5, [ 0, +np.inf], sc([ 0, +np.inf])), sc(np.nan))
+
+ def test_non_finite_half_inf_x(self, sc):
+ """ Test interp where the x axis has a bound at inf """
+ assert_equal(np.interp(0.5, [-np.inf, -np.inf], sc([0, 10])), sc(10))
+ assert_equal(np.interp(0.5, [-np.inf, 1 ], sc([0, 10])), sc(10))
+ assert_equal(np.interp(0.5, [ 0, +np.inf], sc([0, 10])), sc(0))
+ assert_equal(np.interp(0.5, [+np.inf, +np.inf], sc([0, 10])), sc(0))
+
+ def test_non_finite_half_inf_f(self, sc):
+ """ Test interp where the f axis has a bound at inf """
+ assert_equal(np.interp(0.5, [0, 1], sc([ 0, -np.inf])), sc(-np.inf))
+ assert_equal(np.interp(0.5, [0, 1], sc([ 0, +np.inf])), sc(+np.inf))
+ assert_equal(np.interp(0.5, [0, 1], sc([-np.inf, 10])), sc(-np.inf))
+ assert_equal(np.interp(0.5, [0, 1], sc([+np.inf, 10])), sc(+np.inf))
+ assert_equal(np.interp(0.5, [0, 1], sc([-np.inf, -np.inf])), sc(-np.inf))
+ assert_equal(np.interp(0.5, [0, 1], sc([+np.inf, +np.inf])), sc(+np.inf))
+
def test_complex_interp(self):
# test complex interpolation
x = np.linspace(0, 1, 5)
@@ -2391,11 +2529,23 @@ class TestPercentile(object):
assert_equal(np.percentile(x, 100), 3.5)
assert_equal(np.percentile(x, 50), 1.75)
x[1] = np.nan
- with warnings.catch_warnings(record=True) as w:
- warnings.filterwarnings('always', '', RuntimeWarning)
- assert_equal(np.percentile(x, 0), np.nan)
- assert_equal(np.percentile(x, 0, interpolation='nearest'), np.nan)
- assert_(w[0].category is RuntimeWarning)
+ assert_equal(np.percentile(x, 0), np.nan)
+ assert_equal(np.percentile(x, 0, interpolation='nearest'), np.nan)
+
+ def test_fraction(self):
+ x = [Fraction(i, 2) for i in np.arange(8)]
+
+ p = np.percentile(x, Fraction(0))
+ assert_equal(p, Fraction(0))
+ assert_equal(type(p), Fraction)
+
+ p = np.percentile(x, Fraction(100))
+ assert_equal(p, Fraction(7, 2))
+ assert_equal(type(p), Fraction)
+
+ p = np.percentile(x, Fraction(50))
+ assert_equal(p, Fraction(7, 4))
+ assert_equal(type(p), Fraction)
def test_api(self):
d = np.ones(5)
@@ -2733,85 +2883,63 @@ class TestPercentile(object):
def test_nan_behavior(self):
a = np.arange(24, dtype=float)
a[2] = np.nan
- with warnings.catch_warnings(record=True) as w:
- warnings.filterwarnings('always', '', RuntimeWarning)
- assert_equal(np.percentile(a, 0.3), np.nan)
- assert_equal(np.percentile(a, 0.3, axis=0), np.nan)
- assert_equal(np.percentile(a, [0.3, 0.6], axis=0),
- np.array([np.nan] * 2))
- assert_(w[0].category is RuntimeWarning)
- assert_(w[1].category is RuntimeWarning)
- assert_(w[2].category is RuntimeWarning)
+ assert_equal(np.percentile(a, 0.3), np.nan)
+ assert_equal(np.percentile(a, 0.3, axis=0), np.nan)
+ assert_equal(np.percentile(a, [0.3, 0.6], axis=0),
+ np.array([np.nan] * 2))
a = np.arange(24, dtype=float).reshape(2, 3, 4)
a[1, 2, 3] = np.nan
a[1, 1, 2] = np.nan
# no axis
- with warnings.catch_warnings(record=True) as w:
- warnings.filterwarnings('always', '', RuntimeWarning)
- assert_equal(np.percentile(a, 0.3), np.nan)
- assert_equal(np.percentile(a, 0.3).ndim, 0)
- assert_(w[0].category is RuntimeWarning)
+ assert_equal(np.percentile(a, 0.3), np.nan)
+ assert_equal(np.percentile(a, 0.3).ndim, 0)
# axis0 zerod
b = np.percentile(np.arange(24, dtype=float).reshape(2, 3, 4), 0.3, 0)
b[2, 3] = np.nan
b[1, 2] = np.nan
- with warnings.catch_warnings(record=True) as w:
- warnings.filterwarnings('always', '', RuntimeWarning)
- assert_equal(np.percentile(a, 0.3, 0), b)
+ assert_equal(np.percentile(a, 0.3, 0), b)
# axis0 not zerod
b = np.percentile(np.arange(24, dtype=float).reshape(2, 3, 4),
[0.3, 0.6], 0)
b[:, 2, 3] = np.nan
b[:, 1, 2] = np.nan
- with warnings.catch_warnings(record=True) as w:
- warnings.filterwarnings('always', '', RuntimeWarning)
- assert_equal(np.percentile(a, [0.3, 0.6], 0), b)
+ assert_equal(np.percentile(a, [0.3, 0.6], 0), b)
# axis1 zerod
b = np.percentile(np.arange(24, dtype=float).reshape(2, 3, 4), 0.3, 1)
b[1, 3] = np.nan
b[1, 2] = np.nan
- with warnings.catch_warnings(record=True) as w:
- warnings.filterwarnings('always', '', RuntimeWarning)
- assert_equal(np.percentile(a, 0.3, 1), b)
+ assert_equal(np.percentile(a, 0.3, 1), b)
# axis1 not zerod
b = np.percentile(
np.arange(24, dtype=float).reshape(2, 3, 4), [0.3, 0.6], 1)
b[:, 1, 3] = np.nan
b[:, 1, 2] = np.nan
- with warnings.catch_warnings(record=True) as w:
- warnings.filterwarnings('always', '', RuntimeWarning)
- assert_equal(np.percentile(a, [0.3, 0.6], 1), b)
+ assert_equal(np.percentile(a, [0.3, 0.6], 1), b)
# axis02 zerod
b = np.percentile(
np.arange(24, dtype=float).reshape(2, 3, 4), 0.3, (0, 2))
b[1] = np.nan
b[2] = np.nan
- with warnings.catch_warnings(record=True) as w:
- warnings.filterwarnings('always', '', RuntimeWarning)
- assert_equal(np.percentile(a, 0.3, (0, 2)), b)
+ assert_equal(np.percentile(a, 0.3, (0, 2)), b)
# axis02 not zerod
b = np.percentile(np.arange(24, dtype=float).reshape(2, 3, 4),
[0.3, 0.6], (0, 2))
b[:, 1] = np.nan
b[:, 2] = np.nan
- with warnings.catch_warnings(record=True) as w:
- warnings.filterwarnings('always', '', RuntimeWarning)
- assert_equal(np.percentile(a, [0.3, 0.6], (0, 2)), b)
+ assert_equal(np.percentile(a, [0.3, 0.6], (0, 2)), b)
# axis02 not zerod with nearest interpolation
b = np.percentile(np.arange(24, dtype=float).reshape(2, 3, 4),
[0.3, 0.6], (0, 2), interpolation='nearest')
b[:, 1] = np.nan
b[:, 2] = np.nan
- with warnings.catch_warnings(record=True) as w:
- warnings.filterwarnings('always', '', RuntimeWarning)
- assert_equal(np.percentile(
- a, [0.3, 0.6], (0, 2), interpolation='nearest'), b)
+ assert_equal(np.percentile(
+ a, [0.3, 0.6], (0, 2), interpolation='nearest'), b)
class TestQuantile(object):
@@ -2823,6 +2951,26 @@ class TestQuantile(object):
assert_equal(np.quantile(x, 1), 3.5)
assert_equal(np.quantile(x, 0.5), 1.75)
+ def test_fraction(self):
+ # fractional input, integral quantile
+ x = [Fraction(i, 2) for i in np.arange(8)]
+
+ q = np.quantile(x, 0)
+ assert_equal(q, 0)
+ assert_equal(type(q), Fraction)
+
+ q = np.quantile(x, 1)
+ assert_equal(q, Fraction(7, 2))
+ assert_equal(type(q), Fraction)
+
+ q = np.quantile(x, Fraction(1, 2))
+ assert_equal(q, Fraction(7, 4))
+ assert_equal(type(q), Fraction)
+
+ # repeat with integral input but fractional quantile
+ x = np.arange(8)
+ assert_equal(np.quantile(x, Fraction(1, 2)), Fraction(7, 2))
+
def test_no_p_overwrite(self):
# this is worth retesting, because quantile does not make a copy
p0 = np.array([0, 0.75, 0.25, 0.5, 1.0])
@@ -2858,10 +3006,7 @@ class TestMedian(object):
# check array scalar result
assert_equal(np.median(a).ndim, 0)
a[1] = np.nan
- with warnings.catch_warnings(record=True) as w:
- warnings.filterwarnings('always', '', RuntimeWarning)
- assert_equal(np.median(a).ndim, 0)
- assert_(w[0].category is RuntimeWarning)
+ assert_equal(np.median(a).ndim, 0)
def test_axis_keyword(self):
a3 = np.array([[2, 3],
@@ -2960,58 +3105,43 @@ class TestMedian(object):
def test_nan_behavior(self):
a = np.arange(24, dtype=float)
a[2] = np.nan
- with warnings.catch_warnings(record=True) as w:
- warnings.filterwarnings('always', '', RuntimeWarning)
- assert_equal(np.median(a), np.nan)
- assert_equal(np.median(a, axis=0), np.nan)
- assert_(w[0].category is RuntimeWarning)
- assert_(w[1].category is RuntimeWarning)
+ assert_equal(np.median(a), np.nan)
+ assert_equal(np.median(a, axis=0), np.nan)
a = np.arange(24, dtype=float).reshape(2, 3, 4)
a[1, 2, 3] = np.nan
a[1, 1, 2] = np.nan
# no axis
- with warnings.catch_warnings(record=True) as w:
- warnings.filterwarnings('always', '', RuntimeWarning)
- assert_equal(np.median(a), np.nan)
- assert_equal(np.median(a).ndim, 0)
- assert_(w[0].category is RuntimeWarning)
+ assert_equal(np.median(a), np.nan)
+ assert_equal(np.median(a).ndim, 0)
# axis0
b = np.median(np.arange(24, dtype=float).reshape(2, 3, 4), 0)
b[2, 3] = np.nan
b[1, 2] = np.nan
- with warnings.catch_warnings(record=True) as w:
- warnings.filterwarnings('always', '', RuntimeWarning)
- assert_equal(np.median(a, 0), b)
- assert_equal(len(w), 1)
+ assert_equal(np.median(a, 0), b)
# axis1
b = np.median(np.arange(24, dtype=float).reshape(2, 3, 4), 1)
b[1, 3] = np.nan
b[1, 2] = np.nan
- with warnings.catch_warnings(record=True) as w:
- warnings.filterwarnings('always', '', RuntimeWarning)
- assert_equal(np.median(a, 1), b)
- assert_equal(len(w), 1)
+ assert_equal(np.median(a, 1), b)
# axis02
b = np.median(np.arange(24, dtype=float).reshape(2, 3, 4), (0, 2))
b[1] = np.nan
b[2] = np.nan
- with warnings.catch_warnings(record=True) as w:
- warnings.filterwarnings('always', '', RuntimeWarning)
- assert_equal(np.median(a, (0, 2)), b)
- assert_equal(len(w), 1)
+ assert_equal(np.median(a, (0, 2)), b)
def test_empty(self):
- # empty arrays
+ # mean(empty array) emits two warnings: empty slice and divide by 0
a = np.array([], dtype=float)
with warnings.catch_warnings(record=True) as w:
warnings.filterwarnings('always', '', RuntimeWarning)
assert_equal(np.median(a), np.nan)
assert_(w[0].category is RuntimeWarning)
+ assert_equal(len(w), 2)
# multiple dimensions
a = np.array([], dtype=float, ndmin=3)
@@ -3106,6 +3236,7 @@ class TestAdd_newdoc_ufunc(object):
class TestAdd_newdoc(object):
@pytest.mark.skipif(sys.flags.optimize == 2, reason="Python running -OO")
+ @pytest.mark.xfail(IS_PYPY, reason="PyPy does not modify tp_doc")
def test_add_doc(self):
# test np.add_newdoc
tgt = "Current flat index into the array."
diff --git a/numpy/lib/tests/test_histograms.py b/numpy/lib/tests/test_histograms.py
index c96b01d42..4895a722c 100644
--- a/numpy/lib/tests/test_histograms.py
+++ b/numpy/lib/tests/test_histograms.py
@@ -554,15 +554,11 @@ class TestHistogramOptimBinNums(object):
return a / (a + b)
ll = [[nbins_ratio(seed, size) for size in np.geomspace(start=10, stop=100, num=4).round().astype(int)]
- for seed in range(256)]
+ for seed in range(10)]
# the average difference between the two methods decreases as the dataset size increases.
- assert_almost_equal(abs(np.mean(ll, axis=0) - 0.5),
- [0.1065248,
- 0.0968844,
- 0.0331818,
- 0.0178057],
- decimal=3)
+ avg = abs(np.mean(ll, axis=0) - 0.5)
+ assert_almost_equal(avg, [0.15, 0.09, 0.08, 0.03], decimal=2)
def test_simple_range(self):
"""
@@ -802,7 +798,7 @@ class TestHistogramdd(object):
hist, edges = histogramdd((y, x), bins=(y_edges, x_edges))
assert_equal(hist, relative_areas)
- # resulting histogram should be uniform, since counts and areas are propotional
+ # resulting histogram should be uniform, since counts and areas are proportional
hist, edges = histogramdd((y, x), bins=(y_edges, x_edges), density=True)
assert_equal(hist, 1 / (8*8))
diff --git a/numpy/lib/tests/test_index_tricks.py b/numpy/lib/tests/test_index_tricks.py
index 3246f68ff..a5cdda074 100644
--- a/numpy/lib/tests/test_index_tricks.py
+++ b/numpy/lib/tests/test_index_tricks.py
@@ -77,6 +77,26 @@ class TestRavelUnravelIndex(object):
[[3, 6, 6], [4, 5, 1]])
assert_equal(np.unravel_index(1621, (6, 7, 8, 9)), [3, 1, 4, 1])
+ def test_empty_indices(self):
+ msg1 = 'indices must be integral: the provided empty sequence was'
+ msg2 = 'only int indices permitted'
+ assert_raises_regex(TypeError, msg1, np.unravel_index, [], (10, 3, 5))
+ assert_raises_regex(TypeError, msg1, np.unravel_index, (), (10, 3, 5))
+ assert_raises_regex(TypeError, msg2, np.unravel_index, np.array([]),
+ (10, 3, 5))
+ assert_equal(np.unravel_index(np.array([],dtype=int), (10, 3, 5)),
+ [[], [], []])
+ assert_raises_regex(TypeError, msg1, np.ravel_multi_index, ([], []),
+ (10, 3))
+ assert_raises_regex(TypeError, msg1, np.ravel_multi_index, ([], ['abc']),
+ (10, 3))
+ assert_raises_regex(TypeError, msg2, np.ravel_multi_index,
+ (np.array([]), np.array([])), (5, 3))
+ assert_equal(np.ravel_multi_index(
+ (np.array([], dtype=int), np.array([], dtype=int)), (5, 3)), [])
+ assert_equal(np.ravel_multi_index(np.array([[], []], dtype=int),
+ (5, 3)), [])
+
def test_big_indices(self):
# ravel_multi_index for big indices (issue #7546)
if np.intp == np.int64:
@@ -86,6 +106,9 @@ class TestRavelUnravelIndex(object):
np.ravel_multi_index(arr, (41, 7, 120, 36, 2706, 8, 6)),
[5627771580, 117259570957])
+ # test unravel_index for big indices (issue #9538)
+ assert_raises(ValueError, np.unravel_index, 1, (2**32-1, 2**31+1))
+
# test overflow checking for too big array (issue #7546)
dummy_arr = ([0],[0])
half_max = np.iinfo(np.intp).max // 2
@@ -167,7 +190,7 @@ class TestGrid(object):
assert_almost_equal(a[1]-a[0], 2.0/9.0, 11)
def test_linspace_equivalence(self):
- y, st = np.linspace(2, 10, retstep=1)
+ y, st = np.linspace(2, 10, retstep=True)
assert_almost_equal(st, 8/49.0)
assert_array_almost_equal(y, mgrid[2:10:50j], 13)
@@ -272,11 +295,16 @@ class TestIndexExpression(object):
class TestIx_(object):
def test_regression_1(self):
- # Test empty inputs create outputs of indexing type, gh-5804
- # Test both lists and arrays
- for func in (range, np.arange):
- a, = np.ix_(func(0))
- assert_equal(a.dtype, np.intp)
+ # Test empty untyped inputs create outputs of indexing type, gh-5804
+ a, = np.ix_(range(0))
+ assert_equal(a.dtype, np.intp)
+
+ a, = np.ix_([])
+ assert_equal(a.dtype, np.intp)
+
+ # but if the type is specified, don't change it
+ a, = np.ix_(np.array([], dtype=np.float32))
+ assert_equal(a.dtype, np.float32)
def test_shape_and_dtype(self):
sizes = (4, 5, 3, 2)
diff --git a/numpy/lib/tests/test_io.py b/numpy/lib/tests/test_io.py
index 038d08acf..6ee17c830 100644
--- a/numpy/lib/tests/test_io.py
+++ b/numpy/lib/tests/test_io.py
@@ -22,7 +22,7 @@ from numpy.ma.testutils import assert_equal
from numpy.testing import (
assert_warns, assert_, assert_raises_regex, assert_raises,
assert_allclose, assert_array_equal, temppath, tempdir, IS_PYPY,
- HAS_REFCOUNT, suppress_warnings, assert_no_gc_cycles,
+ HAS_REFCOUNT, suppress_warnings, assert_no_gc_cycles, assert_no_warnings
)
@@ -87,7 +87,7 @@ class RoundtripTest(object):
"""
save_kwds = kwargs.get('save_kwds', {})
- load_kwds = kwargs.get('load_kwds', {})
+ load_kwds = kwargs.get('load_kwds', {"allow_pickle": True})
file_on_disk = kwargs.get('file_on_disk', False)
if file_on_disk:
@@ -347,13 +347,23 @@ class TestSaveTxt(object):
assert_raises(ValueError, np.savetxt, c, np.array(1))
assert_raises(ValueError, np.savetxt, c, np.array([[[1], [2]]]))
- def test_record(self):
+ def test_structured(self):
a = np.array([(1, 2), (3, 4)], dtype=[('x', 'i4'), ('y', 'i4')])
c = BytesIO()
np.savetxt(c, a, fmt='%d')
c.seek(0)
assert_equal(c.readlines(), [b'1 2\n', b'3 4\n'])
+ def test_structured_padded(self):
+ # gh-13297
+ a = np.array([(1, 2, 3),(4, 5, 6)], dtype=[
+ ('foo', 'i4'), ('bar', 'i4'), ('baz', 'i4')
+ ])
+ c = BytesIO()
+ np.savetxt(c, a[['foo', 'baz']], fmt='%d')
+ c.seek(0)
+ assert_equal(c.readlines(), [b'1 3\n', b'4 6\n'])
+
@pytest.mark.skipif(Path is None, reason="No pathlib.Path")
def test_multifield_view(self):
a = np.ones(1, dtype=[('x', 'i4'), ('y', 'i4'), ('z', 'f4')])
@@ -494,8 +504,6 @@ class TestSaveTxt(object):
b' (3.142e+00-2.718e+00j) (3.142e+00-2.718e+00j)\n'])
-
-
def test_custom_writer(self):
class CustomWriter(list):
@@ -551,6 +559,33 @@ class TestSaveTxt(object):
s.seek(0)
assert_equal(s.read(), utf8 + '\n')
+ @pytest.mark.parametrize("fmt", [u"%f", b"%f"])
+ @pytest.mark.parametrize("iotype", [StringIO, BytesIO])
+ def test_unicode_and_bytes_fmt(self, fmt, iotype):
+ # string type of fmt should not matter, see also gh-4053
+ a = np.array([1.])
+ s = iotype()
+ np.savetxt(s, a, fmt=fmt)
+ s.seek(0)
+ if iotype is StringIO:
+ assert_equal(s.read(), u"%f\n" % 1.)
+ else:
+ assert_equal(s.read(), b"%f\n" % 1.)
+
+ @pytest.mark.skipif(sys.platform=='win32',
+ reason="large files cause problems")
+ @pytest.mark.slow
+ def test_large_zip(self):
+ # The test takes at least 6GB of memory, writes a file larger than 4GB
+ try:
+ a = 'a' * 6 * 1024 * 1024 * 1024
+ del a
+ except (MemoryError, OverflowError):
+ pytest.skip("Cannot allocate enough memory for test")
+ test_data = np.asarray([np.random.rand(np.random.randint(50,100),4)
+ for i in range(800000)])
+ with tempdir() as tmpdir:
+ np.savez(os.path.join(tmpdir, 'test.npz'), test_data=test_data)
class LoadTxtBase(object):
def check_compressed(self, fopen, suffixes):
@@ -1192,7 +1227,7 @@ class TestFromTxt(LoadTxtBase):
def test_record(self):
# Test w/ explicit dtype
data = TextIO('1 2\n3 4')
- test = np.ndfromtxt(data, dtype=[('x', np.int32), ('y', np.int32)])
+ test = np.genfromtxt(data, dtype=[('x', np.int32), ('y', np.int32)])
control = np.array([(1, 2), (3, 4)], dtype=[('x', 'i4'), ('y', 'i4')])
assert_equal(test, control)
#
@@ -1201,14 +1236,14 @@ class TestFromTxt(LoadTxtBase):
'formats': ('S1', 'i4', 'f4')}
control = np.array([('M', 64.0, 75.0), ('F', 25.0, 60.0)],
dtype=descriptor)
- test = np.ndfromtxt(data, dtype=descriptor)
+ test = np.genfromtxt(data, dtype=descriptor)
assert_equal(test, control)
def test_array(self):
# Test outputting a standard ndarray
data = TextIO('1 2\n3 4')
control = np.array([[1, 2], [3, 4]], dtype=int)
- test = np.ndfromtxt(data, dtype=int)
+ test = np.genfromtxt(data, dtype=int)
assert_array_equal(test, control)
#
data.seek(0)
@@ -1221,11 +1256,11 @@ class TestFromTxt(LoadTxtBase):
control = np.array([1, 2, 3, 4], int)
#
data = TextIO('1\n2\n3\n4\n')
- test = np.ndfromtxt(data, dtype=int)
+ test = np.genfromtxt(data, dtype=int)
assert_array_equal(test, control)
#
data = TextIO('1,2,3,4\n')
- test = np.ndfromtxt(data, dtype=int, delimiter=',')
+ test = np.genfromtxt(data, dtype=int, delimiter=',')
assert_array_equal(test, control)
def test_comments(self):
@@ -1233,11 +1268,11 @@ class TestFromTxt(LoadTxtBase):
control = np.array([1, 2, 3, 5], int)
# Comment on its own line
data = TextIO('# comment\n1,2,3,5\n')
- test = np.ndfromtxt(data, dtype=int, delimiter=',', comments='#')
+ test = np.genfromtxt(data, dtype=int, delimiter=',', comments='#')
assert_equal(test, control)
# Comment at the end of a line
data = TextIO('1,2,3,5# comment\n')
- test = np.ndfromtxt(data, dtype=int, delimiter=',', comments='#')
+ test = np.genfromtxt(data, dtype=int, delimiter=',', comments='#')
assert_equal(test, control)
def test_skiprows(self):
@@ -1246,7 +1281,7 @@ class TestFromTxt(LoadTxtBase):
kwargs = dict(dtype=int, delimiter=',')
#
data = TextIO('comment\n1,2,3,5\n')
- test = np.ndfromtxt(data, skip_header=1, **kwargs)
+ test = np.genfromtxt(data, skip_header=1, **kwargs)
assert_equal(test, control)
#
data = TextIO('# comment\n1,2,3,5\n')
@@ -1293,7 +1328,7 @@ class TestFromTxt(LoadTxtBase):
data = TextIO('gender age weight\nM 64.0 75.0\nF 25.0 60.0')
with warnings.catch_warnings(record=True) as w:
warnings.filterwarnings('always', '', np.VisibleDeprecationWarning)
- test = np.ndfromtxt(data, dtype=None, names=True)
+ test = np.genfromtxt(data, dtype=None, names=True)
assert_(w[0].category is np.VisibleDeprecationWarning)
control = {'gender': np.array([b'M', b'F']),
'age': np.array([64.0, 25.0]),
@@ -1307,7 +1342,7 @@ class TestFromTxt(LoadTxtBase):
data = TextIO('A 64 75.0 3+4j True\nBCD 25 60.0 5+6j False')
with warnings.catch_warnings(record=True) as w:
warnings.filterwarnings('always', '', np.VisibleDeprecationWarning)
- test = np.ndfromtxt(data, dtype=None)
+ test = np.genfromtxt(data, dtype=None)
assert_(w[0].category is np.VisibleDeprecationWarning)
control = [np.array([b'A', b'BCD']),
np.array([64, 25]),
@@ -1321,7 +1356,7 @@ class TestFromTxt(LoadTxtBase):
def test_auto_dtype_uniform(self):
# Tests whether the output dtype can be uniformized
data = TextIO('1 2 3 4\n5 6 7 8\n')
- test = np.ndfromtxt(data, dtype=None)
+ test = np.genfromtxt(data, dtype=None)
control = np.array([[1, 2, 3, 4], [5, 6, 7, 8]])
assert_equal(test, control)
@@ -1329,7 +1364,7 @@ class TestFromTxt(LoadTxtBase):
# Check that a nested dtype isn't MIA
data = TextIO('1,2,3.0\n4,5,6.0\n')
fancydtype = np.dtype([('x', int), ('y', [('t', int), ('s', float)])])
- test = np.ndfromtxt(data, dtype=fancydtype, delimiter=',')
+ test = np.genfromtxt(data, dtype=fancydtype, delimiter=',')
control = np.array([(1, (2, 3.0)), (4, (5, 6.0))], dtype=fancydtype)
assert_equal(test, control)
@@ -1339,7 +1374,7 @@ class TestFromTxt(LoadTxtBase):
'formats': ('S1', 'i4', 'f4')}
data = TextIO(b'M 64.0 75.0\nF 25.0 60.0')
names = ('gender', 'age', 'weight')
- test = np.ndfromtxt(data, dtype=descriptor, names=names)
+ test = np.genfromtxt(data, dtype=descriptor, names=names)
descriptor['names'] = names
control = np.array([('M', 64.0, 75.0),
('F', 25.0, 60.0)], dtype=descriptor)
@@ -1381,12 +1416,25 @@ M 33 21.99
control = np.array([(1, 2), (3, 4)], dtype=[('col1', int), ('col2', int)])
assert_equal(test, control)
+ def test_file_is_closed_on_error(self):
+ # gh-13200
+ with tempdir() as tmpdir:
+ fpath = os.path.join(tmpdir, "test.csv")
+ with open(fpath, "wb") as f:
+ f.write(u'\N{GREEK PI SYMBOL}'.encode('utf8'))
+
+ # ResourceWarnings are emitted from a destructor, so won't be
+ # detected by regular propagation to errors.
+ with assert_no_warnings():
+ with pytest.raises(UnicodeDecodeError):
+ np.genfromtxt(fpath, encoding="ascii")
+
def test_autonames_and_usecols(self):
# Tests names and usecols
data = TextIO('A B C D\n aaaa 121 45 9.1')
with warnings.catch_warnings(record=True) as w:
warnings.filterwarnings('always', '', np.VisibleDeprecationWarning)
- test = np.ndfromtxt(data, usecols=('A', 'C', 'D'),
+ test = np.genfromtxt(data, usecols=('A', 'C', 'D'),
names=True, dtype=None)
assert_(w[0].category is np.VisibleDeprecationWarning)
control = np.array(('aaaa', 45, 9.1),
@@ -1396,7 +1444,7 @@ M 33 21.99
def test_converters_with_usecols(self):
# Test the combination user-defined converters and usecol
data = TextIO('1,2,3,,5\n6,7,8,9,10\n')
- test = np.ndfromtxt(data, dtype=int, delimiter=',',
+ test = np.genfromtxt(data, dtype=int, delimiter=',',
converters={3: lambda s: int(s or - 999)},
usecols=(1, 3,))
control = np.array([[2, -999], [7, 9]], int)
@@ -1407,7 +1455,7 @@ M 33 21.99
data = TextIO('A B C D\n aaaa 121 45 9.1')
with warnings.catch_warnings(record=True) as w:
warnings.filterwarnings('always', '', np.VisibleDeprecationWarning)
- test = np.ndfromtxt(data, usecols=('A', 'C', 'D'), names=True,
+ test = np.genfromtxt(data, usecols=('A', 'C', 'D'), names=True,
dtype=None,
converters={'C': lambda s: 2 * int(s)})
assert_(w[0].category is np.VisibleDeprecationWarning)
@@ -1420,7 +1468,7 @@ M 33 21.99
converter = {
'date': lambda s: strptime(s, '%Y-%m-%d %H:%M:%SZ')}
data = TextIO('2009-02-03 12:00:00Z, 72214.0')
- test = np.ndfromtxt(data, delimiter=',', dtype=None,
+ test = np.genfromtxt(data, delimiter=',', dtype=None,
names=['date', 'stid'], converters=converter)
control = np.array((datetime(2009, 2, 3), 72214.),
dtype=[('date', np.object_), ('stid', float)])
@@ -1431,7 +1479,7 @@ M 33 21.99
converter = {
'date': lambda s: np.datetime64(strptime(s, '%Y-%m-%d %H:%M:%SZ'))}
data = TextIO('2009-02-03 12:00:00Z, 72214.0')
- test = np.ndfromtxt(data, delimiter=',', dtype=None,
+ test = np.genfromtxt(data, delimiter=',', dtype=None,
names=['date', 'stid'], converters=converter)
control = np.array((datetime(2009, 2, 3), 72214.),
dtype=[('date', 'datetime64[us]'), ('stid', float)])
@@ -1440,12 +1488,12 @@ M 33 21.99
def test_unused_converter(self):
# Test whether unused converters are forgotten
data = TextIO("1 21\n 3 42\n")
- test = np.ndfromtxt(data, usecols=(1,),
+ test = np.genfromtxt(data, usecols=(1,),
converters={0: lambda s: int(s, 16)})
assert_equal(test, [21, 42])
#
data.seek(0)
- test = np.ndfromtxt(data, usecols=(1,),
+ test = np.genfromtxt(data, usecols=(1,),
converters={1: lambda s: int(s, 16)})
assert_equal(test, [33, 66])
@@ -1472,12 +1520,12 @@ M 33 21.99
def test_dtype_with_converters(self):
dstr = "2009; 23; 46"
- test = np.ndfromtxt(TextIO(dstr,),
+ test = np.genfromtxt(TextIO(dstr,),
delimiter=";", dtype=float, converters={0: bytes})
control = np.array([('2009', 23., 46)],
dtype=[('f0', '|S4'), ('f1', float), ('f2', float)])
assert_equal(test, control)
- test = np.ndfromtxt(TextIO(dstr,),
+ test = np.genfromtxt(TextIO(dstr,),
delimiter=";", dtype=float, converters={0: float})
control = np.array([2009., 23., 46],)
assert_equal(test, control)
@@ -1548,7 +1596,7 @@ M 33 21.99
def test_spacedelimiter(self):
# Test space delimiter
data = TextIO("1 2 3 4 5\n6 7 8 9 10")
- test = np.ndfromtxt(data)
+ test = np.genfromtxt(data)
control = np.array([[1., 2., 3., 4., 5.],
[6., 7., 8., 9., 10.]])
assert_equal(test, control)
@@ -1562,7 +1610,7 @@ M 33 21.99
def test_missing(self):
data = TextIO('1,2,3,,5\n')
- test = np.ndfromtxt(data, dtype=int, delimiter=',',
+ test = np.genfromtxt(data, dtype=int, delimiter=',',
converters={3: lambda s: int(s or - 999)})
control = np.array([1, 2, 3, -999, 5], int)
assert_equal(test, control)
@@ -1584,18 +1632,18 @@ M 33 21.99
data = TextIO()
np.savetxt(data, control)
data.seek(0)
- test = np.ndfromtxt(data, dtype=float, usecols=(1,))
+ test = np.genfromtxt(data, dtype=float, usecols=(1,))
assert_equal(test, control[:, 1])
#
control = np.array([[1, 2, 3], [3, 4, 5]], float)
data = TextIO()
np.savetxt(data, control)
data.seek(0)
- test = np.ndfromtxt(data, dtype=float, usecols=(1, 2))
+ test = np.genfromtxt(data, dtype=float, usecols=(1, 2))
assert_equal(test, control[:, 1:])
# Testing with arrays instead of tuples.
data.seek(0)
- test = np.ndfromtxt(data, dtype=float, usecols=np.array([1, 2]))
+ test = np.genfromtxt(data, dtype=float, usecols=np.array([1, 2]))
assert_equal(test, control[:, 1:])
def test_usecols_as_css(self):
@@ -1611,7 +1659,7 @@ M 33 21.99
data = TextIO("JOE 70.1 25.3\nBOB 60.5 27.9")
names = ['stid', 'temp']
dtypes = ['S4', 'f8']
- test = np.ndfromtxt(
+ test = np.genfromtxt(
data, usecols=(0, 2), dtype=list(zip(names, dtypes)))
assert_equal(test['stid'], [b"JOE", b"BOB"])
assert_equal(test['temp'], [25.3, 27.9])
@@ -1640,11 +1688,15 @@ M 33 21.99
test = np.genfromtxt(data)
assert_equal(test, np.array([]))
+ # when skip_header > 0
+ test = np.genfromtxt(data, skip_header=1)
+ assert_equal(test, np.array([]))
+
def test_fancy_dtype_alt(self):
# Check that a nested dtype isn't MIA
data = TextIO('1,2,3.0\n4,5,6.0\n')
fancydtype = np.dtype([('x', int), ('y', [('t', int), ('s', float)])])
- test = np.mafromtxt(data, dtype=fancydtype, delimiter=',')
+ test = np.genfromtxt(data, dtype=fancydtype, delimiter=',', usemask=True)
control = ma.array([(1, (2, 3.0)), (4, (5, 6.0))], dtype=fancydtype)
assert_equal(test, control)
@@ -1652,7 +1704,7 @@ M 33 21.99
c = TextIO("aaaa 1.0 8.0 1 2 3 4 5 6")
dt = np.dtype([('name', 'S4'), ('x', float), ('y', float),
('block', int, (2, 3))])
- x = np.ndfromtxt(c, dtype=dt)
+ x = np.genfromtxt(c, dtype=dt)
a = np.array([('aaaa', 1.0, 8.0, [[1, 2, 3], [4, 5, 6]])],
dtype=dt)
assert_array_equal(x, a)
@@ -1660,7 +1712,7 @@ M 33 21.99
def test_withmissing(self):
data = TextIO('A,B\n0,1\n2,N/A')
kwargs = dict(delimiter=",", missing_values="N/A", names=True)
- test = np.mafromtxt(data, dtype=None, **kwargs)
+ test = np.genfromtxt(data, dtype=None, usemask=True, **kwargs)
control = ma.array([(0, 1), (2, -1)],
mask=[(False, False), (False, True)],
dtype=[('A', int), ('B', int)])
@@ -1668,7 +1720,7 @@ M 33 21.99
assert_equal(test.mask, control.mask)
#
data.seek(0)
- test = np.mafromtxt(data, **kwargs)
+ test = np.genfromtxt(data, usemask=True, **kwargs)
control = ma.array([(0, 1), (2, -1)],
mask=[(False, False), (False, True)],
dtype=[('A', float), ('B', float)])
@@ -1680,7 +1732,7 @@ M 33 21.99
basekwargs = dict(dtype=None, delimiter=",", names=True,)
mdtype = [('A', int), ('B', float), ('C', complex)]
#
- test = np.mafromtxt(TextIO(data), missing_values="N/A",
+ test = np.genfromtxt(TextIO(data), missing_values="N/A",
**basekwargs)
control = ma.array([(0, 0.0, 0j), (1, -999, 1j),
(-9, 2.2, -999j), (3, -99, 3j)],
@@ -1689,16 +1741,17 @@ M 33 21.99
assert_equal(test, control)
#
basekwargs['dtype'] = mdtype
- test = np.mafromtxt(TextIO(data),
- missing_values={0: -9, 1: -99, 2: -999j}, **basekwargs)
+ test = np.genfromtxt(TextIO(data),
+ missing_values={0: -9, 1: -99, 2: -999j}, usemask=True, **basekwargs)
control = ma.array([(0, 0.0, 0j), (1, -999, 1j),
(-9, 2.2, -999j), (3, -99, 3j)],
mask=[(0, 0, 0), (0, 1, 0), (1, 0, 1), (0, 1, 0)],
dtype=mdtype)
assert_equal(test, control)
#
- test = np.mafromtxt(TextIO(data),
+ test = np.genfromtxt(TextIO(data),
missing_values={0: -9, 'B': -99, 'C': -999j},
+ usemask=True,
**basekwargs)
control = ma.array([(0, 0.0, 0j), (1, -999, 1j),
(-9, 2.2, -999j), (3, -99, 3j)],
@@ -1736,8 +1789,8 @@ M 33 21.99
def test_withmissing_float(self):
data = TextIO('A,B\n0,1.5\n2,-999.00')
- test = np.mafromtxt(data, dtype=None, delimiter=',',
- missing_values='-999.0', names=True,)
+ test = np.genfromtxt(data, dtype=None, delimiter=',',
+ missing_values='-999.0', names=True, usemask=True)
control = ma.array([(0, 1.5), (2, -1.)],
mask=[(False, False), (False, True)],
dtype=[('A', int), ('B', float)])
@@ -1776,14 +1829,14 @@ M 33 21.99
ret = {}
def f(_ret={}):
- _ret['mtest'] = np.ndfromtxt(mdata, invalid_raise=False, **kwargs)
+ _ret['mtest'] = np.genfromtxt(mdata, invalid_raise=False, **kwargs)
assert_warns(ConversionWarning, f, _ret=ret)
mtest = ret['mtest']
assert_equal(len(mtest), 45)
assert_equal(mtest, np.ones(45, dtype=[(_, int) for _ in 'abcde']))
#
mdata.seek(0)
- assert_raises(ValueError, np.ndfromtxt, mdata,
+ assert_raises(ValueError, np.genfromtxt, mdata,
delimiter=",", names=True)
def test_invalid_raise_with_usecols(self):
@@ -1800,14 +1853,14 @@ M 33 21.99
ret = {}
def f(_ret={}):
- _ret['mtest'] = np.ndfromtxt(mdata, usecols=(0, 4), **kwargs)
+ _ret['mtest'] = np.genfromtxt(mdata, usecols=(0, 4), **kwargs)
assert_warns(ConversionWarning, f, _ret=ret)
mtest = ret['mtest']
assert_equal(len(mtest), 45)
assert_equal(mtest, np.ones(45, dtype=[(_, int) for _ in 'ae']))
#
mdata.seek(0)
- mtest = np.ndfromtxt(mdata, usecols=(0, 1), **kwargs)
+ mtest = np.genfromtxt(mdata, usecols=(0, 1), **kwargs)
assert_equal(len(mtest), 50)
control = np.ones(50, dtype=[(_, int) for _ in 'ab'])
control[[10 * _ for _ in range(5)]] = (2, 2)
@@ -1826,7 +1879,7 @@ M 33 21.99
def test_default_field_format(self):
# Test default format
data = "0, 1, 2.3\n4, 5, 6.7"
- mtest = np.ndfromtxt(TextIO(data),
+ mtest = np.genfromtxt(TextIO(data),
delimiter=",", dtype=None, defaultfmt="f%02i")
ctrl = np.array([(0, 1, 2.3), (4, 5, 6.7)],
dtype=[("f00", int), ("f01", int), ("f02", float)])
@@ -1835,7 +1888,7 @@ M 33 21.99
def test_single_dtype_wo_names(self):
# Test single dtype w/o names
data = "0, 1, 2.3\n4, 5, 6.7"
- mtest = np.ndfromtxt(TextIO(data),
+ mtest = np.genfromtxt(TextIO(data),
delimiter=",", dtype=float, defaultfmt="f%02i")
ctrl = np.array([[0., 1., 2.3], [4., 5., 6.7]], dtype=float)
assert_equal(mtest, ctrl)
@@ -1843,7 +1896,7 @@ M 33 21.99
def test_single_dtype_w_explicit_names(self):
# Test single dtype w explicit names
data = "0, 1, 2.3\n4, 5, 6.7"
- mtest = np.ndfromtxt(TextIO(data),
+ mtest = np.genfromtxt(TextIO(data),
delimiter=",", dtype=float, names="a, b, c")
ctrl = np.array([(0., 1., 2.3), (4., 5., 6.7)],
dtype=[(_, float) for _ in "abc"])
@@ -1852,7 +1905,7 @@ M 33 21.99
def test_single_dtype_w_implicit_names(self):
# Test single dtype w implicit names
data = "a, b, c\n0, 1, 2.3\n4, 5, 6.7"
- mtest = np.ndfromtxt(TextIO(data),
+ mtest = np.genfromtxt(TextIO(data),
delimiter=",", dtype=float, names=True)
ctrl = np.array([(0., 1., 2.3), (4., 5., 6.7)],
dtype=[(_, float) for _ in "abc"])
@@ -1861,7 +1914,7 @@ M 33 21.99
def test_easy_structured_dtype(self):
# Test easy structured dtype
data = "0, 1, 2.3\n4, 5, 6.7"
- mtest = np.ndfromtxt(TextIO(data), delimiter=",",
+ mtest = np.genfromtxt(TextIO(data), delimiter=",",
dtype=(int, float, float), defaultfmt="f_%02i")
ctrl = np.array([(0, 1., 2.3), (4, 5., 6.7)],
dtype=[("f_00", int), ("f_01", float), ("f_02", float)])
@@ -1873,14 +1926,14 @@ M 33 21.99
kwargs = dict(delimiter=",", dtype=None)
with warnings.catch_warnings(record=True) as w:
warnings.filterwarnings('always', '', np.VisibleDeprecationWarning)
- mtest = np.ndfromtxt(TextIO(data), **kwargs)
+ mtest = np.genfromtxt(TextIO(data), **kwargs)
assert_(w[0].category is np.VisibleDeprecationWarning)
ctrl = np.array([('01/01/2003 ', 1.3, ' abcde')],
dtype=[('f0', '|S12'), ('f1', float), ('f2', '|S8')])
assert_equal(mtest, ctrl)
with warnings.catch_warnings(record=True) as w:
warnings.filterwarnings('always', '', np.VisibleDeprecationWarning)
- mtest = np.ndfromtxt(TextIO(data), autostrip=True, **kwargs)
+ mtest = np.genfromtxt(TextIO(data), autostrip=True, **kwargs)
assert_(w[0].category is np.VisibleDeprecationWarning)
ctrl = np.array([('01/01/2003', 1.3, 'abcde')],
dtype=[('f0', '|S10'), ('f1', float), ('f2', '|S5')])
@@ -1941,12 +1994,12 @@ M 33 21.99
# w/ dtype=None
ctrl = np.array([(0, 1, 2), (3, 4, 5)],
dtype=[(_, int) for _ in ('A', 'f0', 'C')])
- test = np.ndfromtxt(TextIO(data), dtype=None, **kwargs)
+ test = np.genfromtxt(TextIO(data), dtype=None, **kwargs)
assert_equal(test, ctrl)
# w/ default dtype
ctrl = np.array([(0, 1, 2), (3, 4, 5)],
dtype=[(_, float) for _ in ('A', 'f0', 'C')])
- test = np.ndfromtxt(TextIO(data), **kwargs)
+ test = np.genfromtxt(TextIO(data), **kwargs)
def test_names_auto_completion(self):
# Make sure that names are properly completed
@@ -1982,13 +2035,13 @@ M 33 21.99
kwargs = dict(delimiter=(5, 5, 4), names=True, dtype=None)
ctrl = np.array([(0, 1, 2.3), (45, 67, 9.)],
dtype=[('A', int), ('B', int), ('C', float)])
- test = np.ndfromtxt(TextIO(data), **kwargs)
+ test = np.genfromtxt(TextIO(data), **kwargs)
assert_equal(test, ctrl)
#
kwargs = dict(delimiter=5, names=True, dtype=None)
ctrl = np.array([(0, 1, 2.3), (45, 67, 9.)],
dtype=[('A', int), ('B', int), ('C', float)])
- test = np.ndfromtxt(TextIO(data), **kwargs)
+ test = np.genfromtxt(TextIO(data), **kwargs)
assert_equal(test, ctrl)
def test_filling_values(self):
@@ -1996,7 +2049,7 @@ M 33 21.99
data = b"1, 2, 3\n1, , 5\n0, 6, \n"
kwargs = dict(delimiter=",", dtype=None, filling_values=-999)
ctrl = np.array([[1, 2, 3], [1, -999, 5], [0, 6, -999]], dtype=int)
- test = np.ndfromtxt(TextIO(data), **kwargs)
+ test = np.genfromtxt(TextIO(data), **kwargs)
assert_equal(test, ctrl)
def test_comments_is_none(self):
@@ -2285,7 +2338,7 @@ M 33 21.99
data = TextIO('73786976294838206464 17179869184 1024')
- test = np.ndfromtxt(data, dtype=None)
+ test = np.genfromtxt(data, dtype=None)
assert_equal(test.dtype.names, ['f0', 'f1', 'f2'])
@@ -2349,7 +2402,7 @@ class TestPathUsage(object):
np.savez(path, lab='place holder')
with np.load(path) as data:
assert_array_equal(data['lab'], 'place holder')
-
+
def test_savez_compressed_load(self):
# Test that pathlib.Path instances can be used with savez.
with temppath(suffix='.npz') as path:
@@ -2375,7 +2428,7 @@ class TestPathUsage(object):
f.write(u'1 2\n3 4')
control = np.array([[1, 2], [3, 4]], dtype=int)
- test = np.ndfromtxt(path, dtype=int)
+ test = np.genfromtxt(path, dtype=int)
assert_array_equal(test, control)
def test_mafromtxt(self):
@@ -2385,7 +2438,7 @@ class TestPathUsage(object):
with path.open('w') as f:
f.write(u'1,2,3.0\n4,5,6.0\n')
- test = np.mafromtxt(path, delimiter=',')
+ test = np.genfromtxt(path, delimiter=',', usemask=True)
control = ma.array([(1.0, 2.0, 3.0), (4.0, 5.0, 6.0)])
assert_equal(test, control)
@@ -2430,6 +2483,44 @@ def test_gzip_load():
assert_array_equal(np.load(f), a)
+# These next two classes encode the minimal API needed to save()/load() arrays.
+# The `test_ducktyping` ensures they work correctly
+class JustWriter(object):
+ def __init__(self, base):
+ self.base = base
+
+ def write(self, s):
+ return self.base.write(s)
+
+ def flush(self):
+ return self.base.flush()
+
+class JustReader(object):
+ def __init__(self, base):
+ self.base = base
+
+ def read(self, n):
+ return self.base.read(n)
+
+ def seek(self, off, whence=0):
+ return self.base.seek(off, whence)
+
+
+def test_ducktyping():
+ a = np.random.random((5, 5))
+
+ s = BytesIO()
+ f = JustWriter(s)
+
+ np.save(f, a)
+ f.flush()
+ s.seek(0)
+
+ f = JustReader(s)
+ assert_array_equal(np.load(f), a)
+
+
+
def test_gzip_loadtxt():
# Thanks to another windows brokenness, we can't use
# NamedTemporaryFile: a file created from this function cannot be
diff --git a/numpy/lib/tests/test_nanfunctions.py b/numpy/lib/tests/test_nanfunctions.py
index 504372faf..b7261c63f 100644
--- a/numpy/lib/tests/test_nanfunctions.py
+++ b/numpy/lib/tests/test_nanfunctions.py
@@ -1,8 +1,10 @@
from __future__ import division, absolute_import, print_function
import warnings
+import pytest
import numpy as np
+from numpy.lib.nanfunctions import _nan_mask
from numpy.testing import (
assert_, assert_equal, assert_almost_equal, assert_no_warnings,
assert_raises, assert_array_equal, suppress_warnings
@@ -925,3 +927,29 @@ class TestNanFunctions_Quantile(object):
p = p.tolist()
np.nanquantile(np.arange(100.), p, interpolation="midpoint")
assert_array_equal(p, p0)
+
+@pytest.mark.parametrize("arr, expected", [
+ # array of floats with some nans
+ (np.array([np.nan, 5.0, np.nan, np.inf]),
+ np.array([False, True, False, True])),
+ # int64 array that can't possibly have nans
+ (np.array([1, 5, 7, 9], dtype=np.int64),
+ True),
+ # bool array that can't possibly have nans
+ (np.array([False, True, False, True]),
+ True),
+ # 2-D complex array with nans
+ (np.array([[np.nan, 5.0],
+ [np.nan, np.inf]], dtype=np.complex64),
+ np.array([[False, True],
+ [False, True]])),
+ ])
+def test__nan_mask(arr, expected):
+ for out in [None, np.empty(arr.shape, dtype=np.bool_)]:
+ actual = _nan_mask(arr, out=out)
+ assert_equal(actual, expected)
+ # the above won't distinguish between True proper
+ # and an array of True values; we want True proper
+ # for types that can't possibly contain NaN
+ if type(expected) is not np.ndarray:
+ assert actual is True
diff --git a/numpy/lib/tests/test_packbits.py b/numpy/lib/tests/test_packbits.py
index fde5c37f2..95a465c36 100644
--- a/numpy/lib/tests/test_packbits.py
+++ b/numpy/lib/tests/test_packbits.py
@@ -2,7 +2,8 @@ from __future__ import division, absolute_import, print_function
import numpy as np
from numpy.testing import assert_array_equal, assert_equal, assert_raises
-
+import pytest
+from itertools import chain
def test_packbits():
# Copied from the docstring.
@@ -50,8 +51,8 @@ def test_packbits_empty_with_axis():
assert_equal(b.dtype, np.uint8)
assert_equal(b.shape, out_shape)
-
-def test_packbits_large():
+@pytest.mark.parametrize('bitorder', ('little', 'big'))
+def test_packbits_large(bitorder):
# test data large enough for 16 byte vectorization
a = np.array([1, 1, 0, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 0, 0, 1, 1, 1, 0, 0,
0, 0, 0, 1, 0, 1, 1, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 1, 1,
@@ -71,7 +72,7 @@ def test_packbits_large():
a = a.repeat(3)
for dtype in '?bBhHiIlLqQ':
arr = np.array(a, dtype=dtype)
- b = np.packbits(arr, axis=None)
+ b = np.packbits(arr, axis=None, bitorder=bitorder)
assert_equal(b.dtype, np.uint8)
r = [252, 127, 192, 3, 254, 7, 252, 0, 7, 31, 240, 0, 28, 1, 255, 252,
113, 248, 3, 255, 192, 28, 15, 192, 28, 126, 0, 224, 127, 255,
@@ -81,9 +82,10 @@ def test_packbits_large():
255, 224, 1, 255, 252, 126, 63, 0, 1, 192, 252, 14, 63, 0, 15,
199, 252, 113, 255, 3, 128, 56, 252, 14, 7, 0, 113, 255, 255, 142, 56, 227,
129, 248, 227, 129, 199, 31, 128]
- assert_array_equal(b, r)
+ if bitorder == 'big':
+ assert_array_equal(b, r)
# equal for size being multiple of 8
- assert_array_equal(np.unpackbits(b)[:-4], a)
+ assert_array_equal(np.unpackbits(b, bitorder=bitorder)[:-4], a)
# check last byte of different remainders (16 byte vectorization)
b = [np.packbits(arr[:-i], axis=None)[-1] for i in range(1, 16)]
@@ -229,6 +231,20 @@ def test_unpackbits():
[0, 0, 0, 0, 0, 1, 1, 1],
[0, 0, 0, 1, 0, 1, 1, 1]]))
+def test_pack_unpack_order():
+ a = np.array([[2], [7], [23]], dtype=np.uint8)
+ b = np.unpackbits(a, axis=1)
+ assert_equal(b.dtype, np.uint8)
+ b_little = np.unpackbits(a, axis=1, bitorder='little')
+ b_big = np.unpackbits(a, axis=1, bitorder='big')
+ assert_array_equal(b, b_big)
+ assert_array_equal(a, np.packbits(b_little, axis=1, bitorder='little'))
+ assert_array_equal(b[:,::-1], b_little)
+ assert_array_equal(a, np.packbits(b_big, axis=1, bitorder='big'))
+ assert_raises(ValueError, np.unpackbits, a, bitorder='r')
+ assert_raises(TypeError, np.unpackbits, a, bitorder=10)
+
+
def test_unpackbits_empty():
a = np.empty((0,), dtype=np.uint8)
@@ -266,3 +282,97 @@ def test_unpackbits_large():
assert_array_equal(np.packbits(np.unpackbits(d, axis=1), axis=1), d)
d = d.T.copy()
assert_array_equal(np.packbits(np.unpackbits(d, axis=0), axis=0), d)
+
+
+class TestCount():
+ x = np.array([
+ [1, 0, 1, 0, 0, 1, 0],
+ [0, 1, 1, 1, 0, 0, 0],
+ [0, 0, 1, 0, 0, 1, 1],
+ [1, 1, 0, 0, 0, 1, 1],
+ [1, 0, 1, 0, 1, 0, 1],
+ [0, 0, 1, 1, 1, 0, 0],
+ [0, 1, 0, 1, 0, 1, 0],
+ ], dtype=np.uint8)
+ padded1 = np.zeros(57, dtype=np.uint8)
+ padded1[:49] = x.ravel()
+ padded1b = np.zeros(57, dtype=np.uint8)
+ padded1b[:49] = x[::-1].copy().ravel()
+ padded2 = np.zeros((9, 9), dtype=np.uint8)
+ padded2[:7, :7] = x
+
+ @pytest.mark.parametrize('bitorder', ('little', 'big'))
+ @pytest.mark.parametrize('count', chain(range(58), range(-1, -57, -1)))
+ def test_roundtrip(self, bitorder, count):
+ if count < 0:
+ # one extra zero of padding
+ cutoff = count - 1
+ else:
+ cutoff = count
+ # test complete invertibility of packbits and unpackbits with count
+ packed = np.packbits(self.x, bitorder=bitorder)
+ unpacked = np.unpackbits(packed, count=count, bitorder=bitorder)
+ assert_equal(unpacked.dtype, np.uint8)
+ assert_array_equal(unpacked, self.padded1[:cutoff])
+
+ @pytest.mark.parametrize('kwargs', [
+ {}, {'count': None},
+ ])
+ def test_count(self, kwargs):
+ packed = np.packbits(self.x)
+ unpacked = np.unpackbits(packed, **kwargs)
+ assert_equal(unpacked.dtype, np.uint8)
+ assert_array_equal(unpacked, self.padded1[:-1])
+
+ @pytest.mark.parametrize('bitorder', ('little', 'big'))
+ # delta==-1 when count<0 because one extra zero of padding
+ @pytest.mark.parametrize('count', chain(range(8), range(-1, -9, -1)))
+ def test_roundtrip_axis(self, bitorder, count):
+ if count < 0:
+ # one extra zero of padding
+ cutoff = count - 1
+ else:
+ cutoff = count
+ packed0 = np.packbits(self.x, axis=0, bitorder=bitorder)
+ unpacked0 = np.unpackbits(packed0, axis=0, count=count,
+ bitorder=bitorder)
+ assert_equal(unpacked0.dtype, np.uint8)
+ assert_array_equal(unpacked0, self.padded2[:cutoff, :self.x.shape[1]])
+
+ packed1 = np.packbits(self.x, axis=1, bitorder=bitorder)
+ unpacked1 = np.unpackbits(packed1, axis=1, count=count,
+ bitorder=bitorder)
+ assert_equal(unpacked1.dtype, np.uint8)
+ assert_array_equal(unpacked1, self.padded2[:self.x.shape[0], :cutoff])
+
+ @pytest.mark.parametrize('kwargs', [
+ {}, {'count': None},
+ {'bitorder' : 'little'},
+ {'bitorder': 'little', 'count': None},
+ {'bitorder' : 'big'},
+ {'bitorder': 'big', 'count': None},
+ ])
+ def test_axis_count(self, kwargs):
+ packed0 = np.packbits(self.x, axis=0)
+ unpacked0 = np.unpackbits(packed0, axis=0, **kwargs)
+ assert_equal(unpacked0.dtype, np.uint8)
+ if kwargs.get('bitorder', 'big') == 'big':
+ assert_array_equal(unpacked0, self.padded2[:-1, :self.x.shape[1]])
+ else:
+ assert_array_equal(unpacked0[::-1, :], self.padded2[:-1, :self.x.shape[1]])
+
+ packed1 = np.packbits(self.x, axis=1)
+ unpacked1 = np.unpackbits(packed1, axis=1, **kwargs)
+ assert_equal(unpacked1.dtype, np.uint8)
+ if kwargs.get('bitorder', 'big') == 'big':
+ assert_array_equal(unpacked1, self.padded2[:self.x.shape[0], :-1])
+ else:
+ assert_array_equal(unpacked1[:, ::-1], self.padded2[:self.x.shape[0], :-1])
+
+ def test_bad_count(self):
+ packed0 = np.packbits(self.x, axis=0)
+ assert_raises(ValueError, np.unpackbits, packed0, axis=0, count=-9)
+ packed1 = np.packbits(self.x, axis=1)
+ assert_raises(ValueError, np.unpackbits, packed1, axis=1, count=-9)
+ packed = np.packbits(self.x)
+ assert_raises(ValueError, np.unpackbits, packed, count=-57)
diff --git a/numpy/lib/tests/test_polynomial.py b/numpy/lib/tests/test_polynomial.py
index 77414ba7c..89759bd83 100644
--- a/numpy/lib/tests/test_polynomial.py
+++ b/numpy/lib/tests/test_polynomial.py
@@ -246,16 +246,16 @@ class TestPolynomial(object):
assert_equal(r.coeffs.dtype, np.complex128)
assert_equal(q*a + r, b)
- def test_poly_coeffs_immutable(self):
- """ Coefficients should not be modifiable """
+ def test_poly_coeffs_mutable(self):
+ """ Coefficients should be modifiable """
p = np.poly1d([1, 2, 3])
- try:
- # despite throwing an exception, this used to change state
- p.coeffs += 1
- except Exception:
- pass
- assert_equal(p.coeffs, [1, 2, 3])
+ p.coeffs += 1
+ assert_equal(p.coeffs, [2, 3, 4])
p.coeffs[2] += 10
- assert_equal(p.coeffs, [1, 2, 3])
+ assert_equal(p.coeffs, [2, 3, 14])
+
+ # this never used to be allowed - let's not add features to deprecated
+ # APIs
+ assert_raises(AttributeError, setattr, p, 'coeffs', np.array(1))
diff --git a/numpy/lib/tests/test_recfunctions.py b/numpy/lib/tests/test_recfunctions.py
index 3b972f4b1..eb81190b7 100644
--- a/numpy/lib/tests/test_recfunctions.py
+++ b/numpy/lib/tests/test_recfunctions.py
@@ -12,9 +12,11 @@ from numpy.lib.recfunctions import (
find_duplicates, merge_arrays, append_fields, stack_arrays, join_by,
repack_fields, unstructured_to_structured, structured_to_unstructured,
apply_along_fields, require_fields, assign_fields_by_name)
+get_fieldspec = np.lib.recfunctions._get_fieldspec
get_names = np.lib.recfunctions.get_names
get_names_flat = np.lib.recfunctions.get_names_flat
-zip_descr = np.lib.recfunctions.zip_descr
+zip_descr = np.lib.recfunctions._zip_descr
+zip_dtype = np.lib.recfunctions._zip_dtype
class TestRecFunctions(object):
@@ -235,6 +237,8 @@ class TestRecFunctions(object):
dtype=[('x', 'i4'), ('y', 'f4'), ('z', 'f8')])
out = np.mean(structured_to_unstructured(b[['x', 'z']]), axis=-1)
assert_equal(out, np.array([ 3. , 5.5, 9. , 11. ]))
+ out = np.mean(structured_to_unstructured(b[['x']]), axis=-1)
+ assert_equal(out, np.array([ 1. , 4. , 7. , 10. ]))
c = np.arange(20).reshape((4,5))
out = unstructured_to_structured(c, a.dtype)
@@ -242,9 +246,9 @@ class TestRecFunctions(object):
( 5, ( 6., 7), [ 8., 9.]),
(10, (11., 12), [13., 14.]),
(15, (16., 17), [18., 19.])],
- dtype=[('a', '<i4'),
- ('b', [('f0', '<f4'), ('f1', '<u2')]),
- ('c', '<f4', (2,))])
+ dtype=[('a', 'i4'),
+ ('b', [('f0', 'f4'), ('f1', 'u2')]),
+ ('c', 'f4', (2,))])
assert_equal(out, want)
d = np.array([(1, 2, 5), (4, 5, 7), (7, 8 ,11), (10, 11, 12)],
@@ -262,6 +266,15 @@ class TestRecFunctions(object):
assert_(dd.base is d)
assert_(ddd.base is d)
+ # including uniform fields with subarrays unpacked
+ d = np.array([(1, [2, 3], [[ 4, 5], [ 6, 7]]),
+ (8, [9, 10], [[11, 12], [13, 14]])],
+ dtype=[('x0', 'i4'), ('x1', ('i4', 2)), ('x2', ('i4', (2, 2)))])
+ dd = structured_to_unstructured(d)
+ ddd = unstructured_to_structured(dd, d.dtype)
+ assert_(dd.base is d)
+ assert_(ddd.base is d)
+
# test that nested fields with identical names don't break anything
point = np.dtype([('x', int), ('y', int)])
triangle = np.dtype([('a', point), ('b', point), ('c', point)])
diff --git a/numpy/lib/tests/test_regression.py b/numpy/lib/tests/test_regression.py
index 4c46bc46b..4cd812f5d 100644
--- a/numpy/lib/tests/test_regression.py
+++ b/numpy/lib/tests/test_regression.py
@@ -21,8 +21,8 @@ class TestRegression(object):
# Ticket #91
x = np.random.random((3, 3))
y = x.copy()
- np.cov(x, rowvar=1)
- np.cov(y, rowvar=0)
+ np.cov(x, rowvar=True)
+ np.cov(y, rowvar=False)
assert_array_equal(x, y)
def test_mem_digitize(self):
@@ -56,7 +56,7 @@ class TestRegression(object):
def test_poly1d_nan_roots(self):
# Ticket #396
- p = np.poly1d([np.nan, np.nan, 1], r=0)
+ p = np.poly1d([np.nan, np.nan, 1], r=False)
assert_raises(np.linalg.LinAlgError, getattr, p, "r")
def test_mem_polymul(self):
diff --git a/numpy/lib/tests/test_stride_tricks.py b/numpy/lib/tests/test_stride_tricks.py
index b2bd7da3e..85fcceedc 100644
--- a/numpy/lib/tests/test_stride_tricks.py
+++ b/numpy/lib/tests/test_stride_tricks.py
@@ -4,7 +4,7 @@ import numpy as np
from numpy.core._rational_tests import rational
from numpy.testing import (
assert_equal, assert_array_equal, assert_raises, assert_,
- assert_raises_regex
+ assert_raises_regex, assert_warns,
)
from numpy.lib.stride_tricks import (
as_strided, broadcast_arrays, _broadcast_shape, broadcast_to
@@ -415,12 +415,32 @@ def test_writeable():
assert_equal(result.flags.writeable, False)
assert_raises(ValueError, result.__setitem__, slice(None), 0)
- # but the result of broadcast_arrays needs to be writeable (for now), to
+ # but the result of broadcast_arrays needs to be writeable, to
# preserve backwards compatibility
+ for is_broadcast, results in [(False, broadcast_arrays(original,)),
+ (True, broadcast_arrays(0, original))]:
+ for result in results:
+ # This will change to False in a future version
+ if is_broadcast:
+ with assert_warns(FutureWarning):
+ assert_equal(result.flags.writeable, True)
+ with assert_warns(DeprecationWarning):
+ result[:] = 0
+ # Warning not emitted, writing to the array resets it
+ assert_equal(result.flags.writeable, True)
+ else:
+ # No warning:
+ assert_equal(result.flags.writeable, True)
+
for results in [broadcast_arrays(original),
broadcast_arrays(0, original)]:
for result in results:
+ # resets the warn_on_write DeprecationWarning
+ result.flags.writeable = True
+ # check: no warning emitted
assert_equal(result.flags.writeable, True)
+ result[:] = 0
+
# keep readonly input readonly
original.flags.writeable = False
_, result = broadcast_arrays(0, original)
@@ -435,6 +455,25 @@ def test_writeable():
assert_(first.shape == second.shape)
+def test_writeable_memoryview():
+ # The result of broadcast_arrays exports as a non-writeable memoryview
+ # because otherwise there is no good way to opt in to the new behaviour
+ # (i.e. you would need to set writeable to False explicitly).
+ # See gh-13929.
+ original = np.array([1, 2, 3])
+
+ for is_broadcast, results in [(False, broadcast_arrays(original,)),
+ (True, broadcast_arrays(0, original))]:
+ for result in results:
+ # This will change to False in a future version
+ if is_broadcast:
+ # memoryview(result, writable=True) will give warning but cannot
+ # be tested using the python API.
+ assert memoryview(result).readonly
+ else:
+ assert not memoryview(result).readonly
+
+
def test_reference_types():
input_array = np.array('a', dtype=object)
expected = np.array(['a'] * 3, dtype=object)
diff --git a/numpy/lib/tests/test_twodim_base.py b/numpy/lib/tests/test_twodim_base.py
index bf93b4adb..bb844e4bd 100644
--- a/numpy/lib/tests/test_twodim_base.py
+++ b/numpy/lib/tests/test_twodim_base.py
@@ -5,7 +5,7 @@ from __future__ import division, absolute_import, print_function
from numpy.testing import (
assert_equal, assert_array_equal, assert_array_max_ulp,
- assert_array_almost_equal, assert_raises,
+ assert_array_almost_equal, assert_raises, assert_
)
from numpy import (
@@ -17,6 +17,9 @@ from numpy import (
import numpy as np
+from numpy.core.tests.test_overrides import requires_array_function
+
+
def get_mat(n):
data = arange(n)
data = add.outer(data, data)
@@ -273,6 +276,27 @@ class TestHistogram2d(object):
assert_array_equal(H, answer)
assert_array_equal(xe, array([0., 0.25, 0.5, 0.75, 1]))
+ @requires_array_function
+ def test_dispatch(self):
+ class ShouldDispatch:
+ def __array_function__(self, function, types, args, kwargs):
+ return types, args, kwargs
+
+ xy = [1, 2]
+ s_d = ShouldDispatch()
+ r = histogram2d(s_d, xy)
+ # Cannot use assert_equal since that dispatches...
+ assert_(r == ((ShouldDispatch,), (s_d, xy), {}))
+ r = histogram2d(xy, s_d)
+ assert_(r == ((ShouldDispatch,), (xy, s_d), {}))
+ r = histogram2d(xy, xy, bins=s_d)
+ assert_(r, ((ShouldDispatch,), (xy, xy), dict(bins=s_d)))
+ r = histogram2d(xy, xy, bins=[s_d, 5])
+ assert_(r, ((ShouldDispatch,), (xy, xy), dict(bins=[s_d, 5])))
+ assert_raises(Exception, histogram2d, xy, xy, bins=[s_d])
+ r = histogram2d(xy, xy, weights=s_d)
+ assert_(r, ((ShouldDispatch,), (xy, xy), dict(weights=s_d)))
+
class TestTri(object):
def test_dtype(self):
diff --git a/numpy/lib/tests/test_type_check.py b/numpy/lib/tests/test_type_check.py
index 2982ca31a..b3f114b92 100644
--- a/numpy/lib/tests/test_type_check.py
+++ b/numpy/lib/tests/test_type_check.py
@@ -360,6 +360,14 @@ class TestNanToNum(object):
assert_(vals[1] == 0)
assert_all(vals[2] > 1e10) and assert_all(np.isfinite(vals[2]))
assert_equal(type(vals), np.ndarray)
+
+ # perform the same tests but with nan, posinf and neginf keywords
+ with np.errstate(divide='ignore', invalid='ignore'):
+ vals = nan_to_num(np.array((-1., 0, 1))/0.,
+ nan=10, posinf=20, neginf=30)
+ assert_equal(vals, [30, 10, 20])
+ assert_all(np.isfinite(vals[[0, 2]]))
+ assert_equal(type(vals), np.ndarray)
# perform the same test but in-place
with np.errstate(divide='ignore', invalid='ignore'):
@@ -371,26 +379,48 @@ class TestNanToNum(object):
assert_(vals[1] == 0)
assert_all(vals[2] > 1e10) and assert_all(np.isfinite(vals[2]))
assert_equal(type(vals), np.ndarray)
+
+ # perform the same test but in-place
+ with np.errstate(divide='ignore', invalid='ignore'):
+ vals = np.array((-1., 0, 1))/0.
+ result = nan_to_num(vals, copy=False, nan=10, posinf=20, neginf=30)
+
+ assert_(result is vals)
+ assert_equal(vals, [30, 10, 20])
+ assert_all(np.isfinite(vals[[0, 2]]))
+ assert_equal(type(vals), np.ndarray)
def test_array(self):
vals = nan_to_num([1])
assert_array_equal(vals, np.array([1], int))
assert_equal(type(vals), np.ndarray)
+ vals = nan_to_num([1], nan=10, posinf=20, neginf=30)
+ assert_array_equal(vals, np.array([1], int))
+ assert_equal(type(vals), np.ndarray)
def test_integer(self):
vals = nan_to_num(1)
assert_all(vals == 1)
assert_equal(type(vals), np.int_)
+ vals = nan_to_num(1, nan=10, posinf=20, neginf=30)
+ assert_all(vals == 1)
+ assert_equal(type(vals), np.int_)
def test_float(self):
vals = nan_to_num(1.0)
assert_all(vals == 1.0)
assert_equal(type(vals), np.float_)
+ vals = nan_to_num(1.1, nan=10, posinf=20, neginf=30)
+ assert_all(vals == 1.1)
+ assert_equal(type(vals), np.float_)
def test_complex_good(self):
vals = nan_to_num(1+1j)
assert_all(vals == 1+1j)
assert_equal(type(vals), np.complex_)
+ vals = nan_to_num(1+1j, nan=10, posinf=20, neginf=30)
+ assert_all(vals == 1+1j)
+ assert_equal(type(vals), np.complex_)
def test_complex_bad(self):
with np.errstate(divide='ignore', invalid='ignore'):
@@ -414,6 +444,16 @@ class TestNanToNum(object):
# !! inf. Comment out for now, and see if it
# !! changes
#assert_all(vals.real < -1e10) and assert_all(np.isfinite(vals))
+
+ def test_do_not_rewrite_previous_keyword(self):
+ # This is done to test that when, for instance, nan=np.inf then these
+ # values are not rewritten by posinf keyword to the posinf value.
+ with np.errstate(divide='ignore', invalid='ignore'):
+ vals = nan_to_num(np.array((-1., 0, 1))/0., nan=np.inf, posinf=999)
+ assert_all(np.isfinite(vals[[0, 2]]))
+ assert_all(vals[0] < -1e10)
+ assert_equal(vals[[1, 2]], [np.inf, 999])
+ assert_equal(type(vals), np.ndarray)
class TestRealIfClose(object):
diff --git a/numpy/lib/tests/test_utils.py b/numpy/lib/tests/test_utils.py
index 2723f3440..9673a05fa 100644
--- a/numpy/lib/tests/test_utils.py
+++ b/numpy/lib/tests/test_utils.py
@@ -1,5 +1,6 @@
from __future__ import division, absolute_import, print_function
+import inspect
import sys
import pytest
@@ -38,6 +39,32 @@ def old_func3(self, x):
new_func3 = deprecate(old_func3, old_name="old_func3", new_name="new_func3")
+def old_func4(self, x):
+ """Summary.
+
+ Further info.
+ """
+ return x
+new_func4 = deprecate(old_func4)
+
+
+def old_func5(self, x):
+ """Summary.
+
+ Bizarre indentation.
+ """
+ return x
+new_func5 = deprecate(old_func5)
+
+
+def old_func6(self, x):
+ """
+ Also in PEP-257.
+ """
+ return x
+new_func6 = deprecate(old_func6)
+
+
def test_deprecate_decorator():
assert_('deprecated' in old_func.__doc__)
@@ -51,6 +78,25 @@ def test_deprecate_fn():
assert_('new_func3' in new_func3.__doc__)
+@pytest.mark.skipif(sys.flags.optimize == 2, reason="-OO discards docstrings")
+def test_deprecate_help_indentation():
+ _compare_docs(old_func4, new_func4)
+ _compare_docs(old_func5, new_func5)
+ _compare_docs(old_func6, new_func6)
+
+
+def _compare_docs(old_func, new_func):
+ old_doc = inspect.getdoc(old_func)
+ new_doc = inspect.getdoc(new_func)
+ index = new_doc.index('\n\n') + 2
+ assert_equal(new_doc[index:], old_doc)
+
+
+@pytest.mark.skipif(sys.flags.optimize == 2, reason="-OO discards docstrings")
+def test_deprecate_preserve_whitespace():
+ assert_('\n Bizarre' in new_func5.__doc__)
+
+
def test_safe_eval_nameconstant():
# Test if safe_eval supports Python 3.4 _ast.NameConstant
utils.safe_eval('None')