summaryrefslogtreecommitdiff
path: root/numpy/lib/twodim_base.py
diff options
context:
space:
mode:
Diffstat (limited to 'numpy/lib/twodim_base.py')
-rw-r--r--numpy/lib/twodim_base.py79
1 files changed, 58 insertions, 21 deletions
diff --git a/numpy/lib/twodim_base.py b/numpy/lib/twodim_base.py
index 91df1f4f8..fe3066377 100644
--- a/numpy/lib/twodim_base.py
+++ b/numpy/lib/twodim_base.py
@@ -3,14 +3,17 @@
"""
from __future__ import division, absolute_import, print_function
-__all__ = ['diag', 'diagflat', 'eye', 'fliplr', 'flipud', 'rot90', 'tri', 'triu',
- 'tril', 'vander', 'histogram2d', 'mask_indices',
- 'tril_indices', 'tril_indices_from', 'triu_indices', 'triu_indices_from',
+__all__ = ['diag', 'diagflat', 'eye', 'fliplr', 'flipud', 'rot90', 'tri',
+ 'triu', 'tril', 'vander', 'histogram2d', 'mask_indices',
+ 'tril_indices', 'tril_indices_from', 'triu_indices',
+ 'triu_indices_from',
]
-from numpy.core.numeric import asanyarray, equal, subtract, arange, \
- zeros, greater_equal, multiply, ones, asarray, alltrue, where, \
- empty, diagonal
+from numpy.core.numeric import (
+ asanyarray, subtract, arange, zeros, greater_equal, multiply, ones,
+ asarray, where,
+ )
+
def fliplr(m):
"""
@@ -62,6 +65,7 @@ def fliplr(m):
raise ValueError("Input must be >= 2-d.")
return m[:, ::-1]
+
def flipud(m):
"""
Flip array in the up/down direction.
@@ -115,6 +119,7 @@ def flipud(m):
raise ValueError("Input must be >= 1-d.")
return m[::-1, ...]
+
def rot90(m, k=1):
"""
Rotate an array by 90 degrees in the counter-clockwise direction.
@@ -167,6 +172,7 @@ def rot90(m, k=1):
# k == 3
return fliplr(m.swapaxes(0, 1))
+
def eye(N, M=None, k=0, dtype=float):
"""
Return a 2-D array with ones on the diagonal and zeros elsewhere.
@@ -218,6 +224,7 @@ def eye(N, M=None, k=0, dtype=float):
m[:M-k].flat[i::M+1] = 1
return m
+
def diag(v, k=0):
"""
Extract a diagonal or construct a diagonal array.
@@ -288,6 +295,7 @@ def diag(v, k=0):
else:
raise ValueError("Input must be 1- or 2-d.")
+
def diagflat(v, k=0):
"""
Create a two-dimensional array with the flattened input as a diagonal.
@@ -346,6 +354,7 @@ def diagflat(v, k=0):
return res
return wrap(res)
+
def tri(N, M=None, k=0, dtype=float):
"""
An array with ones at and below the given diagonal and zeros elsewhere.
@@ -388,6 +397,7 @@ def tri(N, M=None, k=0, dtype=float):
m = greater_equal(subtract.outer(arange(N), arange(M)), -k)
return m.astype(dtype)
+
def tril(m, k=0):
"""
Lower triangle of an array.
@@ -424,6 +434,7 @@ def tril(m, k=0):
out = multiply(tri(m.shape[0], m.shape[1], k=k, dtype=m.dtype), m)
return out
+
def triu(m, k=0):
"""
Upper triangle of an array.
@@ -450,13 +461,16 @@ def triu(m, k=0):
out = multiply((1 - tri(m.shape[0], m.shape[1], k - 1, dtype=m.dtype)), m)
return out
-# borrowed from John Hunter and matplotlib
-def vander(x, N=None):
+
+# Originally borrowed from John Hunter and matplotlib
+def vander(x, N=None, order='decreasing'):
"""
- Generate a Van der Monde matrix.
+ Generate a Vandermonde matrix.
- The columns of the output matrix are decreasing powers of the input
- vector. Specifically, the `i`-th output column is the input vector
+ The columns of the output matrix are powers of the input vector. The
+ order of the powers is determined by the `order` argument, either
+ "decreasing" (the default) or "increasing". Specifically, when
+ `order` is "decreasing", the `i`-th output column is the input vector
raised element-wise to the power of ``N - i - 1``. Such a matrix with
a geometric progression in each row is named for Alexandre-Theophile
Vandermonde.
@@ -466,14 +480,22 @@ def vander(x, N=None):
x : array_like
1-D input array.
N : int, optional
- Order of (number of columns in) the output. If `N` is not specified,
- a square array is returned (``N = len(x)``).
+ Number of columns in the output. If `N` is not specified, a square
+ array is returned (``N = len(x)``).
+ order : str, optional
+ Order of the powers of the columns. Must be either 'decreasing'
+ (the default) or 'increasing'.
Returns
-------
out : ndarray
- Van der Monde matrix of order `N`. The first column is ``x^(N-1)``,
- the second ``x^(N-2)`` and so forth.
+ Vandermonde matrix. If `order` is "decreasing", the first column is
+ ``x^(N-1)``, the second ``x^(N-2)`` and so forth. If `order` is
+ "increasing", the columns are ``x^0, x^1, ..., x^(N-1)``.
+
+ See Also
+ --------
+ polynomial.polynomial.polyvander
Examples
--------
@@ -497,6 +519,11 @@ def vander(x, N=None):
[ 8, 4, 2, 1],
[ 27, 9, 3, 1],
[125, 25, 5, 1]])
+ >>> np.vander(x, order='increasing')
+ array([[ 1, 1, 1, 1],
+ [ 1, 2, 4, 8],
+ [ 1, 3, 9, 27],
+ [ 1, 5, 25, 125]])
The determinant of a square Vandermonde matrix is the product
of the differences between the values of the input vector:
@@ -507,13 +534,22 @@ def vander(x, N=None):
48
"""
+ if order not in ['decreasing', 'increasing']:
+ raise ValueError("Invalid order %r; order must be either "
+ "'decreasing' or 'increasing'." % (order,))
x = asarray(x)
+ if x.ndim != 1:
+ raise ValueError("x must be a one-dimensional array or sequence.")
if N is None:
- N=len(x)
- X = ones( (len(x), N), x.dtype)
- for i in range(N - 1):
- X[:, i] = x**(N - i - 1)
- return X
+ N = len(x)
+ if order == "decreasing":
+ powers = arange(N - 1, -1, -1)
+ else:
+ powers = arange(N)
+
+ V = x.reshape(-1, 1) ** powers
+
+ return V
def histogram2d(x, y, bins=10, range=None, normed=False, weights=None):
@@ -530,7 +566,8 @@ def histogram2d(x, y, bins=10, range=None, normed=False, weights=None):
The bin specification:
* If int, the number of bins for the two dimensions (nx=ny=bins).
- * If [int, int], the number of bins in each dimension (nx, ny = bins).
+ * If [int, int], the number of bins in each dimension
+ (nx, ny = bins).
* If array_like, the bin edges for the two dimensions
(x_edges=y_edges=bins).
* If [array, array], the bin edges in each dimension