summaryrefslogtreecommitdiff
path: root/numpy/linalg/lapack_lite/blas_lite.c
diff options
context:
space:
mode:
Diffstat (limited to 'numpy/linalg/lapack_lite/blas_lite.c')
-rw-r--r--numpy/linalg/lapack_lite/blas_lite.c21135
1 files changed, 21135 insertions, 0 deletions
diff --git a/numpy/linalg/lapack_lite/blas_lite.c b/numpy/linalg/lapack_lite/blas_lite.c
new file mode 100644
index 000000000..bd24768c3
--- /dev/null
+++ b/numpy/linalg/lapack_lite/blas_lite.c
@@ -0,0 +1,21135 @@
+/*
+NOTE: This is generated code. Look in Misc/lapack_lite for information on
+ remaking this file.
+*/
+#include "f2c.h"
+
+#ifdef HAVE_CONFIG
+#include "config.h"
+#else
+extern doublereal dlamch_(char *);
+#define EPSILON dlamch_("Epsilon")
+#define SAFEMINIMUM dlamch_("Safe minimum")
+#define PRECISION dlamch_("Precision")
+#define BASE dlamch_("Base")
+#endif
+
+extern doublereal dlapy2_(doublereal *x, doublereal *y);
+
+
+
+/* Table of constant values */
+
+static complex c_b21 = {1.f,0.f};
+static integer c__1 = 1;
+static doublecomplex c_b1077 = {1.,0.};
+
+/* Subroutine */ int caxpy_(integer *n, complex *ca, complex *cx, integer *
+ incx, complex *cy, integer *incy)
+{
+ /* System generated locals */
+ integer i__1, i__2, i__3, i__4;
+ real r__1, r__2;
+ complex q__1, q__2;
+
+ /* Builtin functions */
+ double r_imag(complex *);
+
+ /* Local variables */
+ static integer i__, ix, iy;
+
+
+/*
+ constant times a vector plus a vector.
+ jack dongarra, linpack, 3/11/78.
+ modified 12/3/93, array(1) declarations changed to array(*)
+*/
+
+
+ /* Parameter adjustments */
+ --cy;
+ --cx;
+
+ /* Function Body */
+ if (*n <= 0) {
+ return 0;
+ }
+ if ((r__1 = ca->r, dabs(r__1)) + (r__2 = r_imag(ca), dabs(r__2)) == 0.f) {
+ return 0;
+ }
+ if (*incx == 1 && *incy == 1) {
+ goto L20;
+ }
+
+/*
+ code for unequal increments or equal increments
+ not equal to 1
+*/
+
+ ix = 1;
+ iy = 1;
+ if (*incx < 0) {
+ ix = (-(*n) + 1) * *incx + 1;
+ }
+ if (*incy < 0) {
+ iy = (-(*n) + 1) * *incy + 1;
+ }
+ i__1 = *n;
+ for (i__ = 1; i__ <= i__1; ++i__) {
+ i__2 = iy;
+ i__3 = iy;
+ i__4 = ix;
+ q__2.r = ca->r * cx[i__4].r - ca->i * cx[i__4].i, q__2.i = ca->r * cx[
+ i__4].i + ca->i * cx[i__4].r;
+ q__1.r = cy[i__3].r + q__2.r, q__1.i = cy[i__3].i + q__2.i;
+ cy[i__2].r = q__1.r, cy[i__2].i = q__1.i;
+ ix += *incx;
+ iy += *incy;
+/* L10: */
+ }
+ return 0;
+
+/* code for both increments equal to 1 */
+
+L20:
+ i__1 = *n;
+ for (i__ = 1; i__ <= i__1; ++i__) {
+ i__2 = i__;
+ i__3 = i__;
+ i__4 = i__;
+ q__2.r = ca->r * cx[i__4].r - ca->i * cx[i__4].i, q__2.i = ca->r * cx[
+ i__4].i + ca->i * cx[i__4].r;
+ q__1.r = cy[i__3].r + q__2.r, q__1.i = cy[i__3].i + q__2.i;
+ cy[i__2].r = q__1.r, cy[i__2].i = q__1.i;
+/* L30: */
+ }
+ return 0;
+} /* caxpy_ */
+
+/* Subroutine */ int ccopy_(integer *n, complex *cx, integer *incx, complex *
+ cy, integer *incy)
+{
+ /* System generated locals */
+ integer i__1, i__2, i__3;
+
+ /* Local variables */
+ static integer i__, ix, iy;
+
+
+/*
+ copies a vector, x, to a vector, y.
+ jack dongarra, linpack, 3/11/78.
+ modified 12/3/93, array(1) declarations changed to array(*)
+*/
+
+
+ /* Parameter adjustments */
+ --cy;
+ --cx;
+
+ /* Function Body */
+ if (*n <= 0) {
+ return 0;
+ }
+ if (*incx == 1 && *incy == 1) {
+ goto L20;
+ }
+
+/*
+ code for unequal increments or equal increments
+ not equal to 1
+*/
+
+ ix = 1;
+ iy = 1;
+ if (*incx < 0) {
+ ix = (-(*n) + 1) * *incx + 1;
+ }
+ if (*incy < 0) {
+ iy = (-(*n) + 1) * *incy + 1;
+ }
+ i__1 = *n;
+ for (i__ = 1; i__ <= i__1; ++i__) {
+ i__2 = iy;
+ i__3 = ix;
+ cy[i__2].r = cx[i__3].r, cy[i__2].i = cx[i__3].i;
+ ix += *incx;
+ iy += *incy;
+/* L10: */
+ }
+ return 0;
+
+/* code for both increments equal to 1 */
+
+L20:
+ i__1 = *n;
+ for (i__ = 1; i__ <= i__1; ++i__) {
+ i__2 = i__;
+ i__3 = i__;
+ cy[i__2].r = cx[i__3].r, cy[i__2].i = cx[i__3].i;
+/* L30: */
+ }
+ return 0;
+} /* ccopy_ */
+
+/* Complex */ VOID cdotc_(complex * ret_val, integer *n, complex *cx, integer
+ *incx, complex *cy, integer *incy)
+{
+ /* System generated locals */
+ integer i__1, i__2;
+ complex q__1, q__2, q__3;
+
+ /* Builtin functions */
+ void r_cnjg(complex *, complex *);
+
+ /* Local variables */
+ static integer i__, ix, iy;
+ static complex ctemp;
+
+
+/*
+ forms the dot product of two vectors, conjugating the first
+ vector.
+ jack dongarra, linpack, 3/11/78.
+ modified 12/3/93, array(1) declarations changed to array(*)
+*/
+
+
+ /* Parameter adjustments */
+ --cy;
+ --cx;
+
+ /* Function Body */
+ ctemp.r = 0.f, ctemp.i = 0.f;
+ ret_val->r = 0.f, ret_val->i = 0.f;
+ if (*n <= 0) {
+ return ;
+ }
+ if (*incx == 1 && *incy == 1) {
+ goto L20;
+ }
+
+/*
+ code for unequal increments or equal increments
+ not equal to 1
+*/
+
+ ix = 1;
+ iy = 1;
+ if (*incx < 0) {
+ ix = (-(*n) + 1) * *incx + 1;
+ }
+ if (*incy < 0) {
+ iy = (-(*n) + 1) * *incy + 1;
+ }
+ i__1 = *n;
+ for (i__ = 1; i__ <= i__1; ++i__) {
+ r_cnjg(&q__3, &cx[ix]);
+ i__2 = iy;
+ q__2.r = q__3.r * cy[i__2].r - q__3.i * cy[i__2].i, q__2.i = q__3.r *
+ cy[i__2].i + q__3.i * cy[i__2].r;
+ q__1.r = ctemp.r + q__2.r, q__1.i = ctemp.i + q__2.i;
+ ctemp.r = q__1.r, ctemp.i = q__1.i;
+ ix += *incx;
+ iy += *incy;
+/* L10: */
+ }
+ ret_val->r = ctemp.r, ret_val->i = ctemp.i;
+ return ;
+
+/* code for both increments equal to 1 */
+
+L20:
+ i__1 = *n;
+ for (i__ = 1; i__ <= i__1; ++i__) {
+ r_cnjg(&q__3, &cx[i__]);
+ i__2 = i__;
+ q__2.r = q__3.r * cy[i__2].r - q__3.i * cy[i__2].i, q__2.i = q__3.r *
+ cy[i__2].i + q__3.i * cy[i__2].r;
+ q__1.r = ctemp.r + q__2.r, q__1.i = ctemp.i + q__2.i;
+ ctemp.r = q__1.r, ctemp.i = q__1.i;
+/* L30: */
+ }
+ ret_val->r = ctemp.r, ret_val->i = ctemp.i;
+ return ;
+} /* cdotc_ */
+
+/* Complex */ VOID cdotu_(complex * ret_val, integer *n, complex *cx, integer
+ *incx, complex *cy, integer *incy)
+{
+ /* System generated locals */
+ integer i__1, i__2, i__3;
+ complex q__1, q__2;
+
+ /* Local variables */
+ static integer i__, ix, iy;
+ static complex ctemp;
+
+
+/*
+ forms the dot product of two vectors.
+ jack dongarra, linpack, 3/11/78.
+ modified 12/3/93, array(1) declarations changed to array(*)
+*/
+
+
+ /* Parameter adjustments */
+ --cy;
+ --cx;
+
+ /* Function Body */
+ ctemp.r = 0.f, ctemp.i = 0.f;
+ ret_val->r = 0.f, ret_val->i = 0.f;
+ if (*n <= 0) {
+ return ;
+ }
+ if (*incx == 1 && *incy == 1) {
+ goto L20;
+ }
+
+/*
+ code for unequal increments or equal increments
+ not equal to 1
+*/
+
+ ix = 1;
+ iy = 1;
+ if (*incx < 0) {
+ ix = (-(*n) + 1) * *incx + 1;
+ }
+ if (*incy < 0) {
+ iy = (-(*n) + 1) * *incy + 1;
+ }
+ i__1 = *n;
+ for (i__ = 1; i__ <= i__1; ++i__) {
+ i__2 = ix;
+ i__3 = iy;
+ q__2.r = cx[i__2].r * cy[i__3].r - cx[i__2].i * cy[i__3].i, q__2.i =
+ cx[i__2].r * cy[i__3].i + cx[i__2].i * cy[i__3].r;
+ q__1.r = ctemp.r + q__2.r, q__1.i = ctemp.i + q__2.i;
+ ctemp.r = q__1.r, ctemp.i = q__1.i;
+ ix += *incx;
+ iy += *incy;
+/* L10: */
+ }
+ ret_val->r = ctemp.r, ret_val->i = ctemp.i;
+ return ;
+
+/* code for both increments equal to 1 */
+
+L20:
+ i__1 = *n;
+ for (i__ = 1; i__ <= i__1; ++i__) {
+ i__2 = i__;
+ i__3 = i__;
+ q__2.r = cx[i__2].r * cy[i__3].r - cx[i__2].i * cy[i__3].i, q__2.i =
+ cx[i__2].r * cy[i__3].i + cx[i__2].i * cy[i__3].r;
+ q__1.r = ctemp.r + q__2.r, q__1.i = ctemp.i + q__2.i;
+ ctemp.r = q__1.r, ctemp.i = q__1.i;
+/* L30: */
+ }
+ ret_val->r = ctemp.r, ret_val->i = ctemp.i;
+ return ;
+} /* cdotu_ */
+
+/* Subroutine */ int cgemm_(char *transa, char *transb, integer *m, integer *
+ n, integer *k, complex *alpha, complex *a, integer *lda, complex *b,
+ integer *ldb, complex *beta, complex *c__, integer *ldc)
+{
+ /* System generated locals */
+ integer a_dim1, a_offset, b_dim1, b_offset, c_dim1, c_offset, i__1, i__2,
+ i__3, i__4, i__5, i__6;
+ complex q__1, q__2, q__3, q__4;
+
+ /* Builtin functions */
+ void r_cnjg(complex *, complex *);
+
+ /* Local variables */
+ static integer i__, j, l, info;
+ static logical nota, notb;
+ static complex temp;
+ static logical conja, conjb;
+ static integer ncola;
+ extern logical lsame_(char *, char *);
+ static integer nrowa, nrowb;
+ extern /* Subroutine */ int xerbla_(char *, integer *);
+
+
+/*
+ Purpose
+ =======
+
+ CGEMM performs one of the matrix-matrix operations
+
+ C := alpha*op( A )*op( B ) + beta*C,
+
+ where op( X ) is one of
+
+ op( X ) = X or op( X ) = X' or op( X ) = conjg( X' ),
+
+ alpha and beta are scalars, and A, B and C are matrices, with op( A )
+ an m by k matrix, op( B ) a k by n matrix and C an m by n matrix.
+
+ Parameters
+ ==========
+
+ TRANSA - CHARACTER*1.
+ On entry, TRANSA specifies the form of op( A ) to be used in
+ the matrix multiplication as follows:
+
+ TRANSA = 'N' or 'n', op( A ) = A.
+
+ TRANSA = 'T' or 't', op( A ) = A'.
+
+ TRANSA = 'C' or 'c', op( A ) = conjg( A' ).
+
+ Unchanged on exit.
+
+ TRANSB - CHARACTER*1.
+ On entry, TRANSB specifies the form of op( B ) to be used in
+ the matrix multiplication as follows:
+
+ TRANSB = 'N' or 'n', op( B ) = B.
+
+ TRANSB = 'T' or 't', op( B ) = B'.
+
+ TRANSB = 'C' or 'c', op( B ) = conjg( B' ).
+
+ Unchanged on exit.
+
+ M - INTEGER.
+ On entry, M specifies the number of rows of the matrix
+ op( A ) and of the matrix C. M must be at least zero.
+ Unchanged on exit.
+
+ N - INTEGER.
+ On entry, N specifies the number of columns of the matrix
+ op( B ) and the number of columns of the matrix C. N must be
+ at least zero.
+ Unchanged on exit.
+
+ K - INTEGER.
+ On entry, K specifies the number of columns of the matrix
+ op( A ) and the number of rows of the matrix op( B ). K must
+ be at least zero.
+ Unchanged on exit.
+
+ ALPHA - COMPLEX .
+ On entry, ALPHA specifies the scalar alpha.
+ Unchanged on exit.
+
+ A - COMPLEX array of DIMENSION ( LDA, ka ), where ka is
+ k when TRANSA = 'N' or 'n', and is m otherwise.
+ Before entry with TRANSA = 'N' or 'n', the leading m by k
+ part of the array A must contain the matrix A, otherwise
+ the leading k by m part of the array A must contain the
+ matrix A.
+ Unchanged on exit.
+
+ LDA - INTEGER.
+ On entry, LDA specifies the first dimension of A as declared
+ in the calling (sub) program. When TRANSA = 'N' or 'n' then
+ LDA must be at least max( 1, m ), otherwise LDA must be at
+ least max( 1, k ).
+ Unchanged on exit.
+
+ B - COMPLEX array of DIMENSION ( LDB, kb ), where kb is
+ n when TRANSB = 'N' or 'n', and is k otherwise.
+ Before entry with TRANSB = 'N' or 'n', the leading k by n
+ part of the array B must contain the matrix B, otherwise
+ the leading n by k part of the array B must contain the
+ matrix B.
+ Unchanged on exit.
+
+ LDB - INTEGER.
+ On entry, LDB specifies the first dimension of B as declared
+ in the calling (sub) program. When TRANSB = 'N' or 'n' then
+ LDB must be at least max( 1, k ), otherwise LDB must be at
+ least max( 1, n ).
+ Unchanged on exit.
+
+ BETA - COMPLEX .
+ On entry, BETA specifies the scalar beta. When BETA is
+ supplied as zero then C need not be set on input.
+ Unchanged on exit.
+
+ C - COMPLEX array of DIMENSION ( LDC, n ).
+ Before entry, the leading m by n part of the array C must
+ contain the matrix C, except when beta is zero, in which
+ case C need not be set on entry.
+ On exit, the array C is overwritten by the m by n matrix
+ ( alpha*op( A )*op( B ) + beta*C ).
+
+ LDC - INTEGER.
+ On entry, LDC specifies the first dimension of C as declared
+ in the calling (sub) program. LDC must be at least
+ max( 1, m ).
+ Unchanged on exit.
+
+
+ Level 3 Blas routine.
+
+ -- Written on 8-February-1989.
+ Jack Dongarra, Argonne National Laboratory.
+ Iain Duff, AERE Harwell.
+ Jeremy Du Croz, Numerical Algorithms Group Ltd.
+ Sven Hammarling, Numerical Algorithms Group Ltd.
+
+
+ Set NOTA and NOTB as true if A and B respectively are not
+ conjugated or transposed, set CONJA and CONJB as true if A and
+ B respectively are to be transposed but not conjugated and set
+ NROWA, NCOLA and NROWB as the number of rows and columns of A
+ and the number of rows of B respectively.
+*/
+
+ /* Parameter adjustments */
+ a_dim1 = *lda;
+ a_offset = 1 + a_dim1;
+ a -= a_offset;
+ b_dim1 = *ldb;
+ b_offset = 1 + b_dim1;
+ b -= b_offset;
+ c_dim1 = *ldc;
+ c_offset = 1 + c_dim1;
+ c__ -= c_offset;
+
+ /* Function Body */
+ nota = lsame_(transa, "N");
+ notb = lsame_(transb, "N");
+ conja = lsame_(transa, "C");
+ conjb = lsame_(transb, "C");
+ if (nota) {
+ nrowa = *m;
+ ncola = *k;
+ } else {
+ nrowa = *k;
+ ncola = *m;
+ }
+ if (notb) {
+ nrowb = *k;
+ } else {
+ nrowb = *n;
+ }
+
+/* Test the input parameters. */
+
+ info = 0;
+ if (! nota && ! conja && ! lsame_(transa, "T")) {
+ info = 1;
+ } else if (! notb && ! conjb && ! lsame_(transb, "T")) {
+ info = 2;
+ } else if (*m < 0) {
+ info = 3;
+ } else if (*n < 0) {
+ info = 4;
+ } else if (*k < 0) {
+ info = 5;
+ } else if (*lda < max(1,nrowa)) {
+ info = 8;
+ } else if (*ldb < max(1,nrowb)) {
+ info = 10;
+ } else if (*ldc < max(1,*m)) {
+ info = 13;
+ }
+ if (info != 0) {
+ xerbla_("CGEMM ", &info);
+ return 0;
+ }
+
+/* Quick return if possible. */
+
+ if (((*m == 0) || (*n == 0)) || (((alpha->r == 0.f && alpha->i == 0.f) ||
+ (*k == 0)) && (beta->r == 1.f && beta->i == 0.f))) {
+ return 0;
+ }
+
+/* And when alpha.eq.zero. */
+
+ if (alpha->r == 0.f && alpha->i == 0.f) {
+ if (beta->r == 0.f && beta->i == 0.f) {
+ i__1 = *n;
+ for (j = 1; j <= i__1; ++j) {
+ i__2 = *m;
+ for (i__ = 1; i__ <= i__2; ++i__) {
+ i__3 = i__ + j * c_dim1;
+ c__[i__3].r = 0.f, c__[i__3].i = 0.f;
+/* L10: */
+ }
+/* L20: */
+ }
+ } else {
+ i__1 = *n;
+ for (j = 1; j <= i__1; ++j) {
+ i__2 = *m;
+ for (i__ = 1; i__ <= i__2; ++i__) {
+ i__3 = i__ + j * c_dim1;
+ i__4 = i__ + j * c_dim1;
+ q__1.r = beta->r * c__[i__4].r - beta->i * c__[i__4].i,
+ q__1.i = beta->r * c__[i__4].i + beta->i * c__[
+ i__4].r;
+ c__[i__3].r = q__1.r, c__[i__3].i = q__1.i;
+/* L30: */
+ }
+/* L40: */
+ }
+ }
+ return 0;
+ }
+
+/* Start the operations. */
+
+ if (notb) {
+ if (nota) {
+
+/* Form C := alpha*A*B + beta*C. */
+
+ i__1 = *n;
+ for (j = 1; j <= i__1; ++j) {
+ if (beta->r == 0.f && beta->i == 0.f) {
+ i__2 = *m;
+ for (i__ = 1; i__ <= i__2; ++i__) {
+ i__3 = i__ + j * c_dim1;
+ c__[i__3].r = 0.f, c__[i__3].i = 0.f;
+/* L50: */
+ }
+ } else if ((beta->r != 1.f) || (beta->i != 0.f)) {
+ i__2 = *m;
+ for (i__ = 1; i__ <= i__2; ++i__) {
+ i__3 = i__ + j * c_dim1;
+ i__4 = i__ + j * c_dim1;
+ q__1.r = beta->r * c__[i__4].r - beta->i * c__[i__4]
+ .i, q__1.i = beta->r * c__[i__4].i + beta->i *
+ c__[i__4].r;
+ c__[i__3].r = q__1.r, c__[i__3].i = q__1.i;
+/* L60: */
+ }
+ }
+ i__2 = *k;
+ for (l = 1; l <= i__2; ++l) {
+ i__3 = l + j * b_dim1;
+ if ((b[i__3].r != 0.f) || (b[i__3].i != 0.f)) {
+ i__3 = l + j * b_dim1;
+ q__1.r = alpha->r * b[i__3].r - alpha->i * b[i__3].i,
+ q__1.i = alpha->r * b[i__3].i + alpha->i * b[
+ i__3].r;
+ temp.r = q__1.r, temp.i = q__1.i;
+ i__3 = *m;
+ for (i__ = 1; i__ <= i__3; ++i__) {
+ i__4 = i__ + j * c_dim1;
+ i__5 = i__ + j * c_dim1;
+ i__6 = i__ + l * a_dim1;
+ q__2.r = temp.r * a[i__6].r - temp.i * a[i__6].i,
+ q__2.i = temp.r * a[i__6].i + temp.i * a[
+ i__6].r;
+ q__1.r = c__[i__5].r + q__2.r, q__1.i = c__[i__5]
+ .i + q__2.i;
+ c__[i__4].r = q__1.r, c__[i__4].i = q__1.i;
+/* L70: */
+ }
+ }
+/* L80: */
+ }
+/* L90: */
+ }
+ } else if (conja) {
+
+/* Form C := alpha*conjg( A' )*B + beta*C. */
+
+ i__1 = *n;
+ for (j = 1; j <= i__1; ++j) {
+ i__2 = *m;
+ for (i__ = 1; i__ <= i__2; ++i__) {
+ temp.r = 0.f, temp.i = 0.f;
+ i__3 = *k;
+ for (l = 1; l <= i__3; ++l) {
+ r_cnjg(&q__3, &a[l + i__ * a_dim1]);
+ i__4 = l + j * b_dim1;
+ q__2.r = q__3.r * b[i__4].r - q__3.i * b[i__4].i,
+ q__2.i = q__3.r * b[i__4].i + q__3.i * b[i__4]
+ .r;
+ q__1.r = temp.r + q__2.r, q__1.i = temp.i + q__2.i;
+ temp.r = q__1.r, temp.i = q__1.i;
+/* L100: */
+ }
+ if (beta->r == 0.f && beta->i == 0.f) {
+ i__3 = i__ + j * c_dim1;
+ q__1.r = alpha->r * temp.r - alpha->i * temp.i,
+ q__1.i = alpha->r * temp.i + alpha->i *
+ temp.r;
+ c__[i__3].r = q__1.r, c__[i__3].i = q__1.i;
+ } else {
+ i__3 = i__ + j * c_dim1;
+ q__2.r = alpha->r * temp.r - alpha->i * temp.i,
+ q__2.i = alpha->r * temp.i + alpha->i *
+ temp.r;
+ i__4 = i__ + j * c_dim1;
+ q__3.r = beta->r * c__[i__4].r - beta->i * c__[i__4]
+ .i, q__3.i = beta->r * c__[i__4].i + beta->i *
+ c__[i__4].r;
+ q__1.r = q__2.r + q__3.r, q__1.i = q__2.i + q__3.i;
+ c__[i__3].r = q__1.r, c__[i__3].i = q__1.i;
+ }
+/* L110: */
+ }
+/* L120: */
+ }
+ } else {
+
+/* Form C := alpha*A'*B + beta*C */
+
+ i__1 = *n;
+ for (j = 1; j <= i__1; ++j) {
+ i__2 = *m;
+ for (i__ = 1; i__ <= i__2; ++i__) {
+ temp.r = 0.f, temp.i = 0.f;
+ i__3 = *k;
+ for (l = 1; l <= i__3; ++l) {
+ i__4 = l + i__ * a_dim1;
+ i__5 = l + j * b_dim1;
+ q__2.r = a[i__4].r * b[i__5].r - a[i__4].i * b[i__5]
+ .i, q__2.i = a[i__4].r * b[i__5].i + a[i__4]
+ .i * b[i__5].r;
+ q__1.r = temp.r + q__2.r, q__1.i = temp.i + q__2.i;
+ temp.r = q__1.r, temp.i = q__1.i;
+/* L130: */
+ }
+ if (beta->r == 0.f && beta->i == 0.f) {
+ i__3 = i__ + j * c_dim1;
+ q__1.r = alpha->r * temp.r - alpha->i * temp.i,
+ q__1.i = alpha->r * temp.i + alpha->i *
+ temp.r;
+ c__[i__3].r = q__1.r, c__[i__3].i = q__1.i;
+ } else {
+ i__3 = i__ + j * c_dim1;
+ q__2.r = alpha->r * temp.r - alpha->i * temp.i,
+ q__2.i = alpha->r * temp.i + alpha->i *
+ temp.r;
+ i__4 = i__ + j * c_dim1;
+ q__3.r = beta->r * c__[i__4].r - beta->i * c__[i__4]
+ .i, q__3.i = beta->r * c__[i__4].i + beta->i *
+ c__[i__4].r;
+ q__1.r = q__2.r + q__3.r, q__1.i = q__2.i + q__3.i;
+ c__[i__3].r = q__1.r, c__[i__3].i = q__1.i;
+ }
+/* L140: */
+ }
+/* L150: */
+ }
+ }
+ } else if (nota) {
+ if (conjb) {
+
+/* Form C := alpha*A*conjg( B' ) + beta*C. */
+
+ i__1 = *n;
+ for (j = 1; j <= i__1; ++j) {
+ if (beta->r == 0.f && beta->i == 0.f) {
+ i__2 = *m;
+ for (i__ = 1; i__ <= i__2; ++i__) {
+ i__3 = i__ + j * c_dim1;
+ c__[i__3].r = 0.f, c__[i__3].i = 0.f;
+/* L160: */
+ }
+ } else if ((beta->r != 1.f) || (beta->i != 0.f)) {
+ i__2 = *m;
+ for (i__ = 1; i__ <= i__2; ++i__) {
+ i__3 = i__ + j * c_dim1;
+ i__4 = i__ + j * c_dim1;
+ q__1.r = beta->r * c__[i__4].r - beta->i * c__[i__4]
+ .i, q__1.i = beta->r * c__[i__4].i + beta->i *
+ c__[i__4].r;
+ c__[i__3].r = q__1.r, c__[i__3].i = q__1.i;
+/* L170: */
+ }
+ }
+ i__2 = *k;
+ for (l = 1; l <= i__2; ++l) {
+ i__3 = j + l * b_dim1;
+ if ((b[i__3].r != 0.f) || (b[i__3].i != 0.f)) {
+ r_cnjg(&q__2, &b[j + l * b_dim1]);
+ q__1.r = alpha->r * q__2.r - alpha->i * q__2.i,
+ q__1.i = alpha->r * q__2.i + alpha->i *
+ q__2.r;
+ temp.r = q__1.r, temp.i = q__1.i;
+ i__3 = *m;
+ for (i__ = 1; i__ <= i__3; ++i__) {
+ i__4 = i__ + j * c_dim1;
+ i__5 = i__ + j * c_dim1;
+ i__6 = i__ + l * a_dim1;
+ q__2.r = temp.r * a[i__6].r - temp.i * a[i__6].i,
+ q__2.i = temp.r * a[i__6].i + temp.i * a[
+ i__6].r;
+ q__1.r = c__[i__5].r + q__2.r, q__1.i = c__[i__5]
+ .i + q__2.i;
+ c__[i__4].r = q__1.r, c__[i__4].i = q__1.i;
+/* L180: */
+ }
+ }
+/* L190: */
+ }
+/* L200: */
+ }
+ } else {
+
+/* Form C := alpha*A*B' + beta*C */
+
+ i__1 = *n;
+ for (j = 1; j <= i__1; ++j) {
+ if (beta->r == 0.f && beta->i == 0.f) {
+ i__2 = *m;
+ for (i__ = 1; i__ <= i__2; ++i__) {
+ i__3 = i__ + j * c_dim1;
+ c__[i__3].r = 0.f, c__[i__3].i = 0.f;
+/* L210: */
+ }
+ } else if ((beta->r != 1.f) || (beta->i != 0.f)) {
+ i__2 = *m;
+ for (i__ = 1; i__ <= i__2; ++i__) {
+ i__3 = i__ + j * c_dim1;
+ i__4 = i__ + j * c_dim1;
+ q__1.r = beta->r * c__[i__4].r - beta->i * c__[i__4]
+ .i, q__1.i = beta->r * c__[i__4].i + beta->i *
+ c__[i__4].r;
+ c__[i__3].r = q__1.r, c__[i__3].i = q__1.i;
+/* L220: */
+ }
+ }
+ i__2 = *k;
+ for (l = 1; l <= i__2; ++l) {
+ i__3 = j + l * b_dim1;
+ if ((b[i__3].r != 0.f) || (b[i__3].i != 0.f)) {
+ i__3 = j + l * b_dim1;
+ q__1.r = alpha->r * b[i__3].r - alpha->i * b[i__3].i,
+ q__1.i = alpha->r * b[i__3].i + alpha->i * b[
+ i__3].r;
+ temp.r = q__1.r, temp.i = q__1.i;
+ i__3 = *m;
+ for (i__ = 1; i__ <= i__3; ++i__) {
+ i__4 = i__ + j * c_dim1;
+ i__5 = i__ + j * c_dim1;
+ i__6 = i__ + l * a_dim1;
+ q__2.r = temp.r * a[i__6].r - temp.i * a[i__6].i,
+ q__2.i = temp.r * a[i__6].i + temp.i * a[
+ i__6].r;
+ q__1.r = c__[i__5].r + q__2.r, q__1.i = c__[i__5]
+ .i + q__2.i;
+ c__[i__4].r = q__1.r, c__[i__4].i = q__1.i;
+/* L230: */
+ }
+ }
+/* L240: */
+ }
+/* L250: */
+ }
+ }
+ } else if (conja) {
+ if (conjb) {
+
+/* Form C := alpha*conjg( A' )*conjg( B' ) + beta*C. */
+
+ i__1 = *n;
+ for (j = 1; j <= i__1; ++j) {
+ i__2 = *m;
+ for (i__ = 1; i__ <= i__2; ++i__) {
+ temp.r = 0.f, temp.i = 0.f;
+ i__3 = *k;
+ for (l = 1; l <= i__3; ++l) {
+ r_cnjg(&q__3, &a[l + i__ * a_dim1]);
+ r_cnjg(&q__4, &b[j + l * b_dim1]);
+ q__2.r = q__3.r * q__4.r - q__3.i * q__4.i, q__2.i =
+ q__3.r * q__4.i + q__3.i * q__4.r;
+ q__1.r = temp.r + q__2.r, q__1.i = temp.i + q__2.i;
+ temp.r = q__1.r, temp.i = q__1.i;
+/* L260: */
+ }
+ if (beta->r == 0.f && beta->i == 0.f) {
+ i__3 = i__ + j * c_dim1;
+ q__1.r = alpha->r * temp.r - alpha->i * temp.i,
+ q__1.i = alpha->r * temp.i + alpha->i *
+ temp.r;
+ c__[i__3].r = q__1.r, c__[i__3].i = q__1.i;
+ } else {
+ i__3 = i__ + j * c_dim1;
+ q__2.r = alpha->r * temp.r - alpha->i * temp.i,
+ q__2.i = alpha->r * temp.i + alpha->i *
+ temp.r;
+ i__4 = i__ + j * c_dim1;
+ q__3.r = beta->r * c__[i__4].r - beta->i * c__[i__4]
+ .i, q__3.i = beta->r * c__[i__4].i + beta->i *
+ c__[i__4].r;
+ q__1.r = q__2.r + q__3.r, q__1.i = q__2.i + q__3.i;
+ c__[i__3].r = q__1.r, c__[i__3].i = q__1.i;
+ }
+/* L270: */
+ }
+/* L280: */
+ }
+ } else {
+
+/* Form C := alpha*conjg( A' )*B' + beta*C */
+
+ i__1 = *n;
+ for (j = 1; j <= i__1; ++j) {
+ i__2 = *m;
+ for (i__ = 1; i__ <= i__2; ++i__) {
+ temp.r = 0.f, temp.i = 0.f;
+ i__3 = *k;
+ for (l = 1; l <= i__3; ++l) {
+ r_cnjg(&q__3, &a[l + i__ * a_dim1]);
+ i__4 = j + l * b_dim1;
+ q__2.r = q__3.r * b[i__4].r - q__3.i * b[i__4].i,
+ q__2.i = q__3.r * b[i__4].i + q__3.i * b[i__4]
+ .r;
+ q__1.r = temp.r + q__2.r, q__1.i = temp.i + q__2.i;
+ temp.r = q__1.r, temp.i = q__1.i;
+/* L290: */
+ }
+ if (beta->r == 0.f && beta->i == 0.f) {
+ i__3 = i__ + j * c_dim1;
+ q__1.r = alpha->r * temp.r - alpha->i * temp.i,
+ q__1.i = alpha->r * temp.i + alpha->i *
+ temp.r;
+ c__[i__3].r = q__1.r, c__[i__3].i = q__1.i;
+ } else {
+ i__3 = i__ + j * c_dim1;
+ q__2.r = alpha->r * temp.r - alpha->i * temp.i,
+ q__2.i = alpha->r * temp.i + alpha->i *
+ temp.r;
+ i__4 = i__ + j * c_dim1;
+ q__3.r = beta->r * c__[i__4].r - beta->i * c__[i__4]
+ .i, q__3.i = beta->r * c__[i__4].i + beta->i *
+ c__[i__4].r;
+ q__1.r = q__2.r + q__3.r, q__1.i = q__2.i + q__3.i;
+ c__[i__3].r = q__1.r, c__[i__3].i = q__1.i;
+ }
+/* L300: */
+ }
+/* L310: */
+ }
+ }
+ } else {
+ if (conjb) {
+
+/* Form C := alpha*A'*conjg( B' ) + beta*C */
+
+ i__1 = *n;
+ for (j = 1; j <= i__1; ++j) {
+ i__2 = *m;
+ for (i__ = 1; i__ <= i__2; ++i__) {
+ temp.r = 0.f, temp.i = 0.f;
+ i__3 = *k;
+ for (l = 1; l <= i__3; ++l) {
+ i__4 = l + i__ * a_dim1;
+ r_cnjg(&q__3, &b[j + l * b_dim1]);
+ q__2.r = a[i__4].r * q__3.r - a[i__4].i * q__3.i,
+ q__2.i = a[i__4].r * q__3.i + a[i__4].i *
+ q__3.r;
+ q__1.r = temp.r + q__2.r, q__1.i = temp.i + q__2.i;
+ temp.r = q__1.r, temp.i = q__1.i;
+/* L320: */
+ }
+ if (beta->r == 0.f && beta->i == 0.f) {
+ i__3 = i__ + j * c_dim1;
+ q__1.r = alpha->r * temp.r - alpha->i * temp.i,
+ q__1.i = alpha->r * temp.i + alpha->i *
+ temp.r;
+ c__[i__3].r = q__1.r, c__[i__3].i = q__1.i;
+ } else {
+ i__3 = i__ + j * c_dim1;
+ q__2.r = alpha->r * temp.r - alpha->i * temp.i,
+ q__2.i = alpha->r * temp.i + alpha->i *
+ temp.r;
+ i__4 = i__ + j * c_dim1;
+ q__3.r = beta->r * c__[i__4].r - beta->i * c__[i__4]
+ .i, q__3.i = beta->r * c__[i__4].i + beta->i *
+ c__[i__4].r;
+ q__1.r = q__2.r + q__3.r, q__1.i = q__2.i + q__3.i;
+ c__[i__3].r = q__1.r, c__[i__3].i = q__1.i;
+ }
+/* L330: */
+ }
+/* L340: */
+ }
+ } else {
+
+/* Form C := alpha*A'*B' + beta*C */
+
+ i__1 = *n;
+ for (j = 1; j <= i__1; ++j) {
+ i__2 = *m;
+ for (i__ = 1; i__ <= i__2; ++i__) {
+ temp.r = 0.f, temp.i = 0.f;
+ i__3 = *k;
+ for (l = 1; l <= i__3; ++l) {
+ i__4 = l + i__ * a_dim1;
+ i__5 = j + l * b_dim1;
+ q__2.r = a[i__4].r * b[i__5].r - a[i__4].i * b[i__5]
+ .i, q__2.i = a[i__4].r * b[i__5].i + a[i__4]
+ .i * b[i__5].r;
+ q__1.r = temp.r + q__2.r, q__1.i = temp.i + q__2.i;
+ temp.r = q__1.r, temp.i = q__1.i;
+/* L350: */
+ }
+ if (beta->r == 0.f && beta->i == 0.f) {
+ i__3 = i__ + j * c_dim1;
+ q__1.r = alpha->r * temp.r - alpha->i * temp.i,
+ q__1.i = alpha->r * temp.i + alpha->i *
+ temp.r;
+ c__[i__3].r = q__1.r, c__[i__3].i = q__1.i;
+ } else {
+ i__3 = i__ + j * c_dim1;
+ q__2.r = alpha->r * temp.r - alpha->i * temp.i,
+ q__2.i = alpha->r * temp.i + alpha->i *
+ temp.r;
+ i__4 = i__ + j * c_dim1;
+ q__3.r = beta->r * c__[i__4].r - beta->i * c__[i__4]
+ .i, q__3.i = beta->r * c__[i__4].i + beta->i *
+ c__[i__4].r;
+ q__1.r = q__2.r + q__3.r, q__1.i = q__2.i + q__3.i;
+ c__[i__3].r = q__1.r, c__[i__3].i = q__1.i;
+ }
+/* L360: */
+ }
+/* L370: */
+ }
+ }
+ }
+
+ return 0;
+
+/* End of CGEMM . */
+
+} /* cgemm_ */
+
+/* Subroutine */ int cgemv_(char *trans, integer *m, integer *n, complex *
+ alpha, complex *a, integer *lda, complex *x, integer *incx, complex *
+ beta, complex *y, integer *incy)
+{
+ /* System generated locals */
+ integer a_dim1, a_offset, i__1, i__2, i__3, i__4, i__5;
+ complex q__1, q__2, q__3;
+
+ /* Builtin functions */
+ void r_cnjg(complex *, complex *);
+
+ /* Local variables */
+ static integer i__, j, ix, iy, jx, jy, kx, ky, info;
+ static complex temp;
+ static integer lenx, leny;
+ extern logical lsame_(char *, char *);
+ extern /* Subroutine */ int xerbla_(char *, integer *);
+ static logical noconj;
+
+
+/*
+ Purpose
+ =======
+
+ CGEMV performs one of the matrix-vector operations
+
+ y := alpha*A*x + beta*y, or y := alpha*A'*x + beta*y, or
+
+ y := alpha*conjg( A' )*x + beta*y,
+
+ where alpha and beta are scalars, x and y are vectors and A is an
+ m by n matrix.
+
+ Parameters
+ ==========
+
+ TRANS - CHARACTER*1.
+ On entry, TRANS specifies the operation to be performed as
+ follows:
+
+ TRANS = 'N' or 'n' y := alpha*A*x + beta*y.
+
+ TRANS = 'T' or 't' y := alpha*A'*x + beta*y.
+
+ TRANS = 'C' or 'c' y := alpha*conjg( A' )*x + beta*y.
+
+ Unchanged on exit.
+
+ M - INTEGER.
+ On entry, M specifies the number of rows of the matrix A.
+ M must be at least zero.
+ Unchanged on exit.
+
+ N - INTEGER.
+ On entry, N specifies the number of columns of the matrix A.
+ N must be at least zero.
+ Unchanged on exit.
+
+ ALPHA - COMPLEX .
+ On entry, ALPHA specifies the scalar alpha.
+ Unchanged on exit.
+
+ A - COMPLEX array of DIMENSION ( LDA, n ).
+ Before entry, the leading m by n part of the array A must
+ contain the matrix of coefficients.
+ Unchanged on exit.
+
+ LDA - INTEGER.
+ On entry, LDA specifies the first dimension of A as declared
+ in the calling (sub) program. LDA must be at least
+ max( 1, m ).
+ Unchanged on exit.
+
+ X - COMPLEX array of DIMENSION at least
+ ( 1 + ( n - 1 )*abs( INCX ) ) when TRANS = 'N' or 'n'
+ and at least
+ ( 1 + ( m - 1 )*abs( INCX ) ) otherwise.
+ Before entry, the incremented array X must contain the
+ vector x.
+ Unchanged on exit.
+
+ INCX - INTEGER.
+ On entry, INCX specifies the increment for the elements of
+ X. INCX must not be zero.
+ Unchanged on exit.
+
+ BETA - COMPLEX .
+ On entry, BETA specifies the scalar beta. When BETA is
+ supplied as zero then Y need not be set on input.
+ Unchanged on exit.
+
+ Y - COMPLEX array of DIMENSION at least
+ ( 1 + ( m - 1 )*abs( INCY ) ) when TRANS = 'N' or 'n'
+ and at least
+ ( 1 + ( n - 1 )*abs( INCY ) ) otherwise.
+ Before entry with BETA non-zero, the incremented array Y
+ must contain the vector y. On exit, Y is overwritten by the
+ updated vector y.
+
+ INCY - INTEGER.
+ On entry, INCY specifies the increment for the elements of
+ Y. INCY must not be zero.
+ Unchanged on exit.
+
+
+ Level 2 Blas routine.
+
+ -- Written on 22-October-1986.
+ Jack Dongarra, Argonne National Lab.
+ Jeremy Du Croz, Nag Central Office.
+ Sven Hammarling, Nag Central Office.
+ Richard Hanson, Sandia National Labs.
+
+
+ Test the input parameters.
+*/
+
+ /* Parameter adjustments */
+ a_dim1 = *lda;
+ a_offset = 1 + a_dim1;
+ a -= a_offset;
+ --x;
+ --y;
+
+ /* Function Body */
+ info = 0;
+ if (! lsame_(trans, "N") && ! lsame_(trans, "T") && ! lsame_(trans, "C")
+ ) {
+ info = 1;
+ } else if (*m < 0) {
+ info = 2;
+ } else if (*n < 0) {
+ info = 3;
+ } else if (*lda < max(1,*m)) {
+ info = 6;
+ } else if (*incx == 0) {
+ info = 8;
+ } else if (*incy == 0) {
+ info = 11;
+ }
+ if (info != 0) {
+ xerbla_("CGEMV ", &info);
+ return 0;
+ }
+
+/* Quick return if possible. */
+
+ if (((*m == 0) || (*n == 0)) || (alpha->r == 0.f && alpha->i == 0.f && (
+ beta->r == 1.f && beta->i == 0.f))) {
+ return 0;
+ }
+
+ noconj = lsame_(trans, "T");
+
+/*
+ Set LENX and LENY, the lengths of the vectors x and y, and set
+ up the start points in X and Y.
+*/
+
+ if (lsame_(trans, "N")) {
+ lenx = *n;
+ leny = *m;
+ } else {
+ lenx = *m;
+ leny = *n;
+ }
+ if (*incx > 0) {
+ kx = 1;
+ } else {
+ kx = 1 - (lenx - 1) * *incx;
+ }
+ if (*incy > 0) {
+ ky = 1;
+ } else {
+ ky = 1 - (leny - 1) * *incy;
+ }
+
+/*
+ Start the operations. In this version the elements of A are
+ accessed sequentially with one pass through A.
+
+ First form y := beta*y.
+*/
+
+ if ((beta->r != 1.f) || (beta->i != 0.f)) {
+ if (*incy == 1) {
+ if (beta->r == 0.f && beta->i == 0.f) {
+ i__1 = leny;
+ for (i__ = 1; i__ <= i__1; ++i__) {
+ i__2 = i__;
+ y[i__2].r = 0.f, y[i__2].i = 0.f;
+/* L10: */
+ }
+ } else {
+ i__1 = leny;
+ for (i__ = 1; i__ <= i__1; ++i__) {
+ i__2 = i__;
+ i__3 = i__;
+ q__1.r = beta->r * y[i__3].r - beta->i * y[i__3].i,
+ q__1.i = beta->r * y[i__3].i + beta->i * y[i__3]
+ .r;
+ y[i__2].r = q__1.r, y[i__2].i = q__1.i;
+/* L20: */
+ }
+ }
+ } else {
+ iy = ky;
+ if (beta->r == 0.f && beta->i == 0.f) {
+ i__1 = leny;
+ for (i__ = 1; i__ <= i__1; ++i__) {
+ i__2 = iy;
+ y[i__2].r = 0.f, y[i__2].i = 0.f;
+ iy += *incy;
+/* L30: */
+ }
+ } else {
+ i__1 = leny;
+ for (i__ = 1; i__ <= i__1; ++i__) {
+ i__2 = iy;
+ i__3 = iy;
+ q__1.r = beta->r * y[i__3].r - beta->i * y[i__3].i,
+ q__1.i = beta->r * y[i__3].i + beta->i * y[i__3]
+ .r;
+ y[i__2].r = q__1.r, y[i__2].i = q__1.i;
+ iy += *incy;
+/* L40: */
+ }
+ }
+ }
+ }
+ if (alpha->r == 0.f && alpha->i == 0.f) {
+ return 0;
+ }
+ if (lsame_(trans, "N")) {
+
+/* Form y := alpha*A*x + y. */
+
+ jx = kx;
+ if (*incy == 1) {
+ i__1 = *n;
+ for (j = 1; j <= i__1; ++j) {
+ i__2 = jx;
+ if ((x[i__2].r != 0.f) || (x[i__2].i != 0.f)) {
+ i__2 = jx;
+ q__1.r = alpha->r * x[i__2].r - alpha->i * x[i__2].i,
+ q__1.i = alpha->r * x[i__2].i + alpha->i * x[i__2]
+ .r;
+ temp.r = q__1.r, temp.i = q__1.i;
+ i__2 = *m;
+ for (i__ = 1; i__ <= i__2; ++i__) {
+ i__3 = i__;
+ i__4 = i__;
+ i__5 = i__ + j * a_dim1;
+ q__2.r = temp.r * a[i__5].r - temp.i * a[i__5].i,
+ q__2.i = temp.r * a[i__5].i + temp.i * a[i__5]
+ .r;
+ q__1.r = y[i__4].r + q__2.r, q__1.i = y[i__4].i +
+ q__2.i;
+ y[i__3].r = q__1.r, y[i__3].i = q__1.i;
+/* L50: */
+ }
+ }
+ jx += *incx;
+/* L60: */
+ }
+ } else {
+ i__1 = *n;
+ for (j = 1; j <= i__1; ++j) {
+ i__2 = jx;
+ if ((x[i__2].r != 0.f) || (x[i__2].i != 0.f)) {
+ i__2 = jx;
+ q__1.r = alpha->r * x[i__2].r - alpha->i * x[i__2].i,
+ q__1.i = alpha->r * x[i__2].i + alpha->i * x[i__2]
+ .r;
+ temp.r = q__1.r, temp.i = q__1.i;
+ iy = ky;
+ i__2 = *m;
+ for (i__ = 1; i__ <= i__2; ++i__) {
+ i__3 = iy;
+ i__4 = iy;
+ i__5 = i__ + j * a_dim1;
+ q__2.r = temp.r * a[i__5].r - temp.i * a[i__5].i,
+ q__2.i = temp.r * a[i__5].i + temp.i * a[i__5]
+ .r;
+ q__1.r = y[i__4].r + q__2.r, q__1.i = y[i__4].i +
+ q__2.i;
+ y[i__3].r = q__1.r, y[i__3].i = q__1.i;
+ iy += *incy;
+/* L70: */
+ }
+ }
+ jx += *incx;
+/* L80: */
+ }
+ }
+ } else {
+
+/* Form y := alpha*A'*x + y or y := alpha*conjg( A' )*x + y. */
+
+ jy = ky;
+ if (*incx == 1) {
+ i__1 = *n;
+ for (j = 1; j <= i__1; ++j) {
+ temp.r = 0.f, temp.i = 0.f;
+ if (noconj) {
+ i__2 = *m;
+ for (i__ = 1; i__ <= i__2; ++i__) {
+ i__3 = i__ + j * a_dim1;
+ i__4 = i__;
+ q__2.r = a[i__3].r * x[i__4].r - a[i__3].i * x[i__4]
+ .i, q__2.i = a[i__3].r * x[i__4].i + a[i__3]
+ .i * x[i__4].r;
+ q__1.r = temp.r + q__2.r, q__1.i = temp.i + q__2.i;
+ temp.r = q__1.r, temp.i = q__1.i;
+/* L90: */
+ }
+ } else {
+ i__2 = *m;
+ for (i__ = 1; i__ <= i__2; ++i__) {
+ r_cnjg(&q__3, &a[i__ + j * a_dim1]);
+ i__3 = i__;
+ q__2.r = q__3.r * x[i__3].r - q__3.i * x[i__3].i,
+ q__2.i = q__3.r * x[i__3].i + q__3.i * x[i__3]
+ .r;
+ q__1.r = temp.r + q__2.r, q__1.i = temp.i + q__2.i;
+ temp.r = q__1.r, temp.i = q__1.i;
+/* L100: */
+ }
+ }
+ i__2 = jy;
+ i__3 = jy;
+ q__2.r = alpha->r * temp.r - alpha->i * temp.i, q__2.i =
+ alpha->r * temp.i + alpha->i * temp.r;
+ q__1.r = y[i__3].r + q__2.r, q__1.i = y[i__3].i + q__2.i;
+ y[i__2].r = q__1.r, y[i__2].i = q__1.i;
+ jy += *incy;
+/* L110: */
+ }
+ } else {
+ i__1 = *n;
+ for (j = 1; j <= i__1; ++j) {
+ temp.r = 0.f, temp.i = 0.f;
+ ix = kx;
+ if (noconj) {
+ i__2 = *m;
+ for (i__ = 1; i__ <= i__2; ++i__) {
+ i__3 = i__ + j * a_dim1;
+ i__4 = ix;
+ q__2.r = a[i__3].r * x[i__4].r - a[i__3].i * x[i__4]
+ .i, q__2.i = a[i__3].r * x[i__4].i + a[i__3]
+ .i * x[i__4].r;
+ q__1.r = temp.r + q__2.r, q__1.i = temp.i + q__2.i;
+ temp.r = q__1.r, temp.i = q__1.i;
+ ix += *incx;
+/* L120: */
+ }
+ } else {
+ i__2 = *m;
+ for (i__ = 1; i__ <= i__2; ++i__) {
+ r_cnjg(&q__3, &a[i__ + j * a_dim1]);
+ i__3 = ix;
+ q__2.r = q__3.r * x[i__3].r - q__3.i * x[i__3].i,
+ q__2.i = q__3.r * x[i__3].i + q__3.i * x[i__3]
+ .r;
+ q__1.r = temp.r + q__2.r, q__1.i = temp.i + q__2.i;
+ temp.r = q__1.r, temp.i = q__1.i;
+ ix += *incx;
+/* L130: */
+ }
+ }
+ i__2 = jy;
+ i__3 = jy;
+ q__2.r = alpha->r * temp.r - alpha->i * temp.i, q__2.i =
+ alpha->r * temp.i + alpha->i * temp.r;
+ q__1.r = y[i__3].r + q__2.r, q__1.i = y[i__3].i + q__2.i;
+ y[i__2].r = q__1.r, y[i__2].i = q__1.i;
+ jy += *incy;
+/* L140: */
+ }
+ }
+ }
+
+ return 0;
+
+/* End of CGEMV . */
+
+} /* cgemv_ */
+
+/* Subroutine */ int cgerc_(integer *m, integer *n, complex *alpha, complex *
+ x, integer *incx, complex *y, integer *incy, complex *a, integer *lda)
+{
+ /* System generated locals */
+ integer a_dim1, a_offset, i__1, i__2, i__3, i__4, i__5;
+ complex q__1, q__2;
+
+ /* Builtin functions */
+ void r_cnjg(complex *, complex *);
+
+ /* Local variables */
+ static integer i__, j, ix, jy, kx, info;
+ static complex temp;
+ extern /* Subroutine */ int xerbla_(char *, integer *);
+
+
+/*
+ Purpose
+ =======
+
+ CGERC performs the rank 1 operation
+
+ A := alpha*x*conjg( y' ) + A,
+
+ where alpha is a scalar, x is an m element vector, y is an n element
+ vector and A is an m by n matrix.
+
+ Parameters
+ ==========
+
+ M - INTEGER.
+ On entry, M specifies the number of rows of the matrix A.
+ M must be at least zero.
+ Unchanged on exit.
+
+ N - INTEGER.
+ On entry, N specifies the number of columns of the matrix A.
+ N must be at least zero.
+ Unchanged on exit.
+
+ ALPHA - COMPLEX .
+ On entry, ALPHA specifies the scalar alpha.
+ Unchanged on exit.
+
+ X - COMPLEX array of dimension at least
+ ( 1 + ( m - 1 )*abs( INCX ) ).
+ Before entry, the incremented array X must contain the m
+ element vector x.
+ Unchanged on exit.
+
+ INCX - INTEGER.
+ On entry, INCX specifies the increment for the elements of
+ X. INCX must not be zero.
+ Unchanged on exit.
+
+ Y - COMPLEX array of dimension at least
+ ( 1 + ( n - 1 )*abs( INCY ) ).
+ Before entry, the incremented array Y must contain the n
+ element vector y.
+ Unchanged on exit.
+
+ INCY - INTEGER.
+ On entry, INCY specifies the increment for the elements of
+ Y. INCY must not be zero.
+ Unchanged on exit.
+
+ A - COMPLEX array of DIMENSION ( LDA, n ).
+ Before entry, the leading m by n part of the array A must
+ contain the matrix of coefficients. On exit, A is
+ overwritten by the updated matrix.
+
+ LDA - INTEGER.
+ On entry, LDA specifies the first dimension of A as declared
+ in the calling (sub) program. LDA must be at least
+ max( 1, m ).
+ Unchanged on exit.
+
+
+ Level 2 Blas routine.
+
+ -- Written on 22-October-1986.
+ Jack Dongarra, Argonne National Lab.
+ Jeremy Du Croz, Nag Central Office.
+ Sven Hammarling, Nag Central Office.
+ Richard Hanson, Sandia National Labs.
+
+
+ Test the input parameters.
+*/
+
+ /* Parameter adjustments */
+ --x;
+ --y;
+ a_dim1 = *lda;
+ a_offset = 1 + a_dim1;
+ a -= a_offset;
+
+ /* Function Body */
+ info = 0;
+ if (*m < 0) {
+ info = 1;
+ } else if (*n < 0) {
+ info = 2;
+ } else if (*incx == 0) {
+ info = 5;
+ } else if (*incy == 0) {
+ info = 7;
+ } else if (*lda < max(1,*m)) {
+ info = 9;
+ }
+ if (info != 0) {
+ xerbla_("CGERC ", &info);
+ return 0;
+ }
+
+/* Quick return if possible. */
+
+ if (((*m == 0) || (*n == 0)) || (alpha->r == 0.f && alpha->i == 0.f)) {
+ return 0;
+ }
+
+/*
+ Start the operations. In this version the elements of A are
+ accessed sequentially with one pass through A.
+*/
+
+ if (*incy > 0) {
+ jy = 1;
+ } else {
+ jy = 1 - (*n - 1) * *incy;
+ }
+ if (*incx == 1) {
+ i__1 = *n;
+ for (j = 1; j <= i__1; ++j) {
+ i__2 = jy;
+ if ((y[i__2].r != 0.f) || (y[i__2].i != 0.f)) {
+ r_cnjg(&q__2, &y[jy]);
+ q__1.r = alpha->r * q__2.r - alpha->i * q__2.i, q__1.i =
+ alpha->r * q__2.i + alpha->i * q__2.r;
+ temp.r = q__1.r, temp.i = q__1.i;
+ i__2 = *m;
+ for (i__ = 1; i__ <= i__2; ++i__) {
+ i__3 = i__ + j * a_dim1;
+ i__4 = i__ + j * a_dim1;
+ i__5 = i__;
+ q__2.r = x[i__5].r * temp.r - x[i__5].i * temp.i, q__2.i =
+ x[i__5].r * temp.i + x[i__5].i * temp.r;
+ q__1.r = a[i__4].r + q__2.r, q__1.i = a[i__4].i + q__2.i;
+ a[i__3].r = q__1.r, a[i__3].i = q__1.i;
+/* L10: */
+ }
+ }
+ jy += *incy;
+/* L20: */
+ }
+ } else {
+ if (*incx > 0) {
+ kx = 1;
+ } else {
+ kx = 1 - (*m - 1) * *incx;
+ }
+ i__1 = *n;
+ for (j = 1; j <= i__1; ++j) {
+ i__2 = jy;
+ if ((y[i__2].r != 0.f) || (y[i__2].i != 0.f)) {
+ r_cnjg(&q__2, &y[jy]);
+ q__1.r = alpha->r * q__2.r - alpha->i * q__2.i, q__1.i =
+ alpha->r * q__2.i + alpha->i * q__2.r;
+ temp.r = q__1.r, temp.i = q__1.i;
+ ix = kx;
+ i__2 = *m;
+ for (i__ = 1; i__ <= i__2; ++i__) {
+ i__3 = i__ + j * a_dim1;
+ i__4 = i__ + j * a_dim1;
+ i__5 = ix;
+ q__2.r = x[i__5].r * temp.r - x[i__5].i * temp.i, q__2.i =
+ x[i__5].r * temp.i + x[i__5].i * temp.r;
+ q__1.r = a[i__4].r + q__2.r, q__1.i = a[i__4].i + q__2.i;
+ a[i__3].r = q__1.r, a[i__3].i = q__1.i;
+ ix += *incx;
+/* L30: */
+ }
+ }
+ jy += *incy;
+/* L40: */
+ }
+ }
+
+ return 0;
+
+/* End of CGERC . */
+
+} /* cgerc_ */
+
+/* Subroutine */ int cgeru_(integer *m, integer *n, complex *alpha, complex *
+ x, integer *incx, complex *y, integer *incy, complex *a, integer *lda)
+{
+ /* System generated locals */
+ integer a_dim1, a_offset, i__1, i__2, i__3, i__4, i__5;
+ complex q__1, q__2;
+
+ /* Local variables */
+ static integer i__, j, ix, jy, kx, info;
+ static complex temp;
+ extern /* Subroutine */ int xerbla_(char *, integer *);
+
+
+/*
+ Purpose
+ =======
+
+ CGERU performs the rank 1 operation
+
+ A := alpha*x*y' + A,
+
+ where alpha is a scalar, x is an m element vector, y is an n element
+ vector and A is an m by n matrix.
+
+ Parameters
+ ==========
+
+ M - INTEGER.
+ On entry, M specifies the number of rows of the matrix A.
+ M must be at least zero.
+ Unchanged on exit.
+
+ N - INTEGER.
+ On entry, N specifies the number of columns of the matrix A.
+ N must be at least zero.
+ Unchanged on exit.
+
+ ALPHA - COMPLEX .
+ On entry, ALPHA specifies the scalar alpha.
+ Unchanged on exit.
+
+ X - COMPLEX array of dimension at least
+ ( 1 + ( m - 1 )*abs( INCX ) ).
+ Before entry, the incremented array X must contain the m
+ element vector x.
+ Unchanged on exit.
+
+ INCX - INTEGER.
+ On entry, INCX specifies the increment for the elements of
+ X. INCX must not be zero.
+ Unchanged on exit.
+
+ Y - COMPLEX array of dimension at least
+ ( 1 + ( n - 1 )*abs( INCY ) ).
+ Before entry, the incremented array Y must contain the n
+ element vector y.
+ Unchanged on exit.
+
+ INCY - INTEGER.
+ On entry, INCY specifies the increment for the elements of
+ Y. INCY must not be zero.
+ Unchanged on exit.
+
+ A - COMPLEX array of DIMENSION ( LDA, n ).
+ Before entry, the leading m by n part of the array A must
+ contain the matrix of coefficients. On exit, A is
+ overwritten by the updated matrix.
+
+ LDA - INTEGER.
+ On entry, LDA specifies the first dimension of A as declared
+ in the calling (sub) program. LDA must be at least
+ max( 1, m ).
+ Unchanged on exit.
+
+
+ Level 2 Blas routine.
+
+ -- Written on 22-October-1986.
+ Jack Dongarra, Argonne National Lab.
+ Jeremy Du Croz, Nag Central Office.
+ Sven Hammarling, Nag Central Office.
+ Richard Hanson, Sandia National Labs.
+
+
+ Test the input parameters.
+*/
+
+ /* Parameter adjustments */
+ --x;
+ --y;
+ a_dim1 = *lda;
+ a_offset = 1 + a_dim1;
+ a -= a_offset;
+
+ /* Function Body */
+ info = 0;
+ if (*m < 0) {
+ info = 1;
+ } else if (*n < 0) {
+ info = 2;
+ } else if (*incx == 0) {
+ info = 5;
+ } else if (*incy == 0) {
+ info = 7;
+ } else if (*lda < max(1,*m)) {
+ info = 9;
+ }
+ if (info != 0) {
+ xerbla_("CGERU ", &info);
+ return 0;
+ }
+
+/* Quick return if possible. */
+
+ if (((*m == 0) || (*n == 0)) || (alpha->r == 0.f && alpha->i == 0.f)) {
+ return 0;
+ }
+
+/*
+ Start the operations. In this version the elements of A are
+ accessed sequentially with one pass through A.
+*/
+
+ if (*incy > 0) {
+ jy = 1;
+ } else {
+ jy = 1 - (*n - 1) * *incy;
+ }
+ if (*incx == 1) {
+ i__1 = *n;
+ for (j = 1; j <= i__1; ++j) {
+ i__2 = jy;
+ if ((y[i__2].r != 0.f) || (y[i__2].i != 0.f)) {
+ i__2 = jy;
+ q__1.r = alpha->r * y[i__2].r - alpha->i * y[i__2].i, q__1.i =
+ alpha->r * y[i__2].i + alpha->i * y[i__2].r;
+ temp.r = q__1.r, temp.i = q__1.i;
+ i__2 = *m;
+ for (i__ = 1; i__ <= i__2; ++i__) {
+ i__3 = i__ + j * a_dim1;
+ i__4 = i__ + j * a_dim1;
+ i__5 = i__;
+ q__2.r = x[i__5].r * temp.r - x[i__5].i * temp.i, q__2.i =
+ x[i__5].r * temp.i + x[i__5].i * temp.r;
+ q__1.r = a[i__4].r + q__2.r, q__1.i = a[i__4].i + q__2.i;
+ a[i__3].r = q__1.r, a[i__3].i = q__1.i;
+/* L10: */
+ }
+ }
+ jy += *incy;
+/* L20: */
+ }
+ } else {
+ if (*incx > 0) {
+ kx = 1;
+ } else {
+ kx = 1 - (*m - 1) * *incx;
+ }
+ i__1 = *n;
+ for (j = 1; j <= i__1; ++j) {
+ i__2 = jy;
+ if ((y[i__2].r != 0.f) || (y[i__2].i != 0.f)) {
+ i__2 = jy;
+ q__1.r = alpha->r * y[i__2].r - alpha->i * y[i__2].i, q__1.i =
+ alpha->r * y[i__2].i + alpha->i * y[i__2].r;
+ temp.r = q__1.r, temp.i = q__1.i;
+ ix = kx;
+ i__2 = *m;
+ for (i__ = 1; i__ <= i__2; ++i__) {
+ i__3 = i__ + j * a_dim1;
+ i__4 = i__ + j * a_dim1;
+ i__5 = ix;
+ q__2.r = x[i__5].r * temp.r - x[i__5].i * temp.i, q__2.i =
+ x[i__5].r * temp.i + x[i__5].i * temp.r;
+ q__1.r = a[i__4].r + q__2.r, q__1.i = a[i__4].i + q__2.i;
+ a[i__3].r = q__1.r, a[i__3].i = q__1.i;
+ ix += *incx;
+/* L30: */
+ }
+ }
+ jy += *incy;
+/* L40: */
+ }
+ }
+
+ return 0;
+
+/* End of CGERU . */
+
+} /* cgeru_ */
+
+/* Subroutine */ int chemv_(char *uplo, integer *n, complex *alpha, complex *
+ a, integer *lda, complex *x, integer *incx, complex *beta, complex *y,
+ integer *incy)
+{
+ /* System generated locals */
+ integer a_dim1, a_offset, i__1, i__2, i__3, i__4, i__5;
+ real r__1;
+ complex q__1, q__2, q__3, q__4;
+
+ /* Builtin functions */
+ void r_cnjg(complex *, complex *);
+
+ /* Local variables */
+ static integer i__, j, ix, iy, jx, jy, kx, ky, info;
+ static complex temp1, temp2;
+ extern logical lsame_(char *, char *);
+ extern /* Subroutine */ int xerbla_(char *, integer *);
+
+
+/*
+ Purpose
+ =======
+
+ CHEMV performs the matrix-vector operation
+
+ y := alpha*A*x + beta*y,
+
+ where alpha and beta are scalars, x and y are n element vectors and
+ A is an n by n hermitian matrix.
+
+ Parameters
+ ==========
+
+ UPLO - CHARACTER*1.
+ On entry, UPLO specifies whether the upper or lower
+ triangular part of the array A is to be referenced as
+ follows:
+
+ UPLO = 'U' or 'u' Only the upper triangular part of A
+ is to be referenced.
+
+ UPLO = 'L' or 'l' Only the lower triangular part of A
+ is to be referenced.
+
+ Unchanged on exit.
+
+ N - INTEGER.
+ On entry, N specifies the order of the matrix A.
+ N must be at least zero.
+ Unchanged on exit.
+
+ ALPHA - COMPLEX .
+ On entry, ALPHA specifies the scalar alpha.
+ Unchanged on exit.
+
+ A - COMPLEX array of DIMENSION ( LDA, n ).
+ Before entry with UPLO = 'U' or 'u', the leading n by n
+ upper triangular part of the array A must contain the upper
+ triangular part of the hermitian matrix and the strictly
+ lower triangular part of A is not referenced.
+ Before entry with UPLO = 'L' or 'l', the leading n by n
+ lower triangular part of the array A must contain the lower
+ triangular part of the hermitian matrix and the strictly
+ upper triangular part of A is not referenced.
+ Note that the imaginary parts of the diagonal elements need
+ not be set and are assumed to be zero.
+ Unchanged on exit.
+
+ LDA - INTEGER.
+ On entry, LDA specifies the first dimension of A as declared
+ in the calling (sub) program. LDA must be at least
+ max( 1, n ).
+ Unchanged on exit.
+
+ X - COMPLEX array of dimension at least
+ ( 1 + ( n - 1 )*abs( INCX ) ).
+ Before entry, the incremented array X must contain the n
+ element vector x.
+ Unchanged on exit.
+
+ INCX - INTEGER.
+ On entry, INCX specifies the increment for the elements of
+ X. INCX must not be zero.
+ Unchanged on exit.
+
+ BETA - COMPLEX .
+ On entry, BETA specifies the scalar beta. When BETA is
+ supplied as zero then Y need not be set on input.
+ Unchanged on exit.
+
+ Y - COMPLEX array of dimension at least
+ ( 1 + ( n - 1 )*abs( INCY ) ).
+ Before entry, the incremented array Y must contain the n
+ element vector y. On exit, Y is overwritten by the updated
+ vector y.
+
+ INCY - INTEGER.
+ On entry, INCY specifies the increment for the elements of
+ Y. INCY must not be zero.
+ Unchanged on exit.
+
+
+ Level 2 Blas routine.
+
+ -- Written on 22-October-1986.
+ Jack Dongarra, Argonne National Lab.
+ Jeremy Du Croz, Nag Central Office.
+ Sven Hammarling, Nag Central Office.
+ Richard Hanson, Sandia National Labs.
+
+
+ Test the input parameters.
+*/
+
+ /* Parameter adjustments */
+ a_dim1 = *lda;
+ a_offset = 1 + a_dim1;
+ a -= a_offset;
+ --x;
+ --y;
+
+ /* Function Body */
+ info = 0;
+ if (! lsame_(uplo, "U") && ! lsame_(uplo, "L")) {
+ info = 1;
+ } else if (*n < 0) {
+ info = 2;
+ } else if (*lda < max(1,*n)) {
+ info = 5;
+ } else if (*incx == 0) {
+ info = 7;
+ } else if (*incy == 0) {
+ info = 10;
+ }
+ if (info != 0) {
+ xerbla_("CHEMV ", &info);
+ return 0;
+ }
+
+/* Quick return if possible. */
+
+ if ((*n == 0) || (alpha->r == 0.f && alpha->i == 0.f && (beta->r == 1.f &&
+ beta->i == 0.f))) {
+ return 0;
+ }
+
+/* Set up the start points in X and Y. */
+
+ if (*incx > 0) {
+ kx = 1;
+ } else {
+ kx = 1 - (*n - 1) * *incx;
+ }
+ if (*incy > 0) {
+ ky = 1;
+ } else {
+ ky = 1 - (*n - 1) * *incy;
+ }
+
+/*
+ Start the operations. In this version the elements of A are
+ accessed sequentially with one pass through the triangular part
+ of A.
+
+ First form y := beta*y.
+*/
+
+ if ((beta->r != 1.f) || (beta->i != 0.f)) {
+ if (*incy == 1) {
+ if (beta->r == 0.f && beta->i == 0.f) {
+ i__1 = *n;
+ for (i__ = 1; i__ <= i__1; ++i__) {
+ i__2 = i__;
+ y[i__2].r = 0.f, y[i__2].i = 0.f;
+/* L10: */
+ }
+ } else {
+ i__1 = *n;
+ for (i__ = 1; i__ <= i__1; ++i__) {
+ i__2 = i__;
+ i__3 = i__;
+ q__1.r = beta->r * y[i__3].r - beta->i * y[i__3].i,
+ q__1.i = beta->r * y[i__3].i + beta->i * y[i__3]
+ .r;
+ y[i__2].r = q__1.r, y[i__2].i = q__1.i;
+/* L20: */
+ }
+ }
+ } else {
+ iy = ky;
+ if (beta->r == 0.f && beta->i == 0.f) {
+ i__1 = *n;
+ for (i__ = 1; i__ <= i__1; ++i__) {
+ i__2 = iy;
+ y[i__2].r = 0.f, y[i__2].i = 0.f;
+ iy += *incy;
+/* L30: */
+ }
+ } else {
+ i__1 = *n;
+ for (i__ = 1; i__ <= i__1; ++i__) {
+ i__2 = iy;
+ i__3 = iy;
+ q__1.r = beta->r * y[i__3].r - beta->i * y[i__3].i,
+ q__1.i = beta->r * y[i__3].i + beta->i * y[i__3]
+ .r;
+ y[i__2].r = q__1.r, y[i__2].i = q__1.i;
+ iy += *incy;
+/* L40: */
+ }
+ }
+ }
+ }
+ if (alpha->r == 0.f && alpha->i == 0.f) {
+ return 0;
+ }
+ if (lsame_(uplo, "U")) {
+
+/* Form y when A is stored in upper triangle. */
+
+ if (*incx == 1 && *incy == 1) {
+ i__1 = *n;
+ for (j = 1; j <= i__1; ++j) {
+ i__2 = j;
+ q__1.r = alpha->r * x[i__2].r - alpha->i * x[i__2].i, q__1.i =
+ alpha->r * x[i__2].i + alpha->i * x[i__2].r;
+ temp1.r = q__1.r, temp1.i = q__1.i;
+ temp2.r = 0.f, temp2.i = 0.f;
+ i__2 = j - 1;
+ for (i__ = 1; i__ <= i__2; ++i__) {
+ i__3 = i__;
+ i__4 = i__;
+ i__5 = i__ + j * a_dim1;
+ q__2.r = temp1.r * a[i__5].r - temp1.i * a[i__5].i,
+ q__2.i = temp1.r * a[i__5].i + temp1.i * a[i__5]
+ .r;
+ q__1.r = y[i__4].r + q__2.r, q__1.i = y[i__4].i + q__2.i;
+ y[i__3].r = q__1.r, y[i__3].i = q__1.i;
+ r_cnjg(&q__3, &a[i__ + j * a_dim1]);
+ i__3 = i__;
+ q__2.r = q__3.r * x[i__3].r - q__3.i * x[i__3].i, q__2.i =
+ q__3.r * x[i__3].i + q__3.i * x[i__3].r;
+ q__1.r = temp2.r + q__2.r, q__1.i = temp2.i + q__2.i;
+ temp2.r = q__1.r, temp2.i = q__1.i;
+/* L50: */
+ }
+ i__2 = j;
+ i__3 = j;
+ i__4 = j + j * a_dim1;
+ r__1 = a[i__4].r;
+ q__3.r = r__1 * temp1.r, q__3.i = r__1 * temp1.i;
+ q__2.r = y[i__3].r + q__3.r, q__2.i = y[i__3].i + q__3.i;
+ q__4.r = alpha->r * temp2.r - alpha->i * temp2.i, q__4.i =
+ alpha->r * temp2.i + alpha->i * temp2.r;
+ q__1.r = q__2.r + q__4.r, q__1.i = q__2.i + q__4.i;
+ y[i__2].r = q__1.r, y[i__2].i = q__1.i;
+/* L60: */
+ }
+ } else {
+ jx = kx;
+ jy = ky;
+ i__1 = *n;
+ for (j = 1; j <= i__1; ++j) {
+ i__2 = jx;
+ q__1.r = alpha->r * x[i__2].r - alpha->i * x[i__2].i, q__1.i =
+ alpha->r * x[i__2].i + alpha->i * x[i__2].r;
+ temp1.r = q__1.r, temp1.i = q__1.i;
+ temp2.r = 0.f, temp2.i = 0.f;
+ ix = kx;
+ iy = ky;
+ i__2 = j - 1;
+ for (i__ = 1; i__ <= i__2; ++i__) {
+ i__3 = iy;
+ i__4 = iy;
+ i__5 = i__ + j * a_dim1;
+ q__2.r = temp1.r * a[i__5].r - temp1.i * a[i__5].i,
+ q__2.i = temp1.r * a[i__5].i + temp1.i * a[i__5]
+ .r;
+ q__1.r = y[i__4].r + q__2.r, q__1.i = y[i__4].i + q__2.i;
+ y[i__3].r = q__1.r, y[i__3].i = q__1.i;
+ r_cnjg(&q__3, &a[i__ + j * a_dim1]);
+ i__3 = ix;
+ q__2.r = q__3.r * x[i__3].r - q__3.i * x[i__3].i, q__2.i =
+ q__3.r * x[i__3].i + q__3.i * x[i__3].r;
+ q__1.r = temp2.r + q__2.r, q__1.i = temp2.i + q__2.i;
+ temp2.r = q__1.r, temp2.i = q__1.i;
+ ix += *incx;
+ iy += *incy;
+/* L70: */
+ }
+ i__2 = jy;
+ i__3 = jy;
+ i__4 = j + j * a_dim1;
+ r__1 = a[i__4].r;
+ q__3.r = r__1 * temp1.r, q__3.i = r__1 * temp1.i;
+ q__2.r = y[i__3].r + q__3.r, q__2.i = y[i__3].i + q__3.i;
+ q__4.r = alpha->r * temp2.r - alpha->i * temp2.i, q__4.i =
+ alpha->r * temp2.i + alpha->i * temp2.r;
+ q__1.r = q__2.r + q__4.r, q__1.i = q__2.i + q__4.i;
+ y[i__2].r = q__1.r, y[i__2].i = q__1.i;
+ jx += *incx;
+ jy += *incy;
+/* L80: */
+ }
+ }
+ } else {
+
+/* Form y when A is stored in lower triangle. */
+
+ if (*incx == 1 && *incy == 1) {
+ i__1 = *n;
+ for (j = 1; j <= i__1; ++j) {
+ i__2 = j;
+ q__1.r = alpha->r * x[i__2].r - alpha->i * x[i__2].i, q__1.i =
+ alpha->r * x[i__2].i + alpha->i * x[i__2].r;
+ temp1.r = q__1.r, temp1.i = q__1.i;
+ temp2.r = 0.f, temp2.i = 0.f;
+ i__2 = j;
+ i__3 = j;
+ i__4 = j + j * a_dim1;
+ r__1 = a[i__4].r;
+ q__2.r = r__1 * temp1.r, q__2.i = r__1 * temp1.i;
+ q__1.r = y[i__3].r + q__2.r, q__1.i = y[i__3].i + q__2.i;
+ y[i__2].r = q__1.r, y[i__2].i = q__1.i;
+ i__2 = *n;
+ for (i__ = j + 1; i__ <= i__2; ++i__) {
+ i__3 = i__;
+ i__4 = i__;
+ i__5 = i__ + j * a_dim1;
+ q__2.r = temp1.r * a[i__5].r - temp1.i * a[i__5].i,
+ q__2.i = temp1.r * a[i__5].i + temp1.i * a[i__5]
+ .r;
+ q__1.r = y[i__4].r + q__2.r, q__1.i = y[i__4].i + q__2.i;
+ y[i__3].r = q__1.r, y[i__3].i = q__1.i;
+ r_cnjg(&q__3, &a[i__ + j * a_dim1]);
+ i__3 = i__;
+ q__2.r = q__3.r * x[i__3].r - q__3.i * x[i__3].i, q__2.i =
+ q__3.r * x[i__3].i + q__3.i * x[i__3].r;
+ q__1.r = temp2.r + q__2.r, q__1.i = temp2.i + q__2.i;
+ temp2.r = q__1.r, temp2.i = q__1.i;
+/* L90: */
+ }
+ i__2 = j;
+ i__3 = j;
+ q__2.r = alpha->r * temp2.r - alpha->i * temp2.i, q__2.i =
+ alpha->r * temp2.i + alpha->i * temp2.r;
+ q__1.r = y[i__3].r + q__2.r, q__1.i = y[i__3].i + q__2.i;
+ y[i__2].r = q__1.r, y[i__2].i = q__1.i;
+/* L100: */
+ }
+ } else {
+ jx = kx;
+ jy = ky;
+ i__1 = *n;
+ for (j = 1; j <= i__1; ++j) {
+ i__2 = jx;
+ q__1.r = alpha->r * x[i__2].r - alpha->i * x[i__2].i, q__1.i =
+ alpha->r * x[i__2].i + alpha->i * x[i__2].r;
+ temp1.r = q__1.r, temp1.i = q__1.i;
+ temp2.r = 0.f, temp2.i = 0.f;
+ i__2 = jy;
+ i__3 = jy;
+ i__4 = j + j * a_dim1;
+ r__1 = a[i__4].r;
+ q__2.r = r__1 * temp1.r, q__2.i = r__1 * temp1.i;
+ q__1.r = y[i__3].r + q__2.r, q__1.i = y[i__3].i + q__2.i;
+ y[i__2].r = q__1.r, y[i__2].i = q__1.i;
+ ix = jx;
+ iy = jy;
+ i__2 = *n;
+ for (i__ = j + 1; i__ <= i__2; ++i__) {
+ ix += *incx;
+ iy += *incy;
+ i__3 = iy;
+ i__4 = iy;
+ i__5 = i__ + j * a_dim1;
+ q__2.r = temp1.r * a[i__5].r - temp1.i * a[i__5].i,
+ q__2.i = temp1.r * a[i__5].i + temp1.i * a[i__5]
+ .r;
+ q__1.r = y[i__4].r + q__2.r, q__1.i = y[i__4].i + q__2.i;
+ y[i__3].r = q__1.r, y[i__3].i = q__1.i;
+ r_cnjg(&q__3, &a[i__ + j * a_dim1]);
+ i__3 = ix;
+ q__2.r = q__3.r * x[i__3].r - q__3.i * x[i__3].i, q__2.i =
+ q__3.r * x[i__3].i + q__3.i * x[i__3].r;
+ q__1.r = temp2.r + q__2.r, q__1.i = temp2.i + q__2.i;
+ temp2.r = q__1.r, temp2.i = q__1.i;
+/* L110: */
+ }
+ i__2 = jy;
+ i__3 = jy;
+ q__2.r = alpha->r * temp2.r - alpha->i * temp2.i, q__2.i =
+ alpha->r * temp2.i + alpha->i * temp2.r;
+ q__1.r = y[i__3].r + q__2.r, q__1.i = y[i__3].i + q__2.i;
+ y[i__2].r = q__1.r, y[i__2].i = q__1.i;
+ jx += *incx;
+ jy += *incy;
+/* L120: */
+ }
+ }
+ }
+
+ return 0;
+
+/* End of CHEMV . */
+
+} /* chemv_ */
+
+/* Subroutine */ int cher2_(char *uplo, integer *n, complex *alpha, complex *
+ x, integer *incx, complex *y, integer *incy, complex *a, integer *lda)
+{
+ /* System generated locals */
+ integer a_dim1, a_offset, i__1, i__2, i__3, i__4, i__5, i__6;
+ real r__1;
+ complex q__1, q__2, q__3, q__4;
+
+ /* Builtin functions */
+ void r_cnjg(complex *, complex *);
+
+ /* Local variables */
+ static integer i__, j, ix, iy, jx, jy, kx, ky, info;
+ static complex temp1, temp2;
+ extern logical lsame_(char *, char *);
+ extern /* Subroutine */ int xerbla_(char *, integer *);
+
+
+/*
+ Purpose
+ =======
+
+ CHER2 performs the hermitian rank 2 operation
+
+ A := alpha*x*conjg( y' ) + conjg( alpha )*y*conjg( x' ) + A,
+
+ where alpha is a scalar, x and y are n element vectors and A is an n
+ by n hermitian matrix.
+
+ Parameters
+ ==========
+
+ UPLO - CHARACTER*1.
+ On entry, UPLO specifies whether the upper or lower
+ triangular part of the array A is to be referenced as
+ follows:
+
+ UPLO = 'U' or 'u' Only the upper triangular part of A
+ is to be referenced.
+
+ UPLO = 'L' or 'l' Only the lower triangular part of A
+ is to be referenced.
+
+ Unchanged on exit.
+
+ N - INTEGER.
+ On entry, N specifies the order of the matrix A.
+ N must be at least zero.
+ Unchanged on exit.
+
+ ALPHA - COMPLEX .
+ On entry, ALPHA specifies the scalar alpha.
+ Unchanged on exit.
+
+ X - COMPLEX array of dimension at least
+ ( 1 + ( n - 1 )*abs( INCX ) ).
+ Before entry, the incremented array X must contain the n
+ element vector x.
+ Unchanged on exit.
+
+ INCX - INTEGER.
+ On entry, INCX specifies the increment for the elements of
+ X. INCX must not be zero.
+ Unchanged on exit.
+
+ Y - COMPLEX array of dimension at least
+ ( 1 + ( n - 1 )*abs( INCY ) ).
+ Before entry, the incremented array Y must contain the n
+ element vector y.
+ Unchanged on exit.
+
+ INCY - INTEGER.
+ On entry, INCY specifies the increment for the elements of
+ Y. INCY must not be zero.
+ Unchanged on exit.
+
+ A - COMPLEX array of DIMENSION ( LDA, n ).
+ Before entry with UPLO = 'U' or 'u', the leading n by n
+ upper triangular part of the array A must contain the upper
+ triangular part of the hermitian matrix and the strictly
+ lower triangular part of A is not referenced. On exit, the
+ upper triangular part of the array A is overwritten by the
+ upper triangular part of the updated matrix.
+ Before entry with UPLO = 'L' or 'l', the leading n by n
+ lower triangular part of the array A must contain the lower
+ triangular part of the hermitian matrix and the strictly
+ upper triangular part of A is not referenced. On exit, the
+ lower triangular part of the array A is overwritten by the
+ lower triangular part of the updated matrix.
+ Note that the imaginary parts of the diagonal elements need
+ not be set, they are assumed to be zero, and on exit they
+ are set to zero.
+
+ LDA - INTEGER.
+ On entry, LDA specifies the first dimension of A as declared
+ in the calling (sub) program. LDA must be at least
+ max( 1, n ).
+ Unchanged on exit.
+
+
+ Level 2 Blas routine.
+
+ -- Written on 22-October-1986.
+ Jack Dongarra, Argonne National Lab.
+ Jeremy Du Croz, Nag Central Office.
+ Sven Hammarling, Nag Central Office.
+ Richard Hanson, Sandia National Labs.
+
+
+ Test the input parameters.
+*/
+
+ /* Parameter adjustments */
+ --x;
+ --y;
+ a_dim1 = *lda;
+ a_offset = 1 + a_dim1;
+ a -= a_offset;
+
+ /* Function Body */
+ info = 0;
+ if (! lsame_(uplo, "U") && ! lsame_(uplo, "L")) {
+ info = 1;
+ } else if (*n < 0) {
+ info = 2;
+ } else if (*incx == 0) {
+ info = 5;
+ } else if (*incy == 0) {
+ info = 7;
+ } else if (*lda < max(1,*n)) {
+ info = 9;
+ }
+ if (info != 0) {
+ xerbla_("CHER2 ", &info);
+ return 0;
+ }
+
+/* Quick return if possible. */
+
+ if ((*n == 0) || (alpha->r == 0.f && alpha->i == 0.f)) {
+ return 0;
+ }
+
+/*
+ Set up the start points in X and Y if the increments are not both
+ unity.
+*/
+
+ if ((*incx != 1) || (*incy != 1)) {
+ if (*incx > 0) {
+ kx = 1;
+ } else {
+ kx = 1 - (*n - 1) * *incx;
+ }
+ if (*incy > 0) {
+ ky = 1;
+ } else {
+ ky = 1 - (*n - 1) * *incy;
+ }
+ jx = kx;
+ jy = ky;
+ }
+
+/*
+ Start the operations. In this version the elements of A are
+ accessed sequentially with one pass through the triangular part
+ of A.
+*/
+
+ if (lsame_(uplo, "U")) {
+
+/* Form A when A is stored in the upper triangle. */
+
+ if (*incx == 1 && *incy == 1) {
+ i__1 = *n;
+ for (j = 1; j <= i__1; ++j) {
+ i__2 = j;
+ i__3 = j;
+ if (((x[i__2].r != 0.f) || (x[i__2].i != 0.f)) || (((y[i__3]
+ .r != 0.f) || (y[i__3].i != 0.f)))) {
+ r_cnjg(&q__2, &y[j]);
+ q__1.r = alpha->r * q__2.r - alpha->i * q__2.i, q__1.i =
+ alpha->r * q__2.i + alpha->i * q__2.r;
+ temp1.r = q__1.r, temp1.i = q__1.i;
+ i__2 = j;
+ q__2.r = alpha->r * x[i__2].r - alpha->i * x[i__2].i,
+ q__2.i = alpha->r * x[i__2].i + alpha->i * x[i__2]
+ .r;
+ r_cnjg(&q__1, &q__2);
+ temp2.r = q__1.r, temp2.i = q__1.i;
+ i__2 = j - 1;
+ for (i__ = 1; i__ <= i__2; ++i__) {
+ i__3 = i__ + j * a_dim1;
+ i__4 = i__ + j * a_dim1;
+ i__5 = i__;
+ q__3.r = x[i__5].r * temp1.r - x[i__5].i * temp1.i,
+ q__3.i = x[i__5].r * temp1.i + x[i__5].i *
+ temp1.r;
+ q__2.r = a[i__4].r + q__3.r, q__2.i = a[i__4].i +
+ q__3.i;
+ i__6 = i__;
+ q__4.r = y[i__6].r * temp2.r - y[i__6].i * temp2.i,
+ q__4.i = y[i__6].r * temp2.i + y[i__6].i *
+ temp2.r;
+ q__1.r = q__2.r + q__4.r, q__1.i = q__2.i + q__4.i;
+ a[i__3].r = q__1.r, a[i__3].i = q__1.i;
+/* L10: */
+ }
+ i__2 = j + j * a_dim1;
+ i__3 = j + j * a_dim1;
+ i__4 = j;
+ q__2.r = x[i__4].r * temp1.r - x[i__4].i * temp1.i,
+ q__2.i = x[i__4].r * temp1.i + x[i__4].i *
+ temp1.r;
+ i__5 = j;
+ q__3.r = y[i__5].r * temp2.r - y[i__5].i * temp2.i,
+ q__3.i = y[i__5].r * temp2.i + y[i__5].i *
+ temp2.r;
+ q__1.r = q__2.r + q__3.r, q__1.i = q__2.i + q__3.i;
+ r__1 = a[i__3].r + q__1.r;
+ a[i__2].r = r__1, a[i__2].i = 0.f;
+ } else {
+ i__2 = j + j * a_dim1;
+ i__3 = j + j * a_dim1;
+ r__1 = a[i__3].r;
+ a[i__2].r = r__1, a[i__2].i = 0.f;
+ }
+/* L20: */
+ }
+ } else {
+ i__1 = *n;
+ for (j = 1; j <= i__1; ++j) {
+ i__2 = jx;
+ i__3 = jy;
+ if (((x[i__2].r != 0.f) || (x[i__2].i != 0.f)) || (((y[i__3]
+ .r != 0.f) || (y[i__3].i != 0.f)))) {
+ r_cnjg(&q__2, &y[jy]);
+ q__1.r = alpha->r * q__2.r - alpha->i * q__2.i, q__1.i =
+ alpha->r * q__2.i + alpha->i * q__2.r;
+ temp1.r = q__1.r, temp1.i = q__1.i;
+ i__2 = jx;
+ q__2.r = alpha->r * x[i__2].r - alpha->i * x[i__2].i,
+ q__2.i = alpha->r * x[i__2].i + alpha->i * x[i__2]
+ .r;
+ r_cnjg(&q__1, &q__2);
+ temp2.r = q__1.r, temp2.i = q__1.i;
+ ix = kx;
+ iy = ky;
+ i__2 = j - 1;
+ for (i__ = 1; i__ <= i__2; ++i__) {
+ i__3 = i__ + j * a_dim1;
+ i__4 = i__ + j * a_dim1;
+ i__5 = ix;
+ q__3.r = x[i__5].r * temp1.r - x[i__5].i * temp1.i,
+ q__3.i = x[i__5].r * temp1.i + x[i__5].i *
+ temp1.r;
+ q__2.r = a[i__4].r + q__3.r, q__2.i = a[i__4].i +
+ q__3.i;
+ i__6 = iy;
+ q__4.r = y[i__6].r * temp2.r - y[i__6].i * temp2.i,
+ q__4.i = y[i__6].r * temp2.i + y[i__6].i *
+ temp2.r;
+ q__1.r = q__2.r + q__4.r, q__1.i = q__2.i + q__4.i;
+ a[i__3].r = q__1.r, a[i__3].i = q__1.i;
+ ix += *incx;
+ iy += *incy;
+/* L30: */
+ }
+ i__2 = j + j * a_dim1;
+ i__3 = j + j * a_dim1;
+ i__4 = jx;
+ q__2.r = x[i__4].r * temp1.r - x[i__4].i * temp1.i,
+ q__2.i = x[i__4].r * temp1.i + x[i__4].i *
+ temp1.r;
+ i__5 = jy;
+ q__3.r = y[i__5].r * temp2.r - y[i__5].i * temp2.i,
+ q__3.i = y[i__5].r * temp2.i + y[i__5].i *
+ temp2.r;
+ q__1.r = q__2.r + q__3.r, q__1.i = q__2.i + q__3.i;
+ r__1 = a[i__3].r + q__1.r;
+ a[i__2].r = r__1, a[i__2].i = 0.f;
+ } else {
+ i__2 = j + j * a_dim1;
+ i__3 = j + j * a_dim1;
+ r__1 = a[i__3].r;
+ a[i__2].r = r__1, a[i__2].i = 0.f;
+ }
+ jx += *incx;
+ jy += *incy;
+/* L40: */
+ }
+ }
+ } else {
+
+/* Form A when A is stored in the lower triangle. */
+
+ if (*incx == 1 && *incy == 1) {
+ i__1 = *n;
+ for (j = 1; j <= i__1; ++j) {
+ i__2 = j;
+ i__3 = j;
+ if (((x[i__2].r != 0.f) || (x[i__2].i != 0.f)) || (((y[i__3]
+ .r != 0.f) || (y[i__3].i != 0.f)))) {
+ r_cnjg(&q__2, &y[j]);
+ q__1.r = alpha->r * q__2.r - alpha->i * q__2.i, q__1.i =
+ alpha->r * q__2.i + alpha->i * q__2.r;
+ temp1.r = q__1.r, temp1.i = q__1.i;
+ i__2 = j;
+ q__2.r = alpha->r * x[i__2].r - alpha->i * x[i__2].i,
+ q__2.i = alpha->r * x[i__2].i + alpha->i * x[i__2]
+ .r;
+ r_cnjg(&q__1, &q__2);
+ temp2.r = q__1.r, temp2.i = q__1.i;
+ i__2 = j + j * a_dim1;
+ i__3 = j + j * a_dim1;
+ i__4 = j;
+ q__2.r = x[i__4].r * temp1.r - x[i__4].i * temp1.i,
+ q__2.i = x[i__4].r * temp1.i + x[i__4].i *
+ temp1.r;
+ i__5 = j;
+ q__3.r = y[i__5].r * temp2.r - y[i__5].i * temp2.i,
+ q__3.i = y[i__5].r * temp2.i + y[i__5].i *
+ temp2.r;
+ q__1.r = q__2.r + q__3.r, q__1.i = q__2.i + q__3.i;
+ r__1 = a[i__3].r + q__1.r;
+ a[i__2].r = r__1, a[i__2].i = 0.f;
+ i__2 = *n;
+ for (i__ = j + 1; i__ <= i__2; ++i__) {
+ i__3 = i__ + j * a_dim1;
+ i__4 = i__ + j * a_dim1;
+ i__5 = i__;
+ q__3.r = x[i__5].r * temp1.r - x[i__5].i * temp1.i,
+ q__3.i = x[i__5].r * temp1.i + x[i__5].i *
+ temp1.r;
+ q__2.r = a[i__4].r + q__3.r, q__2.i = a[i__4].i +
+ q__3.i;
+ i__6 = i__;
+ q__4.r = y[i__6].r * temp2.r - y[i__6].i * temp2.i,
+ q__4.i = y[i__6].r * temp2.i + y[i__6].i *
+ temp2.r;
+ q__1.r = q__2.r + q__4.r, q__1.i = q__2.i + q__4.i;
+ a[i__3].r = q__1.r, a[i__3].i = q__1.i;
+/* L50: */
+ }
+ } else {
+ i__2 = j + j * a_dim1;
+ i__3 = j + j * a_dim1;
+ r__1 = a[i__3].r;
+ a[i__2].r = r__1, a[i__2].i = 0.f;
+ }
+/* L60: */
+ }
+ } else {
+ i__1 = *n;
+ for (j = 1; j <= i__1; ++j) {
+ i__2 = jx;
+ i__3 = jy;
+ if (((x[i__2].r != 0.f) || (x[i__2].i != 0.f)) || (((y[i__3]
+ .r != 0.f) || (y[i__3].i != 0.f)))) {
+ r_cnjg(&q__2, &y[jy]);
+ q__1.r = alpha->r * q__2.r - alpha->i * q__2.i, q__1.i =
+ alpha->r * q__2.i + alpha->i * q__2.r;
+ temp1.r = q__1.r, temp1.i = q__1.i;
+ i__2 = jx;
+ q__2.r = alpha->r * x[i__2].r - alpha->i * x[i__2].i,
+ q__2.i = alpha->r * x[i__2].i + alpha->i * x[i__2]
+ .r;
+ r_cnjg(&q__1, &q__2);
+ temp2.r = q__1.r, temp2.i = q__1.i;
+ i__2 = j + j * a_dim1;
+ i__3 = j + j * a_dim1;
+ i__4 = jx;
+ q__2.r = x[i__4].r * temp1.r - x[i__4].i * temp1.i,
+ q__2.i = x[i__4].r * temp1.i + x[i__4].i *
+ temp1.r;
+ i__5 = jy;
+ q__3.r = y[i__5].r * temp2.r - y[i__5].i * temp2.i,
+ q__3.i = y[i__5].r * temp2.i + y[i__5].i *
+ temp2.r;
+ q__1.r = q__2.r + q__3.r, q__1.i = q__2.i + q__3.i;
+ r__1 = a[i__3].r + q__1.r;
+ a[i__2].r = r__1, a[i__2].i = 0.f;
+ ix = jx;
+ iy = jy;
+ i__2 = *n;
+ for (i__ = j + 1; i__ <= i__2; ++i__) {
+ ix += *incx;
+ iy += *incy;
+ i__3 = i__ + j * a_dim1;
+ i__4 = i__ + j * a_dim1;
+ i__5 = ix;
+ q__3.r = x[i__5].r * temp1.r - x[i__5].i * temp1.i,
+ q__3.i = x[i__5].r * temp1.i + x[i__5].i *
+ temp1.r;
+ q__2.r = a[i__4].r + q__3.r, q__2.i = a[i__4].i +
+ q__3.i;
+ i__6 = iy;
+ q__4.r = y[i__6].r * temp2.r - y[i__6].i * temp2.i,
+ q__4.i = y[i__6].r * temp2.i + y[i__6].i *
+ temp2.r;
+ q__1.r = q__2.r + q__4.r, q__1.i = q__2.i + q__4.i;
+ a[i__3].r = q__1.r, a[i__3].i = q__1.i;
+/* L70: */
+ }
+ } else {
+ i__2 = j + j * a_dim1;
+ i__3 = j + j * a_dim1;
+ r__1 = a[i__3].r;
+ a[i__2].r = r__1, a[i__2].i = 0.f;
+ }
+ jx += *incx;
+ jy += *incy;
+/* L80: */
+ }
+ }
+ }
+
+ return 0;
+
+/* End of CHER2 . */
+
+} /* cher2_ */
+
+/* Subroutine */ int cher2k_(char *uplo, char *trans, integer *n, integer *k,
+ complex *alpha, complex *a, integer *lda, complex *b, integer *ldb,
+ real *beta, complex *c__, integer *ldc)
+{
+ /* System generated locals */
+ integer a_dim1, a_offset, b_dim1, b_offset, c_dim1, c_offset, i__1, i__2,
+ i__3, i__4, i__5, i__6, i__7;
+ real r__1;
+ complex q__1, q__2, q__3, q__4, q__5, q__6;
+
+ /* Builtin functions */
+ void r_cnjg(complex *, complex *);
+
+ /* Local variables */
+ static integer i__, j, l, info;
+ static complex temp1, temp2;
+ extern logical lsame_(char *, char *);
+ static integer nrowa;
+ static logical upper;
+ extern /* Subroutine */ int xerbla_(char *, integer *);
+
+
+/*
+ Purpose
+ =======
+
+ CHER2K performs one of the hermitian rank 2k operations
+
+ C := alpha*A*conjg( B' ) + conjg( alpha )*B*conjg( A' ) + beta*C,
+
+ or
+
+ C := alpha*conjg( A' )*B + conjg( alpha )*conjg( B' )*A + beta*C,
+
+ where alpha and beta are scalars with beta real, C is an n by n
+ hermitian matrix and A and B are n by k matrices in the first case
+ and k by n matrices in the second case.
+
+ Parameters
+ ==========
+
+ UPLO - CHARACTER*1.
+ On entry, UPLO specifies whether the upper or lower
+ triangular part of the array C is to be referenced as
+ follows:
+
+ UPLO = 'U' or 'u' Only the upper triangular part of C
+ is to be referenced.
+
+ UPLO = 'L' or 'l' Only the lower triangular part of C
+ is to be referenced.
+
+ Unchanged on exit.
+
+ TRANS - CHARACTER*1.
+ On entry, TRANS specifies the operation to be performed as
+ follows:
+
+ TRANS = 'N' or 'n' C := alpha*A*conjg( B' ) +
+ conjg( alpha )*B*conjg( A' ) +
+ beta*C.
+
+ TRANS = 'C' or 'c' C := alpha*conjg( A' )*B +
+ conjg( alpha )*conjg( B' )*A +
+ beta*C.
+
+ Unchanged on exit.
+
+ N - INTEGER.
+ On entry, N specifies the order of the matrix C. N must be
+ at least zero.
+ Unchanged on exit.
+
+ K - INTEGER.
+ On entry with TRANS = 'N' or 'n', K specifies the number
+ of columns of the matrices A and B, and on entry with
+ TRANS = 'C' or 'c', K specifies the number of rows of the
+ matrices A and B. K must be at least zero.
+ Unchanged on exit.
+
+ ALPHA - COMPLEX .
+ On entry, ALPHA specifies the scalar alpha.
+ Unchanged on exit.
+
+ A - COMPLEX array of DIMENSION ( LDA, ka ), where ka is
+ k when TRANS = 'N' or 'n', and is n otherwise.
+ Before entry with TRANS = 'N' or 'n', the leading n by k
+ part of the array A must contain the matrix A, otherwise
+ the leading k by n part of the array A must contain the
+ matrix A.
+ Unchanged on exit.
+
+ LDA - INTEGER.
+ On entry, LDA specifies the first dimension of A as declared
+ in the calling (sub) program. When TRANS = 'N' or 'n'
+ then LDA must be at least max( 1, n ), otherwise LDA must
+ be at least max( 1, k ).
+ Unchanged on exit.
+
+ B - COMPLEX array of DIMENSION ( LDB, kb ), where kb is
+ k when TRANS = 'N' or 'n', and is n otherwise.
+ Before entry with TRANS = 'N' or 'n', the leading n by k
+ part of the array B must contain the matrix B, otherwise
+ the leading k by n part of the array B must contain the
+ matrix B.
+ Unchanged on exit.
+
+ LDB - INTEGER.
+ On entry, LDB specifies the first dimension of B as declared
+ in the calling (sub) program. When TRANS = 'N' or 'n'
+ then LDB must be at least max( 1, n ), otherwise LDB must
+ be at least max( 1, k ).
+ Unchanged on exit.
+
+ BETA - REAL .
+ On entry, BETA specifies the scalar beta.
+ Unchanged on exit.
+
+ C - COMPLEX array of DIMENSION ( LDC, n ).
+ Before entry with UPLO = 'U' or 'u', the leading n by n
+ upper triangular part of the array C must contain the upper
+ triangular part of the hermitian matrix and the strictly
+ lower triangular part of C is not referenced. On exit, the
+ upper triangular part of the array C is overwritten by the
+ upper triangular part of the updated matrix.
+ Before entry with UPLO = 'L' or 'l', the leading n by n
+ lower triangular part of the array C must contain the lower
+ triangular part of the hermitian matrix and the strictly
+ upper triangular part of C is not referenced. On exit, the
+ lower triangular part of the array C is overwritten by the
+ lower triangular part of the updated matrix.
+ Note that the imaginary parts of the diagonal elements need
+ not be set, they are assumed to be zero, and on exit they
+ are set to zero.
+
+ LDC - INTEGER.
+ On entry, LDC specifies the first dimension of C as declared
+ in the calling (sub) program. LDC must be at least
+ max( 1, n ).
+ Unchanged on exit.
+
+
+ Level 3 Blas routine.
+
+ -- Written on 8-February-1989.
+ Jack Dongarra, Argonne National Laboratory.
+ Iain Duff, AERE Harwell.
+ Jeremy Du Croz, Numerical Algorithms Group Ltd.
+ Sven Hammarling, Numerical Algorithms Group Ltd.
+
+ -- Modified 8-Nov-93 to set C(J,J) to REAL( C(J,J) ) when BETA = 1.
+ Ed Anderson, Cray Research Inc.
+
+
+ Test the input parameters.
+*/
+
+ /* Parameter adjustments */
+ a_dim1 = *lda;
+ a_offset = 1 + a_dim1;
+ a -= a_offset;
+ b_dim1 = *ldb;
+ b_offset = 1 + b_dim1;
+ b -= b_offset;
+ c_dim1 = *ldc;
+ c_offset = 1 + c_dim1;
+ c__ -= c_offset;
+
+ /* Function Body */
+ if (lsame_(trans, "N")) {
+ nrowa = *n;
+ } else {
+ nrowa = *k;
+ }
+ upper = lsame_(uplo, "U");
+
+ info = 0;
+ if (! upper && ! lsame_(uplo, "L")) {
+ info = 1;
+ } else if (! lsame_(trans, "N") && ! lsame_(trans,
+ "C")) {
+ info = 2;
+ } else if (*n < 0) {
+ info = 3;
+ } else if (*k < 0) {
+ info = 4;
+ } else if (*lda < max(1,nrowa)) {
+ info = 7;
+ } else if (*ldb < max(1,nrowa)) {
+ info = 9;
+ } else if (*ldc < max(1,*n)) {
+ info = 12;
+ }
+ if (info != 0) {
+ xerbla_("CHER2K", &info);
+ return 0;
+ }
+
+/* Quick return if possible. */
+
+ if ((*n == 0) || (((alpha->r == 0.f && alpha->i == 0.f) || (*k == 0)) && *
+ beta == 1.f)) {
+ return 0;
+ }
+
+/* And when alpha.eq.zero. */
+
+ if (alpha->r == 0.f && alpha->i == 0.f) {
+ if (upper) {
+ if (*beta == 0.f) {
+ i__1 = *n;
+ for (j = 1; j <= i__1; ++j) {
+ i__2 = j;
+ for (i__ = 1; i__ <= i__2; ++i__) {
+ i__3 = i__ + j * c_dim1;
+ c__[i__3].r = 0.f, c__[i__3].i = 0.f;
+/* L10: */
+ }
+/* L20: */
+ }
+ } else {
+ i__1 = *n;
+ for (j = 1; j <= i__1; ++j) {
+ i__2 = j - 1;
+ for (i__ = 1; i__ <= i__2; ++i__) {
+ i__3 = i__ + j * c_dim1;
+ i__4 = i__ + j * c_dim1;
+ q__1.r = *beta * c__[i__4].r, q__1.i = *beta * c__[
+ i__4].i;
+ c__[i__3].r = q__1.r, c__[i__3].i = q__1.i;
+/* L30: */
+ }
+ i__2 = j + j * c_dim1;
+ i__3 = j + j * c_dim1;
+ r__1 = *beta * c__[i__3].r;
+ c__[i__2].r = r__1, c__[i__2].i = 0.f;
+/* L40: */
+ }
+ }
+ } else {
+ if (*beta == 0.f) {
+ i__1 = *n;
+ for (j = 1; j <= i__1; ++j) {
+ i__2 = *n;
+ for (i__ = j; i__ <= i__2; ++i__) {
+ i__3 = i__ + j * c_dim1;
+ c__[i__3].r = 0.f, c__[i__3].i = 0.f;
+/* L50: */
+ }
+/* L60: */
+ }
+ } else {
+ i__1 = *n;
+ for (j = 1; j <= i__1; ++j) {
+ i__2 = j + j * c_dim1;
+ i__3 = j + j * c_dim1;
+ r__1 = *beta * c__[i__3].r;
+ c__[i__2].r = r__1, c__[i__2].i = 0.f;
+ i__2 = *n;
+ for (i__ = j + 1; i__ <= i__2; ++i__) {
+ i__3 = i__ + j * c_dim1;
+ i__4 = i__ + j * c_dim1;
+ q__1.r = *beta * c__[i__4].r, q__1.i = *beta * c__[
+ i__4].i;
+ c__[i__3].r = q__1.r, c__[i__3].i = q__1.i;
+/* L70: */
+ }
+/* L80: */
+ }
+ }
+ }
+ return 0;
+ }
+
+/* Start the operations. */
+
+ if (lsame_(trans, "N")) {
+
+/*
+ Form C := alpha*A*conjg( B' ) + conjg( alpha )*B*conjg( A' ) +
+ C.
+*/
+
+ if (upper) {
+ i__1 = *n;
+ for (j = 1; j <= i__1; ++j) {
+ if (*beta == 0.f) {
+ i__2 = j;
+ for (i__ = 1; i__ <= i__2; ++i__) {
+ i__3 = i__ + j * c_dim1;
+ c__[i__3].r = 0.f, c__[i__3].i = 0.f;
+/* L90: */
+ }
+ } else if (*beta != 1.f) {
+ i__2 = j - 1;
+ for (i__ = 1; i__ <= i__2; ++i__) {
+ i__3 = i__ + j * c_dim1;
+ i__4 = i__ + j * c_dim1;
+ q__1.r = *beta * c__[i__4].r, q__1.i = *beta * c__[
+ i__4].i;
+ c__[i__3].r = q__1.r, c__[i__3].i = q__1.i;
+/* L100: */
+ }
+ i__2 = j + j * c_dim1;
+ i__3 = j + j * c_dim1;
+ r__1 = *beta * c__[i__3].r;
+ c__[i__2].r = r__1, c__[i__2].i = 0.f;
+ } else {
+ i__2 = j + j * c_dim1;
+ i__3 = j + j * c_dim1;
+ r__1 = c__[i__3].r;
+ c__[i__2].r = r__1, c__[i__2].i = 0.f;
+ }
+ i__2 = *k;
+ for (l = 1; l <= i__2; ++l) {
+ i__3 = j + l * a_dim1;
+ i__4 = j + l * b_dim1;
+ if (((a[i__3].r != 0.f) || (a[i__3].i != 0.f)) || (((b[
+ i__4].r != 0.f) || (b[i__4].i != 0.f)))) {
+ r_cnjg(&q__2, &b[j + l * b_dim1]);
+ q__1.r = alpha->r * q__2.r - alpha->i * q__2.i,
+ q__1.i = alpha->r * q__2.i + alpha->i *
+ q__2.r;
+ temp1.r = q__1.r, temp1.i = q__1.i;
+ i__3 = j + l * a_dim1;
+ q__2.r = alpha->r * a[i__3].r - alpha->i * a[i__3].i,
+ q__2.i = alpha->r * a[i__3].i + alpha->i * a[
+ i__3].r;
+ r_cnjg(&q__1, &q__2);
+ temp2.r = q__1.r, temp2.i = q__1.i;
+ i__3 = j - 1;
+ for (i__ = 1; i__ <= i__3; ++i__) {
+ i__4 = i__ + j * c_dim1;
+ i__5 = i__ + j * c_dim1;
+ i__6 = i__ + l * a_dim1;
+ q__3.r = a[i__6].r * temp1.r - a[i__6].i *
+ temp1.i, q__3.i = a[i__6].r * temp1.i + a[
+ i__6].i * temp1.r;
+ q__2.r = c__[i__5].r + q__3.r, q__2.i = c__[i__5]
+ .i + q__3.i;
+ i__7 = i__ + l * b_dim1;
+ q__4.r = b[i__7].r * temp2.r - b[i__7].i *
+ temp2.i, q__4.i = b[i__7].r * temp2.i + b[
+ i__7].i * temp2.r;
+ q__1.r = q__2.r + q__4.r, q__1.i = q__2.i +
+ q__4.i;
+ c__[i__4].r = q__1.r, c__[i__4].i = q__1.i;
+/* L110: */
+ }
+ i__3 = j + j * c_dim1;
+ i__4 = j + j * c_dim1;
+ i__5 = j + l * a_dim1;
+ q__2.r = a[i__5].r * temp1.r - a[i__5].i * temp1.i,
+ q__2.i = a[i__5].r * temp1.i + a[i__5].i *
+ temp1.r;
+ i__6 = j + l * b_dim1;
+ q__3.r = b[i__6].r * temp2.r - b[i__6].i * temp2.i,
+ q__3.i = b[i__6].r * temp2.i + b[i__6].i *
+ temp2.r;
+ q__1.r = q__2.r + q__3.r, q__1.i = q__2.i + q__3.i;
+ r__1 = c__[i__4].r + q__1.r;
+ c__[i__3].r = r__1, c__[i__3].i = 0.f;
+ }
+/* L120: */
+ }
+/* L130: */
+ }
+ } else {
+ i__1 = *n;
+ for (j = 1; j <= i__1; ++j) {
+ if (*beta == 0.f) {
+ i__2 = *n;
+ for (i__ = j; i__ <= i__2; ++i__) {
+ i__3 = i__ + j * c_dim1;
+ c__[i__3].r = 0.f, c__[i__3].i = 0.f;
+/* L140: */
+ }
+ } else if (*beta != 1.f) {
+ i__2 = *n;
+ for (i__ = j + 1; i__ <= i__2; ++i__) {
+ i__3 = i__ + j * c_dim1;
+ i__4 = i__ + j * c_dim1;
+ q__1.r = *beta * c__[i__4].r, q__1.i = *beta * c__[
+ i__4].i;
+ c__[i__3].r = q__1.r, c__[i__3].i = q__1.i;
+/* L150: */
+ }
+ i__2 = j + j * c_dim1;
+ i__3 = j + j * c_dim1;
+ r__1 = *beta * c__[i__3].r;
+ c__[i__2].r = r__1, c__[i__2].i = 0.f;
+ } else {
+ i__2 = j + j * c_dim1;
+ i__3 = j + j * c_dim1;
+ r__1 = c__[i__3].r;
+ c__[i__2].r = r__1, c__[i__2].i = 0.f;
+ }
+ i__2 = *k;
+ for (l = 1; l <= i__2; ++l) {
+ i__3 = j + l * a_dim1;
+ i__4 = j + l * b_dim1;
+ if (((a[i__3].r != 0.f) || (a[i__3].i != 0.f)) || (((b[
+ i__4].r != 0.f) || (b[i__4].i != 0.f)))) {
+ r_cnjg(&q__2, &b[j + l * b_dim1]);
+ q__1.r = alpha->r * q__2.r - alpha->i * q__2.i,
+ q__1.i = alpha->r * q__2.i + alpha->i *
+ q__2.r;
+ temp1.r = q__1.r, temp1.i = q__1.i;
+ i__3 = j + l * a_dim1;
+ q__2.r = alpha->r * a[i__3].r - alpha->i * a[i__3].i,
+ q__2.i = alpha->r * a[i__3].i + alpha->i * a[
+ i__3].r;
+ r_cnjg(&q__1, &q__2);
+ temp2.r = q__1.r, temp2.i = q__1.i;
+ i__3 = *n;
+ for (i__ = j + 1; i__ <= i__3; ++i__) {
+ i__4 = i__ + j * c_dim1;
+ i__5 = i__ + j * c_dim1;
+ i__6 = i__ + l * a_dim1;
+ q__3.r = a[i__6].r * temp1.r - a[i__6].i *
+ temp1.i, q__3.i = a[i__6].r * temp1.i + a[
+ i__6].i * temp1.r;
+ q__2.r = c__[i__5].r + q__3.r, q__2.i = c__[i__5]
+ .i + q__3.i;
+ i__7 = i__ + l * b_dim1;
+ q__4.r = b[i__7].r * temp2.r - b[i__7].i *
+ temp2.i, q__4.i = b[i__7].r * temp2.i + b[
+ i__7].i * temp2.r;
+ q__1.r = q__2.r + q__4.r, q__1.i = q__2.i +
+ q__4.i;
+ c__[i__4].r = q__1.r, c__[i__4].i = q__1.i;
+/* L160: */
+ }
+ i__3 = j + j * c_dim1;
+ i__4 = j + j * c_dim1;
+ i__5 = j + l * a_dim1;
+ q__2.r = a[i__5].r * temp1.r - a[i__5].i * temp1.i,
+ q__2.i = a[i__5].r * temp1.i + a[i__5].i *
+ temp1.r;
+ i__6 = j + l * b_dim1;
+ q__3.r = b[i__6].r * temp2.r - b[i__6].i * temp2.i,
+ q__3.i = b[i__6].r * temp2.i + b[i__6].i *
+ temp2.r;
+ q__1.r = q__2.r + q__3.r, q__1.i = q__2.i + q__3.i;
+ r__1 = c__[i__4].r + q__1.r;
+ c__[i__3].r = r__1, c__[i__3].i = 0.f;
+ }
+/* L170: */
+ }
+/* L180: */
+ }
+ }
+ } else {
+
+/*
+ Form C := alpha*conjg( A' )*B + conjg( alpha )*conjg( B' )*A +
+ C.
+*/
+
+ if (upper) {
+ i__1 = *n;
+ for (j = 1; j <= i__1; ++j) {
+ i__2 = j;
+ for (i__ = 1; i__ <= i__2; ++i__) {
+ temp1.r = 0.f, temp1.i = 0.f;
+ temp2.r = 0.f, temp2.i = 0.f;
+ i__3 = *k;
+ for (l = 1; l <= i__3; ++l) {
+ r_cnjg(&q__3, &a[l + i__ * a_dim1]);
+ i__4 = l + j * b_dim1;
+ q__2.r = q__3.r * b[i__4].r - q__3.i * b[i__4].i,
+ q__2.i = q__3.r * b[i__4].i + q__3.i * b[i__4]
+ .r;
+ q__1.r = temp1.r + q__2.r, q__1.i = temp1.i + q__2.i;
+ temp1.r = q__1.r, temp1.i = q__1.i;
+ r_cnjg(&q__3, &b[l + i__ * b_dim1]);
+ i__4 = l + j * a_dim1;
+ q__2.r = q__3.r * a[i__4].r - q__3.i * a[i__4].i,
+ q__2.i = q__3.r * a[i__4].i + q__3.i * a[i__4]
+ .r;
+ q__1.r = temp2.r + q__2.r, q__1.i = temp2.i + q__2.i;
+ temp2.r = q__1.r, temp2.i = q__1.i;
+/* L190: */
+ }
+ if (i__ == j) {
+ if (*beta == 0.f) {
+ i__3 = j + j * c_dim1;
+ q__2.r = alpha->r * temp1.r - alpha->i * temp1.i,
+ q__2.i = alpha->r * temp1.i + alpha->i *
+ temp1.r;
+ r_cnjg(&q__4, alpha);
+ q__3.r = q__4.r * temp2.r - q__4.i * temp2.i,
+ q__3.i = q__4.r * temp2.i + q__4.i *
+ temp2.r;
+ q__1.r = q__2.r + q__3.r, q__1.i = q__2.i +
+ q__3.i;
+ r__1 = q__1.r;
+ c__[i__3].r = r__1, c__[i__3].i = 0.f;
+ } else {
+ i__3 = j + j * c_dim1;
+ i__4 = j + j * c_dim1;
+ q__2.r = alpha->r * temp1.r - alpha->i * temp1.i,
+ q__2.i = alpha->r * temp1.i + alpha->i *
+ temp1.r;
+ r_cnjg(&q__4, alpha);
+ q__3.r = q__4.r * temp2.r - q__4.i * temp2.i,
+ q__3.i = q__4.r * temp2.i + q__4.i *
+ temp2.r;
+ q__1.r = q__2.r + q__3.r, q__1.i = q__2.i +
+ q__3.i;
+ r__1 = *beta * c__[i__4].r + q__1.r;
+ c__[i__3].r = r__1, c__[i__3].i = 0.f;
+ }
+ } else {
+ if (*beta == 0.f) {
+ i__3 = i__ + j * c_dim1;
+ q__2.r = alpha->r * temp1.r - alpha->i * temp1.i,
+ q__2.i = alpha->r * temp1.i + alpha->i *
+ temp1.r;
+ r_cnjg(&q__4, alpha);
+ q__3.r = q__4.r * temp2.r - q__4.i * temp2.i,
+ q__3.i = q__4.r * temp2.i + q__4.i *
+ temp2.r;
+ q__1.r = q__2.r + q__3.r, q__1.i = q__2.i +
+ q__3.i;
+ c__[i__3].r = q__1.r, c__[i__3].i = q__1.i;
+ } else {
+ i__3 = i__ + j * c_dim1;
+ i__4 = i__ + j * c_dim1;
+ q__3.r = *beta * c__[i__4].r, q__3.i = *beta *
+ c__[i__4].i;
+ q__4.r = alpha->r * temp1.r - alpha->i * temp1.i,
+ q__4.i = alpha->r * temp1.i + alpha->i *
+ temp1.r;
+ q__2.r = q__3.r + q__4.r, q__2.i = q__3.i +
+ q__4.i;
+ r_cnjg(&q__6, alpha);
+ q__5.r = q__6.r * temp2.r - q__6.i * temp2.i,
+ q__5.i = q__6.r * temp2.i + q__6.i *
+ temp2.r;
+ q__1.r = q__2.r + q__5.r, q__1.i = q__2.i +
+ q__5.i;
+ c__[i__3].r = q__1.r, c__[i__3].i = q__1.i;
+ }
+ }
+/* L200: */
+ }
+/* L210: */
+ }
+ } else {
+ i__1 = *n;
+ for (j = 1; j <= i__1; ++j) {
+ i__2 = *n;
+ for (i__ = j; i__ <= i__2; ++i__) {
+ temp1.r = 0.f, temp1.i = 0.f;
+ temp2.r = 0.f, temp2.i = 0.f;
+ i__3 = *k;
+ for (l = 1; l <= i__3; ++l) {
+ r_cnjg(&q__3, &a[l + i__ * a_dim1]);
+ i__4 = l + j * b_dim1;
+ q__2.r = q__3.r * b[i__4].r - q__3.i * b[i__4].i,
+ q__2.i = q__3.r * b[i__4].i + q__3.i * b[i__4]
+ .r;
+ q__1.r = temp1.r + q__2.r, q__1.i = temp1.i + q__2.i;
+ temp1.r = q__1.r, temp1.i = q__1.i;
+ r_cnjg(&q__3, &b[l + i__ * b_dim1]);
+ i__4 = l + j * a_dim1;
+ q__2.r = q__3.r * a[i__4].r - q__3.i * a[i__4].i,
+ q__2.i = q__3.r * a[i__4].i + q__3.i * a[i__4]
+ .r;
+ q__1.r = temp2.r + q__2.r, q__1.i = temp2.i + q__2.i;
+ temp2.r = q__1.r, temp2.i = q__1.i;
+/* L220: */
+ }
+ if (i__ == j) {
+ if (*beta == 0.f) {
+ i__3 = j + j * c_dim1;
+ q__2.r = alpha->r * temp1.r - alpha->i * temp1.i,
+ q__2.i = alpha->r * temp1.i + alpha->i *
+ temp1.r;
+ r_cnjg(&q__4, alpha);
+ q__3.r = q__4.r * temp2.r - q__4.i * temp2.i,
+ q__3.i = q__4.r * temp2.i + q__4.i *
+ temp2.r;
+ q__1.r = q__2.r + q__3.r, q__1.i = q__2.i +
+ q__3.i;
+ r__1 = q__1.r;
+ c__[i__3].r = r__1, c__[i__3].i = 0.f;
+ } else {
+ i__3 = j + j * c_dim1;
+ i__4 = j + j * c_dim1;
+ q__2.r = alpha->r * temp1.r - alpha->i * temp1.i,
+ q__2.i = alpha->r * temp1.i + alpha->i *
+ temp1.r;
+ r_cnjg(&q__4, alpha);
+ q__3.r = q__4.r * temp2.r - q__4.i * temp2.i,
+ q__3.i = q__4.r * temp2.i + q__4.i *
+ temp2.r;
+ q__1.r = q__2.r + q__3.r, q__1.i = q__2.i +
+ q__3.i;
+ r__1 = *beta * c__[i__4].r + q__1.r;
+ c__[i__3].r = r__1, c__[i__3].i = 0.f;
+ }
+ } else {
+ if (*beta == 0.f) {
+ i__3 = i__ + j * c_dim1;
+ q__2.r = alpha->r * temp1.r - alpha->i * temp1.i,
+ q__2.i = alpha->r * temp1.i + alpha->i *
+ temp1.r;
+ r_cnjg(&q__4, alpha);
+ q__3.r = q__4.r * temp2.r - q__4.i * temp2.i,
+ q__3.i = q__4.r * temp2.i + q__4.i *
+ temp2.r;
+ q__1.r = q__2.r + q__3.r, q__1.i = q__2.i +
+ q__3.i;
+ c__[i__3].r = q__1.r, c__[i__3].i = q__1.i;
+ } else {
+ i__3 = i__ + j * c_dim1;
+ i__4 = i__ + j * c_dim1;
+ q__3.r = *beta * c__[i__4].r, q__3.i = *beta *
+ c__[i__4].i;
+ q__4.r = alpha->r * temp1.r - alpha->i * temp1.i,
+ q__4.i = alpha->r * temp1.i + alpha->i *
+ temp1.r;
+ q__2.r = q__3.r + q__4.r, q__2.i = q__3.i +
+ q__4.i;
+ r_cnjg(&q__6, alpha);
+ q__5.r = q__6.r * temp2.r - q__6.i * temp2.i,
+ q__5.i = q__6.r * temp2.i + q__6.i *
+ temp2.r;
+ q__1.r = q__2.r + q__5.r, q__1.i = q__2.i +
+ q__5.i;
+ c__[i__3].r = q__1.r, c__[i__3].i = q__1.i;
+ }
+ }
+/* L230: */
+ }
+/* L240: */
+ }
+ }
+ }
+
+ return 0;
+
+/* End of CHER2K. */
+
+} /* cher2k_ */
+
+/* Subroutine */ int cherk_(char *uplo, char *trans, integer *n, integer *k,
+ real *alpha, complex *a, integer *lda, real *beta, complex *c__,
+ integer *ldc)
+{
+ /* System generated locals */
+ integer a_dim1, a_offset, c_dim1, c_offset, i__1, i__2, i__3, i__4, i__5,
+ i__6;
+ real r__1;
+ complex q__1, q__2, q__3;
+
+ /* Builtin functions */
+ void r_cnjg(complex *, complex *);
+
+ /* Local variables */
+ static integer i__, j, l, info;
+ static complex temp;
+ extern logical lsame_(char *, char *);
+ static integer nrowa;
+ static real rtemp;
+ static logical upper;
+ extern /* Subroutine */ int xerbla_(char *, integer *);
+
+
+/*
+ Purpose
+ =======
+
+ CHERK performs one of the hermitian rank k operations
+
+ C := alpha*A*conjg( A' ) + beta*C,
+
+ or
+
+ C := alpha*conjg( A' )*A + beta*C,
+
+ where alpha and beta are real scalars, C is an n by n hermitian
+ matrix and A is an n by k matrix in the first case and a k by n
+ matrix in the second case.
+
+ Parameters
+ ==========
+
+ UPLO - CHARACTER*1.
+ On entry, UPLO specifies whether the upper or lower
+ triangular part of the array C is to be referenced as
+ follows:
+
+ UPLO = 'U' or 'u' Only the upper triangular part of C
+ is to be referenced.
+
+ UPLO = 'L' or 'l' Only the lower triangular part of C
+ is to be referenced.
+
+ Unchanged on exit.
+
+ TRANS - CHARACTER*1.
+ On entry, TRANS specifies the operation to be performed as
+ follows:
+
+ TRANS = 'N' or 'n' C := alpha*A*conjg( A' ) + beta*C.
+
+ TRANS = 'C' or 'c' C := alpha*conjg( A' )*A + beta*C.
+
+ Unchanged on exit.
+
+ N - INTEGER.
+ On entry, N specifies the order of the matrix C. N must be
+ at least zero.
+ Unchanged on exit.
+
+ K - INTEGER.
+ On entry with TRANS = 'N' or 'n', K specifies the number
+ of columns of the matrix A, and on entry with
+ TRANS = 'C' or 'c', K specifies the number of rows of the
+ matrix A. K must be at least zero.
+ Unchanged on exit.
+
+ ALPHA - REAL .
+ On entry, ALPHA specifies the scalar alpha.
+ Unchanged on exit.
+
+ A - COMPLEX array of DIMENSION ( LDA, ka ), where ka is
+ k when TRANS = 'N' or 'n', and is n otherwise.
+ Before entry with TRANS = 'N' or 'n', the leading n by k
+ part of the array A must contain the matrix A, otherwise
+ the leading k by n part of the array A must contain the
+ matrix A.
+ Unchanged on exit.
+
+ LDA - INTEGER.
+ On entry, LDA specifies the first dimension of A as declared
+ in the calling (sub) program. When TRANS = 'N' or 'n'
+ then LDA must be at least max( 1, n ), otherwise LDA must
+ be at least max( 1, k ).
+ Unchanged on exit.
+
+ BETA - REAL .
+ On entry, BETA specifies the scalar beta.
+ Unchanged on exit.
+
+ C - COMPLEX array of DIMENSION ( LDC, n ).
+ Before entry with UPLO = 'U' or 'u', the leading n by n
+ upper triangular part of the array C must contain the upper
+ triangular part of the hermitian matrix and the strictly
+ lower triangular part of C is not referenced. On exit, the
+ upper triangular part of the array C is overwritten by the
+ upper triangular part of the updated matrix.
+ Before entry with UPLO = 'L' or 'l', the leading n by n
+ lower triangular part of the array C must contain the lower
+ triangular part of the hermitian matrix and the strictly
+ upper triangular part of C is not referenced. On exit, the
+ lower triangular part of the array C is overwritten by the
+ lower triangular part of the updated matrix.
+ Note that the imaginary parts of the diagonal elements need
+ not be set, they are assumed to be zero, and on exit they
+ are set to zero.
+
+ LDC - INTEGER.
+ On entry, LDC specifies the first dimension of C as declared
+ in the calling (sub) program. LDC must be at least
+ max( 1, n ).
+ Unchanged on exit.
+
+
+ Level 3 Blas routine.
+
+ -- Written on 8-February-1989.
+ Jack Dongarra, Argonne National Laboratory.
+ Iain Duff, AERE Harwell.
+ Jeremy Du Croz, Numerical Algorithms Group Ltd.
+ Sven Hammarling, Numerical Algorithms Group Ltd.
+
+ -- Modified 8-Nov-93 to set C(J,J) to REAL( C(J,J) ) when BETA = 1.
+ Ed Anderson, Cray Research Inc.
+
+
+ Test the input parameters.
+*/
+
+ /* Parameter adjustments */
+ a_dim1 = *lda;
+ a_offset = 1 + a_dim1;
+ a -= a_offset;
+ c_dim1 = *ldc;
+ c_offset = 1 + c_dim1;
+ c__ -= c_offset;
+
+ /* Function Body */
+ if (lsame_(trans, "N")) {
+ nrowa = *n;
+ } else {
+ nrowa = *k;
+ }
+ upper = lsame_(uplo, "U");
+
+ info = 0;
+ if (! upper && ! lsame_(uplo, "L")) {
+ info = 1;
+ } else if (! lsame_(trans, "N") && ! lsame_(trans,
+ "C")) {
+ info = 2;
+ } else if (*n < 0) {
+ info = 3;
+ } else if (*k < 0) {
+ info = 4;
+ } else if (*lda < max(1,nrowa)) {
+ info = 7;
+ } else if (*ldc < max(1,*n)) {
+ info = 10;
+ }
+ if (info != 0) {
+ xerbla_("CHERK ", &info);
+ return 0;
+ }
+
+/* Quick return if possible. */
+
+ if ((*n == 0) || (((*alpha == 0.f) || (*k == 0)) && *beta == 1.f)) {
+ return 0;
+ }
+
+/* And when alpha.eq.zero. */
+
+ if (*alpha == 0.f) {
+ if (upper) {
+ if (*beta == 0.f) {
+ i__1 = *n;
+ for (j = 1; j <= i__1; ++j) {
+ i__2 = j;
+ for (i__ = 1; i__ <= i__2; ++i__) {
+ i__3 = i__ + j * c_dim1;
+ c__[i__3].r = 0.f, c__[i__3].i = 0.f;
+/* L10: */
+ }
+/* L20: */
+ }
+ } else {
+ i__1 = *n;
+ for (j = 1; j <= i__1; ++j) {
+ i__2 = j - 1;
+ for (i__ = 1; i__ <= i__2; ++i__) {
+ i__3 = i__ + j * c_dim1;
+ i__4 = i__ + j * c_dim1;
+ q__1.r = *beta * c__[i__4].r, q__1.i = *beta * c__[
+ i__4].i;
+ c__[i__3].r = q__1.r, c__[i__3].i = q__1.i;
+/* L30: */
+ }
+ i__2 = j + j * c_dim1;
+ i__3 = j + j * c_dim1;
+ r__1 = *beta * c__[i__3].r;
+ c__[i__2].r = r__1, c__[i__2].i = 0.f;
+/* L40: */
+ }
+ }
+ } else {
+ if (*beta == 0.f) {
+ i__1 = *n;
+ for (j = 1; j <= i__1; ++j) {
+ i__2 = *n;
+ for (i__ = j; i__ <= i__2; ++i__) {
+ i__3 = i__ + j * c_dim1;
+ c__[i__3].r = 0.f, c__[i__3].i = 0.f;
+/* L50: */
+ }
+/* L60: */
+ }
+ } else {
+ i__1 = *n;
+ for (j = 1; j <= i__1; ++j) {
+ i__2 = j + j * c_dim1;
+ i__3 = j + j * c_dim1;
+ r__1 = *beta * c__[i__3].r;
+ c__[i__2].r = r__1, c__[i__2].i = 0.f;
+ i__2 = *n;
+ for (i__ = j + 1; i__ <= i__2; ++i__) {
+ i__3 = i__ + j * c_dim1;
+ i__4 = i__ + j * c_dim1;
+ q__1.r = *beta * c__[i__4].r, q__1.i = *beta * c__[
+ i__4].i;
+ c__[i__3].r = q__1.r, c__[i__3].i = q__1.i;
+/* L70: */
+ }
+/* L80: */
+ }
+ }
+ }
+ return 0;
+ }
+
+/* Start the operations. */
+
+ if (lsame_(trans, "N")) {
+
+/* Form C := alpha*A*conjg( A' ) + beta*C. */
+
+ if (upper) {
+ i__1 = *n;
+ for (j = 1; j <= i__1; ++j) {
+ if (*beta == 0.f) {
+ i__2 = j;
+ for (i__ = 1; i__ <= i__2; ++i__) {
+ i__3 = i__ + j * c_dim1;
+ c__[i__3].r = 0.f, c__[i__3].i = 0.f;
+/* L90: */
+ }
+ } else if (*beta != 1.f) {
+ i__2 = j - 1;
+ for (i__ = 1; i__ <= i__2; ++i__) {
+ i__3 = i__ + j * c_dim1;
+ i__4 = i__ + j * c_dim1;
+ q__1.r = *beta * c__[i__4].r, q__1.i = *beta * c__[
+ i__4].i;
+ c__[i__3].r = q__1.r, c__[i__3].i = q__1.i;
+/* L100: */
+ }
+ i__2 = j + j * c_dim1;
+ i__3 = j + j * c_dim1;
+ r__1 = *beta * c__[i__3].r;
+ c__[i__2].r = r__1, c__[i__2].i = 0.f;
+ } else {
+ i__2 = j + j * c_dim1;
+ i__3 = j + j * c_dim1;
+ r__1 = c__[i__3].r;
+ c__[i__2].r = r__1, c__[i__2].i = 0.f;
+ }
+ i__2 = *k;
+ for (l = 1; l <= i__2; ++l) {
+ i__3 = j + l * a_dim1;
+ if ((a[i__3].r != 0.f) || (a[i__3].i != 0.f)) {
+ r_cnjg(&q__2, &a[j + l * a_dim1]);
+ q__1.r = *alpha * q__2.r, q__1.i = *alpha * q__2.i;
+ temp.r = q__1.r, temp.i = q__1.i;
+ i__3 = j - 1;
+ for (i__ = 1; i__ <= i__3; ++i__) {
+ i__4 = i__ + j * c_dim1;
+ i__5 = i__ + j * c_dim1;
+ i__6 = i__ + l * a_dim1;
+ q__2.r = temp.r * a[i__6].r - temp.i * a[i__6].i,
+ q__2.i = temp.r * a[i__6].i + temp.i * a[
+ i__6].r;
+ q__1.r = c__[i__5].r + q__2.r, q__1.i = c__[i__5]
+ .i + q__2.i;
+ c__[i__4].r = q__1.r, c__[i__4].i = q__1.i;
+/* L110: */
+ }
+ i__3 = j + j * c_dim1;
+ i__4 = j + j * c_dim1;
+ i__5 = i__ + l * a_dim1;
+ q__1.r = temp.r * a[i__5].r - temp.i * a[i__5].i,
+ q__1.i = temp.r * a[i__5].i + temp.i * a[i__5]
+ .r;
+ r__1 = c__[i__4].r + q__1.r;
+ c__[i__3].r = r__1, c__[i__3].i = 0.f;
+ }
+/* L120: */
+ }
+/* L130: */
+ }
+ } else {
+ i__1 = *n;
+ for (j = 1; j <= i__1; ++j) {
+ if (*beta == 0.f) {
+ i__2 = *n;
+ for (i__ = j; i__ <= i__2; ++i__) {
+ i__3 = i__ + j * c_dim1;
+ c__[i__3].r = 0.f, c__[i__3].i = 0.f;
+/* L140: */
+ }
+ } else if (*beta != 1.f) {
+ i__2 = j + j * c_dim1;
+ i__3 = j + j * c_dim1;
+ r__1 = *beta * c__[i__3].r;
+ c__[i__2].r = r__1, c__[i__2].i = 0.f;
+ i__2 = *n;
+ for (i__ = j + 1; i__ <= i__2; ++i__) {
+ i__3 = i__ + j * c_dim1;
+ i__4 = i__ + j * c_dim1;
+ q__1.r = *beta * c__[i__4].r, q__1.i = *beta * c__[
+ i__4].i;
+ c__[i__3].r = q__1.r, c__[i__3].i = q__1.i;
+/* L150: */
+ }
+ } else {
+ i__2 = j + j * c_dim1;
+ i__3 = j + j * c_dim1;
+ r__1 = c__[i__3].r;
+ c__[i__2].r = r__1, c__[i__2].i = 0.f;
+ }
+ i__2 = *k;
+ for (l = 1; l <= i__2; ++l) {
+ i__3 = j + l * a_dim1;
+ if ((a[i__3].r != 0.f) || (a[i__3].i != 0.f)) {
+ r_cnjg(&q__2, &a[j + l * a_dim1]);
+ q__1.r = *alpha * q__2.r, q__1.i = *alpha * q__2.i;
+ temp.r = q__1.r, temp.i = q__1.i;
+ i__3 = j + j * c_dim1;
+ i__4 = j + j * c_dim1;
+ i__5 = j + l * a_dim1;
+ q__1.r = temp.r * a[i__5].r - temp.i * a[i__5].i,
+ q__1.i = temp.r * a[i__5].i + temp.i * a[i__5]
+ .r;
+ r__1 = c__[i__4].r + q__1.r;
+ c__[i__3].r = r__1, c__[i__3].i = 0.f;
+ i__3 = *n;
+ for (i__ = j + 1; i__ <= i__3; ++i__) {
+ i__4 = i__ + j * c_dim1;
+ i__5 = i__ + j * c_dim1;
+ i__6 = i__ + l * a_dim1;
+ q__2.r = temp.r * a[i__6].r - temp.i * a[i__6].i,
+ q__2.i = temp.r * a[i__6].i + temp.i * a[
+ i__6].r;
+ q__1.r = c__[i__5].r + q__2.r, q__1.i = c__[i__5]
+ .i + q__2.i;
+ c__[i__4].r = q__1.r, c__[i__4].i = q__1.i;
+/* L160: */
+ }
+ }
+/* L170: */
+ }
+/* L180: */
+ }
+ }
+ } else {
+
+/* Form C := alpha*conjg( A' )*A + beta*C. */
+
+ if (upper) {
+ i__1 = *n;
+ for (j = 1; j <= i__1; ++j) {
+ i__2 = j - 1;
+ for (i__ = 1; i__ <= i__2; ++i__) {
+ temp.r = 0.f, temp.i = 0.f;
+ i__3 = *k;
+ for (l = 1; l <= i__3; ++l) {
+ r_cnjg(&q__3, &a[l + i__ * a_dim1]);
+ i__4 = l + j * a_dim1;
+ q__2.r = q__3.r * a[i__4].r - q__3.i * a[i__4].i,
+ q__2.i = q__3.r * a[i__4].i + q__3.i * a[i__4]
+ .r;
+ q__1.r = temp.r + q__2.r, q__1.i = temp.i + q__2.i;
+ temp.r = q__1.r, temp.i = q__1.i;
+/* L190: */
+ }
+ if (*beta == 0.f) {
+ i__3 = i__ + j * c_dim1;
+ q__1.r = *alpha * temp.r, q__1.i = *alpha * temp.i;
+ c__[i__3].r = q__1.r, c__[i__3].i = q__1.i;
+ } else {
+ i__3 = i__ + j * c_dim1;
+ q__2.r = *alpha * temp.r, q__2.i = *alpha * temp.i;
+ i__4 = i__ + j * c_dim1;
+ q__3.r = *beta * c__[i__4].r, q__3.i = *beta * c__[
+ i__4].i;
+ q__1.r = q__2.r + q__3.r, q__1.i = q__2.i + q__3.i;
+ c__[i__3].r = q__1.r, c__[i__3].i = q__1.i;
+ }
+/* L200: */
+ }
+ rtemp = 0.f;
+ i__2 = *k;
+ for (l = 1; l <= i__2; ++l) {
+ r_cnjg(&q__3, &a[l + j * a_dim1]);
+ i__3 = l + j * a_dim1;
+ q__2.r = q__3.r * a[i__3].r - q__3.i * a[i__3].i, q__2.i =
+ q__3.r * a[i__3].i + q__3.i * a[i__3].r;
+ q__1.r = rtemp + q__2.r, q__1.i = q__2.i;
+ rtemp = q__1.r;
+/* L210: */
+ }
+ if (*beta == 0.f) {
+ i__2 = j + j * c_dim1;
+ r__1 = *alpha * rtemp;
+ c__[i__2].r = r__1, c__[i__2].i = 0.f;
+ } else {
+ i__2 = j + j * c_dim1;
+ i__3 = j + j * c_dim1;
+ r__1 = *alpha * rtemp + *beta * c__[i__3].r;
+ c__[i__2].r = r__1, c__[i__2].i = 0.f;
+ }
+/* L220: */
+ }
+ } else {
+ i__1 = *n;
+ for (j = 1; j <= i__1; ++j) {
+ rtemp = 0.f;
+ i__2 = *k;
+ for (l = 1; l <= i__2; ++l) {
+ r_cnjg(&q__3, &a[l + j * a_dim1]);
+ i__3 = l + j * a_dim1;
+ q__2.r = q__3.r * a[i__3].r - q__3.i * a[i__3].i, q__2.i =
+ q__3.r * a[i__3].i + q__3.i * a[i__3].r;
+ q__1.r = rtemp + q__2.r, q__1.i = q__2.i;
+ rtemp = q__1.r;
+/* L230: */
+ }
+ if (*beta == 0.f) {
+ i__2 = j + j * c_dim1;
+ r__1 = *alpha * rtemp;
+ c__[i__2].r = r__1, c__[i__2].i = 0.f;
+ } else {
+ i__2 = j + j * c_dim1;
+ i__3 = j + j * c_dim1;
+ r__1 = *alpha * rtemp + *beta * c__[i__3].r;
+ c__[i__2].r = r__1, c__[i__2].i = 0.f;
+ }
+ i__2 = *n;
+ for (i__ = j + 1; i__ <= i__2; ++i__) {
+ temp.r = 0.f, temp.i = 0.f;
+ i__3 = *k;
+ for (l = 1; l <= i__3; ++l) {
+ r_cnjg(&q__3, &a[l + i__ * a_dim1]);
+ i__4 = l + j * a_dim1;
+ q__2.r = q__3.r * a[i__4].r - q__3.i * a[i__4].i,
+ q__2.i = q__3.r * a[i__4].i + q__3.i * a[i__4]
+ .r;
+ q__1.r = temp.r + q__2.r, q__1.i = temp.i + q__2.i;
+ temp.r = q__1.r, temp.i = q__1.i;
+/* L240: */
+ }
+ if (*beta == 0.f) {
+ i__3 = i__ + j * c_dim1;
+ q__1.r = *alpha * temp.r, q__1.i = *alpha * temp.i;
+ c__[i__3].r = q__1.r, c__[i__3].i = q__1.i;
+ } else {
+ i__3 = i__ + j * c_dim1;
+ q__2.r = *alpha * temp.r, q__2.i = *alpha * temp.i;
+ i__4 = i__ + j * c_dim1;
+ q__3.r = *beta * c__[i__4].r, q__3.i = *beta * c__[
+ i__4].i;
+ q__1.r = q__2.r + q__3.r, q__1.i = q__2.i + q__3.i;
+ c__[i__3].r = q__1.r, c__[i__3].i = q__1.i;
+ }
+/* L250: */
+ }
+/* L260: */
+ }
+ }
+ }
+
+ return 0;
+
+/* End of CHERK . */
+
+} /* cherk_ */
+
+/* Subroutine */ int cscal_(integer *n, complex *ca, complex *cx, integer *
+ incx)
+{
+ /* System generated locals */
+ integer i__1, i__2, i__3, i__4;
+ complex q__1;
+
+ /* Local variables */
+ static integer i__, nincx;
+
+
+/*
+ scales a vector by a constant.
+ jack dongarra, linpack, 3/11/78.
+ modified 3/93 to return if incx .le. 0.
+ modified 12/3/93, array(1) declarations changed to array(*)
+*/
+
+
+ /* Parameter adjustments */
+ --cx;
+
+ /* Function Body */
+ if ((*n <= 0) || (*incx <= 0)) {
+ return 0;
+ }
+ if (*incx == 1) {
+ goto L20;
+ }
+
+/* code for increment not equal to 1 */
+
+ nincx = *n * *incx;
+ i__1 = nincx;
+ i__2 = *incx;
+ for (i__ = 1; i__2 < 0 ? i__ >= i__1 : i__ <= i__1; i__ += i__2) {
+ i__3 = i__;
+ i__4 = i__;
+ q__1.r = ca->r * cx[i__4].r - ca->i * cx[i__4].i, q__1.i = ca->r * cx[
+ i__4].i + ca->i * cx[i__4].r;
+ cx[i__3].r = q__1.r, cx[i__3].i = q__1.i;
+/* L10: */
+ }
+ return 0;
+
+/* code for increment equal to 1 */
+
+L20:
+ i__2 = *n;
+ for (i__ = 1; i__ <= i__2; ++i__) {
+ i__1 = i__;
+ i__3 = i__;
+ q__1.r = ca->r * cx[i__3].r - ca->i * cx[i__3].i, q__1.i = ca->r * cx[
+ i__3].i + ca->i * cx[i__3].r;
+ cx[i__1].r = q__1.r, cx[i__1].i = q__1.i;
+/* L30: */
+ }
+ return 0;
+} /* cscal_ */
+
+/* Subroutine */ int csscal_(integer *n, real *sa, complex *cx, integer *incx)
+{
+ /* System generated locals */
+ integer i__1, i__2, i__3, i__4;
+ real r__1, r__2;
+ complex q__1;
+
+ /* Builtin functions */
+ double r_imag(complex *);
+
+ /* Local variables */
+ static integer i__, nincx;
+
+
+/*
+ scales a complex vector by a real constant.
+ jack dongarra, linpack, 3/11/78.
+ modified 3/93 to return if incx .le. 0.
+ modified 12/3/93, array(1) declarations changed to array(*)
+*/
+
+
+ /* Parameter adjustments */
+ --cx;
+
+ /* Function Body */
+ if ((*n <= 0) || (*incx <= 0)) {
+ return 0;
+ }
+ if (*incx == 1) {
+ goto L20;
+ }
+
+/* code for increment not equal to 1 */
+
+ nincx = *n * *incx;
+ i__1 = nincx;
+ i__2 = *incx;
+ for (i__ = 1; i__2 < 0 ? i__ >= i__1 : i__ <= i__1; i__ += i__2) {
+ i__3 = i__;
+ i__4 = i__;
+ r__1 = *sa * cx[i__4].r;
+ r__2 = *sa * r_imag(&cx[i__]);
+ q__1.r = r__1, q__1.i = r__2;
+ cx[i__3].r = q__1.r, cx[i__3].i = q__1.i;
+/* L10: */
+ }
+ return 0;
+
+/* code for increment equal to 1 */
+
+L20:
+ i__2 = *n;
+ for (i__ = 1; i__ <= i__2; ++i__) {
+ i__1 = i__;
+ i__3 = i__;
+ r__1 = *sa * cx[i__3].r;
+ r__2 = *sa * r_imag(&cx[i__]);
+ q__1.r = r__1, q__1.i = r__2;
+ cx[i__1].r = q__1.r, cx[i__1].i = q__1.i;
+/* L30: */
+ }
+ return 0;
+} /* csscal_ */
+
+/* Subroutine */ int cswap_(integer *n, complex *cx, integer *incx, complex *
+ cy, integer *incy)
+{
+ /* System generated locals */
+ integer i__1, i__2, i__3;
+
+ /* Local variables */
+ static integer i__, ix, iy;
+ static complex ctemp;
+
+
+/*
+ interchanges two vectors.
+ jack dongarra, linpack, 3/11/78.
+ modified 12/3/93, array(1) declarations changed to array(*)
+*/
+
+
+ /* Parameter adjustments */
+ --cy;
+ --cx;
+
+ /* Function Body */
+ if (*n <= 0) {
+ return 0;
+ }
+ if (*incx == 1 && *incy == 1) {
+ goto L20;
+ }
+
+/*
+ code for unequal increments or equal increments not equal
+ to 1
+*/
+
+ ix = 1;
+ iy = 1;
+ if (*incx < 0) {
+ ix = (-(*n) + 1) * *incx + 1;
+ }
+ if (*incy < 0) {
+ iy = (-(*n) + 1) * *incy + 1;
+ }
+ i__1 = *n;
+ for (i__ = 1; i__ <= i__1; ++i__) {
+ i__2 = ix;
+ ctemp.r = cx[i__2].r, ctemp.i = cx[i__2].i;
+ i__2 = ix;
+ i__3 = iy;
+ cx[i__2].r = cy[i__3].r, cx[i__2].i = cy[i__3].i;
+ i__2 = iy;
+ cy[i__2].r = ctemp.r, cy[i__2].i = ctemp.i;
+ ix += *incx;
+ iy += *incy;
+/* L10: */
+ }
+ return 0;
+
+/* code for both increments equal to 1 */
+L20:
+ i__1 = *n;
+ for (i__ = 1; i__ <= i__1; ++i__) {
+ i__2 = i__;
+ ctemp.r = cx[i__2].r, ctemp.i = cx[i__2].i;
+ i__2 = i__;
+ i__3 = i__;
+ cx[i__2].r = cy[i__3].r, cx[i__2].i = cy[i__3].i;
+ i__2 = i__;
+ cy[i__2].r = ctemp.r, cy[i__2].i = ctemp.i;
+/* L30: */
+ }
+ return 0;
+} /* cswap_ */
+
+/* Subroutine */ int ctrmm_(char *side, char *uplo, char *transa, char *diag,
+ integer *m, integer *n, complex *alpha, complex *a, integer *lda,
+ complex *b, integer *ldb)
+{
+ /* System generated locals */
+ integer a_dim1, a_offset, b_dim1, b_offset, i__1, i__2, i__3, i__4, i__5,
+ i__6;
+ complex q__1, q__2, q__3;
+
+ /* Builtin functions */
+ void r_cnjg(complex *, complex *);
+
+ /* Local variables */
+ static integer i__, j, k, info;
+ static complex temp;
+ extern logical lsame_(char *, char *);
+ static logical lside;
+ static integer nrowa;
+ static logical upper;
+ extern /* Subroutine */ int xerbla_(char *, integer *);
+ static logical noconj, nounit;
+
+
+/*
+ Purpose
+ =======
+
+ CTRMM performs one of the matrix-matrix operations
+
+ B := alpha*op( A )*B, or B := alpha*B*op( A )
+
+ where alpha is a scalar, B is an m by n matrix, A is a unit, or
+ non-unit, upper or lower triangular matrix and op( A ) is one of
+
+ op( A ) = A or op( A ) = A' or op( A ) = conjg( A' ).
+
+ Parameters
+ ==========
+
+ SIDE - CHARACTER*1.
+ On entry, SIDE specifies whether op( A ) multiplies B from
+ the left or right as follows:
+
+ SIDE = 'L' or 'l' B := alpha*op( A )*B.
+
+ SIDE = 'R' or 'r' B := alpha*B*op( A ).
+
+ Unchanged on exit.
+
+ UPLO - CHARACTER*1.
+ On entry, UPLO specifies whether the matrix A is an upper or
+ lower triangular matrix as follows:
+
+ UPLO = 'U' or 'u' A is an upper triangular matrix.
+
+ UPLO = 'L' or 'l' A is a lower triangular matrix.
+
+ Unchanged on exit.
+
+ TRANSA - CHARACTER*1.
+ On entry, TRANSA specifies the form of op( A ) to be used in
+ the matrix multiplication as follows:
+
+ TRANSA = 'N' or 'n' op( A ) = A.
+
+ TRANSA = 'T' or 't' op( A ) = A'.
+
+ TRANSA = 'C' or 'c' op( A ) = conjg( A' ).
+
+ Unchanged on exit.
+
+ DIAG - CHARACTER*1.
+ On entry, DIAG specifies whether or not A is unit triangular
+ as follows:
+
+ DIAG = 'U' or 'u' A is assumed to be unit triangular.
+
+ DIAG = 'N' or 'n' A is not assumed to be unit
+ triangular.
+
+ Unchanged on exit.
+
+ M - INTEGER.
+ On entry, M specifies the number of rows of B. M must be at
+ least zero.
+ Unchanged on exit.
+
+ N - INTEGER.
+ On entry, N specifies the number of columns of B. N must be
+ at least zero.
+ Unchanged on exit.
+
+ ALPHA - COMPLEX .
+ On entry, ALPHA specifies the scalar alpha. When alpha is
+ zero then A is not referenced and B need not be set before
+ entry.
+ Unchanged on exit.
+
+ A - COMPLEX array of DIMENSION ( LDA, k ), where k is m
+ when SIDE = 'L' or 'l' and is n when SIDE = 'R' or 'r'.
+ Before entry with UPLO = 'U' or 'u', the leading k by k
+ upper triangular part of the array A must contain the upper
+ triangular matrix and the strictly lower triangular part of
+ A is not referenced.
+ Before entry with UPLO = 'L' or 'l', the leading k by k
+ lower triangular part of the array A must contain the lower
+ triangular matrix and the strictly upper triangular part of
+ A is not referenced.
+ Note that when DIAG = 'U' or 'u', the diagonal elements of
+ A are not referenced either, but are assumed to be unity.
+ Unchanged on exit.
+
+ LDA - INTEGER.
+ On entry, LDA specifies the first dimension of A as declared
+ in the calling (sub) program. When SIDE = 'L' or 'l' then
+ LDA must be at least max( 1, m ), when SIDE = 'R' or 'r'
+ then LDA must be at least max( 1, n ).
+ Unchanged on exit.
+
+ B - COMPLEX array of DIMENSION ( LDB, n ).
+ Before entry, the leading m by n part of the array B must
+ contain the matrix B, and on exit is overwritten by the
+ transformed matrix.
+
+ LDB - INTEGER.
+ On entry, LDB specifies the first dimension of B as declared
+ in the calling (sub) program. LDB must be at least
+ max( 1, m ).
+ Unchanged on exit.
+
+
+ Level 3 Blas routine.
+
+ -- Written on 8-February-1989.
+ Jack Dongarra, Argonne National Laboratory.
+ Iain Duff, AERE Harwell.
+ Jeremy Du Croz, Numerical Algorithms Group Ltd.
+ Sven Hammarling, Numerical Algorithms Group Ltd.
+
+
+ Test the input parameters.
+*/
+
+ /* Parameter adjustments */
+ a_dim1 = *lda;
+ a_offset = 1 + a_dim1;
+ a -= a_offset;
+ b_dim1 = *ldb;
+ b_offset = 1 + b_dim1;
+ b -= b_offset;
+
+ /* Function Body */
+ lside = lsame_(side, "L");
+ if (lside) {
+ nrowa = *m;
+ } else {
+ nrowa = *n;
+ }
+ noconj = lsame_(transa, "T");
+ nounit = lsame_(diag, "N");
+ upper = lsame_(uplo, "U");
+
+ info = 0;
+ if (! lside && ! lsame_(side, "R")) {
+ info = 1;
+ } else if (! upper && ! lsame_(uplo, "L")) {
+ info = 2;
+ } else if (! lsame_(transa, "N") && ! lsame_(transa,
+ "T") && ! lsame_(transa, "C")) {
+ info = 3;
+ } else if (! lsame_(diag, "U") && ! lsame_(diag,
+ "N")) {
+ info = 4;
+ } else if (*m < 0) {
+ info = 5;
+ } else if (*n < 0) {
+ info = 6;
+ } else if (*lda < max(1,nrowa)) {
+ info = 9;
+ } else if (*ldb < max(1,*m)) {
+ info = 11;
+ }
+ if (info != 0) {
+ xerbla_("CTRMM ", &info);
+ return 0;
+ }
+
+/* Quick return if possible. */
+
+ if (*n == 0) {
+ return 0;
+ }
+
+/* And when alpha.eq.zero. */
+
+ if (alpha->r == 0.f && alpha->i == 0.f) {
+ i__1 = *n;
+ for (j = 1; j <= i__1; ++j) {
+ i__2 = *m;
+ for (i__ = 1; i__ <= i__2; ++i__) {
+ i__3 = i__ + j * b_dim1;
+ b[i__3].r = 0.f, b[i__3].i = 0.f;
+/* L10: */
+ }
+/* L20: */
+ }
+ return 0;
+ }
+
+/* Start the operations. */
+
+ if (lside) {
+ if (lsame_(transa, "N")) {
+
+/* Form B := alpha*A*B. */
+
+ if (upper) {
+ i__1 = *n;
+ for (j = 1; j <= i__1; ++j) {
+ i__2 = *m;
+ for (k = 1; k <= i__2; ++k) {
+ i__3 = k + j * b_dim1;
+ if ((b[i__3].r != 0.f) || (b[i__3].i != 0.f)) {
+ i__3 = k + j * b_dim1;
+ q__1.r = alpha->r * b[i__3].r - alpha->i * b[i__3]
+ .i, q__1.i = alpha->r * b[i__3].i +
+ alpha->i * b[i__3].r;
+ temp.r = q__1.r, temp.i = q__1.i;
+ i__3 = k - 1;
+ for (i__ = 1; i__ <= i__3; ++i__) {
+ i__4 = i__ + j * b_dim1;
+ i__5 = i__ + j * b_dim1;
+ i__6 = i__ + k * a_dim1;
+ q__2.r = temp.r * a[i__6].r - temp.i * a[i__6]
+ .i, q__2.i = temp.r * a[i__6].i +
+ temp.i * a[i__6].r;
+ q__1.r = b[i__5].r + q__2.r, q__1.i = b[i__5]
+ .i + q__2.i;
+ b[i__4].r = q__1.r, b[i__4].i = q__1.i;
+/* L30: */
+ }
+ if (nounit) {
+ i__3 = k + k * a_dim1;
+ q__1.r = temp.r * a[i__3].r - temp.i * a[i__3]
+ .i, q__1.i = temp.r * a[i__3].i +
+ temp.i * a[i__3].r;
+ temp.r = q__1.r, temp.i = q__1.i;
+ }
+ i__3 = k + j * b_dim1;
+ b[i__3].r = temp.r, b[i__3].i = temp.i;
+ }
+/* L40: */
+ }
+/* L50: */
+ }
+ } else {
+ i__1 = *n;
+ for (j = 1; j <= i__1; ++j) {
+ for (k = *m; k >= 1; --k) {
+ i__2 = k + j * b_dim1;
+ if ((b[i__2].r != 0.f) || (b[i__2].i != 0.f)) {
+ i__2 = k + j * b_dim1;
+ q__1.r = alpha->r * b[i__2].r - alpha->i * b[i__2]
+ .i, q__1.i = alpha->r * b[i__2].i +
+ alpha->i * b[i__2].r;
+ temp.r = q__1.r, temp.i = q__1.i;
+ i__2 = k + j * b_dim1;
+ b[i__2].r = temp.r, b[i__2].i = temp.i;
+ if (nounit) {
+ i__2 = k + j * b_dim1;
+ i__3 = k + j * b_dim1;
+ i__4 = k + k * a_dim1;
+ q__1.r = b[i__3].r * a[i__4].r - b[i__3].i *
+ a[i__4].i, q__1.i = b[i__3].r * a[
+ i__4].i + b[i__3].i * a[i__4].r;
+ b[i__2].r = q__1.r, b[i__2].i = q__1.i;
+ }
+ i__2 = *m;
+ for (i__ = k + 1; i__ <= i__2; ++i__) {
+ i__3 = i__ + j * b_dim1;
+ i__4 = i__ + j * b_dim1;
+ i__5 = i__ + k * a_dim1;
+ q__2.r = temp.r * a[i__5].r - temp.i * a[i__5]
+ .i, q__2.i = temp.r * a[i__5].i +
+ temp.i * a[i__5].r;
+ q__1.r = b[i__4].r + q__2.r, q__1.i = b[i__4]
+ .i + q__2.i;
+ b[i__3].r = q__1.r, b[i__3].i = q__1.i;
+/* L60: */
+ }
+ }
+/* L70: */
+ }
+/* L80: */
+ }
+ }
+ } else {
+
+/* Form B := alpha*A'*B or B := alpha*conjg( A' )*B. */
+
+ if (upper) {
+ i__1 = *n;
+ for (j = 1; j <= i__1; ++j) {
+ for (i__ = *m; i__ >= 1; --i__) {
+ i__2 = i__ + j * b_dim1;
+ temp.r = b[i__2].r, temp.i = b[i__2].i;
+ if (noconj) {
+ if (nounit) {
+ i__2 = i__ + i__ * a_dim1;
+ q__1.r = temp.r * a[i__2].r - temp.i * a[i__2]
+ .i, q__1.i = temp.r * a[i__2].i +
+ temp.i * a[i__2].r;
+ temp.r = q__1.r, temp.i = q__1.i;
+ }
+ i__2 = i__ - 1;
+ for (k = 1; k <= i__2; ++k) {
+ i__3 = k + i__ * a_dim1;
+ i__4 = k + j * b_dim1;
+ q__2.r = a[i__3].r * b[i__4].r - a[i__3].i *
+ b[i__4].i, q__2.i = a[i__3].r * b[
+ i__4].i + a[i__3].i * b[i__4].r;
+ q__1.r = temp.r + q__2.r, q__1.i = temp.i +
+ q__2.i;
+ temp.r = q__1.r, temp.i = q__1.i;
+/* L90: */
+ }
+ } else {
+ if (nounit) {
+ r_cnjg(&q__2, &a[i__ + i__ * a_dim1]);
+ q__1.r = temp.r * q__2.r - temp.i * q__2.i,
+ q__1.i = temp.r * q__2.i + temp.i *
+ q__2.r;
+ temp.r = q__1.r, temp.i = q__1.i;
+ }
+ i__2 = i__ - 1;
+ for (k = 1; k <= i__2; ++k) {
+ r_cnjg(&q__3, &a[k + i__ * a_dim1]);
+ i__3 = k + j * b_dim1;
+ q__2.r = q__3.r * b[i__3].r - q__3.i * b[i__3]
+ .i, q__2.i = q__3.r * b[i__3].i +
+ q__3.i * b[i__3].r;
+ q__1.r = temp.r + q__2.r, q__1.i = temp.i +
+ q__2.i;
+ temp.r = q__1.r, temp.i = q__1.i;
+/* L100: */
+ }
+ }
+ i__2 = i__ + j * b_dim1;
+ q__1.r = alpha->r * temp.r - alpha->i * temp.i,
+ q__1.i = alpha->r * temp.i + alpha->i *
+ temp.r;
+ b[i__2].r = q__1.r, b[i__2].i = q__1.i;
+/* L110: */
+ }
+/* L120: */
+ }
+ } else {
+ i__1 = *n;
+ for (j = 1; j <= i__1; ++j) {
+ i__2 = *m;
+ for (i__ = 1; i__ <= i__2; ++i__) {
+ i__3 = i__ + j * b_dim1;
+ temp.r = b[i__3].r, temp.i = b[i__3].i;
+ if (noconj) {
+ if (nounit) {
+ i__3 = i__ + i__ * a_dim1;
+ q__1.r = temp.r * a[i__3].r - temp.i * a[i__3]
+ .i, q__1.i = temp.r * a[i__3].i +
+ temp.i * a[i__3].r;
+ temp.r = q__1.r, temp.i = q__1.i;
+ }
+ i__3 = *m;
+ for (k = i__ + 1; k <= i__3; ++k) {
+ i__4 = k + i__ * a_dim1;
+ i__5 = k + j * b_dim1;
+ q__2.r = a[i__4].r * b[i__5].r - a[i__4].i *
+ b[i__5].i, q__2.i = a[i__4].r * b[
+ i__5].i + a[i__4].i * b[i__5].r;
+ q__1.r = temp.r + q__2.r, q__1.i = temp.i +
+ q__2.i;
+ temp.r = q__1.r, temp.i = q__1.i;
+/* L130: */
+ }
+ } else {
+ if (nounit) {
+ r_cnjg(&q__2, &a[i__ + i__ * a_dim1]);
+ q__1.r = temp.r * q__2.r - temp.i * q__2.i,
+ q__1.i = temp.r * q__2.i + temp.i *
+ q__2.r;
+ temp.r = q__1.r, temp.i = q__1.i;
+ }
+ i__3 = *m;
+ for (k = i__ + 1; k <= i__3; ++k) {
+ r_cnjg(&q__3, &a[k + i__ * a_dim1]);
+ i__4 = k + j * b_dim1;
+ q__2.r = q__3.r * b[i__4].r - q__3.i * b[i__4]
+ .i, q__2.i = q__3.r * b[i__4].i +
+ q__3.i * b[i__4].r;
+ q__1.r = temp.r + q__2.r, q__1.i = temp.i +
+ q__2.i;
+ temp.r = q__1.r, temp.i = q__1.i;
+/* L140: */
+ }
+ }
+ i__3 = i__ + j * b_dim1;
+ q__1.r = alpha->r * temp.r - alpha->i * temp.i,
+ q__1.i = alpha->r * temp.i + alpha->i *
+ temp.r;
+ b[i__3].r = q__1.r, b[i__3].i = q__1.i;
+/* L150: */
+ }
+/* L160: */
+ }
+ }
+ }
+ } else {
+ if (lsame_(transa, "N")) {
+
+/* Form B := alpha*B*A. */
+
+ if (upper) {
+ for (j = *n; j >= 1; --j) {
+ temp.r = alpha->r, temp.i = alpha->i;
+ if (nounit) {
+ i__1 = j + j * a_dim1;
+ q__1.r = temp.r * a[i__1].r - temp.i * a[i__1].i,
+ q__1.i = temp.r * a[i__1].i + temp.i * a[i__1]
+ .r;
+ temp.r = q__1.r, temp.i = q__1.i;
+ }
+ i__1 = *m;
+ for (i__ = 1; i__ <= i__1; ++i__) {
+ i__2 = i__ + j * b_dim1;
+ i__3 = i__ + j * b_dim1;
+ q__1.r = temp.r * b[i__3].r - temp.i * b[i__3].i,
+ q__1.i = temp.r * b[i__3].i + temp.i * b[i__3]
+ .r;
+ b[i__2].r = q__1.r, b[i__2].i = q__1.i;
+/* L170: */
+ }
+ i__1 = j - 1;
+ for (k = 1; k <= i__1; ++k) {
+ i__2 = k + j * a_dim1;
+ if ((a[i__2].r != 0.f) || (a[i__2].i != 0.f)) {
+ i__2 = k + j * a_dim1;
+ q__1.r = alpha->r * a[i__2].r - alpha->i * a[i__2]
+ .i, q__1.i = alpha->r * a[i__2].i +
+ alpha->i * a[i__2].r;
+ temp.r = q__1.r, temp.i = q__1.i;
+ i__2 = *m;
+ for (i__ = 1; i__ <= i__2; ++i__) {
+ i__3 = i__ + j * b_dim1;
+ i__4 = i__ + j * b_dim1;
+ i__5 = i__ + k * b_dim1;
+ q__2.r = temp.r * b[i__5].r - temp.i * b[i__5]
+ .i, q__2.i = temp.r * b[i__5].i +
+ temp.i * b[i__5].r;
+ q__1.r = b[i__4].r + q__2.r, q__1.i = b[i__4]
+ .i + q__2.i;
+ b[i__3].r = q__1.r, b[i__3].i = q__1.i;
+/* L180: */
+ }
+ }
+/* L190: */
+ }
+/* L200: */
+ }
+ } else {
+ i__1 = *n;
+ for (j = 1; j <= i__1; ++j) {
+ temp.r = alpha->r, temp.i = alpha->i;
+ if (nounit) {
+ i__2 = j + j * a_dim1;
+ q__1.r = temp.r * a[i__2].r - temp.i * a[i__2].i,
+ q__1.i = temp.r * a[i__2].i + temp.i * a[i__2]
+ .r;
+ temp.r = q__1.r, temp.i = q__1.i;
+ }
+ i__2 = *m;
+ for (i__ = 1; i__ <= i__2; ++i__) {
+ i__3 = i__ + j * b_dim1;
+ i__4 = i__ + j * b_dim1;
+ q__1.r = temp.r * b[i__4].r - temp.i * b[i__4].i,
+ q__1.i = temp.r * b[i__4].i + temp.i * b[i__4]
+ .r;
+ b[i__3].r = q__1.r, b[i__3].i = q__1.i;
+/* L210: */
+ }
+ i__2 = *n;
+ for (k = j + 1; k <= i__2; ++k) {
+ i__3 = k + j * a_dim1;
+ if ((a[i__3].r != 0.f) || (a[i__3].i != 0.f)) {
+ i__3 = k + j * a_dim1;
+ q__1.r = alpha->r * a[i__3].r - alpha->i * a[i__3]
+ .i, q__1.i = alpha->r * a[i__3].i +
+ alpha->i * a[i__3].r;
+ temp.r = q__1.r, temp.i = q__1.i;
+ i__3 = *m;
+ for (i__ = 1; i__ <= i__3; ++i__) {
+ i__4 = i__ + j * b_dim1;
+ i__5 = i__ + j * b_dim1;
+ i__6 = i__ + k * b_dim1;
+ q__2.r = temp.r * b[i__6].r - temp.i * b[i__6]
+ .i, q__2.i = temp.r * b[i__6].i +
+ temp.i * b[i__6].r;
+ q__1.r = b[i__5].r + q__2.r, q__1.i = b[i__5]
+ .i + q__2.i;
+ b[i__4].r = q__1.r, b[i__4].i = q__1.i;
+/* L220: */
+ }
+ }
+/* L230: */
+ }
+/* L240: */
+ }
+ }
+ } else {
+
+/* Form B := alpha*B*A' or B := alpha*B*conjg( A' ). */
+
+ if (upper) {
+ i__1 = *n;
+ for (k = 1; k <= i__1; ++k) {
+ i__2 = k - 1;
+ for (j = 1; j <= i__2; ++j) {
+ i__3 = j + k * a_dim1;
+ if ((a[i__3].r != 0.f) || (a[i__3].i != 0.f)) {
+ if (noconj) {
+ i__3 = j + k * a_dim1;
+ q__1.r = alpha->r * a[i__3].r - alpha->i * a[
+ i__3].i, q__1.i = alpha->r * a[i__3]
+ .i + alpha->i * a[i__3].r;
+ temp.r = q__1.r, temp.i = q__1.i;
+ } else {
+ r_cnjg(&q__2, &a[j + k * a_dim1]);
+ q__1.r = alpha->r * q__2.r - alpha->i *
+ q__2.i, q__1.i = alpha->r * q__2.i +
+ alpha->i * q__2.r;
+ temp.r = q__1.r, temp.i = q__1.i;
+ }
+ i__3 = *m;
+ for (i__ = 1; i__ <= i__3; ++i__) {
+ i__4 = i__ + j * b_dim1;
+ i__5 = i__ + j * b_dim1;
+ i__6 = i__ + k * b_dim1;
+ q__2.r = temp.r * b[i__6].r - temp.i * b[i__6]
+ .i, q__2.i = temp.r * b[i__6].i +
+ temp.i * b[i__6].r;
+ q__1.r = b[i__5].r + q__2.r, q__1.i = b[i__5]
+ .i + q__2.i;
+ b[i__4].r = q__1.r, b[i__4].i = q__1.i;
+/* L250: */
+ }
+ }
+/* L260: */
+ }
+ temp.r = alpha->r, temp.i = alpha->i;
+ if (nounit) {
+ if (noconj) {
+ i__2 = k + k * a_dim1;
+ q__1.r = temp.r * a[i__2].r - temp.i * a[i__2].i,
+ q__1.i = temp.r * a[i__2].i + temp.i * a[
+ i__2].r;
+ temp.r = q__1.r, temp.i = q__1.i;
+ } else {
+ r_cnjg(&q__2, &a[k + k * a_dim1]);
+ q__1.r = temp.r * q__2.r - temp.i * q__2.i,
+ q__1.i = temp.r * q__2.i + temp.i *
+ q__2.r;
+ temp.r = q__1.r, temp.i = q__1.i;
+ }
+ }
+ if ((temp.r != 1.f) || (temp.i != 0.f)) {
+ i__2 = *m;
+ for (i__ = 1; i__ <= i__2; ++i__) {
+ i__3 = i__ + k * b_dim1;
+ i__4 = i__ + k * b_dim1;
+ q__1.r = temp.r * b[i__4].r - temp.i * b[i__4].i,
+ q__1.i = temp.r * b[i__4].i + temp.i * b[
+ i__4].r;
+ b[i__3].r = q__1.r, b[i__3].i = q__1.i;
+/* L270: */
+ }
+ }
+/* L280: */
+ }
+ } else {
+ for (k = *n; k >= 1; --k) {
+ i__1 = *n;
+ for (j = k + 1; j <= i__1; ++j) {
+ i__2 = j + k * a_dim1;
+ if ((a[i__2].r != 0.f) || (a[i__2].i != 0.f)) {
+ if (noconj) {
+ i__2 = j + k * a_dim1;
+ q__1.r = alpha->r * a[i__2].r - alpha->i * a[
+ i__2].i, q__1.i = alpha->r * a[i__2]
+ .i + alpha->i * a[i__2].r;
+ temp.r = q__1.r, temp.i = q__1.i;
+ } else {
+ r_cnjg(&q__2, &a[j + k * a_dim1]);
+ q__1.r = alpha->r * q__2.r - alpha->i *
+ q__2.i, q__1.i = alpha->r * q__2.i +
+ alpha->i * q__2.r;
+ temp.r = q__1.r, temp.i = q__1.i;
+ }
+ i__2 = *m;
+ for (i__ = 1; i__ <= i__2; ++i__) {
+ i__3 = i__ + j * b_dim1;
+ i__4 = i__ + j * b_dim1;
+ i__5 = i__ + k * b_dim1;
+ q__2.r = temp.r * b[i__5].r - temp.i * b[i__5]
+ .i, q__2.i = temp.r * b[i__5].i +
+ temp.i * b[i__5].r;
+ q__1.r = b[i__4].r + q__2.r, q__1.i = b[i__4]
+ .i + q__2.i;
+ b[i__3].r = q__1.r, b[i__3].i = q__1.i;
+/* L290: */
+ }
+ }
+/* L300: */
+ }
+ temp.r = alpha->r, temp.i = alpha->i;
+ if (nounit) {
+ if (noconj) {
+ i__1 = k + k * a_dim1;
+ q__1.r = temp.r * a[i__1].r - temp.i * a[i__1].i,
+ q__1.i = temp.r * a[i__1].i + temp.i * a[
+ i__1].r;
+ temp.r = q__1.r, temp.i = q__1.i;
+ } else {
+ r_cnjg(&q__2, &a[k + k * a_dim1]);
+ q__1.r = temp.r * q__2.r - temp.i * q__2.i,
+ q__1.i = temp.r * q__2.i + temp.i *
+ q__2.r;
+ temp.r = q__1.r, temp.i = q__1.i;
+ }
+ }
+ if ((temp.r != 1.f) || (temp.i != 0.f)) {
+ i__1 = *m;
+ for (i__ = 1; i__ <= i__1; ++i__) {
+ i__2 = i__ + k * b_dim1;
+ i__3 = i__ + k * b_dim1;
+ q__1.r = temp.r * b[i__3].r - temp.i * b[i__3].i,
+ q__1.i = temp.r * b[i__3].i + temp.i * b[
+ i__3].r;
+ b[i__2].r = q__1.r, b[i__2].i = q__1.i;
+/* L310: */
+ }
+ }
+/* L320: */
+ }
+ }
+ }
+ }
+
+ return 0;
+
+/* End of CTRMM . */
+
+} /* ctrmm_ */
+
+/* Subroutine */ int ctrmv_(char *uplo, char *trans, char *diag, integer *n,
+ complex *a, integer *lda, complex *x, integer *incx)
+{
+ /* System generated locals */
+ integer a_dim1, a_offset, i__1, i__2, i__3, i__4, i__5;
+ complex q__1, q__2, q__3;
+
+ /* Builtin functions */
+ void r_cnjg(complex *, complex *);
+
+ /* Local variables */
+ static integer i__, j, ix, jx, kx, info;
+ static complex temp;
+ extern logical lsame_(char *, char *);
+ extern /* Subroutine */ int xerbla_(char *, integer *);
+ static logical noconj, nounit;
+
+
+/*
+ Purpose
+ =======
+
+ CTRMV performs one of the matrix-vector operations
+
+ x := A*x, or x := A'*x, or x := conjg( A' )*x,
+
+ where x is an n element vector and A is an n by n unit, or non-unit,
+ upper or lower triangular matrix.
+
+ Parameters
+ ==========
+
+ UPLO - CHARACTER*1.
+ On entry, UPLO specifies whether the matrix is an upper or
+ lower triangular matrix as follows:
+
+ UPLO = 'U' or 'u' A is an upper triangular matrix.
+
+ UPLO = 'L' or 'l' A is a lower triangular matrix.
+
+ Unchanged on exit.
+
+ TRANS - CHARACTER*1.
+ On entry, TRANS specifies the operation to be performed as
+ follows:
+
+ TRANS = 'N' or 'n' x := A*x.
+
+ TRANS = 'T' or 't' x := A'*x.
+
+ TRANS = 'C' or 'c' x := conjg( A' )*x.
+
+ Unchanged on exit.
+
+ DIAG - CHARACTER*1.
+ On entry, DIAG specifies whether or not A is unit
+ triangular as follows:
+
+ DIAG = 'U' or 'u' A is assumed to be unit triangular.
+
+ DIAG = 'N' or 'n' A is not assumed to be unit
+ triangular.
+
+ Unchanged on exit.
+
+ N - INTEGER.
+ On entry, N specifies the order of the matrix A.
+ N must be at least zero.
+ Unchanged on exit.
+
+ A - COMPLEX array of DIMENSION ( LDA, n ).
+ Before entry with UPLO = 'U' or 'u', the leading n by n
+ upper triangular part of the array A must contain the upper
+ triangular matrix and the strictly lower triangular part of
+ A is not referenced.
+ Before entry with UPLO = 'L' or 'l', the leading n by n
+ lower triangular part of the array A must contain the lower
+ triangular matrix and the strictly upper triangular part of
+ A is not referenced.
+ Note that when DIAG = 'U' or 'u', the diagonal elements of
+ A are not referenced either, but are assumed to be unity.
+ Unchanged on exit.
+
+ LDA - INTEGER.
+ On entry, LDA specifies the first dimension of A as declared
+ in the calling (sub) program. LDA must be at least
+ max( 1, n ).
+ Unchanged on exit.
+
+ X - COMPLEX array of dimension at least
+ ( 1 + ( n - 1 )*abs( INCX ) ).
+ Before entry, the incremented array X must contain the n
+ element vector x. On exit, X is overwritten with the
+ tranformed vector x.
+
+ INCX - INTEGER.
+ On entry, INCX specifies the increment for the elements of
+ X. INCX must not be zero.
+ Unchanged on exit.
+
+
+ Level 2 Blas routine.
+
+ -- Written on 22-October-1986.
+ Jack Dongarra, Argonne National Lab.
+ Jeremy Du Croz, Nag Central Office.
+ Sven Hammarling, Nag Central Office.
+ Richard Hanson, Sandia National Labs.
+
+
+ Test the input parameters.
+*/
+
+ /* Parameter adjustments */
+ a_dim1 = *lda;
+ a_offset = 1 + a_dim1;
+ a -= a_offset;
+ --x;
+
+ /* Function Body */
+ info = 0;
+ if (! lsame_(uplo, "U") && ! lsame_(uplo, "L")) {
+ info = 1;
+ } else if (! lsame_(trans, "N") && ! lsame_(trans,
+ "T") && ! lsame_(trans, "C")) {
+ info = 2;
+ } else if (! lsame_(diag, "U") && ! lsame_(diag,
+ "N")) {
+ info = 3;
+ } else if (*n < 0) {
+ info = 4;
+ } else if (*lda < max(1,*n)) {
+ info = 6;
+ } else if (*incx == 0) {
+ info = 8;
+ }
+ if (info != 0) {
+ xerbla_("CTRMV ", &info);
+ return 0;
+ }
+
+/* Quick return if possible. */
+
+ if (*n == 0) {
+ return 0;
+ }
+
+ noconj = lsame_(trans, "T");
+ nounit = lsame_(diag, "N");
+
+/*
+ Set up the start point in X if the increment is not unity. This
+ will be ( N - 1 )*INCX too small for descending loops.
+*/
+
+ if (*incx <= 0) {
+ kx = 1 - (*n - 1) * *incx;
+ } else if (*incx != 1) {
+ kx = 1;
+ }
+
+/*
+ Start the operations. In this version the elements of A are
+ accessed sequentially with one pass through A.
+*/
+
+ if (lsame_(trans, "N")) {
+
+/* Form x := A*x. */
+
+ if (lsame_(uplo, "U")) {
+ if (*incx == 1) {
+ i__1 = *n;
+ for (j = 1; j <= i__1; ++j) {
+ i__2 = j;
+ if ((x[i__2].r != 0.f) || (x[i__2].i != 0.f)) {
+ i__2 = j;
+ temp.r = x[i__2].r, temp.i = x[i__2].i;
+ i__2 = j - 1;
+ for (i__ = 1; i__ <= i__2; ++i__) {
+ i__3 = i__;
+ i__4 = i__;
+ i__5 = i__ + j * a_dim1;
+ q__2.r = temp.r * a[i__5].r - temp.i * a[i__5].i,
+ q__2.i = temp.r * a[i__5].i + temp.i * a[
+ i__5].r;
+ q__1.r = x[i__4].r + q__2.r, q__1.i = x[i__4].i +
+ q__2.i;
+ x[i__3].r = q__1.r, x[i__3].i = q__1.i;
+/* L10: */
+ }
+ if (nounit) {
+ i__2 = j;
+ i__3 = j;
+ i__4 = j + j * a_dim1;
+ q__1.r = x[i__3].r * a[i__4].r - x[i__3].i * a[
+ i__4].i, q__1.i = x[i__3].r * a[i__4].i +
+ x[i__3].i * a[i__4].r;
+ x[i__2].r = q__1.r, x[i__2].i = q__1.i;
+ }
+ }
+/* L20: */
+ }
+ } else {
+ jx = kx;
+ i__1 = *n;
+ for (j = 1; j <= i__1; ++j) {
+ i__2 = jx;
+ if ((x[i__2].r != 0.f) || (x[i__2].i != 0.f)) {
+ i__2 = jx;
+ temp.r = x[i__2].r, temp.i = x[i__2].i;
+ ix = kx;
+ i__2 = j - 1;
+ for (i__ = 1; i__ <= i__2; ++i__) {
+ i__3 = ix;
+ i__4 = ix;
+ i__5 = i__ + j * a_dim1;
+ q__2.r = temp.r * a[i__5].r - temp.i * a[i__5].i,
+ q__2.i = temp.r * a[i__5].i + temp.i * a[
+ i__5].r;
+ q__1.r = x[i__4].r + q__2.r, q__1.i = x[i__4].i +
+ q__2.i;
+ x[i__3].r = q__1.r, x[i__3].i = q__1.i;
+ ix += *incx;
+/* L30: */
+ }
+ if (nounit) {
+ i__2 = jx;
+ i__3 = jx;
+ i__4 = j + j * a_dim1;
+ q__1.r = x[i__3].r * a[i__4].r - x[i__3].i * a[
+ i__4].i, q__1.i = x[i__3].r * a[i__4].i +
+ x[i__3].i * a[i__4].r;
+ x[i__2].r = q__1.r, x[i__2].i = q__1.i;
+ }
+ }
+ jx += *incx;
+/* L40: */
+ }
+ }
+ } else {
+ if (*incx == 1) {
+ for (j = *n; j >= 1; --j) {
+ i__1 = j;
+ if ((x[i__1].r != 0.f) || (x[i__1].i != 0.f)) {
+ i__1 = j;
+ temp.r = x[i__1].r, temp.i = x[i__1].i;
+ i__1 = j + 1;
+ for (i__ = *n; i__ >= i__1; --i__) {
+ i__2 = i__;
+ i__3 = i__;
+ i__4 = i__ + j * a_dim1;
+ q__2.r = temp.r * a[i__4].r - temp.i * a[i__4].i,
+ q__2.i = temp.r * a[i__4].i + temp.i * a[
+ i__4].r;
+ q__1.r = x[i__3].r + q__2.r, q__1.i = x[i__3].i +
+ q__2.i;
+ x[i__2].r = q__1.r, x[i__2].i = q__1.i;
+/* L50: */
+ }
+ if (nounit) {
+ i__1 = j;
+ i__2 = j;
+ i__3 = j + j * a_dim1;
+ q__1.r = x[i__2].r * a[i__3].r - x[i__2].i * a[
+ i__3].i, q__1.i = x[i__2].r * a[i__3].i +
+ x[i__2].i * a[i__3].r;
+ x[i__1].r = q__1.r, x[i__1].i = q__1.i;
+ }
+ }
+/* L60: */
+ }
+ } else {
+ kx += (*n - 1) * *incx;
+ jx = kx;
+ for (j = *n; j >= 1; --j) {
+ i__1 = jx;
+ if ((x[i__1].r != 0.f) || (x[i__1].i != 0.f)) {
+ i__1 = jx;
+ temp.r = x[i__1].r, temp.i = x[i__1].i;
+ ix = kx;
+ i__1 = j + 1;
+ for (i__ = *n; i__ >= i__1; --i__) {
+ i__2 = ix;
+ i__3 = ix;
+ i__4 = i__ + j * a_dim1;
+ q__2.r = temp.r * a[i__4].r - temp.i * a[i__4].i,
+ q__2.i = temp.r * a[i__4].i + temp.i * a[
+ i__4].r;
+ q__1.r = x[i__3].r + q__2.r, q__1.i = x[i__3].i +
+ q__2.i;
+ x[i__2].r = q__1.r, x[i__2].i = q__1.i;
+ ix -= *incx;
+/* L70: */
+ }
+ if (nounit) {
+ i__1 = jx;
+ i__2 = jx;
+ i__3 = j + j * a_dim1;
+ q__1.r = x[i__2].r * a[i__3].r - x[i__2].i * a[
+ i__3].i, q__1.i = x[i__2].r * a[i__3].i +
+ x[i__2].i * a[i__3].r;
+ x[i__1].r = q__1.r, x[i__1].i = q__1.i;
+ }
+ }
+ jx -= *incx;
+/* L80: */
+ }
+ }
+ }
+ } else {
+
+/* Form x := A'*x or x := conjg( A' )*x. */
+
+ if (lsame_(uplo, "U")) {
+ if (*incx == 1) {
+ for (j = *n; j >= 1; --j) {
+ i__1 = j;
+ temp.r = x[i__1].r, temp.i = x[i__1].i;
+ if (noconj) {
+ if (nounit) {
+ i__1 = j + j * a_dim1;
+ q__1.r = temp.r * a[i__1].r - temp.i * a[i__1].i,
+ q__1.i = temp.r * a[i__1].i + temp.i * a[
+ i__1].r;
+ temp.r = q__1.r, temp.i = q__1.i;
+ }
+ for (i__ = j - 1; i__ >= 1; --i__) {
+ i__1 = i__ + j * a_dim1;
+ i__2 = i__;
+ q__2.r = a[i__1].r * x[i__2].r - a[i__1].i * x[
+ i__2].i, q__2.i = a[i__1].r * x[i__2].i +
+ a[i__1].i * x[i__2].r;
+ q__1.r = temp.r + q__2.r, q__1.i = temp.i +
+ q__2.i;
+ temp.r = q__1.r, temp.i = q__1.i;
+/* L90: */
+ }
+ } else {
+ if (nounit) {
+ r_cnjg(&q__2, &a[j + j * a_dim1]);
+ q__1.r = temp.r * q__2.r - temp.i * q__2.i,
+ q__1.i = temp.r * q__2.i + temp.i *
+ q__2.r;
+ temp.r = q__1.r, temp.i = q__1.i;
+ }
+ for (i__ = j - 1; i__ >= 1; --i__) {
+ r_cnjg(&q__3, &a[i__ + j * a_dim1]);
+ i__1 = i__;
+ q__2.r = q__3.r * x[i__1].r - q__3.i * x[i__1].i,
+ q__2.i = q__3.r * x[i__1].i + q__3.i * x[
+ i__1].r;
+ q__1.r = temp.r + q__2.r, q__1.i = temp.i +
+ q__2.i;
+ temp.r = q__1.r, temp.i = q__1.i;
+/* L100: */
+ }
+ }
+ i__1 = j;
+ x[i__1].r = temp.r, x[i__1].i = temp.i;
+/* L110: */
+ }
+ } else {
+ jx = kx + (*n - 1) * *incx;
+ for (j = *n; j >= 1; --j) {
+ i__1 = jx;
+ temp.r = x[i__1].r, temp.i = x[i__1].i;
+ ix = jx;
+ if (noconj) {
+ if (nounit) {
+ i__1 = j + j * a_dim1;
+ q__1.r = temp.r * a[i__1].r - temp.i * a[i__1].i,
+ q__1.i = temp.r * a[i__1].i + temp.i * a[
+ i__1].r;
+ temp.r = q__1.r, temp.i = q__1.i;
+ }
+ for (i__ = j - 1; i__ >= 1; --i__) {
+ ix -= *incx;
+ i__1 = i__ + j * a_dim1;
+ i__2 = ix;
+ q__2.r = a[i__1].r * x[i__2].r - a[i__1].i * x[
+ i__2].i, q__2.i = a[i__1].r * x[i__2].i +
+ a[i__1].i * x[i__2].r;
+ q__1.r = temp.r + q__2.r, q__1.i = temp.i +
+ q__2.i;
+ temp.r = q__1.r, temp.i = q__1.i;
+/* L120: */
+ }
+ } else {
+ if (nounit) {
+ r_cnjg(&q__2, &a[j + j * a_dim1]);
+ q__1.r = temp.r * q__2.r - temp.i * q__2.i,
+ q__1.i = temp.r * q__2.i + temp.i *
+ q__2.r;
+ temp.r = q__1.r, temp.i = q__1.i;
+ }
+ for (i__ = j - 1; i__ >= 1; --i__) {
+ ix -= *incx;
+ r_cnjg(&q__3, &a[i__ + j * a_dim1]);
+ i__1 = ix;
+ q__2.r = q__3.r * x[i__1].r - q__3.i * x[i__1].i,
+ q__2.i = q__3.r * x[i__1].i + q__3.i * x[
+ i__1].r;
+ q__1.r = temp.r + q__2.r, q__1.i = temp.i +
+ q__2.i;
+ temp.r = q__1.r, temp.i = q__1.i;
+/* L130: */
+ }
+ }
+ i__1 = jx;
+ x[i__1].r = temp.r, x[i__1].i = temp.i;
+ jx -= *incx;
+/* L140: */
+ }
+ }
+ } else {
+ if (*incx == 1) {
+ i__1 = *n;
+ for (j = 1; j <= i__1; ++j) {
+ i__2 = j;
+ temp.r = x[i__2].r, temp.i = x[i__2].i;
+ if (noconj) {
+ if (nounit) {
+ i__2 = j + j * a_dim1;
+ q__1.r = temp.r * a[i__2].r - temp.i * a[i__2].i,
+ q__1.i = temp.r * a[i__2].i + temp.i * a[
+ i__2].r;
+ temp.r = q__1.r, temp.i = q__1.i;
+ }
+ i__2 = *n;
+ for (i__ = j + 1; i__ <= i__2; ++i__) {
+ i__3 = i__ + j * a_dim1;
+ i__4 = i__;
+ q__2.r = a[i__3].r * x[i__4].r - a[i__3].i * x[
+ i__4].i, q__2.i = a[i__3].r * x[i__4].i +
+ a[i__3].i * x[i__4].r;
+ q__1.r = temp.r + q__2.r, q__1.i = temp.i +
+ q__2.i;
+ temp.r = q__1.r, temp.i = q__1.i;
+/* L150: */
+ }
+ } else {
+ if (nounit) {
+ r_cnjg(&q__2, &a[j + j * a_dim1]);
+ q__1.r = temp.r * q__2.r - temp.i * q__2.i,
+ q__1.i = temp.r * q__2.i + temp.i *
+ q__2.r;
+ temp.r = q__1.r, temp.i = q__1.i;
+ }
+ i__2 = *n;
+ for (i__ = j + 1; i__ <= i__2; ++i__) {
+ r_cnjg(&q__3, &a[i__ + j * a_dim1]);
+ i__3 = i__;
+ q__2.r = q__3.r * x[i__3].r - q__3.i * x[i__3].i,
+ q__2.i = q__3.r * x[i__3].i + q__3.i * x[
+ i__3].r;
+ q__1.r = temp.r + q__2.r, q__1.i = temp.i +
+ q__2.i;
+ temp.r = q__1.r, temp.i = q__1.i;
+/* L160: */
+ }
+ }
+ i__2 = j;
+ x[i__2].r = temp.r, x[i__2].i = temp.i;
+/* L170: */
+ }
+ } else {
+ jx = kx;
+ i__1 = *n;
+ for (j = 1; j <= i__1; ++j) {
+ i__2 = jx;
+ temp.r = x[i__2].r, temp.i = x[i__2].i;
+ ix = jx;
+ if (noconj) {
+ if (nounit) {
+ i__2 = j + j * a_dim1;
+ q__1.r = temp.r * a[i__2].r - temp.i * a[i__2].i,
+ q__1.i = temp.r * a[i__2].i + temp.i * a[
+ i__2].r;
+ temp.r = q__1.r, temp.i = q__1.i;
+ }
+ i__2 = *n;
+ for (i__ = j + 1; i__ <= i__2; ++i__) {
+ ix += *incx;
+ i__3 = i__ + j * a_dim1;
+ i__4 = ix;
+ q__2.r = a[i__3].r * x[i__4].r - a[i__3].i * x[
+ i__4].i, q__2.i = a[i__3].r * x[i__4].i +
+ a[i__3].i * x[i__4].r;
+ q__1.r = temp.r + q__2.r, q__1.i = temp.i +
+ q__2.i;
+ temp.r = q__1.r, temp.i = q__1.i;
+/* L180: */
+ }
+ } else {
+ if (nounit) {
+ r_cnjg(&q__2, &a[j + j * a_dim1]);
+ q__1.r = temp.r * q__2.r - temp.i * q__2.i,
+ q__1.i = temp.r * q__2.i + temp.i *
+ q__2.r;
+ temp.r = q__1.r, temp.i = q__1.i;
+ }
+ i__2 = *n;
+ for (i__ = j + 1; i__ <= i__2; ++i__) {
+ ix += *incx;
+ r_cnjg(&q__3, &a[i__ + j * a_dim1]);
+ i__3 = ix;
+ q__2.r = q__3.r * x[i__3].r - q__3.i * x[i__3].i,
+ q__2.i = q__3.r * x[i__3].i + q__3.i * x[
+ i__3].r;
+ q__1.r = temp.r + q__2.r, q__1.i = temp.i +
+ q__2.i;
+ temp.r = q__1.r, temp.i = q__1.i;
+/* L190: */
+ }
+ }
+ i__2 = jx;
+ x[i__2].r = temp.r, x[i__2].i = temp.i;
+ jx += *incx;
+/* L200: */
+ }
+ }
+ }
+ }
+
+ return 0;
+
+/* End of CTRMV . */
+
+} /* ctrmv_ */
+
+/* Subroutine */ int ctrsm_(char *side, char *uplo, char *transa, char *diag,
+ integer *m, integer *n, complex *alpha, complex *a, integer *lda,
+ complex *b, integer *ldb)
+{
+ /* System generated locals */
+ integer a_dim1, a_offset, b_dim1, b_offset, i__1, i__2, i__3, i__4, i__5,
+ i__6, i__7;
+ complex q__1, q__2, q__3;
+
+ /* Builtin functions */
+ void c_div(complex *, complex *, complex *), r_cnjg(complex *, complex *);
+
+ /* Local variables */
+ static integer i__, j, k, info;
+ static complex temp;
+ extern logical lsame_(char *, char *);
+ static logical lside;
+ static integer nrowa;
+ static logical upper;
+ extern /* Subroutine */ int xerbla_(char *, integer *);
+ static logical noconj, nounit;
+
+
+/*
+ Purpose
+ =======
+
+ CTRSM solves one of the matrix equations
+
+ op( A )*X = alpha*B, or X*op( A ) = alpha*B,
+
+ where alpha is a scalar, X and B are m by n matrices, A is a unit, or
+ non-unit, upper or lower triangular matrix and op( A ) is one of
+
+ op( A ) = A or op( A ) = A' or op( A ) = conjg( A' ).
+
+ The matrix X is overwritten on B.
+
+ Parameters
+ ==========
+
+ SIDE - CHARACTER*1.
+ On entry, SIDE specifies whether op( A ) appears on the left
+ or right of X as follows:
+
+ SIDE = 'L' or 'l' op( A )*X = alpha*B.
+
+ SIDE = 'R' or 'r' X*op( A ) = alpha*B.
+
+ Unchanged on exit.
+
+ UPLO - CHARACTER*1.
+ On entry, UPLO specifies whether the matrix A is an upper or
+ lower triangular matrix as follows:
+
+ UPLO = 'U' or 'u' A is an upper triangular matrix.
+
+ UPLO = 'L' or 'l' A is a lower triangular matrix.
+
+ Unchanged on exit.
+
+ TRANSA - CHARACTER*1.
+ On entry, TRANSA specifies the form of op( A ) to be used in
+ the matrix multiplication as follows:
+
+ TRANSA = 'N' or 'n' op( A ) = A.
+
+ TRANSA = 'T' or 't' op( A ) = A'.
+
+ TRANSA = 'C' or 'c' op( A ) = conjg( A' ).
+
+ Unchanged on exit.
+
+ DIAG - CHARACTER*1.
+ On entry, DIAG specifies whether or not A is unit triangular
+ as follows:
+
+ DIAG = 'U' or 'u' A is assumed to be unit triangular.
+
+ DIAG = 'N' or 'n' A is not assumed to be unit
+ triangular.
+
+ Unchanged on exit.
+
+ M - INTEGER.
+ On entry, M specifies the number of rows of B. M must be at
+ least zero.
+ Unchanged on exit.
+
+ N - INTEGER.
+ On entry, N specifies the number of columns of B. N must be
+ at least zero.
+ Unchanged on exit.
+
+ ALPHA - COMPLEX .
+ On entry, ALPHA specifies the scalar alpha. When alpha is
+ zero then A is not referenced and B need not be set before
+ entry.
+ Unchanged on exit.
+
+ A - COMPLEX array of DIMENSION ( LDA, k ), where k is m
+ when SIDE = 'L' or 'l' and is n when SIDE = 'R' or 'r'.
+ Before entry with UPLO = 'U' or 'u', the leading k by k
+ upper triangular part of the array A must contain the upper
+ triangular matrix and the strictly lower triangular part of
+ A is not referenced.
+ Before entry with UPLO = 'L' or 'l', the leading k by k
+ lower triangular part of the array A must contain the lower
+ triangular matrix and the strictly upper triangular part of
+ A is not referenced.
+ Note that when DIAG = 'U' or 'u', the diagonal elements of
+ A are not referenced either, but are assumed to be unity.
+ Unchanged on exit.
+
+ LDA - INTEGER.
+ On entry, LDA specifies the first dimension of A as declared
+ in the calling (sub) program. When SIDE = 'L' or 'l' then
+ LDA must be at least max( 1, m ), when SIDE = 'R' or 'r'
+ then LDA must be at least max( 1, n ).
+ Unchanged on exit.
+
+ B - COMPLEX array of DIMENSION ( LDB, n ).
+ Before entry, the leading m by n part of the array B must
+ contain the right-hand side matrix B, and on exit is
+ overwritten by the solution matrix X.
+
+ LDB - INTEGER.
+ On entry, LDB specifies the first dimension of B as declared
+ in the calling (sub) program. LDB must be at least
+ max( 1, m ).
+ Unchanged on exit.
+
+
+ Level 3 Blas routine.
+
+ -- Written on 8-February-1989.
+ Jack Dongarra, Argonne National Laboratory.
+ Iain Duff, AERE Harwell.
+ Jeremy Du Croz, Numerical Algorithms Group Ltd.
+ Sven Hammarling, Numerical Algorithms Group Ltd.
+
+
+ Test the input parameters.
+*/
+
+ /* Parameter adjustments */
+ a_dim1 = *lda;
+ a_offset = 1 + a_dim1;
+ a -= a_offset;
+ b_dim1 = *ldb;
+ b_offset = 1 + b_dim1;
+ b -= b_offset;
+
+ /* Function Body */
+ lside = lsame_(side, "L");
+ if (lside) {
+ nrowa = *m;
+ } else {
+ nrowa = *n;
+ }
+ noconj = lsame_(transa, "T");
+ nounit = lsame_(diag, "N");
+ upper = lsame_(uplo, "U");
+
+ info = 0;
+ if (! lside && ! lsame_(side, "R")) {
+ info = 1;
+ } else if (! upper && ! lsame_(uplo, "L")) {
+ info = 2;
+ } else if (! lsame_(transa, "N") && ! lsame_(transa,
+ "T") && ! lsame_(transa, "C")) {
+ info = 3;
+ } else if (! lsame_(diag, "U") && ! lsame_(diag,
+ "N")) {
+ info = 4;
+ } else if (*m < 0) {
+ info = 5;
+ } else if (*n < 0) {
+ info = 6;
+ } else if (*lda < max(1,nrowa)) {
+ info = 9;
+ } else if (*ldb < max(1,*m)) {
+ info = 11;
+ }
+ if (info != 0) {
+ xerbla_("CTRSM ", &info);
+ return 0;
+ }
+
+/* Quick return if possible. */
+
+ if (*n == 0) {
+ return 0;
+ }
+
+/* And when alpha.eq.zero. */
+
+ if (alpha->r == 0.f && alpha->i == 0.f) {
+ i__1 = *n;
+ for (j = 1; j <= i__1; ++j) {
+ i__2 = *m;
+ for (i__ = 1; i__ <= i__2; ++i__) {
+ i__3 = i__ + j * b_dim1;
+ b[i__3].r = 0.f, b[i__3].i = 0.f;
+/* L10: */
+ }
+/* L20: */
+ }
+ return 0;
+ }
+
+/* Start the operations. */
+
+ if (lside) {
+ if (lsame_(transa, "N")) {
+
+/* Form B := alpha*inv( A )*B. */
+
+ if (upper) {
+ i__1 = *n;
+ for (j = 1; j <= i__1; ++j) {
+ if ((alpha->r != 1.f) || (alpha->i != 0.f)) {
+ i__2 = *m;
+ for (i__ = 1; i__ <= i__2; ++i__) {
+ i__3 = i__ + j * b_dim1;
+ i__4 = i__ + j * b_dim1;
+ q__1.r = alpha->r * b[i__4].r - alpha->i * b[i__4]
+ .i, q__1.i = alpha->r * b[i__4].i +
+ alpha->i * b[i__4].r;
+ b[i__3].r = q__1.r, b[i__3].i = q__1.i;
+/* L30: */
+ }
+ }
+ for (k = *m; k >= 1; --k) {
+ i__2 = k + j * b_dim1;
+ if ((b[i__2].r != 0.f) || (b[i__2].i != 0.f)) {
+ if (nounit) {
+ i__2 = k + j * b_dim1;
+ c_div(&q__1, &b[k + j * b_dim1], &a[k + k *
+ a_dim1]);
+ b[i__2].r = q__1.r, b[i__2].i = q__1.i;
+ }
+ i__2 = k - 1;
+ for (i__ = 1; i__ <= i__2; ++i__) {
+ i__3 = i__ + j * b_dim1;
+ i__4 = i__ + j * b_dim1;
+ i__5 = k + j * b_dim1;
+ i__6 = i__ + k * a_dim1;
+ q__2.r = b[i__5].r * a[i__6].r - b[i__5].i *
+ a[i__6].i, q__2.i = b[i__5].r * a[
+ i__6].i + b[i__5].i * a[i__6].r;
+ q__1.r = b[i__4].r - q__2.r, q__1.i = b[i__4]
+ .i - q__2.i;
+ b[i__3].r = q__1.r, b[i__3].i = q__1.i;
+/* L40: */
+ }
+ }
+/* L50: */
+ }
+/* L60: */
+ }
+ } else {
+ i__1 = *n;
+ for (j = 1; j <= i__1; ++j) {
+ if ((alpha->r != 1.f) || (alpha->i != 0.f)) {
+ i__2 = *m;
+ for (i__ = 1; i__ <= i__2; ++i__) {
+ i__3 = i__ + j * b_dim1;
+ i__4 = i__ + j * b_dim1;
+ q__1.r = alpha->r * b[i__4].r - alpha->i * b[i__4]
+ .i, q__1.i = alpha->r * b[i__4].i +
+ alpha->i * b[i__4].r;
+ b[i__3].r = q__1.r, b[i__3].i = q__1.i;
+/* L70: */
+ }
+ }
+ i__2 = *m;
+ for (k = 1; k <= i__2; ++k) {
+ i__3 = k + j * b_dim1;
+ if ((b[i__3].r != 0.f) || (b[i__3].i != 0.f)) {
+ if (nounit) {
+ i__3 = k + j * b_dim1;
+ c_div(&q__1, &b[k + j * b_dim1], &a[k + k *
+ a_dim1]);
+ b[i__3].r = q__1.r, b[i__3].i = q__1.i;
+ }
+ i__3 = *m;
+ for (i__ = k + 1; i__ <= i__3; ++i__) {
+ i__4 = i__ + j * b_dim1;
+ i__5 = i__ + j * b_dim1;
+ i__6 = k + j * b_dim1;
+ i__7 = i__ + k * a_dim1;
+ q__2.r = b[i__6].r * a[i__7].r - b[i__6].i *
+ a[i__7].i, q__2.i = b[i__6].r * a[
+ i__7].i + b[i__6].i * a[i__7].r;
+ q__1.r = b[i__5].r - q__2.r, q__1.i = b[i__5]
+ .i - q__2.i;
+ b[i__4].r = q__1.r, b[i__4].i = q__1.i;
+/* L80: */
+ }
+ }
+/* L90: */
+ }
+/* L100: */
+ }
+ }
+ } else {
+
+/*
+ Form B := alpha*inv( A' )*B
+ or B := alpha*inv( conjg( A' ) )*B.
+*/
+
+ if (upper) {
+ i__1 = *n;
+ for (j = 1; j <= i__1; ++j) {
+ i__2 = *m;
+ for (i__ = 1; i__ <= i__2; ++i__) {
+ i__3 = i__ + j * b_dim1;
+ q__1.r = alpha->r * b[i__3].r - alpha->i * b[i__3].i,
+ q__1.i = alpha->r * b[i__3].i + alpha->i * b[
+ i__3].r;
+ temp.r = q__1.r, temp.i = q__1.i;
+ if (noconj) {
+ i__3 = i__ - 1;
+ for (k = 1; k <= i__3; ++k) {
+ i__4 = k + i__ * a_dim1;
+ i__5 = k + j * b_dim1;
+ q__2.r = a[i__4].r * b[i__5].r - a[i__4].i *
+ b[i__5].i, q__2.i = a[i__4].r * b[
+ i__5].i + a[i__4].i * b[i__5].r;
+ q__1.r = temp.r - q__2.r, q__1.i = temp.i -
+ q__2.i;
+ temp.r = q__1.r, temp.i = q__1.i;
+/* L110: */
+ }
+ if (nounit) {
+ c_div(&q__1, &temp, &a[i__ + i__ * a_dim1]);
+ temp.r = q__1.r, temp.i = q__1.i;
+ }
+ } else {
+ i__3 = i__ - 1;
+ for (k = 1; k <= i__3; ++k) {
+ r_cnjg(&q__3, &a[k + i__ * a_dim1]);
+ i__4 = k + j * b_dim1;
+ q__2.r = q__3.r * b[i__4].r - q__3.i * b[i__4]
+ .i, q__2.i = q__3.r * b[i__4].i +
+ q__3.i * b[i__4].r;
+ q__1.r = temp.r - q__2.r, q__1.i = temp.i -
+ q__2.i;
+ temp.r = q__1.r, temp.i = q__1.i;
+/* L120: */
+ }
+ if (nounit) {
+ r_cnjg(&q__2, &a[i__ + i__ * a_dim1]);
+ c_div(&q__1, &temp, &q__2);
+ temp.r = q__1.r, temp.i = q__1.i;
+ }
+ }
+ i__3 = i__ + j * b_dim1;
+ b[i__3].r = temp.r, b[i__3].i = temp.i;
+/* L130: */
+ }
+/* L140: */
+ }
+ } else {
+ i__1 = *n;
+ for (j = 1; j <= i__1; ++j) {
+ for (i__ = *m; i__ >= 1; --i__) {
+ i__2 = i__ + j * b_dim1;
+ q__1.r = alpha->r * b[i__2].r - alpha->i * b[i__2].i,
+ q__1.i = alpha->r * b[i__2].i + alpha->i * b[
+ i__2].r;
+ temp.r = q__1.r, temp.i = q__1.i;
+ if (noconj) {
+ i__2 = *m;
+ for (k = i__ + 1; k <= i__2; ++k) {
+ i__3 = k + i__ * a_dim1;
+ i__4 = k + j * b_dim1;
+ q__2.r = a[i__3].r * b[i__4].r - a[i__3].i *
+ b[i__4].i, q__2.i = a[i__3].r * b[
+ i__4].i + a[i__3].i * b[i__4].r;
+ q__1.r = temp.r - q__2.r, q__1.i = temp.i -
+ q__2.i;
+ temp.r = q__1.r, temp.i = q__1.i;
+/* L150: */
+ }
+ if (nounit) {
+ c_div(&q__1, &temp, &a[i__ + i__ * a_dim1]);
+ temp.r = q__1.r, temp.i = q__1.i;
+ }
+ } else {
+ i__2 = *m;
+ for (k = i__ + 1; k <= i__2; ++k) {
+ r_cnjg(&q__3, &a[k + i__ * a_dim1]);
+ i__3 = k + j * b_dim1;
+ q__2.r = q__3.r * b[i__3].r - q__3.i * b[i__3]
+ .i, q__2.i = q__3.r * b[i__3].i +
+ q__3.i * b[i__3].r;
+ q__1.r = temp.r - q__2.r, q__1.i = temp.i -
+ q__2.i;
+ temp.r = q__1.r, temp.i = q__1.i;
+/* L160: */
+ }
+ if (nounit) {
+ r_cnjg(&q__2, &a[i__ + i__ * a_dim1]);
+ c_div(&q__1, &temp, &q__2);
+ temp.r = q__1.r, temp.i = q__1.i;
+ }
+ }
+ i__2 = i__ + j * b_dim1;
+ b[i__2].r = temp.r, b[i__2].i = temp.i;
+/* L170: */
+ }
+/* L180: */
+ }
+ }
+ }
+ } else {
+ if (lsame_(transa, "N")) {
+
+/* Form B := alpha*B*inv( A ). */
+
+ if (upper) {
+ i__1 = *n;
+ for (j = 1; j <= i__1; ++j) {
+ if ((alpha->r != 1.f) || (alpha->i != 0.f)) {
+ i__2 = *m;
+ for (i__ = 1; i__ <= i__2; ++i__) {
+ i__3 = i__ + j * b_dim1;
+ i__4 = i__ + j * b_dim1;
+ q__1.r = alpha->r * b[i__4].r - alpha->i * b[i__4]
+ .i, q__1.i = alpha->r * b[i__4].i +
+ alpha->i * b[i__4].r;
+ b[i__3].r = q__1.r, b[i__3].i = q__1.i;
+/* L190: */
+ }
+ }
+ i__2 = j - 1;
+ for (k = 1; k <= i__2; ++k) {
+ i__3 = k + j * a_dim1;
+ if ((a[i__3].r != 0.f) || (a[i__3].i != 0.f)) {
+ i__3 = *m;
+ for (i__ = 1; i__ <= i__3; ++i__) {
+ i__4 = i__ + j * b_dim1;
+ i__5 = i__ + j * b_dim1;
+ i__6 = k + j * a_dim1;
+ i__7 = i__ + k * b_dim1;
+ q__2.r = a[i__6].r * b[i__7].r - a[i__6].i *
+ b[i__7].i, q__2.i = a[i__6].r * b[
+ i__7].i + a[i__6].i * b[i__7].r;
+ q__1.r = b[i__5].r - q__2.r, q__1.i = b[i__5]
+ .i - q__2.i;
+ b[i__4].r = q__1.r, b[i__4].i = q__1.i;
+/* L200: */
+ }
+ }
+/* L210: */
+ }
+ if (nounit) {
+ c_div(&q__1, &c_b21, &a[j + j * a_dim1]);
+ temp.r = q__1.r, temp.i = q__1.i;
+ i__2 = *m;
+ for (i__ = 1; i__ <= i__2; ++i__) {
+ i__3 = i__ + j * b_dim1;
+ i__4 = i__ + j * b_dim1;
+ q__1.r = temp.r * b[i__4].r - temp.i * b[i__4].i,
+ q__1.i = temp.r * b[i__4].i + temp.i * b[
+ i__4].r;
+ b[i__3].r = q__1.r, b[i__3].i = q__1.i;
+/* L220: */
+ }
+ }
+/* L230: */
+ }
+ } else {
+ for (j = *n; j >= 1; --j) {
+ if ((alpha->r != 1.f) || (alpha->i != 0.f)) {
+ i__1 = *m;
+ for (i__ = 1; i__ <= i__1; ++i__) {
+ i__2 = i__ + j * b_dim1;
+ i__3 = i__ + j * b_dim1;
+ q__1.r = alpha->r * b[i__3].r - alpha->i * b[i__3]
+ .i, q__1.i = alpha->r * b[i__3].i +
+ alpha->i * b[i__3].r;
+ b[i__2].r = q__1.r, b[i__2].i = q__1.i;
+/* L240: */
+ }
+ }
+ i__1 = *n;
+ for (k = j + 1; k <= i__1; ++k) {
+ i__2 = k + j * a_dim1;
+ if ((a[i__2].r != 0.f) || (a[i__2].i != 0.f)) {
+ i__2 = *m;
+ for (i__ = 1; i__ <= i__2; ++i__) {
+ i__3 = i__ + j * b_dim1;
+ i__4 = i__ + j * b_dim1;
+ i__5 = k + j * a_dim1;
+ i__6 = i__ + k * b_dim1;
+ q__2.r = a[i__5].r * b[i__6].r - a[i__5].i *
+ b[i__6].i, q__2.i = a[i__5].r * b[
+ i__6].i + a[i__5].i * b[i__6].r;
+ q__1.r = b[i__4].r - q__2.r, q__1.i = b[i__4]
+ .i - q__2.i;
+ b[i__3].r = q__1.r, b[i__3].i = q__1.i;
+/* L250: */
+ }
+ }
+/* L260: */
+ }
+ if (nounit) {
+ c_div(&q__1, &c_b21, &a[j + j * a_dim1]);
+ temp.r = q__1.r, temp.i = q__1.i;
+ i__1 = *m;
+ for (i__ = 1; i__ <= i__1; ++i__) {
+ i__2 = i__ + j * b_dim1;
+ i__3 = i__ + j * b_dim1;
+ q__1.r = temp.r * b[i__3].r - temp.i * b[i__3].i,
+ q__1.i = temp.r * b[i__3].i + temp.i * b[
+ i__3].r;
+ b[i__2].r = q__1.r, b[i__2].i = q__1.i;
+/* L270: */
+ }
+ }
+/* L280: */
+ }
+ }
+ } else {
+
+/*
+ Form B := alpha*B*inv( A' )
+ or B := alpha*B*inv( conjg( A' ) ).
+*/
+
+ if (upper) {
+ for (k = *n; k >= 1; --k) {
+ if (nounit) {
+ if (noconj) {
+ c_div(&q__1, &c_b21, &a[k + k * a_dim1]);
+ temp.r = q__1.r, temp.i = q__1.i;
+ } else {
+ r_cnjg(&q__2, &a[k + k * a_dim1]);
+ c_div(&q__1, &c_b21, &q__2);
+ temp.r = q__1.r, temp.i = q__1.i;
+ }
+ i__1 = *m;
+ for (i__ = 1; i__ <= i__1; ++i__) {
+ i__2 = i__ + k * b_dim1;
+ i__3 = i__ + k * b_dim1;
+ q__1.r = temp.r * b[i__3].r - temp.i * b[i__3].i,
+ q__1.i = temp.r * b[i__3].i + temp.i * b[
+ i__3].r;
+ b[i__2].r = q__1.r, b[i__2].i = q__1.i;
+/* L290: */
+ }
+ }
+ i__1 = k - 1;
+ for (j = 1; j <= i__1; ++j) {
+ i__2 = j + k * a_dim1;
+ if ((a[i__2].r != 0.f) || (a[i__2].i != 0.f)) {
+ if (noconj) {
+ i__2 = j + k * a_dim1;
+ temp.r = a[i__2].r, temp.i = a[i__2].i;
+ } else {
+ r_cnjg(&q__1, &a[j + k * a_dim1]);
+ temp.r = q__1.r, temp.i = q__1.i;
+ }
+ i__2 = *m;
+ for (i__ = 1; i__ <= i__2; ++i__) {
+ i__3 = i__ + j * b_dim1;
+ i__4 = i__ + j * b_dim1;
+ i__5 = i__ + k * b_dim1;
+ q__2.r = temp.r * b[i__5].r - temp.i * b[i__5]
+ .i, q__2.i = temp.r * b[i__5].i +
+ temp.i * b[i__5].r;
+ q__1.r = b[i__4].r - q__2.r, q__1.i = b[i__4]
+ .i - q__2.i;
+ b[i__3].r = q__1.r, b[i__3].i = q__1.i;
+/* L300: */
+ }
+ }
+/* L310: */
+ }
+ if ((alpha->r != 1.f) || (alpha->i != 0.f)) {
+ i__1 = *m;
+ for (i__ = 1; i__ <= i__1; ++i__) {
+ i__2 = i__ + k * b_dim1;
+ i__3 = i__ + k * b_dim1;
+ q__1.r = alpha->r * b[i__3].r - alpha->i * b[i__3]
+ .i, q__1.i = alpha->r * b[i__3].i +
+ alpha->i * b[i__3].r;
+ b[i__2].r = q__1.r, b[i__2].i = q__1.i;
+/* L320: */
+ }
+ }
+/* L330: */
+ }
+ } else {
+ i__1 = *n;
+ for (k = 1; k <= i__1; ++k) {
+ if (nounit) {
+ if (noconj) {
+ c_div(&q__1, &c_b21, &a[k + k * a_dim1]);
+ temp.r = q__1.r, temp.i = q__1.i;
+ } else {
+ r_cnjg(&q__2, &a[k + k * a_dim1]);
+ c_div(&q__1, &c_b21, &q__2);
+ temp.r = q__1.r, temp.i = q__1.i;
+ }
+ i__2 = *m;
+ for (i__ = 1; i__ <= i__2; ++i__) {
+ i__3 = i__ + k * b_dim1;
+ i__4 = i__ + k * b_dim1;
+ q__1.r = temp.r * b[i__4].r - temp.i * b[i__4].i,
+ q__1.i = temp.r * b[i__4].i + temp.i * b[
+ i__4].r;
+ b[i__3].r = q__1.r, b[i__3].i = q__1.i;
+/* L340: */
+ }
+ }
+ i__2 = *n;
+ for (j = k + 1; j <= i__2; ++j) {
+ i__3 = j + k * a_dim1;
+ if ((a[i__3].r != 0.f) || (a[i__3].i != 0.f)) {
+ if (noconj) {
+ i__3 = j + k * a_dim1;
+ temp.r = a[i__3].r, temp.i = a[i__3].i;
+ } else {
+ r_cnjg(&q__1, &a[j + k * a_dim1]);
+ temp.r = q__1.r, temp.i = q__1.i;
+ }
+ i__3 = *m;
+ for (i__ = 1; i__ <= i__3; ++i__) {
+ i__4 = i__ + j * b_dim1;
+ i__5 = i__ + j * b_dim1;
+ i__6 = i__ + k * b_dim1;
+ q__2.r = temp.r * b[i__6].r - temp.i * b[i__6]
+ .i, q__2.i = temp.r * b[i__6].i +
+ temp.i * b[i__6].r;
+ q__1.r = b[i__5].r - q__2.r, q__1.i = b[i__5]
+ .i - q__2.i;
+ b[i__4].r = q__1.r, b[i__4].i = q__1.i;
+/* L350: */
+ }
+ }
+/* L360: */
+ }
+ if ((alpha->r != 1.f) || (alpha->i != 0.f)) {
+ i__2 = *m;
+ for (i__ = 1; i__ <= i__2; ++i__) {
+ i__3 = i__ + k * b_dim1;
+ i__4 = i__ + k * b_dim1;
+ q__1.r = alpha->r * b[i__4].r - alpha->i * b[i__4]
+ .i, q__1.i = alpha->r * b[i__4].i +
+ alpha->i * b[i__4].r;
+ b[i__3].r = q__1.r, b[i__3].i = q__1.i;
+/* L370: */
+ }
+ }
+/* L380: */
+ }
+ }
+ }
+ }
+
+ return 0;
+
+/* End of CTRSM . */
+
+} /* ctrsm_ */
+
+/* Subroutine */ int ctrsv_(char *uplo, char *trans, char *diag, integer *n,
+ complex *a, integer *lda, complex *x, integer *incx)
+{
+ /* System generated locals */
+ integer a_dim1, a_offset, i__1, i__2, i__3, i__4, i__5;
+ complex q__1, q__2, q__3;
+
+ /* Builtin functions */
+ void c_div(complex *, complex *, complex *), r_cnjg(complex *, complex *);
+
+ /* Local variables */
+ static integer i__, j, ix, jx, kx, info;
+ static complex temp;
+ extern logical lsame_(char *, char *);
+ extern /* Subroutine */ int xerbla_(char *, integer *);
+ static logical noconj, nounit;
+
+
+/*
+ Purpose
+ =======
+
+ CTRSV solves one of the systems of equations
+
+ A*x = b, or A'*x = b, or conjg( A' )*x = b,
+
+ where b and x are n element vectors and A is an n by n unit, or
+ non-unit, upper or lower triangular matrix.
+
+ No test for singularity or near-singularity is included in this
+ routine. Such tests must be performed before calling this routine.
+
+ Parameters
+ ==========
+
+ UPLO - CHARACTER*1.
+ On entry, UPLO specifies whether the matrix is an upper or
+ lower triangular matrix as follows:
+
+ UPLO = 'U' or 'u' A is an upper triangular matrix.
+
+ UPLO = 'L' or 'l' A is a lower triangular matrix.
+
+ Unchanged on exit.
+
+ TRANS - CHARACTER*1.
+ On entry, TRANS specifies the equations to be solved as
+ follows:
+
+ TRANS = 'N' or 'n' A*x = b.
+
+ TRANS = 'T' or 't' A'*x = b.
+
+ TRANS = 'C' or 'c' conjg( A' )*x = b.
+
+ Unchanged on exit.
+
+ DIAG - CHARACTER*1.
+ On entry, DIAG specifies whether or not A is unit
+ triangular as follows:
+
+ DIAG = 'U' or 'u' A is assumed to be unit triangular.
+
+ DIAG = 'N' or 'n' A is not assumed to be unit
+ triangular.
+
+ Unchanged on exit.
+
+ N - INTEGER.
+ On entry, N specifies the order of the matrix A.
+ N must be at least zero.
+ Unchanged on exit.
+
+ A - COMPLEX array of DIMENSION ( LDA, n ).
+ Before entry with UPLO = 'U' or 'u', the leading n by n
+ upper triangular part of the array A must contain the upper
+ triangular matrix and the strictly lower triangular part of
+ A is not referenced.
+ Before entry with UPLO = 'L' or 'l', the leading n by n
+ lower triangular part of the array A must contain the lower
+ triangular matrix and the strictly upper triangular part of
+ A is not referenced.
+ Note that when DIAG = 'U' or 'u', the diagonal elements of
+ A are not referenced either, but are assumed to be unity.
+ Unchanged on exit.
+
+ LDA - INTEGER.
+ On entry, LDA specifies the first dimension of A as declared
+ in the calling (sub) program. LDA must be at least
+ max( 1, n ).
+ Unchanged on exit.
+
+ X - COMPLEX array of dimension at least
+ ( 1 + ( n - 1 )*abs( INCX ) ).
+ Before entry, the incremented array X must contain the n
+ element right-hand side vector b. On exit, X is overwritten
+ with the solution vector x.
+
+ INCX - INTEGER.
+ On entry, INCX specifies the increment for the elements of
+ X. INCX must not be zero.
+ Unchanged on exit.
+
+
+ Level 2 Blas routine.
+
+ -- Written on 22-October-1986.
+ Jack Dongarra, Argonne National Lab.
+ Jeremy Du Croz, Nag Central Office.
+ Sven Hammarling, Nag Central Office.
+ Richard Hanson, Sandia National Labs.
+
+
+ Test the input parameters.
+*/
+
+ /* Parameter adjustments */
+ a_dim1 = *lda;
+ a_offset = 1 + a_dim1;
+ a -= a_offset;
+ --x;
+
+ /* Function Body */
+ info = 0;
+ if (! lsame_(uplo, "U") && ! lsame_(uplo, "L")) {
+ info = 1;
+ } else if (! lsame_(trans, "N") && ! lsame_(trans,
+ "T") && ! lsame_(trans, "C")) {
+ info = 2;
+ } else if (! lsame_(diag, "U") && ! lsame_(diag,
+ "N")) {
+ info = 3;
+ } else if (*n < 0) {
+ info = 4;
+ } else if (*lda < max(1,*n)) {
+ info = 6;
+ } else if (*incx == 0) {
+ info = 8;
+ }
+ if (info != 0) {
+ xerbla_("CTRSV ", &info);
+ return 0;
+ }
+
+/* Quick return if possible. */
+
+ if (*n == 0) {
+ return 0;
+ }
+
+ noconj = lsame_(trans, "T");
+ nounit = lsame_(diag, "N");
+
+/*
+ Set up the start point in X if the increment is not unity. This
+ will be ( N - 1 )*INCX too small for descending loops.
+*/
+
+ if (*incx <= 0) {
+ kx = 1 - (*n - 1) * *incx;
+ } else if (*incx != 1) {
+ kx = 1;
+ }
+
+/*
+ Start the operations. In this version the elements of A are
+ accessed sequentially with one pass through A.
+*/
+
+ if (lsame_(trans, "N")) {
+
+/* Form x := inv( A )*x. */
+
+ if (lsame_(uplo, "U")) {
+ if (*incx == 1) {
+ for (j = *n; j >= 1; --j) {
+ i__1 = j;
+ if ((x[i__1].r != 0.f) || (x[i__1].i != 0.f)) {
+ if (nounit) {
+ i__1 = j;
+ c_div(&q__1, &x[j], &a[j + j * a_dim1]);
+ x[i__1].r = q__1.r, x[i__1].i = q__1.i;
+ }
+ i__1 = j;
+ temp.r = x[i__1].r, temp.i = x[i__1].i;
+ for (i__ = j - 1; i__ >= 1; --i__) {
+ i__1 = i__;
+ i__2 = i__;
+ i__3 = i__ + j * a_dim1;
+ q__2.r = temp.r * a[i__3].r - temp.i * a[i__3].i,
+ q__2.i = temp.r * a[i__3].i + temp.i * a[
+ i__3].r;
+ q__1.r = x[i__2].r - q__2.r, q__1.i = x[i__2].i -
+ q__2.i;
+ x[i__1].r = q__1.r, x[i__1].i = q__1.i;
+/* L10: */
+ }
+ }
+/* L20: */
+ }
+ } else {
+ jx = kx + (*n - 1) * *incx;
+ for (j = *n; j >= 1; --j) {
+ i__1 = jx;
+ if ((x[i__1].r != 0.f) || (x[i__1].i != 0.f)) {
+ if (nounit) {
+ i__1 = jx;
+ c_div(&q__1, &x[jx], &a[j + j * a_dim1]);
+ x[i__1].r = q__1.r, x[i__1].i = q__1.i;
+ }
+ i__1 = jx;
+ temp.r = x[i__1].r, temp.i = x[i__1].i;
+ ix = jx;
+ for (i__ = j - 1; i__ >= 1; --i__) {
+ ix -= *incx;
+ i__1 = ix;
+ i__2 = ix;
+ i__3 = i__ + j * a_dim1;
+ q__2.r = temp.r * a[i__3].r - temp.i * a[i__3].i,
+ q__2.i = temp.r * a[i__3].i + temp.i * a[
+ i__3].r;
+ q__1.r = x[i__2].r - q__2.r, q__1.i = x[i__2].i -
+ q__2.i;
+ x[i__1].r = q__1.r, x[i__1].i = q__1.i;
+/* L30: */
+ }
+ }
+ jx -= *incx;
+/* L40: */
+ }
+ }
+ } else {
+ if (*incx == 1) {
+ i__1 = *n;
+ for (j = 1; j <= i__1; ++j) {
+ i__2 = j;
+ if ((x[i__2].r != 0.f) || (x[i__2].i != 0.f)) {
+ if (nounit) {
+ i__2 = j;
+ c_div(&q__1, &x[j], &a[j + j * a_dim1]);
+ x[i__2].r = q__1.r, x[i__2].i = q__1.i;
+ }
+ i__2 = j;
+ temp.r = x[i__2].r, temp.i = x[i__2].i;
+ i__2 = *n;
+ for (i__ = j + 1; i__ <= i__2; ++i__) {
+ i__3 = i__;
+ i__4 = i__;
+ i__5 = i__ + j * a_dim1;
+ q__2.r = temp.r * a[i__5].r - temp.i * a[i__5].i,
+ q__2.i = temp.r * a[i__5].i + temp.i * a[
+ i__5].r;
+ q__1.r = x[i__4].r - q__2.r, q__1.i = x[i__4].i -
+ q__2.i;
+ x[i__3].r = q__1.r, x[i__3].i = q__1.i;
+/* L50: */
+ }
+ }
+/* L60: */
+ }
+ } else {
+ jx = kx;
+ i__1 = *n;
+ for (j = 1; j <= i__1; ++j) {
+ i__2 = jx;
+ if ((x[i__2].r != 0.f) || (x[i__2].i != 0.f)) {
+ if (nounit) {
+ i__2 = jx;
+ c_div(&q__1, &x[jx], &a[j + j * a_dim1]);
+ x[i__2].r = q__1.r, x[i__2].i = q__1.i;
+ }
+ i__2 = jx;
+ temp.r = x[i__2].r, temp.i = x[i__2].i;
+ ix = jx;
+ i__2 = *n;
+ for (i__ = j + 1; i__ <= i__2; ++i__) {
+ ix += *incx;
+ i__3 = ix;
+ i__4 = ix;
+ i__5 = i__ + j * a_dim1;
+ q__2.r = temp.r * a[i__5].r - temp.i * a[i__5].i,
+ q__2.i = temp.r * a[i__5].i + temp.i * a[
+ i__5].r;
+ q__1.r = x[i__4].r - q__2.r, q__1.i = x[i__4].i -
+ q__2.i;
+ x[i__3].r = q__1.r, x[i__3].i = q__1.i;
+/* L70: */
+ }
+ }
+ jx += *incx;
+/* L80: */
+ }
+ }
+ }
+ } else {
+
+/* Form x := inv( A' )*x or x := inv( conjg( A' ) )*x. */
+
+ if (lsame_(uplo, "U")) {
+ if (*incx == 1) {
+ i__1 = *n;
+ for (j = 1; j <= i__1; ++j) {
+ i__2 = j;
+ temp.r = x[i__2].r, temp.i = x[i__2].i;
+ if (noconj) {
+ i__2 = j - 1;
+ for (i__ = 1; i__ <= i__2; ++i__) {
+ i__3 = i__ + j * a_dim1;
+ i__4 = i__;
+ q__2.r = a[i__3].r * x[i__4].r - a[i__3].i * x[
+ i__4].i, q__2.i = a[i__3].r * x[i__4].i +
+ a[i__3].i * x[i__4].r;
+ q__1.r = temp.r - q__2.r, q__1.i = temp.i -
+ q__2.i;
+ temp.r = q__1.r, temp.i = q__1.i;
+/* L90: */
+ }
+ if (nounit) {
+ c_div(&q__1, &temp, &a[j + j * a_dim1]);
+ temp.r = q__1.r, temp.i = q__1.i;
+ }
+ } else {
+ i__2 = j - 1;
+ for (i__ = 1; i__ <= i__2; ++i__) {
+ r_cnjg(&q__3, &a[i__ + j * a_dim1]);
+ i__3 = i__;
+ q__2.r = q__3.r * x[i__3].r - q__3.i * x[i__3].i,
+ q__2.i = q__3.r * x[i__3].i + q__3.i * x[
+ i__3].r;
+ q__1.r = temp.r - q__2.r, q__1.i = temp.i -
+ q__2.i;
+ temp.r = q__1.r, temp.i = q__1.i;
+/* L100: */
+ }
+ if (nounit) {
+ r_cnjg(&q__2, &a[j + j * a_dim1]);
+ c_div(&q__1, &temp, &q__2);
+ temp.r = q__1.r, temp.i = q__1.i;
+ }
+ }
+ i__2 = j;
+ x[i__2].r = temp.r, x[i__2].i = temp.i;
+/* L110: */
+ }
+ } else {
+ jx = kx;
+ i__1 = *n;
+ for (j = 1; j <= i__1; ++j) {
+ ix = kx;
+ i__2 = jx;
+ temp.r = x[i__2].r, temp.i = x[i__2].i;
+ if (noconj) {
+ i__2 = j - 1;
+ for (i__ = 1; i__ <= i__2; ++i__) {
+ i__3 = i__ + j * a_dim1;
+ i__4 = ix;
+ q__2.r = a[i__3].r * x[i__4].r - a[i__3].i * x[
+ i__4].i, q__2.i = a[i__3].r * x[i__4].i +
+ a[i__3].i * x[i__4].r;
+ q__1.r = temp.r - q__2.r, q__1.i = temp.i -
+ q__2.i;
+ temp.r = q__1.r, temp.i = q__1.i;
+ ix += *incx;
+/* L120: */
+ }
+ if (nounit) {
+ c_div(&q__1, &temp, &a[j + j * a_dim1]);
+ temp.r = q__1.r, temp.i = q__1.i;
+ }
+ } else {
+ i__2 = j - 1;
+ for (i__ = 1; i__ <= i__2; ++i__) {
+ r_cnjg(&q__3, &a[i__ + j * a_dim1]);
+ i__3 = ix;
+ q__2.r = q__3.r * x[i__3].r - q__3.i * x[i__3].i,
+ q__2.i = q__3.r * x[i__3].i + q__3.i * x[
+ i__3].r;
+ q__1.r = temp.r - q__2.r, q__1.i = temp.i -
+ q__2.i;
+ temp.r = q__1.r, temp.i = q__1.i;
+ ix += *incx;
+/* L130: */
+ }
+ if (nounit) {
+ r_cnjg(&q__2, &a[j + j * a_dim1]);
+ c_div(&q__1, &temp, &q__2);
+ temp.r = q__1.r, temp.i = q__1.i;
+ }
+ }
+ i__2 = jx;
+ x[i__2].r = temp.r, x[i__2].i = temp.i;
+ jx += *incx;
+/* L140: */
+ }
+ }
+ } else {
+ if (*incx == 1) {
+ for (j = *n; j >= 1; --j) {
+ i__1 = j;
+ temp.r = x[i__1].r, temp.i = x[i__1].i;
+ if (noconj) {
+ i__1 = j + 1;
+ for (i__ = *n; i__ >= i__1; --i__) {
+ i__2 = i__ + j * a_dim1;
+ i__3 = i__;
+ q__2.r = a[i__2].r * x[i__3].r - a[i__2].i * x[
+ i__3].i, q__2.i = a[i__2].r * x[i__3].i +
+ a[i__2].i * x[i__3].r;
+ q__1.r = temp.r - q__2.r, q__1.i = temp.i -
+ q__2.i;
+ temp.r = q__1.r, temp.i = q__1.i;
+/* L150: */
+ }
+ if (nounit) {
+ c_div(&q__1, &temp, &a[j + j * a_dim1]);
+ temp.r = q__1.r, temp.i = q__1.i;
+ }
+ } else {
+ i__1 = j + 1;
+ for (i__ = *n; i__ >= i__1; --i__) {
+ r_cnjg(&q__3, &a[i__ + j * a_dim1]);
+ i__2 = i__;
+ q__2.r = q__3.r * x[i__2].r - q__3.i * x[i__2].i,
+ q__2.i = q__3.r * x[i__2].i + q__3.i * x[
+ i__2].r;
+ q__1.r = temp.r - q__2.r, q__1.i = temp.i -
+ q__2.i;
+ temp.r = q__1.r, temp.i = q__1.i;
+/* L160: */
+ }
+ if (nounit) {
+ r_cnjg(&q__2, &a[j + j * a_dim1]);
+ c_div(&q__1, &temp, &q__2);
+ temp.r = q__1.r, temp.i = q__1.i;
+ }
+ }
+ i__1 = j;
+ x[i__1].r = temp.r, x[i__1].i = temp.i;
+/* L170: */
+ }
+ } else {
+ kx += (*n - 1) * *incx;
+ jx = kx;
+ for (j = *n; j >= 1; --j) {
+ ix = kx;
+ i__1 = jx;
+ temp.r = x[i__1].r, temp.i = x[i__1].i;
+ if (noconj) {
+ i__1 = j + 1;
+ for (i__ = *n; i__ >= i__1; --i__) {
+ i__2 = i__ + j * a_dim1;
+ i__3 = ix;
+ q__2.r = a[i__2].r * x[i__3].r - a[i__2].i * x[
+ i__3].i, q__2.i = a[i__2].r * x[i__3].i +
+ a[i__2].i * x[i__3].r;
+ q__1.r = temp.r - q__2.r, q__1.i = temp.i -
+ q__2.i;
+ temp.r = q__1.r, temp.i = q__1.i;
+ ix -= *incx;
+/* L180: */
+ }
+ if (nounit) {
+ c_div(&q__1, &temp, &a[j + j * a_dim1]);
+ temp.r = q__1.r, temp.i = q__1.i;
+ }
+ } else {
+ i__1 = j + 1;
+ for (i__ = *n; i__ >= i__1; --i__) {
+ r_cnjg(&q__3, &a[i__ + j * a_dim1]);
+ i__2 = ix;
+ q__2.r = q__3.r * x[i__2].r - q__3.i * x[i__2].i,
+ q__2.i = q__3.r * x[i__2].i + q__3.i * x[
+ i__2].r;
+ q__1.r = temp.r - q__2.r, q__1.i = temp.i -
+ q__2.i;
+ temp.r = q__1.r, temp.i = q__1.i;
+ ix -= *incx;
+/* L190: */
+ }
+ if (nounit) {
+ r_cnjg(&q__2, &a[j + j * a_dim1]);
+ c_div(&q__1, &temp, &q__2);
+ temp.r = q__1.r, temp.i = q__1.i;
+ }
+ }
+ i__1 = jx;
+ x[i__1].r = temp.r, x[i__1].i = temp.i;
+ jx -= *incx;
+/* L200: */
+ }
+ }
+ }
+ }
+
+ return 0;
+
+/* End of CTRSV . */
+
+} /* ctrsv_ */
+
+/* Subroutine */ int daxpy_(integer *n, doublereal *da, doublereal *dx,
+ integer *incx, doublereal *dy, integer *incy)
+{
+ /* System generated locals */
+ integer i__1;
+
+ /* Local variables */
+ static integer i__, m, ix, iy, mp1;
+
+
+/*
+ constant times a vector plus a vector.
+ uses unrolled loops for increments equal to one.
+ jack dongarra, linpack, 3/11/78.
+ modified 12/3/93, array(1) declarations changed to array(*)
+*/
+
+
+ /* Parameter adjustments */
+ --dy;
+ --dx;
+
+ /* Function Body */
+ if (*n <= 0) {
+ return 0;
+ }
+ if (*da == 0.) {
+ return 0;
+ }
+ if (*incx == 1 && *incy == 1) {
+ goto L20;
+ }
+
+/*
+ code for unequal increments or equal increments
+ not equal to 1
+*/
+
+ ix = 1;
+ iy = 1;
+ if (*incx < 0) {
+ ix = (-(*n) + 1) * *incx + 1;
+ }
+ if (*incy < 0) {
+ iy = (-(*n) + 1) * *incy + 1;
+ }
+ i__1 = *n;
+ for (i__ = 1; i__ <= i__1; ++i__) {
+ dy[iy] += *da * dx[ix];
+ ix += *incx;
+ iy += *incy;
+/* L10: */
+ }
+ return 0;
+
+/*
+ code for both increments equal to 1
+
+
+ clean-up loop
+*/
+
+L20:
+ m = *n % 4;
+ if (m == 0) {
+ goto L40;
+ }
+ i__1 = m;
+ for (i__ = 1; i__ <= i__1; ++i__) {
+ dy[i__] += *da * dx[i__];
+/* L30: */
+ }
+ if (*n < 4) {
+ return 0;
+ }
+L40:
+ mp1 = m + 1;
+ i__1 = *n;
+ for (i__ = mp1; i__ <= i__1; i__ += 4) {
+ dy[i__] += *da * dx[i__];
+ dy[i__ + 1] += *da * dx[i__ + 1];
+ dy[i__ + 2] += *da * dx[i__ + 2];
+ dy[i__ + 3] += *da * dx[i__ + 3];
+/* L50: */
+ }
+ return 0;
+} /* daxpy_ */
+
+doublereal dcabs1_(doublecomplex *z__)
+{
+ /* System generated locals */
+ doublereal ret_val;
+ static doublecomplex equiv_0[1];
+
+ /* Local variables */
+#define t ((doublereal *)equiv_0)
+#define zz (equiv_0)
+
+ zz->r = z__->r, zz->i = z__->i;
+ ret_val = abs(t[0]) + abs(t[1]);
+ return ret_val;
+} /* dcabs1_ */
+
+#undef zz
+#undef t
+
+
+/* Subroutine */ int dcopy_(integer *n, doublereal *dx, integer *incx,
+ doublereal *dy, integer *incy)
+{
+ /* System generated locals */
+ integer i__1;
+
+ /* Local variables */
+ static integer i__, m, ix, iy, mp1;
+
+
+/*
+ copies a vector, x, to a vector, y.
+ uses unrolled loops for increments equal to one.
+ jack dongarra, linpack, 3/11/78.
+ modified 12/3/93, array(1) declarations changed to array(*)
+*/
+
+
+ /* Parameter adjustments */
+ --dy;
+ --dx;
+
+ /* Function Body */
+ if (*n <= 0) {
+ return 0;
+ }
+ if (*incx == 1 && *incy == 1) {
+ goto L20;
+ }
+
+/*
+ code for unequal increments or equal increments
+ not equal to 1
+*/
+
+ ix = 1;
+ iy = 1;
+ if (*incx < 0) {
+ ix = (-(*n) + 1) * *incx + 1;
+ }
+ if (*incy < 0) {
+ iy = (-(*n) + 1) * *incy + 1;
+ }
+ i__1 = *n;
+ for (i__ = 1; i__ <= i__1; ++i__) {
+ dy[iy] = dx[ix];
+ ix += *incx;
+ iy += *incy;
+/* L10: */
+ }
+ return 0;
+
+/*
+ code for both increments equal to 1
+
+
+ clean-up loop
+*/
+
+L20:
+ m = *n % 7;
+ if (m == 0) {
+ goto L40;
+ }
+ i__1 = m;
+ for (i__ = 1; i__ <= i__1; ++i__) {
+ dy[i__] = dx[i__];
+/* L30: */
+ }
+ if (*n < 7) {
+ return 0;
+ }
+L40:
+ mp1 = m + 1;
+ i__1 = *n;
+ for (i__ = mp1; i__ <= i__1; i__ += 7) {
+ dy[i__] = dx[i__];
+ dy[i__ + 1] = dx[i__ + 1];
+ dy[i__ + 2] = dx[i__ + 2];
+ dy[i__ + 3] = dx[i__ + 3];
+ dy[i__ + 4] = dx[i__ + 4];
+ dy[i__ + 5] = dx[i__ + 5];
+ dy[i__ + 6] = dx[i__ + 6];
+/* L50: */
+ }
+ return 0;
+} /* dcopy_ */
+
+doublereal ddot_(integer *n, doublereal *dx, integer *incx, doublereal *dy,
+ integer *incy)
+{
+ /* System generated locals */
+ integer i__1;
+ doublereal ret_val;
+
+ /* Local variables */
+ static integer i__, m, ix, iy, mp1;
+ static doublereal dtemp;
+
+
+/*
+ forms the dot product of two vectors.
+ uses unrolled loops for increments equal to one.
+ jack dongarra, linpack, 3/11/78.
+ modified 12/3/93, array(1) declarations changed to array(*)
+*/
+
+
+ /* Parameter adjustments */
+ --dy;
+ --dx;
+
+ /* Function Body */
+ ret_val = 0.;
+ dtemp = 0.;
+ if (*n <= 0) {
+ return ret_val;
+ }
+ if (*incx == 1 && *incy == 1) {
+ goto L20;
+ }
+
+/*
+ code for unequal increments or equal increments
+ not equal to 1
+*/
+
+ ix = 1;
+ iy = 1;
+ if (*incx < 0) {
+ ix = (-(*n) + 1) * *incx + 1;
+ }
+ if (*incy < 0) {
+ iy = (-(*n) + 1) * *incy + 1;
+ }
+ i__1 = *n;
+ for (i__ = 1; i__ <= i__1; ++i__) {
+ dtemp += dx[ix] * dy[iy];
+ ix += *incx;
+ iy += *incy;
+/* L10: */
+ }
+ ret_val = dtemp;
+ return ret_val;
+
+/*
+ code for both increments equal to 1
+
+
+ clean-up loop
+*/
+
+L20:
+ m = *n % 5;
+ if (m == 0) {
+ goto L40;
+ }
+ i__1 = m;
+ for (i__ = 1; i__ <= i__1; ++i__) {
+ dtemp += dx[i__] * dy[i__];
+/* L30: */
+ }
+ if (*n < 5) {
+ goto L60;
+ }
+L40:
+ mp1 = m + 1;
+ i__1 = *n;
+ for (i__ = mp1; i__ <= i__1; i__ += 5) {
+ dtemp = dtemp + dx[i__] * dy[i__] + dx[i__ + 1] * dy[i__ + 1] + dx[
+ i__ + 2] * dy[i__ + 2] + dx[i__ + 3] * dy[i__ + 3] + dx[i__ +
+ 4] * dy[i__ + 4];
+/* L50: */
+ }
+L60:
+ ret_val = dtemp;
+ return ret_val;
+} /* ddot_ */
+
+/* Subroutine */ int dgemm_(char *transa, char *transb, integer *m, integer *
+ n, integer *k, doublereal *alpha, doublereal *a, integer *lda,
+ doublereal *b, integer *ldb, doublereal *beta, doublereal *c__,
+ integer *ldc)
+{
+ /* System generated locals */
+ integer a_dim1, a_offset, b_dim1, b_offset, c_dim1, c_offset, i__1, i__2,
+ i__3;
+
+ /* Local variables */
+ static integer i__, j, l, info;
+ static logical nota, notb;
+ static doublereal temp;
+ static integer ncola;
+ extern logical lsame_(char *, char *);
+ static integer nrowa, nrowb;
+ extern /* Subroutine */ int xerbla_(char *, integer *);
+
+
+/*
+ Purpose
+ =======
+
+ DGEMM performs one of the matrix-matrix operations
+
+ C := alpha*op( A )*op( B ) + beta*C,
+
+ where op( X ) is one of
+
+ op( X ) = X or op( X ) = X',
+
+ alpha and beta are scalars, and A, B and C are matrices, with op( A )
+ an m by k matrix, op( B ) a k by n matrix and C an m by n matrix.
+
+ Parameters
+ ==========
+
+ TRANSA - CHARACTER*1.
+ On entry, TRANSA specifies the form of op( A ) to be used in
+ the matrix multiplication as follows:
+
+ TRANSA = 'N' or 'n', op( A ) = A.
+
+ TRANSA = 'T' or 't', op( A ) = A'.
+
+ TRANSA = 'C' or 'c', op( A ) = A'.
+
+ Unchanged on exit.
+
+ TRANSB - CHARACTER*1.
+ On entry, TRANSB specifies the form of op( B ) to be used in
+ the matrix multiplication as follows:
+
+ TRANSB = 'N' or 'n', op( B ) = B.
+
+ TRANSB = 'T' or 't', op( B ) = B'.
+
+ TRANSB = 'C' or 'c', op( B ) = B'.
+
+ Unchanged on exit.
+
+ M - INTEGER.
+ On entry, M specifies the number of rows of the matrix
+ op( A ) and of the matrix C. M must be at least zero.
+ Unchanged on exit.
+
+ N - INTEGER.
+ On entry, N specifies the number of columns of the matrix
+ op( B ) and the number of columns of the matrix C. N must be
+ at least zero.
+ Unchanged on exit.
+
+ K - INTEGER.
+ On entry, K specifies the number of columns of the matrix
+ op( A ) and the number of rows of the matrix op( B ). K must
+ be at least zero.
+ Unchanged on exit.
+
+ ALPHA - DOUBLE PRECISION.
+ On entry, ALPHA specifies the scalar alpha.
+ Unchanged on exit.
+
+ A - DOUBLE PRECISION array of DIMENSION ( LDA, ka ), where ka is
+ k when TRANSA = 'N' or 'n', and is m otherwise.
+ Before entry with TRANSA = 'N' or 'n', the leading m by k
+ part of the array A must contain the matrix A, otherwise
+ the leading k by m part of the array A must contain the
+ matrix A.
+ Unchanged on exit.
+
+ LDA - INTEGER.
+ On entry, LDA specifies the first dimension of A as declared
+ in the calling (sub) program. When TRANSA = 'N' or 'n' then
+ LDA must be at least max( 1, m ), otherwise LDA must be at
+ least max( 1, k ).
+ Unchanged on exit.
+
+ B - DOUBLE PRECISION array of DIMENSION ( LDB, kb ), where kb is
+ n when TRANSB = 'N' or 'n', and is k otherwise.
+ Before entry with TRANSB = 'N' or 'n', the leading k by n
+ part of the array B must contain the matrix B, otherwise
+ the leading n by k part of the array B must contain the
+ matrix B.
+ Unchanged on exit.
+
+ LDB - INTEGER.
+ On entry, LDB specifies the first dimension of B as declared
+ in the calling (sub) program. When TRANSB = 'N' or 'n' then
+ LDB must be at least max( 1, k ), otherwise LDB must be at
+ least max( 1, n ).
+ Unchanged on exit.
+
+ BETA - DOUBLE PRECISION.
+ On entry, BETA specifies the scalar beta. When BETA is
+ supplied as zero then C need not be set on input.
+ Unchanged on exit.
+
+ C - DOUBLE PRECISION array of DIMENSION ( LDC, n ).
+ Before entry, the leading m by n part of the array C must
+ contain the matrix C, except when beta is zero, in which
+ case C need not be set on entry.
+ On exit, the array C is overwritten by the m by n matrix
+ ( alpha*op( A )*op( B ) + beta*C ).
+
+ LDC - INTEGER.
+ On entry, LDC specifies the first dimension of C as declared
+ in the calling (sub) program. LDC must be at least
+ max( 1, m ).
+ Unchanged on exit.
+
+
+ Level 3 Blas routine.
+
+ -- Written on 8-February-1989.
+ Jack Dongarra, Argonne National Laboratory.
+ Iain Duff, AERE Harwell.
+ Jeremy Du Croz, Numerical Algorithms Group Ltd.
+ Sven Hammarling, Numerical Algorithms Group Ltd.
+
+
+ Set NOTA and NOTB as true if A and B respectively are not
+ transposed and set NROWA, NCOLA and NROWB as the number of rows
+ and columns of A and the number of rows of B respectively.
+*/
+
+ /* Parameter adjustments */
+ a_dim1 = *lda;
+ a_offset = 1 + a_dim1;
+ a -= a_offset;
+ b_dim1 = *ldb;
+ b_offset = 1 + b_dim1;
+ b -= b_offset;
+ c_dim1 = *ldc;
+ c_offset = 1 + c_dim1;
+ c__ -= c_offset;
+
+ /* Function Body */
+ nota = lsame_(transa, "N");
+ notb = lsame_(transb, "N");
+ if (nota) {
+ nrowa = *m;
+ ncola = *k;
+ } else {
+ nrowa = *k;
+ ncola = *m;
+ }
+ if (notb) {
+ nrowb = *k;
+ } else {
+ nrowb = *n;
+ }
+
+/* Test the input parameters. */
+
+ info = 0;
+ if (! nota && ! lsame_(transa, "C") && ! lsame_(
+ transa, "T")) {
+ info = 1;
+ } else if (! notb && ! lsame_(transb, "C") && !
+ lsame_(transb, "T")) {
+ info = 2;
+ } else if (*m < 0) {
+ info = 3;
+ } else if (*n < 0) {
+ info = 4;
+ } else if (*k < 0) {
+ info = 5;
+ } else if (*lda < max(1,nrowa)) {
+ info = 8;
+ } else if (*ldb < max(1,nrowb)) {
+ info = 10;
+ } else if (*ldc < max(1,*m)) {
+ info = 13;
+ }
+ if (info != 0) {
+ xerbla_("DGEMM ", &info);
+ return 0;
+ }
+
+/* Quick return if possible. */
+
+ if (((*m == 0) || (*n == 0)) || (((*alpha == 0.) || (*k == 0)) && *beta ==
+ 1.)) {
+ return 0;
+ }
+
+/* And if alpha.eq.zero. */
+
+ if (*alpha == 0.) {
+ if (*beta == 0.) {
+ i__1 = *n;
+ for (j = 1; j <= i__1; ++j) {
+ i__2 = *m;
+ for (i__ = 1; i__ <= i__2; ++i__) {
+ c__[i__ + j * c_dim1] = 0.;
+/* L10: */
+ }
+/* L20: */
+ }
+ } else {
+ i__1 = *n;
+ for (j = 1; j <= i__1; ++j) {
+ i__2 = *m;
+ for (i__ = 1; i__ <= i__2; ++i__) {
+ c__[i__ + j * c_dim1] = *beta * c__[i__ + j * c_dim1];
+/* L30: */
+ }
+/* L40: */
+ }
+ }
+ return 0;
+ }
+
+/* Start the operations. */
+
+ if (notb) {
+ if (nota) {
+
+/* Form C := alpha*A*B + beta*C. */
+
+ i__1 = *n;
+ for (j = 1; j <= i__1; ++j) {
+ if (*beta == 0.) {
+ i__2 = *m;
+ for (i__ = 1; i__ <= i__2; ++i__) {
+ c__[i__ + j * c_dim1] = 0.;
+/* L50: */
+ }
+ } else if (*beta != 1.) {
+ i__2 = *m;
+ for (i__ = 1; i__ <= i__2; ++i__) {
+ c__[i__ + j * c_dim1] = *beta * c__[i__ + j * c_dim1];
+/* L60: */
+ }
+ }
+ i__2 = *k;
+ for (l = 1; l <= i__2; ++l) {
+ if (b[l + j * b_dim1] != 0.) {
+ temp = *alpha * b[l + j * b_dim1];
+ i__3 = *m;
+ for (i__ = 1; i__ <= i__3; ++i__) {
+ c__[i__ + j * c_dim1] += temp * a[i__ + l *
+ a_dim1];
+/* L70: */
+ }
+ }
+/* L80: */
+ }
+/* L90: */
+ }
+ } else {
+
+/* Form C := alpha*A'*B + beta*C */
+
+ i__1 = *n;
+ for (j = 1; j <= i__1; ++j) {
+ i__2 = *m;
+ for (i__ = 1; i__ <= i__2; ++i__) {
+ temp = 0.;
+ i__3 = *k;
+ for (l = 1; l <= i__3; ++l) {
+ temp += a[l + i__ * a_dim1] * b[l + j * b_dim1];
+/* L100: */
+ }
+ if (*beta == 0.) {
+ c__[i__ + j * c_dim1] = *alpha * temp;
+ } else {
+ c__[i__ + j * c_dim1] = *alpha * temp + *beta * c__[
+ i__ + j * c_dim1];
+ }
+/* L110: */
+ }
+/* L120: */
+ }
+ }
+ } else {
+ if (nota) {
+
+/* Form C := alpha*A*B' + beta*C */
+
+ i__1 = *n;
+ for (j = 1; j <= i__1; ++j) {
+ if (*beta == 0.) {
+ i__2 = *m;
+ for (i__ = 1; i__ <= i__2; ++i__) {
+ c__[i__ + j * c_dim1] = 0.;
+/* L130: */
+ }
+ } else if (*beta != 1.) {
+ i__2 = *m;
+ for (i__ = 1; i__ <= i__2; ++i__) {
+ c__[i__ + j * c_dim1] = *beta * c__[i__ + j * c_dim1];
+/* L140: */
+ }
+ }
+ i__2 = *k;
+ for (l = 1; l <= i__2; ++l) {
+ if (b[j + l * b_dim1] != 0.) {
+ temp = *alpha * b[j + l * b_dim1];
+ i__3 = *m;
+ for (i__ = 1; i__ <= i__3; ++i__) {
+ c__[i__ + j * c_dim1] += temp * a[i__ + l *
+ a_dim1];
+/* L150: */
+ }
+ }
+/* L160: */
+ }
+/* L170: */
+ }
+ } else {
+
+/* Form C := alpha*A'*B' + beta*C */
+
+ i__1 = *n;
+ for (j = 1; j <= i__1; ++j) {
+ i__2 = *m;
+ for (i__ = 1; i__ <= i__2; ++i__) {
+ temp = 0.;
+ i__3 = *k;
+ for (l = 1; l <= i__3; ++l) {
+ temp += a[l + i__ * a_dim1] * b[j + l * b_dim1];
+/* L180: */
+ }
+ if (*beta == 0.) {
+ c__[i__ + j * c_dim1] = *alpha * temp;
+ } else {
+ c__[i__ + j * c_dim1] = *alpha * temp + *beta * c__[
+ i__ + j * c_dim1];
+ }
+/* L190: */
+ }
+/* L200: */
+ }
+ }
+ }
+
+ return 0;
+
+/* End of DGEMM . */
+
+} /* dgemm_ */
+
+/* Subroutine */ int dgemv_(char *trans, integer *m, integer *n, doublereal *
+ alpha, doublereal *a, integer *lda, doublereal *x, integer *incx,
+ doublereal *beta, doublereal *y, integer *incy)
+{
+ /* System generated locals */
+ integer a_dim1, a_offset, i__1, i__2;
+
+ /* Local variables */
+ static integer i__, j, ix, iy, jx, jy, kx, ky, info;
+ static doublereal temp;
+ static integer lenx, leny;
+ extern logical lsame_(char *, char *);
+ extern /* Subroutine */ int xerbla_(char *, integer *);
+
+
+/*
+ Purpose
+ =======
+
+ DGEMV performs one of the matrix-vector operations
+
+ y := alpha*A*x + beta*y, or y := alpha*A'*x + beta*y,
+
+ where alpha and beta are scalars, x and y are vectors and A is an
+ m by n matrix.
+
+ Parameters
+ ==========
+
+ TRANS - CHARACTER*1.
+ On entry, TRANS specifies the operation to be performed as
+ follows:
+
+ TRANS = 'N' or 'n' y := alpha*A*x + beta*y.
+
+ TRANS = 'T' or 't' y := alpha*A'*x + beta*y.
+
+ TRANS = 'C' or 'c' y := alpha*A'*x + beta*y.
+
+ Unchanged on exit.
+
+ M - INTEGER.
+ On entry, M specifies the number of rows of the matrix A.
+ M must be at least zero.
+ Unchanged on exit.
+
+ N - INTEGER.
+ On entry, N specifies the number of columns of the matrix A.
+ N must be at least zero.
+ Unchanged on exit.
+
+ ALPHA - DOUBLE PRECISION.
+ On entry, ALPHA specifies the scalar alpha.
+ Unchanged on exit.
+
+ A - DOUBLE PRECISION array of DIMENSION ( LDA, n ).
+ Before entry, the leading m by n part of the array A must
+ contain the matrix of coefficients.
+ Unchanged on exit.
+
+ LDA - INTEGER.
+ On entry, LDA specifies the first dimension of A as declared
+ in the calling (sub) program. LDA must be at least
+ max( 1, m ).
+ Unchanged on exit.
+
+ X - DOUBLE PRECISION array of DIMENSION at least
+ ( 1 + ( n - 1 )*abs( INCX ) ) when TRANS = 'N' or 'n'
+ and at least
+ ( 1 + ( m - 1 )*abs( INCX ) ) otherwise.
+ Before entry, the incremented array X must contain the
+ vector x.
+ Unchanged on exit.
+
+ INCX - INTEGER.
+ On entry, INCX specifies the increment for the elements of
+ X. INCX must not be zero.
+ Unchanged on exit.
+
+ BETA - DOUBLE PRECISION.
+ On entry, BETA specifies the scalar beta. When BETA is
+ supplied as zero then Y need not be set on input.
+ Unchanged on exit.
+
+ Y - DOUBLE PRECISION array of DIMENSION at least
+ ( 1 + ( m - 1 )*abs( INCY ) ) when TRANS = 'N' or 'n'
+ and at least
+ ( 1 + ( n - 1 )*abs( INCY ) ) otherwise.
+ Before entry with BETA non-zero, the incremented array Y
+ must contain the vector y. On exit, Y is overwritten by the
+ updated vector y.
+
+ INCY - INTEGER.
+ On entry, INCY specifies the increment for the elements of
+ Y. INCY must not be zero.
+ Unchanged on exit.
+
+
+ Level 2 Blas routine.
+
+ -- Written on 22-October-1986.
+ Jack Dongarra, Argonne National Lab.
+ Jeremy Du Croz, Nag Central Office.
+ Sven Hammarling, Nag Central Office.
+ Richard Hanson, Sandia National Labs.
+
+
+ Test the input parameters.
+*/
+
+ /* Parameter adjustments */
+ a_dim1 = *lda;
+ a_offset = 1 + a_dim1;
+ a -= a_offset;
+ --x;
+ --y;
+
+ /* Function Body */
+ info = 0;
+ if (! lsame_(trans, "N") && ! lsame_(trans, "T") && ! lsame_(trans, "C")
+ ) {
+ info = 1;
+ } else if (*m < 0) {
+ info = 2;
+ } else if (*n < 0) {
+ info = 3;
+ } else if (*lda < max(1,*m)) {
+ info = 6;
+ } else if (*incx == 0) {
+ info = 8;
+ } else if (*incy == 0) {
+ info = 11;
+ }
+ if (info != 0) {
+ xerbla_("DGEMV ", &info);
+ return 0;
+ }
+
+/* Quick return if possible. */
+
+ if (((*m == 0) || (*n == 0)) || (*alpha == 0. && *beta == 1.)) {
+ return 0;
+ }
+
+/*
+ Set LENX and LENY, the lengths of the vectors x and y, and set
+ up the start points in X and Y.
+*/
+
+ if (lsame_(trans, "N")) {
+ lenx = *n;
+ leny = *m;
+ } else {
+ lenx = *m;
+ leny = *n;
+ }
+ if (*incx > 0) {
+ kx = 1;
+ } else {
+ kx = 1 - (lenx - 1) * *incx;
+ }
+ if (*incy > 0) {
+ ky = 1;
+ } else {
+ ky = 1 - (leny - 1) * *incy;
+ }
+
+/*
+ Start the operations. In this version the elements of A are
+ accessed sequentially with one pass through A.
+
+ First form y := beta*y.
+*/
+
+ if (*beta != 1.) {
+ if (*incy == 1) {
+ if (*beta == 0.) {
+ i__1 = leny;
+ for (i__ = 1; i__ <= i__1; ++i__) {
+ y[i__] = 0.;
+/* L10: */
+ }
+ } else {
+ i__1 = leny;
+ for (i__ = 1; i__ <= i__1; ++i__) {
+ y[i__] = *beta * y[i__];
+/* L20: */
+ }
+ }
+ } else {
+ iy = ky;
+ if (*beta == 0.) {
+ i__1 = leny;
+ for (i__ = 1; i__ <= i__1; ++i__) {
+ y[iy] = 0.;
+ iy += *incy;
+/* L30: */
+ }
+ } else {
+ i__1 = leny;
+ for (i__ = 1; i__ <= i__1; ++i__) {
+ y[iy] = *beta * y[iy];
+ iy += *incy;
+/* L40: */
+ }
+ }
+ }
+ }
+ if (*alpha == 0.) {
+ return 0;
+ }
+ if (lsame_(trans, "N")) {
+
+/* Form y := alpha*A*x + y. */
+
+ jx = kx;
+ if (*incy == 1) {
+ i__1 = *n;
+ for (j = 1; j <= i__1; ++j) {
+ if (x[jx] != 0.) {
+ temp = *alpha * x[jx];
+ i__2 = *m;
+ for (i__ = 1; i__ <= i__2; ++i__) {
+ y[i__] += temp * a[i__ + j * a_dim1];
+/* L50: */
+ }
+ }
+ jx += *incx;
+/* L60: */
+ }
+ } else {
+ i__1 = *n;
+ for (j = 1; j <= i__1; ++j) {
+ if (x[jx] != 0.) {
+ temp = *alpha * x[jx];
+ iy = ky;
+ i__2 = *m;
+ for (i__ = 1; i__ <= i__2; ++i__) {
+ y[iy] += temp * a[i__ + j * a_dim1];
+ iy += *incy;
+/* L70: */
+ }
+ }
+ jx += *incx;
+/* L80: */
+ }
+ }
+ } else {
+
+/* Form y := alpha*A'*x + y. */
+
+ jy = ky;
+ if (*incx == 1) {
+ i__1 = *n;
+ for (j = 1; j <= i__1; ++j) {
+ temp = 0.;
+ i__2 = *m;
+ for (i__ = 1; i__ <= i__2; ++i__) {
+ temp += a[i__ + j * a_dim1] * x[i__];
+/* L90: */
+ }
+ y[jy] += *alpha * temp;
+ jy += *incy;
+/* L100: */
+ }
+ } else {
+ i__1 = *n;
+ for (j = 1; j <= i__1; ++j) {
+ temp = 0.;
+ ix = kx;
+ i__2 = *m;
+ for (i__ = 1; i__ <= i__2; ++i__) {
+ temp += a[i__ + j * a_dim1] * x[ix];
+ ix += *incx;
+/* L110: */
+ }
+ y[jy] += *alpha * temp;
+ jy += *incy;
+/* L120: */
+ }
+ }
+ }
+
+ return 0;
+
+/* End of DGEMV . */
+
+} /* dgemv_ */
+
+/* Subroutine */ int dger_(integer *m, integer *n, doublereal *alpha,
+ doublereal *x, integer *incx, doublereal *y, integer *incy,
+ doublereal *a, integer *lda)
+{
+ /* System generated locals */
+ integer a_dim1, a_offset, i__1, i__2;
+
+ /* Local variables */
+ static integer i__, j, ix, jy, kx, info;
+ static doublereal temp;
+ extern /* Subroutine */ int xerbla_(char *, integer *);
+
+
+/*
+ Purpose
+ =======
+
+ DGER performs the rank 1 operation
+
+ A := alpha*x*y' + A,
+
+ where alpha is a scalar, x is an m element vector, y is an n element
+ vector and A is an m by n matrix.
+
+ Parameters
+ ==========
+
+ M - INTEGER.
+ On entry, M specifies the number of rows of the matrix A.
+ M must be at least zero.
+ Unchanged on exit.
+
+ N - INTEGER.
+ On entry, N specifies the number of columns of the matrix A.
+ N must be at least zero.
+ Unchanged on exit.
+
+ ALPHA - DOUBLE PRECISION.
+ On entry, ALPHA specifies the scalar alpha.
+ Unchanged on exit.
+
+ X - DOUBLE PRECISION array of dimension at least
+ ( 1 + ( m - 1 )*abs( INCX ) ).
+ Before entry, the incremented array X must contain the m
+ element vector x.
+ Unchanged on exit.
+
+ INCX - INTEGER.
+ On entry, INCX specifies the increment for the elements of
+ X. INCX must not be zero.
+ Unchanged on exit.
+
+ Y - DOUBLE PRECISION array of dimension at least
+ ( 1 + ( n - 1 )*abs( INCY ) ).
+ Before entry, the incremented array Y must contain the n
+ element vector y.
+ Unchanged on exit.
+
+ INCY - INTEGER.
+ On entry, INCY specifies the increment for the elements of
+ Y. INCY must not be zero.
+ Unchanged on exit.
+
+ A - DOUBLE PRECISION array of DIMENSION ( LDA, n ).
+ Before entry, the leading m by n part of the array A must
+ contain the matrix of coefficients. On exit, A is
+ overwritten by the updated matrix.
+
+ LDA - INTEGER.
+ On entry, LDA specifies the first dimension of A as declared
+ in the calling (sub) program. LDA must be at least
+ max( 1, m ).
+ Unchanged on exit.
+
+
+ Level 2 Blas routine.
+
+ -- Written on 22-October-1986.
+ Jack Dongarra, Argonne National Lab.
+ Jeremy Du Croz, Nag Central Office.
+ Sven Hammarling, Nag Central Office.
+ Richard Hanson, Sandia National Labs.
+
+
+ Test the input parameters.
+*/
+
+ /* Parameter adjustments */
+ --x;
+ --y;
+ a_dim1 = *lda;
+ a_offset = 1 + a_dim1;
+ a -= a_offset;
+
+ /* Function Body */
+ info = 0;
+ if (*m < 0) {
+ info = 1;
+ } else if (*n < 0) {
+ info = 2;
+ } else if (*incx == 0) {
+ info = 5;
+ } else if (*incy == 0) {
+ info = 7;
+ } else if (*lda < max(1,*m)) {
+ info = 9;
+ }
+ if (info != 0) {
+ xerbla_("DGER ", &info);
+ return 0;
+ }
+
+/* Quick return if possible. */
+
+ if (((*m == 0) || (*n == 0)) || (*alpha == 0.)) {
+ return 0;
+ }
+
+/*
+ Start the operations. In this version the elements of A are
+ accessed sequentially with one pass through A.
+*/
+
+ if (*incy > 0) {
+ jy = 1;
+ } else {
+ jy = 1 - (*n - 1) * *incy;
+ }
+ if (*incx == 1) {
+ i__1 = *n;
+ for (j = 1; j <= i__1; ++j) {
+ if (y[jy] != 0.) {
+ temp = *alpha * y[jy];
+ i__2 = *m;
+ for (i__ = 1; i__ <= i__2; ++i__) {
+ a[i__ + j * a_dim1] += x[i__] * temp;
+/* L10: */
+ }
+ }
+ jy += *incy;
+/* L20: */
+ }
+ } else {
+ if (*incx > 0) {
+ kx = 1;
+ } else {
+ kx = 1 - (*m - 1) * *incx;
+ }
+ i__1 = *n;
+ for (j = 1; j <= i__1; ++j) {
+ if (y[jy] != 0.) {
+ temp = *alpha * y[jy];
+ ix = kx;
+ i__2 = *m;
+ for (i__ = 1; i__ <= i__2; ++i__) {
+ a[i__ + j * a_dim1] += x[ix] * temp;
+ ix += *incx;
+/* L30: */
+ }
+ }
+ jy += *incy;
+/* L40: */
+ }
+ }
+
+ return 0;
+
+/* End of DGER . */
+
+} /* dger_ */
+
+doublereal dnrm2_(integer *n, doublereal *x, integer *incx)
+{
+ /* System generated locals */
+ integer i__1, i__2;
+ doublereal ret_val, d__1;
+
+ /* Builtin functions */
+ double sqrt(doublereal);
+
+ /* Local variables */
+ static integer ix;
+ static doublereal ssq, norm, scale, absxi;
+
+
+/*
+ DNRM2 returns the euclidean norm of a vector via the function
+ name, so that
+
+ DNRM2 := sqrt( x'*x )
+
+
+ -- This version written on 25-October-1982.
+ Modified on 14-October-1993 to inline the call to DLASSQ.
+ Sven Hammarling, Nag Ltd.
+*/
+
+
+ /* Parameter adjustments */
+ --x;
+
+ /* Function Body */
+ if ((*n < 1) || (*incx < 1)) {
+ norm = 0.;
+ } else if (*n == 1) {
+ norm = abs(x[1]);
+ } else {
+ scale = 0.;
+ ssq = 1.;
+/*
+ The following loop is equivalent to this call to the LAPACK
+ auxiliary routine:
+ CALL DLASSQ( N, X, INCX, SCALE, SSQ )
+*/
+
+ i__1 = (*n - 1) * *incx + 1;
+ i__2 = *incx;
+ for (ix = 1; i__2 < 0 ? ix >= i__1 : ix <= i__1; ix += i__2) {
+ if (x[ix] != 0.) {
+ absxi = (d__1 = x[ix], abs(d__1));
+ if (scale < absxi) {
+/* Computing 2nd power */
+ d__1 = scale / absxi;
+ ssq = ssq * (d__1 * d__1) + 1.;
+ scale = absxi;
+ } else {
+/* Computing 2nd power */
+ d__1 = absxi / scale;
+ ssq += d__1 * d__1;
+ }
+ }
+/* L10: */
+ }
+ norm = scale * sqrt(ssq);
+ }
+
+ ret_val = norm;
+ return ret_val;
+
+/* End of DNRM2. */
+
+} /* dnrm2_ */
+
+/* Subroutine */ int drot_(integer *n, doublereal *dx, integer *incx,
+ doublereal *dy, integer *incy, doublereal *c__, doublereal *s)
+{
+ /* System generated locals */
+ integer i__1;
+
+ /* Local variables */
+ static integer i__, ix, iy;
+ static doublereal dtemp;
+
+
+/*
+ applies a plane rotation.
+ jack dongarra, linpack, 3/11/78.
+ modified 12/3/93, array(1) declarations changed to array(*)
+*/
+
+
+ /* Parameter adjustments */
+ --dy;
+ --dx;
+
+ /* Function Body */
+ if (*n <= 0) {
+ return 0;
+ }
+ if (*incx == 1 && *incy == 1) {
+ goto L20;
+ }
+
+/*
+ code for unequal increments or equal increments not equal
+ to 1
+*/
+
+ ix = 1;
+ iy = 1;
+ if (*incx < 0) {
+ ix = (-(*n) + 1) * *incx + 1;
+ }
+ if (*incy < 0) {
+ iy = (-(*n) + 1) * *incy + 1;
+ }
+ i__1 = *n;
+ for (i__ = 1; i__ <= i__1; ++i__) {
+ dtemp = *c__ * dx[ix] + *s * dy[iy];
+ dy[iy] = *c__ * dy[iy] - *s * dx[ix];
+ dx[ix] = dtemp;
+ ix += *incx;
+ iy += *incy;
+/* L10: */
+ }
+ return 0;
+
+/* code for both increments equal to 1 */
+
+L20:
+ i__1 = *n;
+ for (i__ = 1; i__ <= i__1; ++i__) {
+ dtemp = *c__ * dx[i__] + *s * dy[i__];
+ dy[i__] = *c__ * dy[i__] - *s * dx[i__];
+ dx[i__] = dtemp;
+/* L30: */
+ }
+ return 0;
+} /* drot_ */
+
+/* Subroutine */ int dscal_(integer *n, doublereal *da, doublereal *dx,
+ integer *incx)
+{
+ /* System generated locals */
+ integer i__1, i__2;
+
+ /* Local variables */
+ static integer i__, m, mp1, nincx;
+
+
+/*
+ scales a vector by a constant.
+ uses unrolled loops for increment equal to one.
+ jack dongarra, linpack, 3/11/78.
+ modified 3/93 to return if incx .le. 0.
+ modified 12/3/93, array(1) declarations changed to array(*)
+*/
+
+
+ /* Parameter adjustments */
+ --dx;
+
+ /* Function Body */
+ if ((*n <= 0) || (*incx <= 0)) {
+ return 0;
+ }
+ if (*incx == 1) {
+ goto L20;
+ }
+
+/* code for increment not equal to 1 */
+
+ nincx = *n * *incx;
+ i__1 = nincx;
+ i__2 = *incx;
+ for (i__ = 1; i__2 < 0 ? i__ >= i__1 : i__ <= i__1; i__ += i__2) {
+ dx[i__] = *da * dx[i__];
+/* L10: */
+ }
+ return 0;
+
+/*
+ code for increment equal to 1
+
+
+ clean-up loop
+*/
+
+L20:
+ m = *n % 5;
+ if (m == 0) {
+ goto L40;
+ }
+ i__2 = m;
+ for (i__ = 1; i__ <= i__2; ++i__) {
+ dx[i__] = *da * dx[i__];
+/* L30: */
+ }
+ if (*n < 5) {
+ return 0;
+ }
+L40:
+ mp1 = m + 1;
+ i__2 = *n;
+ for (i__ = mp1; i__ <= i__2; i__ += 5) {
+ dx[i__] = *da * dx[i__];
+ dx[i__ + 1] = *da * dx[i__ + 1];
+ dx[i__ + 2] = *da * dx[i__ + 2];
+ dx[i__ + 3] = *da * dx[i__ + 3];
+ dx[i__ + 4] = *da * dx[i__ + 4];
+/* L50: */
+ }
+ return 0;
+} /* dscal_ */
+
+/* Subroutine */ int dswap_(integer *n, doublereal *dx, integer *incx,
+ doublereal *dy, integer *incy)
+{
+ /* System generated locals */
+ integer i__1;
+
+ /* Local variables */
+ static integer i__, m, ix, iy, mp1;
+ static doublereal dtemp;
+
+
+/*
+ interchanges two vectors.
+ uses unrolled loops for increments equal one.
+ jack dongarra, linpack, 3/11/78.
+ modified 12/3/93, array(1) declarations changed to array(*)
+*/
+
+
+ /* Parameter adjustments */
+ --dy;
+ --dx;
+
+ /* Function Body */
+ if (*n <= 0) {
+ return 0;
+ }
+ if (*incx == 1 && *incy == 1) {
+ goto L20;
+ }
+
+/*
+ code for unequal increments or equal increments not equal
+ to 1
+*/
+
+ ix = 1;
+ iy = 1;
+ if (*incx < 0) {
+ ix = (-(*n) + 1) * *incx + 1;
+ }
+ if (*incy < 0) {
+ iy = (-(*n) + 1) * *incy + 1;
+ }
+ i__1 = *n;
+ for (i__ = 1; i__ <= i__1; ++i__) {
+ dtemp = dx[ix];
+ dx[ix] = dy[iy];
+ dy[iy] = dtemp;
+ ix += *incx;
+ iy += *incy;
+/* L10: */
+ }
+ return 0;
+
+/*
+ code for both increments equal to 1
+
+
+ clean-up loop
+*/
+
+L20:
+ m = *n % 3;
+ if (m == 0) {
+ goto L40;
+ }
+ i__1 = m;
+ for (i__ = 1; i__ <= i__1; ++i__) {
+ dtemp = dx[i__];
+ dx[i__] = dy[i__];
+ dy[i__] = dtemp;
+/* L30: */
+ }
+ if (*n < 3) {
+ return 0;
+ }
+L40:
+ mp1 = m + 1;
+ i__1 = *n;
+ for (i__ = mp1; i__ <= i__1; i__ += 3) {
+ dtemp = dx[i__];
+ dx[i__] = dy[i__];
+ dy[i__] = dtemp;
+ dtemp = dx[i__ + 1];
+ dx[i__ + 1] = dy[i__ + 1];
+ dy[i__ + 1] = dtemp;
+ dtemp = dx[i__ + 2];
+ dx[i__ + 2] = dy[i__ + 2];
+ dy[i__ + 2] = dtemp;
+/* L50: */
+ }
+ return 0;
+} /* dswap_ */
+
+/* Subroutine */ int dsymv_(char *uplo, integer *n, doublereal *alpha,
+ doublereal *a, integer *lda, doublereal *x, integer *incx, doublereal
+ *beta, doublereal *y, integer *incy)
+{
+ /* System generated locals */
+ integer a_dim1, a_offset, i__1, i__2;
+
+ /* Local variables */
+ static integer i__, j, ix, iy, jx, jy, kx, ky, info;
+ static doublereal temp1, temp2;
+ extern logical lsame_(char *, char *);
+ extern /* Subroutine */ int xerbla_(char *, integer *);
+
+
+/*
+ Purpose
+ =======
+
+ DSYMV performs the matrix-vector operation
+
+ y := alpha*A*x + beta*y,
+
+ where alpha and beta are scalars, x and y are n element vectors and
+ A is an n by n symmetric matrix.
+
+ Parameters
+ ==========
+
+ UPLO - CHARACTER*1.
+ On entry, UPLO specifies whether the upper or lower
+ triangular part of the array A is to be referenced as
+ follows:
+
+ UPLO = 'U' or 'u' Only the upper triangular part of A
+ is to be referenced.
+
+ UPLO = 'L' or 'l' Only the lower triangular part of A
+ is to be referenced.
+
+ Unchanged on exit.
+
+ N - INTEGER.
+ On entry, N specifies the order of the matrix A.
+ N must be at least zero.
+ Unchanged on exit.
+
+ ALPHA - DOUBLE PRECISION.
+ On entry, ALPHA specifies the scalar alpha.
+ Unchanged on exit.
+
+ A - DOUBLE PRECISION array of DIMENSION ( LDA, n ).
+ Before entry with UPLO = 'U' or 'u', the leading n by n
+ upper triangular part of the array A must contain the upper
+ triangular part of the symmetric matrix and the strictly
+ lower triangular part of A is not referenced.
+ Before entry with UPLO = 'L' or 'l', the leading n by n
+ lower triangular part of the array A must contain the lower
+ triangular part of the symmetric matrix and the strictly
+ upper triangular part of A is not referenced.
+ Unchanged on exit.
+
+ LDA - INTEGER.
+ On entry, LDA specifies the first dimension of A as declared
+ in the calling (sub) program. LDA must be at least
+ max( 1, n ).
+ Unchanged on exit.
+
+ X - DOUBLE PRECISION array of dimension at least
+ ( 1 + ( n - 1 )*abs( INCX ) ).
+ Before entry, the incremented array X must contain the n
+ element vector x.
+ Unchanged on exit.
+
+ INCX - INTEGER.
+ On entry, INCX specifies the increment for the elements of
+ X. INCX must not be zero.
+ Unchanged on exit.
+
+ BETA - DOUBLE PRECISION.
+ On entry, BETA specifies the scalar beta. When BETA is
+ supplied as zero then Y need not be set on input.
+ Unchanged on exit.
+
+ Y - DOUBLE PRECISION array of dimension at least
+ ( 1 + ( n - 1 )*abs( INCY ) ).
+ Before entry, the incremented array Y must contain the n
+ element vector y. On exit, Y is overwritten by the updated
+ vector y.
+
+ INCY - INTEGER.
+ On entry, INCY specifies the increment for the elements of
+ Y. INCY must not be zero.
+ Unchanged on exit.
+
+
+ Level 2 Blas routine.
+
+ -- Written on 22-October-1986.
+ Jack Dongarra, Argonne National Lab.
+ Jeremy Du Croz, Nag Central Office.
+ Sven Hammarling, Nag Central Office.
+ Richard Hanson, Sandia National Labs.
+
+
+ Test the input parameters.
+*/
+
+ /* Parameter adjustments */
+ a_dim1 = *lda;
+ a_offset = 1 + a_dim1;
+ a -= a_offset;
+ --x;
+ --y;
+
+ /* Function Body */
+ info = 0;
+ if (! lsame_(uplo, "U") && ! lsame_(uplo, "L")) {
+ info = 1;
+ } else if (*n < 0) {
+ info = 2;
+ } else if (*lda < max(1,*n)) {
+ info = 5;
+ } else if (*incx == 0) {
+ info = 7;
+ } else if (*incy == 0) {
+ info = 10;
+ }
+ if (info != 0) {
+ xerbla_("DSYMV ", &info);
+ return 0;
+ }
+
+/* Quick return if possible. */
+
+ if ((*n == 0) || (*alpha == 0. && *beta == 1.)) {
+ return 0;
+ }
+
+/* Set up the start points in X and Y. */
+
+ if (*incx > 0) {
+ kx = 1;
+ } else {
+ kx = 1 - (*n - 1) * *incx;
+ }
+ if (*incy > 0) {
+ ky = 1;
+ } else {
+ ky = 1 - (*n - 1) * *incy;
+ }
+
+/*
+ Start the operations. In this version the elements of A are
+ accessed sequentially with one pass through the triangular part
+ of A.
+
+ First form y := beta*y.
+*/
+
+ if (*beta != 1.) {
+ if (*incy == 1) {
+ if (*beta == 0.) {
+ i__1 = *n;
+ for (i__ = 1; i__ <= i__1; ++i__) {
+ y[i__] = 0.;
+/* L10: */
+ }
+ } else {
+ i__1 = *n;
+ for (i__ = 1; i__ <= i__1; ++i__) {
+ y[i__] = *beta * y[i__];
+/* L20: */
+ }
+ }
+ } else {
+ iy = ky;
+ if (*beta == 0.) {
+ i__1 = *n;
+ for (i__ = 1; i__ <= i__1; ++i__) {
+ y[iy] = 0.;
+ iy += *incy;
+/* L30: */
+ }
+ } else {
+ i__1 = *n;
+ for (i__ = 1; i__ <= i__1; ++i__) {
+ y[iy] = *beta * y[iy];
+ iy += *incy;
+/* L40: */
+ }
+ }
+ }
+ }
+ if (*alpha == 0.) {
+ return 0;
+ }
+ if (lsame_(uplo, "U")) {
+
+/* Form y when A is stored in upper triangle. */
+
+ if (*incx == 1 && *incy == 1) {
+ i__1 = *n;
+ for (j = 1; j <= i__1; ++j) {
+ temp1 = *alpha * x[j];
+ temp2 = 0.;
+ i__2 = j - 1;
+ for (i__ = 1; i__ <= i__2; ++i__) {
+ y[i__] += temp1 * a[i__ + j * a_dim1];
+ temp2 += a[i__ + j * a_dim1] * x[i__];
+/* L50: */
+ }
+ y[j] = y[j] + temp1 * a[j + j * a_dim1] + *alpha * temp2;
+/* L60: */
+ }
+ } else {
+ jx = kx;
+ jy = ky;
+ i__1 = *n;
+ for (j = 1; j <= i__1; ++j) {
+ temp1 = *alpha * x[jx];
+ temp2 = 0.;
+ ix = kx;
+ iy = ky;
+ i__2 = j - 1;
+ for (i__ = 1; i__ <= i__2; ++i__) {
+ y[iy] += temp1 * a[i__ + j * a_dim1];
+ temp2 += a[i__ + j * a_dim1] * x[ix];
+ ix += *incx;
+ iy += *incy;
+/* L70: */
+ }
+ y[jy] = y[jy] + temp1 * a[j + j * a_dim1] + *alpha * temp2;
+ jx += *incx;
+ jy += *incy;
+/* L80: */
+ }
+ }
+ } else {
+
+/* Form y when A is stored in lower triangle. */
+
+ if (*incx == 1 && *incy == 1) {
+ i__1 = *n;
+ for (j = 1; j <= i__1; ++j) {
+ temp1 = *alpha * x[j];
+ temp2 = 0.;
+ y[j] += temp1 * a[j + j * a_dim1];
+ i__2 = *n;
+ for (i__ = j + 1; i__ <= i__2; ++i__) {
+ y[i__] += temp1 * a[i__ + j * a_dim1];
+ temp2 += a[i__ + j * a_dim1] * x[i__];
+/* L90: */
+ }
+ y[j] += *alpha * temp2;
+/* L100: */
+ }
+ } else {
+ jx = kx;
+ jy = ky;
+ i__1 = *n;
+ for (j = 1; j <= i__1; ++j) {
+ temp1 = *alpha * x[jx];
+ temp2 = 0.;
+ y[jy] += temp1 * a[j + j * a_dim1];
+ ix = jx;
+ iy = jy;
+ i__2 = *n;
+ for (i__ = j + 1; i__ <= i__2; ++i__) {
+ ix += *incx;
+ iy += *incy;
+ y[iy] += temp1 * a[i__ + j * a_dim1];
+ temp2 += a[i__ + j * a_dim1] * x[ix];
+/* L110: */
+ }
+ y[jy] += *alpha * temp2;
+ jx += *incx;
+ jy += *incy;
+/* L120: */
+ }
+ }
+ }
+
+ return 0;
+
+/* End of DSYMV . */
+
+} /* dsymv_ */
+
+/* Subroutine */ int dsyr2_(char *uplo, integer *n, doublereal *alpha,
+ doublereal *x, integer *incx, doublereal *y, integer *incy,
+ doublereal *a, integer *lda)
+{
+ /* System generated locals */
+ integer a_dim1, a_offset, i__1, i__2;
+
+ /* Local variables */
+ static integer i__, j, ix, iy, jx, jy, kx, ky, info;
+ static doublereal temp1, temp2;
+ extern logical lsame_(char *, char *);
+ extern /* Subroutine */ int xerbla_(char *, integer *);
+
+
+/*
+ Purpose
+ =======
+
+ DSYR2 performs the symmetric rank 2 operation
+
+ A := alpha*x*y' + alpha*y*x' + A,
+
+ where alpha is a scalar, x and y are n element vectors and A is an n
+ by n symmetric matrix.
+
+ Parameters
+ ==========
+
+ UPLO - CHARACTER*1.
+ On entry, UPLO specifies whether the upper or lower
+ triangular part of the array A is to be referenced as
+ follows:
+
+ UPLO = 'U' or 'u' Only the upper triangular part of A
+ is to be referenced.
+
+ UPLO = 'L' or 'l' Only the lower triangular part of A
+ is to be referenced.
+
+ Unchanged on exit.
+
+ N - INTEGER.
+ On entry, N specifies the order of the matrix A.
+ N must be at least zero.
+ Unchanged on exit.
+
+ ALPHA - DOUBLE PRECISION.
+ On entry, ALPHA specifies the scalar alpha.
+ Unchanged on exit.
+
+ X - DOUBLE PRECISION array of dimension at least
+ ( 1 + ( n - 1 )*abs( INCX ) ).
+ Before entry, the incremented array X must contain the n
+ element vector x.
+ Unchanged on exit.
+
+ INCX - INTEGER.
+ On entry, INCX specifies the increment for the elements of
+ X. INCX must not be zero.
+ Unchanged on exit.
+
+ Y - DOUBLE PRECISION array of dimension at least
+ ( 1 + ( n - 1 )*abs( INCY ) ).
+ Before entry, the incremented array Y must contain the n
+ element vector y.
+ Unchanged on exit.
+
+ INCY - INTEGER.
+ On entry, INCY specifies the increment for the elements of
+ Y. INCY must not be zero.
+ Unchanged on exit.
+
+ A - DOUBLE PRECISION array of DIMENSION ( LDA, n ).
+ Before entry with UPLO = 'U' or 'u', the leading n by n
+ upper triangular part of the array A must contain the upper
+ triangular part of the symmetric matrix and the strictly
+ lower triangular part of A is not referenced. On exit, the
+ upper triangular part of the array A is overwritten by the
+ upper triangular part of the updated matrix.
+ Before entry with UPLO = 'L' or 'l', the leading n by n
+ lower triangular part of the array A must contain the lower
+ triangular part of the symmetric matrix and the strictly
+ upper triangular part of A is not referenced. On exit, the
+ lower triangular part of the array A is overwritten by the
+ lower triangular part of the updated matrix.
+
+ LDA - INTEGER.
+ On entry, LDA specifies the first dimension of A as declared
+ in the calling (sub) program. LDA must be at least
+ max( 1, n ).
+ Unchanged on exit.
+
+
+ Level 2 Blas routine.
+
+ -- Written on 22-October-1986.
+ Jack Dongarra, Argonne National Lab.
+ Jeremy Du Croz, Nag Central Office.
+ Sven Hammarling, Nag Central Office.
+ Richard Hanson, Sandia National Labs.
+
+
+ Test the input parameters.
+*/
+
+ /* Parameter adjustments */
+ --x;
+ --y;
+ a_dim1 = *lda;
+ a_offset = 1 + a_dim1;
+ a -= a_offset;
+
+ /* Function Body */
+ info = 0;
+ if (! lsame_(uplo, "U") && ! lsame_(uplo, "L")) {
+ info = 1;
+ } else if (*n < 0) {
+ info = 2;
+ } else if (*incx == 0) {
+ info = 5;
+ } else if (*incy == 0) {
+ info = 7;
+ } else if (*lda < max(1,*n)) {
+ info = 9;
+ }
+ if (info != 0) {
+ xerbla_("DSYR2 ", &info);
+ return 0;
+ }
+
+/* Quick return if possible. */
+
+ if ((*n == 0) || (*alpha == 0.)) {
+ return 0;
+ }
+
+/*
+ Set up the start points in X and Y if the increments are not both
+ unity.
+*/
+
+ if ((*incx != 1) || (*incy != 1)) {
+ if (*incx > 0) {
+ kx = 1;
+ } else {
+ kx = 1 - (*n - 1) * *incx;
+ }
+ if (*incy > 0) {
+ ky = 1;
+ } else {
+ ky = 1 - (*n - 1) * *incy;
+ }
+ jx = kx;
+ jy = ky;
+ }
+
+/*
+ Start the operations. In this version the elements of A are
+ accessed sequentially with one pass through the triangular part
+ of A.
+*/
+
+ if (lsame_(uplo, "U")) {
+
+/* Form A when A is stored in the upper triangle. */
+
+ if (*incx == 1 && *incy == 1) {
+ i__1 = *n;
+ for (j = 1; j <= i__1; ++j) {
+ if ((x[j] != 0.) || (y[j] != 0.)) {
+ temp1 = *alpha * y[j];
+ temp2 = *alpha * x[j];
+ i__2 = j;
+ for (i__ = 1; i__ <= i__2; ++i__) {
+ a[i__ + j * a_dim1] = a[i__ + j * a_dim1] + x[i__] *
+ temp1 + y[i__] * temp2;
+/* L10: */
+ }
+ }
+/* L20: */
+ }
+ } else {
+ i__1 = *n;
+ for (j = 1; j <= i__1; ++j) {
+ if ((x[jx] != 0.) || (y[jy] != 0.)) {
+ temp1 = *alpha * y[jy];
+ temp2 = *alpha * x[jx];
+ ix = kx;
+ iy = ky;
+ i__2 = j;
+ for (i__ = 1; i__ <= i__2; ++i__) {
+ a[i__ + j * a_dim1] = a[i__ + j * a_dim1] + x[ix] *
+ temp1 + y[iy] * temp2;
+ ix += *incx;
+ iy += *incy;
+/* L30: */
+ }
+ }
+ jx += *incx;
+ jy += *incy;
+/* L40: */
+ }
+ }
+ } else {
+
+/* Form A when A is stored in the lower triangle. */
+
+ if (*incx == 1 && *incy == 1) {
+ i__1 = *n;
+ for (j = 1; j <= i__1; ++j) {
+ if ((x[j] != 0.) || (y[j] != 0.)) {
+ temp1 = *alpha * y[j];
+ temp2 = *alpha * x[j];
+ i__2 = *n;
+ for (i__ = j; i__ <= i__2; ++i__) {
+ a[i__ + j * a_dim1] = a[i__ + j * a_dim1] + x[i__] *
+ temp1 + y[i__] * temp2;
+/* L50: */
+ }
+ }
+/* L60: */
+ }
+ } else {
+ i__1 = *n;
+ for (j = 1; j <= i__1; ++j) {
+ if ((x[jx] != 0.) || (y[jy] != 0.)) {
+ temp1 = *alpha * y[jy];
+ temp2 = *alpha * x[jx];
+ ix = jx;
+ iy = jy;
+ i__2 = *n;
+ for (i__ = j; i__ <= i__2; ++i__) {
+ a[i__ + j * a_dim1] = a[i__ + j * a_dim1] + x[ix] *
+ temp1 + y[iy] * temp2;
+ ix += *incx;
+ iy += *incy;
+/* L70: */
+ }
+ }
+ jx += *incx;
+ jy += *incy;
+/* L80: */
+ }
+ }
+ }
+
+ return 0;
+
+/* End of DSYR2 . */
+
+} /* dsyr2_ */
+
+/* Subroutine */ int dsyr2k_(char *uplo, char *trans, integer *n, integer *k,
+ doublereal *alpha, doublereal *a, integer *lda, doublereal *b,
+ integer *ldb, doublereal *beta, doublereal *c__, integer *ldc)
+{
+ /* System generated locals */
+ integer a_dim1, a_offset, b_dim1, b_offset, c_dim1, c_offset, i__1, i__2,
+ i__3;
+
+ /* Local variables */
+ static integer i__, j, l, info;
+ static doublereal temp1, temp2;
+ extern logical lsame_(char *, char *);
+ static integer nrowa;
+ static logical upper;
+ extern /* Subroutine */ int xerbla_(char *, integer *);
+
+
+/*
+ Purpose
+ =======
+
+ DSYR2K performs one of the symmetric rank 2k operations
+
+ C := alpha*A*B' + alpha*B*A' + beta*C,
+
+ or
+
+ C := alpha*A'*B + alpha*B'*A + beta*C,
+
+ where alpha and beta are scalars, C is an n by n symmetric matrix
+ and A and B are n by k matrices in the first case and k by n
+ matrices in the second case.
+
+ Parameters
+ ==========
+
+ UPLO - CHARACTER*1.
+ On entry, UPLO specifies whether the upper or lower
+ triangular part of the array C is to be referenced as
+ follows:
+
+ UPLO = 'U' or 'u' Only the upper triangular part of C
+ is to be referenced.
+
+ UPLO = 'L' or 'l' Only the lower triangular part of C
+ is to be referenced.
+
+ Unchanged on exit.
+
+ TRANS - CHARACTER*1.
+ On entry, TRANS specifies the operation to be performed as
+ follows:
+
+ TRANS = 'N' or 'n' C := alpha*A*B' + alpha*B*A' +
+ beta*C.
+
+ TRANS = 'T' or 't' C := alpha*A'*B + alpha*B'*A +
+ beta*C.
+
+ TRANS = 'C' or 'c' C := alpha*A'*B + alpha*B'*A +
+ beta*C.
+
+ Unchanged on exit.
+
+ N - INTEGER.
+ On entry, N specifies the order of the matrix C. N must be
+ at least zero.
+ Unchanged on exit.
+
+ K - INTEGER.
+ On entry with TRANS = 'N' or 'n', K specifies the number
+ of columns of the matrices A and B, and on entry with
+ TRANS = 'T' or 't' or 'C' or 'c', K specifies the number
+ of rows of the matrices A and B. K must be at least zero.
+ Unchanged on exit.
+
+ ALPHA - DOUBLE PRECISION.
+ On entry, ALPHA specifies the scalar alpha.
+ Unchanged on exit.
+
+ A - DOUBLE PRECISION array of DIMENSION ( LDA, ka ), where ka is
+ k when TRANS = 'N' or 'n', and is n otherwise.
+ Before entry with TRANS = 'N' or 'n', the leading n by k
+ part of the array A must contain the matrix A, otherwise
+ the leading k by n part of the array A must contain the
+ matrix A.
+ Unchanged on exit.
+
+ LDA - INTEGER.
+ On entry, LDA specifies the first dimension of A as declared
+ in the calling (sub) program. When TRANS = 'N' or 'n'
+ then LDA must be at least max( 1, n ), otherwise LDA must
+ be at least max( 1, k ).
+ Unchanged on exit.
+
+ B - DOUBLE PRECISION array of DIMENSION ( LDB, kb ), where kb is
+ k when TRANS = 'N' or 'n', and is n otherwise.
+ Before entry with TRANS = 'N' or 'n', the leading n by k
+ part of the array B must contain the matrix B, otherwise
+ the leading k by n part of the array B must contain the
+ matrix B.
+ Unchanged on exit.
+
+ LDB - INTEGER.
+ On entry, LDB specifies the first dimension of B as declared
+ in the calling (sub) program. When TRANS = 'N' or 'n'
+ then LDB must be at least max( 1, n ), otherwise LDB must
+ be at least max( 1, k ).
+ Unchanged on exit.
+
+ BETA - DOUBLE PRECISION.
+ On entry, BETA specifies the scalar beta.
+ Unchanged on exit.
+
+ C - DOUBLE PRECISION array of DIMENSION ( LDC, n ).
+ Before entry with UPLO = 'U' or 'u', the leading n by n
+ upper triangular part of the array C must contain the upper
+ triangular part of the symmetric matrix and the strictly
+ lower triangular part of C is not referenced. On exit, the
+ upper triangular part of the array C is overwritten by the
+ upper triangular part of the updated matrix.
+ Before entry with UPLO = 'L' or 'l', the leading n by n
+ lower triangular part of the array C must contain the lower
+ triangular part of the symmetric matrix and the strictly
+ upper triangular part of C is not referenced. On exit, the
+ lower triangular part of the array C is overwritten by the
+ lower triangular part of the updated matrix.
+
+ LDC - INTEGER.
+ On entry, LDC specifies the first dimension of C as declared
+ in the calling (sub) program. LDC must be at least
+ max( 1, n ).
+ Unchanged on exit.
+
+
+ Level 3 Blas routine.
+
+
+ -- Written on 8-February-1989.
+ Jack Dongarra, Argonne National Laboratory.
+ Iain Duff, AERE Harwell.
+ Jeremy Du Croz, Numerical Algorithms Group Ltd.
+ Sven Hammarling, Numerical Algorithms Group Ltd.
+
+
+ Test the input parameters.
+*/
+
+ /* Parameter adjustments */
+ a_dim1 = *lda;
+ a_offset = 1 + a_dim1;
+ a -= a_offset;
+ b_dim1 = *ldb;
+ b_offset = 1 + b_dim1;
+ b -= b_offset;
+ c_dim1 = *ldc;
+ c_offset = 1 + c_dim1;
+ c__ -= c_offset;
+
+ /* Function Body */
+ if (lsame_(trans, "N")) {
+ nrowa = *n;
+ } else {
+ nrowa = *k;
+ }
+ upper = lsame_(uplo, "U");
+
+ info = 0;
+ if (! upper && ! lsame_(uplo, "L")) {
+ info = 1;
+ } else if (! lsame_(trans, "N") && ! lsame_(trans,
+ "T") && ! lsame_(trans, "C")) {
+ info = 2;
+ } else if (*n < 0) {
+ info = 3;
+ } else if (*k < 0) {
+ info = 4;
+ } else if (*lda < max(1,nrowa)) {
+ info = 7;
+ } else if (*ldb < max(1,nrowa)) {
+ info = 9;
+ } else if (*ldc < max(1,*n)) {
+ info = 12;
+ }
+ if (info != 0) {
+ xerbla_("DSYR2K", &info);
+ return 0;
+ }
+
+/* Quick return if possible. */
+
+ if ((*n == 0) || (((*alpha == 0.) || (*k == 0)) && *beta == 1.)) {
+ return 0;
+ }
+
+/* And when alpha.eq.zero. */
+
+ if (*alpha == 0.) {
+ if (upper) {
+ if (*beta == 0.) {
+ i__1 = *n;
+ for (j = 1; j <= i__1; ++j) {
+ i__2 = j;
+ for (i__ = 1; i__ <= i__2; ++i__) {
+ c__[i__ + j * c_dim1] = 0.;
+/* L10: */
+ }
+/* L20: */
+ }
+ } else {
+ i__1 = *n;
+ for (j = 1; j <= i__1; ++j) {
+ i__2 = j;
+ for (i__ = 1; i__ <= i__2; ++i__) {
+ c__[i__ + j * c_dim1] = *beta * c__[i__ + j * c_dim1];
+/* L30: */
+ }
+/* L40: */
+ }
+ }
+ } else {
+ if (*beta == 0.) {
+ i__1 = *n;
+ for (j = 1; j <= i__1; ++j) {
+ i__2 = *n;
+ for (i__ = j; i__ <= i__2; ++i__) {
+ c__[i__ + j * c_dim1] = 0.;
+/* L50: */
+ }
+/* L60: */
+ }
+ } else {
+ i__1 = *n;
+ for (j = 1; j <= i__1; ++j) {
+ i__2 = *n;
+ for (i__ = j; i__ <= i__2; ++i__) {
+ c__[i__ + j * c_dim1] = *beta * c__[i__ + j * c_dim1];
+/* L70: */
+ }
+/* L80: */
+ }
+ }
+ }
+ return 0;
+ }
+
+/* Start the operations. */
+
+ if (lsame_(trans, "N")) {
+
+/* Form C := alpha*A*B' + alpha*B*A' + C. */
+
+ if (upper) {
+ i__1 = *n;
+ for (j = 1; j <= i__1; ++j) {
+ if (*beta == 0.) {
+ i__2 = j;
+ for (i__ = 1; i__ <= i__2; ++i__) {
+ c__[i__ + j * c_dim1] = 0.;
+/* L90: */
+ }
+ } else if (*beta != 1.) {
+ i__2 = j;
+ for (i__ = 1; i__ <= i__2; ++i__) {
+ c__[i__ + j * c_dim1] = *beta * c__[i__ + j * c_dim1];
+/* L100: */
+ }
+ }
+ i__2 = *k;
+ for (l = 1; l <= i__2; ++l) {
+ if ((a[j + l * a_dim1] != 0.) || (b[j + l * b_dim1] != 0.)
+ ) {
+ temp1 = *alpha * b[j + l * b_dim1];
+ temp2 = *alpha * a[j + l * a_dim1];
+ i__3 = j;
+ for (i__ = 1; i__ <= i__3; ++i__) {
+ c__[i__ + j * c_dim1] = c__[i__ + j * c_dim1] + a[
+ i__ + l * a_dim1] * temp1 + b[i__ + l *
+ b_dim1] * temp2;
+/* L110: */
+ }
+ }
+/* L120: */
+ }
+/* L130: */
+ }
+ } else {
+ i__1 = *n;
+ for (j = 1; j <= i__1; ++j) {
+ if (*beta == 0.) {
+ i__2 = *n;
+ for (i__ = j; i__ <= i__2; ++i__) {
+ c__[i__ + j * c_dim1] = 0.;
+/* L140: */
+ }
+ } else if (*beta != 1.) {
+ i__2 = *n;
+ for (i__ = j; i__ <= i__2; ++i__) {
+ c__[i__ + j * c_dim1] = *beta * c__[i__ + j * c_dim1];
+/* L150: */
+ }
+ }
+ i__2 = *k;
+ for (l = 1; l <= i__2; ++l) {
+ if ((a[j + l * a_dim1] != 0.) || (b[j + l * b_dim1] != 0.)
+ ) {
+ temp1 = *alpha * b[j + l * b_dim1];
+ temp2 = *alpha * a[j + l * a_dim1];
+ i__3 = *n;
+ for (i__ = j; i__ <= i__3; ++i__) {
+ c__[i__ + j * c_dim1] = c__[i__ + j * c_dim1] + a[
+ i__ + l * a_dim1] * temp1 + b[i__ + l *
+ b_dim1] * temp2;
+/* L160: */
+ }
+ }
+/* L170: */
+ }
+/* L180: */
+ }
+ }
+ } else {
+
+/* Form C := alpha*A'*B + alpha*B'*A + C. */
+
+ if (upper) {
+ i__1 = *n;
+ for (j = 1; j <= i__1; ++j) {
+ i__2 = j;
+ for (i__ = 1; i__ <= i__2; ++i__) {
+ temp1 = 0.;
+ temp2 = 0.;
+ i__3 = *k;
+ for (l = 1; l <= i__3; ++l) {
+ temp1 += a[l + i__ * a_dim1] * b[l + j * b_dim1];
+ temp2 += b[l + i__ * b_dim1] * a[l + j * a_dim1];
+/* L190: */
+ }
+ if (*beta == 0.) {
+ c__[i__ + j * c_dim1] = *alpha * temp1 + *alpha *
+ temp2;
+ } else {
+ c__[i__ + j * c_dim1] = *beta * c__[i__ + j * c_dim1]
+ + *alpha * temp1 + *alpha * temp2;
+ }
+/* L200: */
+ }
+/* L210: */
+ }
+ } else {
+ i__1 = *n;
+ for (j = 1; j <= i__1; ++j) {
+ i__2 = *n;
+ for (i__ = j; i__ <= i__2; ++i__) {
+ temp1 = 0.;
+ temp2 = 0.;
+ i__3 = *k;
+ for (l = 1; l <= i__3; ++l) {
+ temp1 += a[l + i__ * a_dim1] * b[l + j * b_dim1];
+ temp2 += b[l + i__ * b_dim1] * a[l + j * a_dim1];
+/* L220: */
+ }
+ if (*beta == 0.) {
+ c__[i__ + j * c_dim1] = *alpha * temp1 + *alpha *
+ temp2;
+ } else {
+ c__[i__ + j * c_dim1] = *beta * c__[i__ + j * c_dim1]
+ + *alpha * temp1 + *alpha * temp2;
+ }
+/* L230: */
+ }
+/* L240: */
+ }
+ }
+ }
+
+ return 0;
+
+/* End of DSYR2K. */
+
+} /* dsyr2k_ */
+
+/* Subroutine */ int dsyrk_(char *uplo, char *trans, integer *n, integer *k,
+ doublereal *alpha, doublereal *a, integer *lda, doublereal *beta,
+ doublereal *c__, integer *ldc)
+{
+ /* System generated locals */
+ integer a_dim1, a_offset, c_dim1, c_offset, i__1, i__2, i__3;
+
+ /* Local variables */
+ static integer i__, j, l, info;
+ static doublereal temp;
+ extern logical lsame_(char *, char *);
+ static integer nrowa;
+ static logical upper;
+ extern /* Subroutine */ int xerbla_(char *, integer *);
+
+
+/*
+ Purpose
+ =======
+
+ DSYRK performs one of the symmetric rank k operations
+
+ C := alpha*A*A' + beta*C,
+
+ or
+
+ C := alpha*A'*A + beta*C,
+
+ where alpha and beta are scalars, C is an n by n symmetric matrix
+ and A is an n by k matrix in the first case and a k by n matrix
+ in the second case.
+
+ Parameters
+ ==========
+
+ UPLO - CHARACTER*1.
+ On entry, UPLO specifies whether the upper or lower
+ triangular part of the array C is to be referenced as
+ follows:
+
+ UPLO = 'U' or 'u' Only the upper triangular part of C
+ is to be referenced.
+
+ UPLO = 'L' or 'l' Only the lower triangular part of C
+ is to be referenced.
+
+ Unchanged on exit.
+
+ TRANS - CHARACTER*1.
+ On entry, TRANS specifies the operation to be performed as
+ follows:
+
+ TRANS = 'N' or 'n' C := alpha*A*A' + beta*C.
+
+ TRANS = 'T' or 't' C := alpha*A'*A + beta*C.
+
+ TRANS = 'C' or 'c' C := alpha*A'*A + beta*C.
+
+ Unchanged on exit.
+
+ N - INTEGER.
+ On entry, N specifies the order of the matrix C. N must be
+ at least zero.
+ Unchanged on exit.
+
+ K - INTEGER.
+ On entry with TRANS = 'N' or 'n', K specifies the number
+ of columns of the matrix A, and on entry with
+ TRANS = 'T' or 't' or 'C' or 'c', K specifies the number
+ of rows of the matrix A. K must be at least zero.
+ Unchanged on exit.
+
+ ALPHA - DOUBLE PRECISION.
+ On entry, ALPHA specifies the scalar alpha.
+ Unchanged on exit.
+
+ A - DOUBLE PRECISION array of DIMENSION ( LDA, ka ), where ka is
+ k when TRANS = 'N' or 'n', and is n otherwise.
+ Before entry with TRANS = 'N' or 'n', the leading n by k
+ part of the array A must contain the matrix A, otherwise
+ the leading k by n part of the array A must contain the
+ matrix A.
+ Unchanged on exit.
+
+ LDA - INTEGER.
+ On entry, LDA specifies the first dimension of A as declared
+ in the calling (sub) program. When TRANS = 'N' or 'n'
+ then LDA must be at least max( 1, n ), otherwise LDA must
+ be at least max( 1, k ).
+ Unchanged on exit.
+
+ BETA - DOUBLE PRECISION.
+ On entry, BETA specifies the scalar beta.
+ Unchanged on exit.
+
+ C - DOUBLE PRECISION array of DIMENSION ( LDC, n ).
+ Before entry with UPLO = 'U' or 'u', the leading n by n
+ upper triangular part of the array C must contain the upper
+ triangular part of the symmetric matrix and the strictly
+ lower triangular part of C is not referenced. On exit, the
+ upper triangular part of the array C is overwritten by the
+ upper triangular part of the updated matrix.
+ Before entry with UPLO = 'L' or 'l', the leading n by n
+ lower triangular part of the array C must contain the lower
+ triangular part of the symmetric matrix and the strictly
+ upper triangular part of C is not referenced. On exit, the
+ lower triangular part of the array C is overwritten by the
+ lower triangular part of the updated matrix.
+
+ LDC - INTEGER.
+ On entry, LDC specifies the first dimension of C as declared
+ in the calling (sub) program. LDC must be at least
+ max( 1, n ).
+ Unchanged on exit.
+
+
+ Level 3 Blas routine.
+
+ -- Written on 8-February-1989.
+ Jack Dongarra, Argonne National Laboratory.
+ Iain Duff, AERE Harwell.
+ Jeremy Du Croz, Numerical Algorithms Group Ltd.
+ Sven Hammarling, Numerical Algorithms Group Ltd.
+
+
+ Test the input parameters.
+*/
+
+ /* Parameter adjustments */
+ a_dim1 = *lda;
+ a_offset = 1 + a_dim1;
+ a -= a_offset;
+ c_dim1 = *ldc;
+ c_offset = 1 + c_dim1;
+ c__ -= c_offset;
+
+ /* Function Body */
+ if (lsame_(trans, "N")) {
+ nrowa = *n;
+ } else {
+ nrowa = *k;
+ }
+ upper = lsame_(uplo, "U");
+
+ info = 0;
+ if (! upper && ! lsame_(uplo, "L")) {
+ info = 1;
+ } else if (! lsame_(trans, "N") && ! lsame_(trans,
+ "T") && ! lsame_(trans, "C")) {
+ info = 2;
+ } else if (*n < 0) {
+ info = 3;
+ } else if (*k < 0) {
+ info = 4;
+ } else if (*lda < max(1,nrowa)) {
+ info = 7;
+ } else if (*ldc < max(1,*n)) {
+ info = 10;
+ }
+ if (info != 0) {
+ xerbla_("DSYRK ", &info);
+ return 0;
+ }
+
+/* Quick return if possible. */
+
+ if ((*n == 0) || (((*alpha == 0.) || (*k == 0)) && *beta == 1.)) {
+ return 0;
+ }
+
+/* And when alpha.eq.zero. */
+
+ if (*alpha == 0.) {
+ if (upper) {
+ if (*beta == 0.) {
+ i__1 = *n;
+ for (j = 1; j <= i__1; ++j) {
+ i__2 = j;
+ for (i__ = 1; i__ <= i__2; ++i__) {
+ c__[i__ + j * c_dim1] = 0.;
+/* L10: */
+ }
+/* L20: */
+ }
+ } else {
+ i__1 = *n;
+ for (j = 1; j <= i__1; ++j) {
+ i__2 = j;
+ for (i__ = 1; i__ <= i__2; ++i__) {
+ c__[i__ + j * c_dim1] = *beta * c__[i__ + j * c_dim1];
+/* L30: */
+ }
+/* L40: */
+ }
+ }
+ } else {
+ if (*beta == 0.) {
+ i__1 = *n;
+ for (j = 1; j <= i__1; ++j) {
+ i__2 = *n;
+ for (i__ = j; i__ <= i__2; ++i__) {
+ c__[i__ + j * c_dim1] = 0.;
+/* L50: */
+ }
+/* L60: */
+ }
+ } else {
+ i__1 = *n;
+ for (j = 1; j <= i__1; ++j) {
+ i__2 = *n;
+ for (i__ = j; i__ <= i__2; ++i__) {
+ c__[i__ + j * c_dim1] = *beta * c__[i__ + j * c_dim1];
+/* L70: */
+ }
+/* L80: */
+ }
+ }
+ }
+ return 0;
+ }
+
+/* Start the operations. */
+
+ if (lsame_(trans, "N")) {
+
+/* Form C := alpha*A*A' + beta*C. */
+
+ if (upper) {
+ i__1 = *n;
+ for (j = 1; j <= i__1; ++j) {
+ if (*beta == 0.) {
+ i__2 = j;
+ for (i__ = 1; i__ <= i__2; ++i__) {
+ c__[i__ + j * c_dim1] = 0.;
+/* L90: */
+ }
+ } else if (*beta != 1.) {
+ i__2 = j;
+ for (i__ = 1; i__ <= i__2; ++i__) {
+ c__[i__ + j * c_dim1] = *beta * c__[i__ + j * c_dim1];
+/* L100: */
+ }
+ }
+ i__2 = *k;
+ for (l = 1; l <= i__2; ++l) {
+ if (a[j + l * a_dim1] != 0.) {
+ temp = *alpha * a[j + l * a_dim1];
+ i__3 = j;
+ for (i__ = 1; i__ <= i__3; ++i__) {
+ c__[i__ + j * c_dim1] += temp * a[i__ + l *
+ a_dim1];
+/* L110: */
+ }
+ }
+/* L120: */
+ }
+/* L130: */
+ }
+ } else {
+ i__1 = *n;
+ for (j = 1; j <= i__1; ++j) {
+ if (*beta == 0.) {
+ i__2 = *n;
+ for (i__ = j; i__ <= i__2; ++i__) {
+ c__[i__ + j * c_dim1] = 0.;
+/* L140: */
+ }
+ } else if (*beta != 1.) {
+ i__2 = *n;
+ for (i__ = j; i__ <= i__2; ++i__) {
+ c__[i__ + j * c_dim1] = *beta * c__[i__ + j * c_dim1];
+/* L150: */
+ }
+ }
+ i__2 = *k;
+ for (l = 1; l <= i__2; ++l) {
+ if (a[j + l * a_dim1] != 0.) {
+ temp = *alpha * a[j + l * a_dim1];
+ i__3 = *n;
+ for (i__ = j; i__ <= i__3; ++i__) {
+ c__[i__ + j * c_dim1] += temp * a[i__ + l *
+ a_dim1];
+/* L160: */
+ }
+ }
+/* L170: */
+ }
+/* L180: */
+ }
+ }
+ } else {
+
+/* Form C := alpha*A'*A + beta*C. */
+
+ if (upper) {
+ i__1 = *n;
+ for (j = 1; j <= i__1; ++j) {
+ i__2 = j;
+ for (i__ = 1; i__ <= i__2; ++i__) {
+ temp = 0.;
+ i__3 = *k;
+ for (l = 1; l <= i__3; ++l) {
+ temp += a[l + i__ * a_dim1] * a[l + j * a_dim1];
+/* L190: */
+ }
+ if (*beta == 0.) {
+ c__[i__ + j * c_dim1] = *alpha * temp;
+ } else {
+ c__[i__ + j * c_dim1] = *alpha * temp + *beta * c__[
+ i__ + j * c_dim1];
+ }
+/* L200: */
+ }
+/* L210: */
+ }
+ } else {
+ i__1 = *n;
+ for (j = 1; j <= i__1; ++j) {
+ i__2 = *n;
+ for (i__ = j; i__ <= i__2; ++i__) {
+ temp = 0.;
+ i__3 = *k;
+ for (l = 1; l <= i__3; ++l) {
+ temp += a[l + i__ * a_dim1] * a[l + j * a_dim1];
+/* L220: */
+ }
+ if (*beta == 0.) {
+ c__[i__ + j * c_dim1] = *alpha * temp;
+ } else {
+ c__[i__ + j * c_dim1] = *alpha * temp + *beta * c__[
+ i__ + j * c_dim1];
+ }
+/* L230: */
+ }
+/* L240: */
+ }
+ }
+ }
+
+ return 0;
+
+/* End of DSYRK . */
+
+} /* dsyrk_ */
+
+/* Subroutine */ int dtrmm_(char *side, char *uplo, char *transa, char *diag,
+ integer *m, integer *n, doublereal *alpha, doublereal *a, integer *
+ lda, doublereal *b, integer *ldb)
+{
+ /* System generated locals */
+ integer a_dim1, a_offset, b_dim1, b_offset, i__1, i__2, i__3;
+
+ /* Local variables */
+ static integer i__, j, k, info;
+ static doublereal temp;
+ static logical lside;
+ extern logical lsame_(char *, char *);
+ static integer nrowa;
+ static logical upper;
+ extern /* Subroutine */ int xerbla_(char *, integer *);
+ static logical nounit;
+
+
+/*
+ Purpose
+ =======
+
+ DTRMM performs one of the matrix-matrix operations
+
+ B := alpha*op( A )*B, or B := alpha*B*op( A ),
+
+ where alpha is a scalar, B is an m by n matrix, A is a unit, or
+ non-unit, upper or lower triangular matrix and op( A ) is one of
+
+ op( A ) = A or op( A ) = A'.
+
+ Parameters
+ ==========
+
+ SIDE - CHARACTER*1.
+ On entry, SIDE specifies whether op( A ) multiplies B from
+ the left or right as follows:
+
+ SIDE = 'L' or 'l' B := alpha*op( A )*B.
+
+ SIDE = 'R' or 'r' B := alpha*B*op( A ).
+
+ Unchanged on exit.
+
+ UPLO - CHARACTER*1.
+ On entry, UPLO specifies whether the matrix A is an upper or
+ lower triangular matrix as follows:
+
+ UPLO = 'U' or 'u' A is an upper triangular matrix.
+
+ UPLO = 'L' or 'l' A is a lower triangular matrix.
+
+ Unchanged on exit.
+
+ TRANSA - CHARACTER*1.
+ On entry, TRANSA specifies the form of op( A ) to be used in
+ the matrix multiplication as follows:
+
+ TRANSA = 'N' or 'n' op( A ) = A.
+
+ TRANSA = 'T' or 't' op( A ) = A'.
+
+ TRANSA = 'C' or 'c' op( A ) = A'.
+
+ Unchanged on exit.
+
+ DIAG - CHARACTER*1.
+ On entry, DIAG specifies whether or not A is unit triangular
+ as follows:
+
+ DIAG = 'U' or 'u' A is assumed to be unit triangular.
+
+ DIAG = 'N' or 'n' A is not assumed to be unit
+ triangular.
+
+ Unchanged on exit.
+
+ M - INTEGER.
+ On entry, M specifies the number of rows of B. M must be at
+ least zero.
+ Unchanged on exit.
+
+ N - INTEGER.
+ On entry, N specifies the number of columns of B. N must be
+ at least zero.
+ Unchanged on exit.
+
+ ALPHA - DOUBLE PRECISION.
+ On entry, ALPHA specifies the scalar alpha. When alpha is
+ zero then A is not referenced and B need not be set before
+ entry.
+ Unchanged on exit.
+
+ A - DOUBLE PRECISION array of DIMENSION ( LDA, k ), where k is m
+ when SIDE = 'L' or 'l' and is n when SIDE = 'R' or 'r'.
+ Before entry with UPLO = 'U' or 'u', the leading k by k
+ upper triangular part of the array A must contain the upper
+ triangular matrix and the strictly lower triangular part of
+ A is not referenced.
+ Before entry with UPLO = 'L' or 'l', the leading k by k
+ lower triangular part of the array A must contain the lower
+ triangular matrix and the strictly upper triangular part of
+ A is not referenced.
+ Note that when DIAG = 'U' or 'u', the diagonal elements of
+ A are not referenced either, but are assumed to be unity.
+ Unchanged on exit.
+
+ LDA - INTEGER.
+ On entry, LDA specifies the first dimension of A as declared
+ in the calling (sub) program. When SIDE = 'L' or 'l' then
+ LDA must be at least max( 1, m ), when SIDE = 'R' or 'r'
+ then LDA must be at least max( 1, n ).
+ Unchanged on exit.
+
+ B - DOUBLE PRECISION array of DIMENSION ( LDB, n ).
+ Before entry, the leading m by n part of the array B must
+ contain the matrix B, and on exit is overwritten by the
+ transformed matrix.
+
+ LDB - INTEGER.
+ On entry, LDB specifies the first dimension of B as declared
+ in the calling (sub) program. LDB must be at least
+ max( 1, m ).
+ Unchanged on exit.
+
+
+ Level 3 Blas routine.
+
+ -- Written on 8-February-1989.
+ Jack Dongarra, Argonne National Laboratory.
+ Iain Duff, AERE Harwell.
+ Jeremy Du Croz, Numerical Algorithms Group Ltd.
+ Sven Hammarling, Numerical Algorithms Group Ltd.
+
+
+ Test the input parameters.
+*/
+
+ /* Parameter adjustments */
+ a_dim1 = *lda;
+ a_offset = 1 + a_dim1;
+ a -= a_offset;
+ b_dim1 = *ldb;
+ b_offset = 1 + b_dim1;
+ b -= b_offset;
+
+ /* Function Body */
+ lside = lsame_(side, "L");
+ if (lside) {
+ nrowa = *m;
+ } else {
+ nrowa = *n;
+ }
+ nounit = lsame_(diag, "N");
+ upper = lsame_(uplo, "U");
+
+ info = 0;
+ if (! lside && ! lsame_(side, "R")) {
+ info = 1;
+ } else if (! upper && ! lsame_(uplo, "L")) {
+ info = 2;
+ } else if (! lsame_(transa, "N") && ! lsame_(transa,
+ "T") && ! lsame_(transa, "C")) {
+ info = 3;
+ } else if (! lsame_(diag, "U") && ! lsame_(diag,
+ "N")) {
+ info = 4;
+ } else if (*m < 0) {
+ info = 5;
+ } else if (*n < 0) {
+ info = 6;
+ } else if (*lda < max(1,nrowa)) {
+ info = 9;
+ } else if (*ldb < max(1,*m)) {
+ info = 11;
+ }
+ if (info != 0) {
+ xerbla_("DTRMM ", &info);
+ return 0;
+ }
+
+/* Quick return if possible. */
+
+ if (*n == 0) {
+ return 0;
+ }
+
+/* And when alpha.eq.zero. */
+
+ if (*alpha == 0.) {
+ i__1 = *n;
+ for (j = 1; j <= i__1; ++j) {
+ i__2 = *m;
+ for (i__ = 1; i__ <= i__2; ++i__) {
+ b[i__ + j * b_dim1] = 0.;
+/* L10: */
+ }
+/* L20: */
+ }
+ return 0;
+ }
+
+/* Start the operations. */
+
+ if (lside) {
+ if (lsame_(transa, "N")) {
+
+/* Form B := alpha*A*B. */
+
+ if (upper) {
+ i__1 = *n;
+ for (j = 1; j <= i__1; ++j) {
+ i__2 = *m;
+ for (k = 1; k <= i__2; ++k) {
+ if (b[k + j * b_dim1] != 0.) {
+ temp = *alpha * b[k + j * b_dim1];
+ i__3 = k - 1;
+ for (i__ = 1; i__ <= i__3; ++i__) {
+ b[i__ + j * b_dim1] += temp * a[i__ + k *
+ a_dim1];
+/* L30: */
+ }
+ if (nounit) {
+ temp *= a[k + k * a_dim1];
+ }
+ b[k + j * b_dim1] = temp;
+ }
+/* L40: */
+ }
+/* L50: */
+ }
+ } else {
+ i__1 = *n;
+ for (j = 1; j <= i__1; ++j) {
+ for (k = *m; k >= 1; --k) {
+ if (b[k + j * b_dim1] != 0.) {
+ temp = *alpha * b[k + j * b_dim1];
+ b[k + j * b_dim1] = temp;
+ if (nounit) {
+ b[k + j * b_dim1] *= a[k + k * a_dim1];
+ }
+ i__2 = *m;
+ for (i__ = k + 1; i__ <= i__2; ++i__) {
+ b[i__ + j * b_dim1] += temp * a[i__ + k *
+ a_dim1];
+/* L60: */
+ }
+ }
+/* L70: */
+ }
+/* L80: */
+ }
+ }
+ } else {
+
+/* Form B := alpha*A'*B. */
+
+ if (upper) {
+ i__1 = *n;
+ for (j = 1; j <= i__1; ++j) {
+ for (i__ = *m; i__ >= 1; --i__) {
+ temp = b[i__ + j * b_dim1];
+ if (nounit) {
+ temp *= a[i__ + i__ * a_dim1];
+ }
+ i__2 = i__ - 1;
+ for (k = 1; k <= i__2; ++k) {
+ temp += a[k + i__ * a_dim1] * b[k + j * b_dim1];
+/* L90: */
+ }
+ b[i__ + j * b_dim1] = *alpha * temp;
+/* L100: */
+ }
+/* L110: */
+ }
+ } else {
+ i__1 = *n;
+ for (j = 1; j <= i__1; ++j) {
+ i__2 = *m;
+ for (i__ = 1; i__ <= i__2; ++i__) {
+ temp = b[i__ + j * b_dim1];
+ if (nounit) {
+ temp *= a[i__ + i__ * a_dim1];
+ }
+ i__3 = *m;
+ for (k = i__ + 1; k <= i__3; ++k) {
+ temp += a[k + i__ * a_dim1] * b[k + j * b_dim1];
+/* L120: */
+ }
+ b[i__ + j * b_dim1] = *alpha * temp;
+/* L130: */
+ }
+/* L140: */
+ }
+ }
+ }
+ } else {
+ if (lsame_(transa, "N")) {
+
+/* Form B := alpha*B*A. */
+
+ if (upper) {
+ for (j = *n; j >= 1; --j) {
+ temp = *alpha;
+ if (nounit) {
+ temp *= a[j + j * a_dim1];
+ }
+ i__1 = *m;
+ for (i__ = 1; i__ <= i__1; ++i__) {
+ b[i__ + j * b_dim1] = temp * b[i__ + j * b_dim1];
+/* L150: */
+ }
+ i__1 = j - 1;
+ for (k = 1; k <= i__1; ++k) {
+ if (a[k + j * a_dim1] != 0.) {
+ temp = *alpha * a[k + j * a_dim1];
+ i__2 = *m;
+ for (i__ = 1; i__ <= i__2; ++i__) {
+ b[i__ + j * b_dim1] += temp * b[i__ + k *
+ b_dim1];
+/* L160: */
+ }
+ }
+/* L170: */
+ }
+/* L180: */
+ }
+ } else {
+ i__1 = *n;
+ for (j = 1; j <= i__1; ++j) {
+ temp = *alpha;
+ if (nounit) {
+ temp *= a[j + j * a_dim1];
+ }
+ i__2 = *m;
+ for (i__ = 1; i__ <= i__2; ++i__) {
+ b[i__ + j * b_dim1] = temp * b[i__ + j * b_dim1];
+/* L190: */
+ }
+ i__2 = *n;
+ for (k = j + 1; k <= i__2; ++k) {
+ if (a[k + j * a_dim1] != 0.) {
+ temp = *alpha * a[k + j * a_dim1];
+ i__3 = *m;
+ for (i__ = 1; i__ <= i__3; ++i__) {
+ b[i__ + j * b_dim1] += temp * b[i__ + k *
+ b_dim1];
+/* L200: */
+ }
+ }
+/* L210: */
+ }
+/* L220: */
+ }
+ }
+ } else {
+
+/* Form B := alpha*B*A'. */
+
+ if (upper) {
+ i__1 = *n;
+ for (k = 1; k <= i__1; ++k) {
+ i__2 = k - 1;
+ for (j = 1; j <= i__2; ++j) {
+ if (a[j + k * a_dim1] != 0.) {
+ temp = *alpha * a[j + k * a_dim1];
+ i__3 = *m;
+ for (i__ = 1; i__ <= i__3; ++i__) {
+ b[i__ + j * b_dim1] += temp * b[i__ + k *
+ b_dim1];
+/* L230: */
+ }
+ }
+/* L240: */
+ }
+ temp = *alpha;
+ if (nounit) {
+ temp *= a[k + k * a_dim1];
+ }
+ if (temp != 1.) {
+ i__2 = *m;
+ for (i__ = 1; i__ <= i__2; ++i__) {
+ b[i__ + k * b_dim1] = temp * b[i__ + k * b_dim1];
+/* L250: */
+ }
+ }
+/* L260: */
+ }
+ } else {
+ for (k = *n; k >= 1; --k) {
+ i__1 = *n;
+ for (j = k + 1; j <= i__1; ++j) {
+ if (a[j + k * a_dim1] != 0.) {
+ temp = *alpha * a[j + k * a_dim1];
+ i__2 = *m;
+ for (i__ = 1; i__ <= i__2; ++i__) {
+ b[i__ + j * b_dim1] += temp * b[i__ + k *
+ b_dim1];
+/* L270: */
+ }
+ }
+/* L280: */
+ }
+ temp = *alpha;
+ if (nounit) {
+ temp *= a[k + k * a_dim1];
+ }
+ if (temp != 1.) {
+ i__1 = *m;
+ for (i__ = 1; i__ <= i__1; ++i__) {
+ b[i__ + k * b_dim1] = temp * b[i__ + k * b_dim1];
+/* L290: */
+ }
+ }
+/* L300: */
+ }
+ }
+ }
+ }
+
+ return 0;
+
+/* End of DTRMM . */
+
+} /* dtrmm_ */
+
+/* Subroutine */ int dtrmv_(char *uplo, char *trans, char *diag, integer *n,
+ doublereal *a, integer *lda, doublereal *x, integer *incx)
+{
+ /* System generated locals */
+ integer a_dim1, a_offset, i__1, i__2;
+
+ /* Local variables */
+ static integer i__, j, ix, jx, kx, info;
+ static doublereal temp;
+ extern logical lsame_(char *, char *);
+ extern /* Subroutine */ int xerbla_(char *, integer *);
+ static logical nounit;
+
+
+/*
+ Purpose
+ =======
+
+ DTRMV performs one of the matrix-vector operations
+
+ x := A*x, or x := A'*x,
+
+ where x is an n element vector and A is an n by n unit, or non-unit,
+ upper or lower triangular matrix.
+
+ Parameters
+ ==========
+
+ UPLO - CHARACTER*1.
+ On entry, UPLO specifies whether the matrix is an upper or
+ lower triangular matrix as follows:
+
+ UPLO = 'U' or 'u' A is an upper triangular matrix.
+
+ UPLO = 'L' or 'l' A is a lower triangular matrix.
+
+ Unchanged on exit.
+
+ TRANS - CHARACTER*1.
+ On entry, TRANS specifies the operation to be performed as
+ follows:
+
+ TRANS = 'N' or 'n' x := A*x.
+
+ TRANS = 'T' or 't' x := A'*x.
+
+ TRANS = 'C' or 'c' x := A'*x.
+
+ Unchanged on exit.
+
+ DIAG - CHARACTER*1.
+ On entry, DIAG specifies whether or not A is unit
+ triangular as follows:
+
+ DIAG = 'U' or 'u' A is assumed to be unit triangular.
+
+ DIAG = 'N' or 'n' A is not assumed to be unit
+ triangular.
+
+ Unchanged on exit.
+
+ N - INTEGER.
+ On entry, N specifies the order of the matrix A.
+ N must be at least zero.
+ Unchanged on exit.
+
+ A - DOUBLE PRECISION array of DIMENSION ( LDA, n ).
+ Before entry with UPLO = 'U' or 'u', the leading n by n
+ upper triangular part of the array A must contain the upper
+ triangular matrix and the strictly lower triangular part of
+ A is not referenced.
+ Before entry with UPLO = 'L' or 'l', the leading n by n
+ lower triangular part of the array A must contain the lower
+ triangular matrix and the strictly upper triangular part of
+ A is not referenced.
+ Note that when DIAG = 'U' or 'u', the diagonal elements of
+ A are not referenced either, but are assumed to be unity.
+ Unchanged on exit.
+
+ LDA - INTEGER.
+ On entry, LDA specifies the first dimension of A as declared
+ in the calling (sub) program. LDA must be at least
+ max( 1, n ).
+ Unchanged on exit.
+
+ X - DOUBLE PRECISION array of dimension at least
+ ( 1 + ( n - 1 )*abs( INCX ) ).
+ Before entry, the incremented array X must contain the n
+ element vector x. On exit, X is overwritten with the
+ tranformed vector x.
+
+ INCX - INTEGER.
+ On entry, INCX specifies the increment for the elements of
+ X. INCX must not be zero.
+ Unchanged on exit.
+
+
+ Level 2 Blas routine.
+
+ -- Written on 22-October-1986.
+ Jack Dongarra, Argonne National Lab.
+ Jeremy Du Croz, Nag Central Office.
+ Sven Hammarling, Nag Central Office.
+ Richard Hanson, Sandia National Labs.
+
+
+ Test the input parameters.
+*/
+
+ /* Parameter adjustments */
+ a_dim1 = *lda;
+ a_offset = 1 + a_dim1;
+ a -= a_offset;
+ --x;
+
+ /* Function Body */
+ info = 0;
+ if (! lsame_(uplo, "U") && ! lsame_(uplo, "L")) {
+ info = 1;
+ } else if (! lsame_(trans, "N") && ! lsame_(trans,
+ "T") && ! lsame_(trans, "C")) {
+ info = 2;
+ } else if (! lsame_(diag, "U") && ! lsame_(diag,
+ "N")) {
+ info = 3;
+ } else if (*n < 0) {
+ info = 4;
+ } else if (*lda < max(1,*n)) {
+ info = 6;
+ } else if (*incx == 0) {
+ info = 8;
+ }
+ if (info != 0) {
+ xerbla_("DTRMV ", &info);
+ return 0;
+ }
+
+/* Quick return if possible. */
+
+ if (*n == 0) {
+ return 0;
+ }
+
+ nounit = lsame_(diag, "N");
+
+/*
+ Set up the start point in X if the increment is not unity. This
+ will be ( N - 1 )*INCX too small for descending loops.
+*/
+
+ if (*incx <= 0) {
+ kx = 1 - (*n - 1) * *incx;
+ } else if (*incx != 1) {
+ kx = 1;
+ }
+
+/*
+ Start the operations. In this version the elements of A are
+ accessed sequentially with one pass through A.
+*/
+
+ if (lsame_(trans, "N")) {
+
+/* Form x := A*x. */
+
+ if (lsame_(uplo, "U")) {
+ if (*incx == 1) {
+ i__1 = *n;
+ for (j = 1; j <= i__1; ++j) {
+ if (x[j] != 0.) {
+ temp = x[j];
+ i__2 = j - 1;
+ for (i__ = 1; i__ <= i__2; ++i__) {
+ x[i__] += temp * a[i__ + j * a_dim1];
+/* L10: */
+ }
+ if (nounit) {
+ x[j] *= a[j + j * a_dim1];
+ }
+ }
+/* L20: */
+ }
+ } else {
+ jx = kx;
+ i__1 = *n;
+ for (j = 1; j <= i__1; ++j) {
+ if (x[jx] != 0.) {
+ temp = x[jx];
+ ix = kx;
+ i__2 = j - 1;
+ for (i__ = 1; i__ <= i__2; ++i__) {
+ x[ix] += temp * a[i__ + j * a_dim1];
+ ix += *incx;
+/* L30: */
+ }
+ if (nounit) {
+ x[jx] *= a[j + j * a_dim1];
+ }
+ }
+ jx += *incx;
+/* L40: */
+ }
+ }
+ } else {
+ if (*incx == 1) {
+ for (j = *n; j >= 1; --j) {
+ if (x[j] != 0.) {
+ temp = x[j];
+ i__1 = j + 1;
+ for (i__ = *n; i__ >= i__1; --i__) {
+ x[i__] += temp * a[i__ + j * a_dim1];
+/* L50: */
+ }
+ if (nounit) {
+ x[j] *= a[j + j * a_dim1];
+ }
+ }
+/* L60: */
+ }
+ } else {
+ kx += (*n - 1) * *incx;
+ jx = kx;
+ for (j = *n; j >= 1; --j) {
+ if (x[jx] != 0.) {
+ temp = x[jx];
+ ix = kx;
+ i__1 = j + 1;
+ for (i__ = *n; i__ >= i__1; --i__) {
+ x[ix] += temp * a[i__ + j * a_dim1];
+ ix -= *incx;
+/* L70: */
+ }
+ if (nounit) {
+ x[jx] *= a[j + j * a_dim1];
+ }
+ }
+ jx -= *incx;
+/* L80: */
+ }
+ }
+ }
+ } else {
+
+/* Form x := A'*x. */
+
+ if (lsame_(uplo, "U")) {
+ if (*incx == 1) {
+ for (j = *n; j >= 1; --j) {
+ temp = x[j];
+ if (nounit) {
+ temp *= a[j + j * a_dim1];
+ }
+ for (i__ = j - 1; i__ >= 1; --i__) {
+ temp += a[i__ + j * a_dim1] * x[i__];
+/* L90: */
+ }
+ x[j] = temp;
+/* L100: */
+ }
+ } else {
+ jx = kx + (*n - 1) * *incx;
+ for (j = *n; j >= 1; --j) {
+ temp = x[jx];
+ ix = jx;
+ if (nounit) {
+ temp *= a[j + j * a_dim1];
+ }
+ for (i__ = j - 1; i__ >= 1; --i__) {
+ ix -= *incx;
+ temp += a[i__ + j * a_dim1] * x[ix];
+/* L110: */
+ }
+ x[jx] = temp;
+ jx -= *incx;
+/* L120: */
+ }
+ }
+ } else {
+ if (*incx == 1) {
+ i__1 = *n;
+ for (j = 1; j <= i__1; ++j) {
+ temp = x[j];
+ if (nounit) {
+ temp *= a[j + j * a_dim1];
+ }
+ i__2 = *n;
+ for (i__ = j + 1; i__ <= i__2; ++i__) {
+ temp += a[i__ + j * a_dim1] * x[i__];
+/* L130: */
+ }
+ x[j] = temp;
+/* L140: */
+ }
+ } else {
+ jx = kx;
+ i__1 = *n;
+ for (j = 1; j <= i__1; ++j) {
+ temp = x[jx];
+ ix = jx;
+ if (nounit) {
+ temp *= a[j + j * a_dim1];
+ }
+ i__2 = *n;
+ for (i__ = j + 1; i__ <= i__2; ++i__) {
+ ix += *incx;
+ temp += a[i__ + j * a_dim1] * x[ix];
+/* L150: */
+ }
+ x[jx] = temp;
+ jx += *incx;
+/* L160: */
+ }
+ }
+ }
+ }
+
+ return 0;
+
+/* End of DTRMV . */
+
+} /* dtrmv_ */
+
+/* Subroutine */ int dtrsm_(char *side, char *uplo, char *transa, char *diag,
+ integer *m, integer *n, doublereal *alpha, doublereal *a, integer *
+ lda, doublereal *b, integer *ldb)
+{
+ /* System generated locals */
+ integer a_dim1, a_offset, b_dim1, b_offset, i__1, i__2, i__3;
+
+ /* Local variables */
+ static integer i__, j, k, info;
+ static doublereal temp;
+ static logical lside;
+ extern logical lsame_(char *, char *);
+ static integer nrowa;
+ static logical upper;
+ extern /* Subroutine */ int xerbla_(char *, integer *);
+ static logical nounit;
+
+
+/*
+ Purpose
+ =======
+
+ DTRSM solves one of the matrix equations
+
+ op( A )*X = alpha*B, or X*op( A ) = alpha*B,
+
+ where alpha is a scalar, X and B are m by n matrices, A is a unit, or
+ non-unit, upper or lower triangular matrix and op( A ) is one of
+
+ op( A ) = A or op( A ) = A'.
+
+ The matrix X is overwritten on B.
+
+ Parameters
+ ==========
+
+ SIDE - CHARACTER*1.
+ On entry, SIDE specifies whether op( A ) appears on the left
+ or right of X as follows:
+
+ SIDE = 'L' or 'l' op( A )*X = alpha*B.
+
+ SIDE = 'R' or 'r' X*op( A ) = alpha*B.
+
+ Unchanged on exit.
+
+ UPLO - CHARACTER*1.
+ On entry, UPLO specifies whether the matrix A is an upper or
+ lower triangular matrix as follows:
+
+ UPLO = 'U' or 'u' A is an upper triangular matrix.
+
+ UPLO = 'L' or 'l' A is a lower triangular matrix.
+
+ Unchanged on exit.
+
+ TRANSA - CHARACTER*1.
+ On entry, TRANSA specifies the form of op( A ) to be used in
+ the matrix multiplication as follows:
+
+ TRANSA = 'N' or 'n' op( A ) = A.
+
+ TRANSA = 'T' or 't' op( A ) = A'.
+
+ TRANSA = 'C' or 'c' op( A ) = A'.
+
+ Unchanged on exit.
+
+ DIAG - CHARACTER*1.
+ On entry, DIAG specifies whether or not A is unit triangular
+ as follows:
+
+ DIAG = 'U' or 'u' A is assumed to be unit triangular.
+
+ DIAG = 'N' or 'n' A is not assumed to be unit
+ triangular.
+
+ Unchanged on exit.
+
+ M - INTEGER.
+ On entry, M specifies the number of rows of B. M must be at
+ least zero.
+ Unchanged on exit.
+
+ N - INTEGER.
+ On entry, N specifies the number of columns of B. N must be
+ at least zero.
+ Unchanged on exit.
+
+ ALPHA - DOUBLE PRECISION.
+ On entry, ALPHA specifies the scalar alpha. When alpha is
+ zero then A is not referenced and B need not be set before
+ entry.
+ Unchanged on exit.
+
+ A - DOUBLE PRECISION array of DIMENSION ( LDA, k ), where k is m
+ when SIDE = 'L' or 'l' and is n when SIDE = 'R' or 'r'.
+ Before entry with UPLO = 'U' or 'u', the leading k by k
+ upper triangular part of the array A must contain the upper
+ triangular matrix and the strictly lower triangular part of
+ A is not referenced.
+ Before entry with UPLO = 'L' or 'l', the leading k by k
+ lower triangular part of the array A must contain the lower
+ triangular matrix and the strictly upper triangular part of
+ A is not referenced.
+ Note that when DIAG = 'U' or 'u', the diagonal elements of
+ A are not referenced either, but are assumed to be unity.
+ Unchanged on exit.
+
+ LDA - INTEGER.
+ On entry, LDA specifies the first dimension of A as declared
+ in the calling (sub) program. When SIDE = 'L' or 'l' then
+ LDA must be at least max( 1, m ), when SIDE = 'R' or 'r'
+ then LDA must be at least max( 1, n ).
+ Unchanged on exit.
+
+ B - DOUBLE PRECISION array of DIMENSION ( LDB, n ).
+ Before entry, the leading m by n part of the array B must
+ contain the right-hand side matrix B, and on exit is
+ overwritten by the solution matrix X.
+
+ LDB - INTEGER.
+ On entry, LDB specifies the first dimension of B as declared
+ in the calling (sub) program. LDB must be at least
+ max( 1, m ).
+ Unchanged on exit.
+
+
+ Level 3 Blas routine.
+
+
+ -- Written on 8-February-1989.
+ Jack Dongarra, Argonne National Laboratory.
+ Iain Duff, AERE Harwell.
+ Jeremy Du Croz, Numerical Algorithms Group Ltd.
+ Sven Hammarling, Numerical Algorithms Group Ltd.
+
+
+ Test the input parameters.
+*/
+
+ /* Parameter adjustments */
+ a_dim1 = *lda;
+ a_offset = 1 + a_dim1;
+ a -= a_offset;
+ b_dim1 = *ldb;
+ b_offset = 1 + b_dim1;
+ b -= b_offset;
+
+ /* Function Body */
+ lside = lsame_(side, "L");
+ if (lside) {
+ nrowa = *m;
+ } else {
+ nrowa = *n;
+ }
+ nounit = lsame_(diag, "N");
+ upper = lsame_(uplo, "U");
+
+ info = 0;
+ if (! lside && ! lsame_(side, "R")) {
+ info = 1;
+ } else if (! upper && ! lsame_(uplo, "L")) {
+ info = 2;
+ } else if (! lsame_(transa, "N") && ! lsame_(transa,
+ "T") && ! lsame_(transa, "C")) {
+ info = 3;
+ } else if (! lsame_(diag, "U") && ! lsame_(diag,
+ "N")) {
+ info = 4;
+ } else if (*m < 0) {
+ info = 5;
+ } else if (*n < 0) {
+ info = 6;
+ } else if (*lda < max(1,nrowa)) {
+ info = 9;
+ } else if (*ldb < max(1,*m)) {
+ info = 11;
+ }
+ if (info != 0) {
+ xerbla_("DTRSM ", &info);
+ return 0;
+ }
+
+/* Quick return if possible. */
+
+ if (*n == 0) {
+ return 0;
+ }
+
+/* And when alpha.eq.zero. */
+
+ if (*alpha == 0.) {
+ i__1 = *n;
+ for (j = 1; j <= i__1; ++j) {
+ i__2 = *m;
+ for (i__ = 1; i__ <= i__2; ++i__) {
+ b[i__ + j * b_dim1] = 0.;
+/* L10: */
+ }
+/* L20: */
+ }
+ return 0;
+ }
+
+/* Start the operations. */
+
+ if (lside) {
+ if (lsame_(transa, "N")) {
+
+/* Form B := alpha*inv( A )*B. */
+
+ if (upper) {
+ i__1 = *n;
+ for (j = 1; j <= i__1; ++j) {
+ if (*alpha != 1.) {
+ i__2 = *m;
+ for (i__ = 1; i__ <= i__2; ++i__) {
+ b[i__ + j * b_dim1] = *alpha * b[i__ + j * b_dim1]
+ ;
+/* L30: */
+ }
+ }
+ for (k = *m; k >= 1; --k) {
+ if (b[k + j * b_dim1] != 0.) {
+ if (nounit) {
+ b[k + j * b_dim1] /= a[k + k * a_dim1];
+ }
+ i__2 = k - 1;
+ for (i__ = 1; i__ <= i__2; ++i__) {
+ b[i__ + j * b_dim1] -= b[k + j * b_dim1] * a[
+ i__ + k * a_dim1];
+/* L40: */
+ }
+ }
+/* L50: */
+ }
+/* L60: */
+ }
+ } else {
+ i__1 = *n;
+ for (j = 1; j <= i__1; ++j) {
+ if (*alpha != 1.) {
+ i__2 = *m;
+ for (i__ = 1; i__ <= i__2; ++i__) {
+ b[i__ + j * b_dim1] = *alpha * b[i__ + j * b_dim1]
+ ;
+/* L70: */
+ }
+ }
+ i__2 = *m;
+ for (k = 1; k <= i__2; ++k) {
+ if (b[k + j * b_dim1] != 0.) {
+ if (nounit) {
+ b[k + j * b_dim1] /= a[k + k * a_dim1];
+ }
+ i__3 = *m;
+ for (i__ = k + 1; i__ <= i__3; ++i__) {
+ b[i__ + j * b_dim1] -= b[k + j * b_dim1] * a[
+ i__ + k * a_dim1];
+/* L80: */
+ }
+ }
+/* L90: */
+ }
+/* L100: */
+ }
+ }
+ } else {
+
+/* Form B := alpha*inv( A' )*B. */
+
+ if (upper) {
+ i__1 = *n;
+ for (j = 1; j <= i__1; ++j) {
+ i__2 = *m;
+ for (i__ = 1; i__ <= i__2; ++i__) {
+ temp = *alpha * b[i__ + j * b_dim1];
+ i__3 = i__ - 1;
+ for (k = 1; k <= i__3; ++k) {
+ temp -= a[k + i__ * a_dim1] * b[k + j * b_dim1];
+/* L110: */
+ }
+ if (nounit) {
+ temp /= a[i__ + i__ * a_dim1];
+ }
+ b[i__ + j * b_dim1] = temp;
+/* L120: */
+ }
+/* L130: */
+ }
+ } else {
+ i__1 = *n;
+ for (j = 1; j <= i__1; ++j) {
+ for (i__ = *m; i__ >= 1; --i__) {
+ temp = *alpha * b[i__ + j * b_dim1];
+ i__2 = *m;
+ for (k = i__ + 1; k <= i__2; ++k) {
+ temp -= a[k + i__ * a_dim1] * b[k + j * b_dim1];
+/* L140: */
+ }
+ if (nounit) {
+ temp /= a[i__ + i__ * a_dim1];
+ }
+ b[i__ + j * b_dim1] = temp;
+/* L150: */
+ }
+/* L160: */
+ }
+ }
+ }
+ } else {
+ if (lsame_(transa, "N")) {
+
+/* Form B := alpha*B*inv( A ). */
+
+ if (upper) {
+ i__1 = *n;
+ for (j = 1; j <= i__1; ++j) {
+ if (*alpha != 1.) {
+ i__2 = *m;
+ for (i__ = 1; i__ <= i__2; ++i__) {
+ b[i__ + j * b_dim1] = *alpha * b[i__ + j * b_dim1]
+ ;
+/* L170: */
+ }
+ }
+ i__2 = j - 1;
+ for (k = 1; k <= i__2; ++k) {
+ if (a[k + j * a_dim1] != 0.) {
+ i__3 = *m;
+ for (i__ = 1; i__ <= i__3; ++i__) {
+ b[i__ + j * b_dim1] -= a[k + j * a_dim1] * b[
+ i__ + k * b_dim1];
+/* L180: */
+ }
+ }
+/* L190: */
+ }
+ if (nounit) {
+ temp = 1. / a[j + j * a_dim1];
+ i__2 = *m;
+ for (i__ = 1; i__ <= i__2; ++i__) {
+ b[i__ + j * b_dim1] = temp * b[i__ + j * b_dim1];
+/* L200: */
+ }
+ }
+/* L210: */
+ }
+ } else {
+ for (j = *n; j >= 1; --j) {
+ if (*alpha != 1.) {
+ i__1 = *m;
+ for (i__ = 1; i__ <= i__1; ++i__) {
+ b[i__ + j * b_dim1] = *alpha * b[i__ + j * b_dim1]
+ ;
+/* L220: */
+ }
+ }
+ i__1 = *n;
+ for (k = j + 1; k <= i__1; ++k) {
+ if (a[k + j * a_dim1] != 0.) {
+ i__2 = *m;
+ for (i__ = 1; i__ <= i__2; ++i__) {
+ b[i__ + j * b_dim1] -= a[k + j * a_dim1] * b[
+ i__ + k * b_dim1];
+/* L230: */
+ }
+ }
+/* L240: */
+ }
+ if (nounit) {
+ temp = 1. / a[j + j * a_dim1];
+ i__1 = *m;
+ for (i__ = 1; i__ <= i__1; ++i__) {
+ b[i__ + j * b_dim1] = temp * b[i__ + j * b_dim1];
+/* L250: */
+ }
+ }
+/* L260: */
+ }
+ }
+ } else {
+
+/* Form B := alpha*B*inv( A' ). */
+
+ if (upper) {
+ for (k = *n; k >= 1; --k) {
+ if (nounit) {
+ temp = 1. / a[k + k * a_dim1];
+ i__1 = *m;
+ for (i__ = 1; i__ <= i__1; ++i__) {
+ b[i__ + k * b_dim1] = temp * b[i__ + k * b_dim1];
+/* L270: */
+ }
+ }
+ i__1 = k - 1;
+ for (j = 1; j <= i__1; ++j) {
+ if (a[j + k * a_dim1] != 0.) {
+ temp = a[j + k * a_dim1];
+ i__2 = *m;
+ for (i__ = 1; i__ <= i__2; ++i__) {
+ b[i__ + j * b_dim1] -= temp * b[i__ + k *
+ b_dim1];
+/* L280: */
+ }
+ }
+/* L290: */
+ }
+ if (*alpha != 1.) {
+ i__1 = *m;
+ for (i__ = 1; i__ <= i__1; ++i__) {
+ b[i__ + k * b_dim1] = *alpha * b[i__ + k * b_dim1]
+ ;
+/* L300: */
+ }
+ }
+/* L310: */
+ }
+ } else {
+ i__1 = *n;
+ for (k = 1; k <= i__1; ++k) {
+ if (nounit) {
+ temp = 1. / a[k + k * a_dim1];
+ i__2 = *m;
+ for (i__ = 1; i__ <= i__2; ++i__) {
+ b[i__ + k * b_dim1] = temp * b[i__ + k * b_dim1];
+/* L320: */
+ }
+ }
+ i__2 = *n;
+ for (j = k + 1; j <= i__2; ++j) {
+ if (a[j + k * a_dim1] != 0.) {
+ temp = a[j + k * a_dim1];
+ i__3 = *m;
+ for (i__ = 1; i__ <= i__3; ++i__) {
+ b[i__ + j * b_dim1] -= temp * b[i__ + k *
+ b_dim1];
+/* L330: */
+ }
+ }
+/* L340: */
+ }
+ if (*alpha != 1.) {
+ i__2 = *m;
+ for (i__ = 1; i__ <= i__2; ++i__) {
+ b[i__ + k * b_dim1] = *alpha * b[i__ + k * b_dim1]
+ ;
+/* L350: */
+ }
+ }
+/* L360: */
+ }
+ }
+ }
+ }
+
+ return 0;
+
+/* End of DTRSM . */
+
+} /* dtrsm_ */
+
+doublereal dzasum_(integer *n, doublecomplex *zx, integer *incx)
+{
+ /* System generated locals */
+ integer i__1;
+ doublereal ret_val;
+
+ /* Local variables */
+ static integer i__, ix;
+ static doublereal stemp;
+ extern doublereal dcabs1_(doublecomplex *);
+
+
+/*
+ takes the sum of the absolute values.
+ jack dongarra, 3/11/78.
+ modified 3/93 to return if incx .le. 0.
+ modified 12/3/93, array(1) declarations changed to array(*)
+*/
+
+
+ /* Parameter adjustments */
+ --zx;
+
+ /* Function Body */
+ ret_val = 0.;
+ stemp = 0.;
+ if ((*n <= 0) || (*incx <= 0)) {
+ return ret_val;
+ }
+ if (*incx == 1) {
+ goto L20;
+ }
+
+/* code for increment not equal to 1 */
+
+ ix = 1;
+ i__1 = *n;
+ for (i__ = 1; i__ <= i__1; ++i__) {
+ stemp += dcabs1_(&zx[ix]);
+ ix += *incx;
+/* L10: */
+ }
+ ret_val = stemp;
+ return ret_val;
+
+/* code for increment equal to 1 */
+
+L20:
+ i__1 = *n;
+ for (i__ = 1; i__ <= i__1; ++i__) {
+ stemp += dcabs1_(&zx[i__]);
+/* L30: */
+ }
+ ret_val = stemp;
+ return ret_val;
+} /* dzasum_ */
+
+doublereal dznrm2_(integer *n, doublecomplex *x, integer *incx)
+{
+ /* System generated locals */
+ integer i__1, i__2, i__3;
+ doublereal ret_val, d__1;
+
+ /* Builtin functions */
+ double d_imag(doublecomplex *), sqrt(doublereal);
+
+ /* Local variables */
+ static integer ix;
+ static doublereal ssq, temp, norm, scale;
+
+
+/*
+ DZNRM2 returns the euclidean norm of a vector via the function
+ name, so that
+
+ DZNRM2 := sqrt( conjg( x' )*x )
+
+
+ -- This version written on 25-October-1982.
+ Modified on 14-October-1993 to inline the call to ZLASSQ.
+ Sven Hammarling, Nag Ltd.
+*/
+
+
+ /* Parameter adjustments */
+ --x;
+
+ /* Function Body */
+ if ((*n < 1) || (*incx < 1)) {
+ norm = 0.;
+ } else {
+ scale = 0.;
+ ssq = 1.;
+/*
+ The following loop is equivalent to this call to the LAPACK
+ auxiliary routine:
+ CALL ZLASSQ( N, X, INCX, SCALE, SSQ )
+*/
+
+ i__1 = (*n - 1) * *incx + 1;
+ i__2 = *incx;
+ for (ix = 1; i__2 < 0 ? ix >= i__1 : ix <= i__1; ix += i__2) {
+ i__3 = ix;
+ if (x[i__3].r != 0.) {
+ i__3 = ix;
+ temp = (d__1 = x[i__3].r, abs(d__1));
+ if (scale < temp) {
+/* Computing 2nd power */
+ d__1 = scale / temp;
+ ssq = ssq * (d__1 * d__1) + 1.;
+ scale = temp;
+ } else {
+/* Computing 2nd power */
+ d__1 = temp / scale;
+ ssq += d__1 * d__1;
+ }
+ }
+ if (d_imag(&x[ix]) != 0.) {
+ temp = (d__1 = d_imag(&x[ix]), abs(d__1));
+ if (scale < temp) {
+/* Computing 2nd power */
+ d__1 = scale / temp;
+ ssq = ssq * (d__1 * d__1) + 1.;
+ scale = temp;
+ } else {
+/* Computing 2nd power */
+ d__1 = temp / scale;
+ ssq += d__1 * d__1;
+ }
+ }
+/* L10: */
+ }
+ norm = scale * sqrt(ssq);
+ }
+
+ ret_val = norm;
+ return ret_val;
+
+/* End of DZNRM2. */
+
+} /* dznrm2_ */
+
+integer icamax_(integer *n, complex *cx, integer *incx)
+{
+ /* System generated locals */
+ integer ret_val, i__1, i__2;
+ real r__1, r__2;
+
+ /* Builtin functions */
+ double r_imag(complex *);
+
+ /* Local variables */
+ static integer i__, ix;
+ static real smax;
+
+
+/*
+ finds the index of element having max. absolute value.
+ jack dongarra, linpack, 3/11/78.
+ modified 3/93 to return if incx .le. 0.
+ modified 12/3/93, array(1) declarations changed to array(*)
+*/
+
+
+ /* Parameter adjustments */
+ --cx;
+
+ /* Function Body */
+ ret_val = 0;
+ if ((*n < 1) || (*incx <= 0)) {
+ return ret_val;
+ }
+ ret_val = 1;
+ if (*n == 1) {
+ return ret_val;
+ }
+ if (*incx == 1) {
+ goto L20;
+ }
+
+/* code for increment not equal to 1 */
+
+ ix = 1;
+ smax = (r__1 = cx[1].r, dabs(r__1)) + (r__2 = r_imag(&cx[1]), dabs(r__2));
+ ix += *incx;
+ i__1 = *n;
+ for (i__ = 2; i__ <= i__1; ++i__) {
+ i__2 = ix;
+ if ((r__1 = cx[i__2].r, dabs(r__1)) + (r__2 = r_imag(&cx[ix]), dabs(
+ r__2)) <= smax) {
+ goto L5;
+ }
+ ret_val = i__;
+ i__2 = ix;
+ smax = (r__1 = cx[i__2].r, dabs(r__1)) + (r__2 = r_imag(&cx[ix]),
+ dabs(r__2));
+L5:
+ ix += *incx;
+/* L10: */
+ }
+ return ret_val;
+
+/* code for increment equal to 1 */
+
+L20:
+ smax = (r__1 = cx[1].r, dabs(r__1)) + (r__2 = r_imag(&cx[1]), dabs(r__2));
+ i__1 = *n;
+ for (i__ = 2; i__ <= i__1; ++i__) {
+ i__2 = i__;
+ if ((r__1 = cx[i__2].r, dabs(r__1)) + (r__2 = r_imag(&cx[i__]), dabs(
+ r__2)) <= smax) {
+ goto L30;
+ }
+ ret_val = i__;
+ i__2 = i__;
+ smax = (r__1 = cx[i__2].r, dabs(r__1)) + (r__2 = r_imag(&cx[i__]),
+ dabs(r__2));
+L30:
+ ;
+ }
+ return ret_val;
+} /* icamax_ */
+
+integer idamax_(integer *n, doublereal *dx, integer *incx)
+{
+ /* System generated locals */
+ integer ret_val, i__1;
+ doublereal d__1;
+
+ /* Local variables */
+ static integer i__, ix;
+ static doublereal dmax__;
+
+
+/*
+ finds the index of element having max. absolute value.
+ jack dongarra, linpack, 3/11/78.
+ modified 3/93 to return if incx .le. 0.
+ modified 12/3/93, array(1) declarations changed to array(*)
+*/
+
+
+ /* Parameter adjustments */
+ --dx;
+
+ /* Function Body */
+ ret_val = 0;
+ if ((*n < 1) || (*incx <= 0)) {
+ return ret_val;
+ }
+ ret_val = 1;
+ if (*n == 1) {
+ return ret_val;
+ }
+ if (*incx == 1) {
+ goto L20;
+ }
+
+/* code for increment not equal to 1 */
+
+ ix = 1;
+ dmax__ = abs(dx[1]);
+ ix += *incx;
+ i__1 = *n;
+ for (i__ = 2; i__ <= i__1; ++i__) {
+ if ((d__1 = dx[ix], abs(d__1)) <= dmax__) {
+ goto L5;
+ }
+ ret_val = i__;
+ dmax__ = (d__1 = dx[ix], abs(d__1));
+L5:
+ ix += *incx;
+/* L10: */
+ }
+ return ret_val;
+
+/* code for increment equal to 1 */
+
+L20:
+ dmax__ = abs(dx[1]);
+ i__1 = *n;
+ for (i__ = 2; i__ <= i__1; ++i__) {
+ if ((d__1 = dx[i__], abs(d__1)) <= dmax__) {
+ goto L30;
+ }
+ ret_val = i__;
+ dmax__ = (d__1 = dx[i__], abs(d__1));
+L30:
+ ;
+ }
+ return ret_val;
+} /* idamax_ */
+
+integer isamax_(integer *n, real *sx, integer *incx)
+{
+ /* System generated locals */
+ integer ret_val, i__1;
+ real r__1;
+
+ /* Local variables */
+ static integer i__, ix;
+ static real smax;
+
+
+/*
+ finds the index of element having max. absolute value.
+ jack dongarra, linpack, 3/11/78.
+ modified 3/93 to return if incx .le. 0.
+ modified 12/3/93, array(1) declarations changed to array(*)
+*/
+
+
+ /* Parameter adjustments */
+ --sx;
+
+ /* Function Body */
+ ret_val = 0;
+ if ((*n < 1) || (*incx <= 0)) {
+ return ret_val;
+ }
+ ret_val = 1;
+ if (*n == 1) {
+ return ret_val;
+ }
+ if (*incx == 1) {
+ goto L20;
+ }
+
+/* code for increment not equal to 1 */
+
+ ix = 1;
+ smax = dabs(sx[1]);
+ ix += *incx;
+ i__1 = *n;
+ for (i__ = 2; i__ <= i__1; ++i__) {
+ if ((r__1 = sx[ix], dabs(r__1)) <= smax) {
+ goto L5;
+ }
+ ret_val = i__;
+ smax = (r__1 = sx[ix], dabs(r__1));
+L5:
+ ix += *incx;
+/* L10: */
+ }
+ return ret_val;
+
+/* code for increment equal to 1 */
+
+L20:
+ smax = dabs(sx[1]);
+ i__1 = *n;
+ for (i__ = 2; i__ <= i__1; ++i__) {
+ if ((r__1 = sx[i__], dabs(r__1)) <= smax) {
+ goto L30;
+ }
+ ret_val = i__;
+ smax = (r__1 = sx[i__], dabs(r__1));
+L30:
+ ;
+ }
+ return ret_val;
+} /* isamax_ */
+
+integer izamax_(integer *n, doublecomplex *zx, integer *incx)
+{
+ /* System generated locals */
+ integer ret_val, i__1;
+
+ /* Local variables */
+ static integer i__, ix;
+ static doublereal smax;
+ extern doublereal dcabs1_(doublecomplex *);
+
+
+/*
+ finds the index of element having max. absolute value.
+ jack dongarra, 1/15/85.
+ modified 3/93 to return if incx .le. 0.
+ modified 12/3/93, array(1) declarations changed to array(*)
+*/
+
+
+ /* Parameter adjustments */
+ --zx;
+
+ /* Function Body */
+ ret_val = 0;
+ if ((*n < 1) || (*incx <= 0)) {
+ return ret_val;
+ }
+ ret_val = 1;
+ if (*n == 1) {
+ return ret_val;
+ }
+ if (*incx == 1) {
+ goto L20;
+ }
+
+/* code for increment not equal to 1 */
+
+ ix = 1;
+ smax = dcabs1_(&zx[1]);
+ ix += *incx;
+ i__1 = *n;
+ for (i__ = 2; i__ <= i__1; ++i__) {
+ if (dcabs1_(&zx[ix]) <= smax) {
+ goto L5;
+ }
+ ret_val = i__;
+ smax = dcabs1_(&zx[ix]);
+L5:
+ ix += *incx;
+/* L10: */
+ }
+ return ret_val;
+
+/* code for increment equal to 1 */
+
+L20:
+ smax = dcabs1_(&zx[1]);
+ i__1 = *n;
+ for (i__ = 2; i__ <= i__1; ++i__) {
+ if (dcabs1_(&zx[i__]) <= smax) {
+ goto L30;
+ }
+ ret_val = i__;
+ smax = dcabs1_(&zx[i__]);
+L30:
+ ;
+ }
+ return ret_val;
+} /* izamax_ */
+
+logical lsame_(char *ca, char *cb)
+{
+ /* System generated locals */
+ logical ret_val;
+
+ /* Local variables */
+ static integer inta, intb, zcode;
+
+
+/*
+ -- LAPACK auxiliary routine (version 3.0) --
+ Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
+ Courant Institute, Argonne National Lab, and Rice University
+ September 30, 1994
+
+
+ Purpose
+ =======
+
+ LSAME returns .TRUE. if CA is the same letter as CB regardless of
+ case.
+
+ Arguments
+ =========
+
+ CA (input) CHARACTER*1
+ CB (input) CHARACTER*1
+ CA and CB specify the single characters to be compared.
+
+ =====================================================================
+
+
+ Test if the characters are equal
+*/
+
+ ret_val = *(unsigned char *)ca == *(unsigned char *)cb;
+ if (ret_val) {
+ return ret_val;
+ }
+
+/* Now test for equivalence if both characters are alphabetic. */
+
+ zcode = 'Z';
+
+/*
+ Use 'Z' rather than 'A' so that ASCII can be detected on Prime
+ machines, on which ICHAR returns a value with bit 8 set.
+ ICHAR('A') on Prime machines returns 193 which is the same as
+ ICHAR('A') on an EBCDIC machine.
+*/
+
+ inta = *(unsigned char *)ca;
+ intb = *(unsigned char *)cb;
+
+ if ((zcode == 90) || (zcode == 122)) {
+
+/*
+ ASCII is assumed - ZCODE is the ASCII code of either lower or
+ upper case 'Z'.
+*/
+
+ if (inta >= 97 && inta <= 122) {
+ inta += -32;
+ }
+ if (intb >= 97 && intb <= 122) {
+ intb += -32;
+ }
+
+ } else if ((zcode == 233) || (zcode == 169)) {
+
+/*
+ EBCDIC is assumed - ZCODE is the EBCDIC code of either lower or
+ upper case 'Z'.
+*/
+
+ if (((inta >= 129 && inta <= 137) || (inta >= 145 && inta <= 153)) ||
+ (inta >= 162 && inta <= 169)) {
+ inta += 64;
+ }
+ if (((intb >= 129 && intb <= 137) || (intb >= 145 && intb <= 153)) ||
+ (intb >= 162 && intb <= 169)) {
+ intb += 64;
+ }
+
+ } else if ((zcode == 218) || (zcode == 250)) {
+
+/*
+ ASCII is assumed, on Prime machines - ZCODE is the ASCII code
+ plus 128 of either lower or upper case 'Z'.
+*/
+
+ if (inta >= 225 && inta <= 250) {
+ inta += -32;
+ }
+ if (intb >= 225 && intb <= 250) {
+ intb += -32;
+ }
+ }
+ ret_val = inta == intb;
+
+/*
+ RETURN
+
+ End of LSAME
+*/
+
+ return ret_val;
+} /* lsame_ */
+
+/* Subroutine */ int saxpy_(integer *n, real *sa, real *sx, integer *incx,
+ real *sy, integer *incy)
+{
+ /* System generated locals */
+ integer i__1;
+
+ /* Local variables */
+ static integer i__, m, ix, iy, mp1;
+
+
+/*
+ constant times a vector plus a vector.
+ uses unrolled loop for increments equal to one.
+ jack dongarra, linpack, 3/11/78.
+ modified 12/3/93, array(1) declarations changed to array(*)
+*/
+
+
+ /* Parameter adjustments */
+ --sy;
+ --sx;
+
+ /* Function Body */
+ if (*n <= 0) {
+ return 0;
+ }
+ if (*sa == 0.f) {
+ return 0;
+ }
+ if (*incx == 1 && *incy == 1) {
+ goto L20;
+ }
+
+/*
+ code for unequal increments or equal increments
+ not equal to 1
+*/
+
+ ix = 1;
+ iy = 1;
+ if (*incx < 0) {
+ ix = (-(*n) + 1) * *incx + 1;
+ }
+ if (*incy < 0) {
+ iy = (-(*n) + 1) * *incy + 1;
+ }
+ i__1 = *n;
+ for (i__ = 1; i__ <= i__1; ++i__) {
+ sy[iy] += *sa * sx[ix];
+ ix += *incx;
+ iy += *incy;
+/* L10: */
+ }
+ return 0;
+
+/*
+ code for both increments equal to 1
+
+
+ clean-up loop
+*/
+
+L20:
+ m = *n % 4;
+ if (m == 0) {
+ goto L40;
+ }
+ i__1 = m;
+ for (i__ = 1; i__ <= i__1; ++i__) {
+ sy[i__] += *sa * sx[i__];
+/* L30: */
+ }
+ if (*n < 4) {
+ return 0;
+ }
+L40:
+ mp1 = m + 1;
+ i__1 = *n;
+ for (i__ = mp1; i__ <= i__1; i__ += 4) {
+ sy[i__] += *sa * sx[i__];
+ sy[i__ + 1] += *sa * sx[i__ + 1];
+ sy[i__ + 2] += *sa * sx[i__ + 2];
+ sy[i__ + 3] += *sa * sx[i__ + 3];
+/* L50: */
+ }
+ return 0;
+} /* saxpy_ */
+
+doublereal scasum_(integer *n, complex *cx, integer *incx)
+{
+ /* System generated locals */
+ integer i__1, i__2, i__3;
+ real ret_val, r__1, r__2;
+
+ /* Builtin functions */
+ double r_imag(complex *);
+
+ /* Local variables */
+ static integer i__, nincx;
+ static real stemp;
+
+
+/*
+ takes the sum of the absolute values of a complex vector and
+ returns a single precision result.
+ jack dongarra, linpack, 3/11/78.
+ modified 3/93 to return if incx .le. 0.
+ modified 12/3/93, array(1) declarations changed to array(*)
+*/
+
+
+ /* Parameter adjustments */
+ --cx;
+
+ /* Function Body */
+ ret_val = 0.f;
+ stemp = 0.f;
+ if ((*n <= 0) || (*incx <= 0)) {
+ return ret_val;
+ }
+ if (*incx == 1) {
+ goto L20;
+ }
+
+/* code for increment not equal to 1 */
+
+ nincx = *n * *incx;
+ i__1 = nincx;
+ i__2 = *incx;
+ for (i__ = 1; i__2 < 0 ? i__ >= i__1 : i__ <= i__1; i__ += i__2) {
+ i__3 = i__;
+ stemp = stemp + (r__1 = cx[i__3].r, dabs(r__1)) + (r__2 = r_imag(&cx[
+ i__]), dabs(r__2));
+/* L10: */
+ }
+ ret_val = stemp;
+ return ret_val;
+
+/* code for increment equal to 1 */
+
+L20:
+ i__2 = *n;
+ for (i__ = 1; i__ <= i__2; ++i__) {
+ i__1 = i__;
+ stemp = stemp + (r__1 = cx[i__1].r, dabs(r__1)) + (r__2 = r_imag(&cx[
+ i__]), dabs(r__2));
+/* L30: */
+ }
+ ret_val = stemp;
+ return ret_val;
+} /* scasum_ */
+
+doublereal scnrm2_(integer *n, complex *x, integer *incx)
+{
+ /* System generated locals */
+ integer i__1, i__2, i__3;
+ real ret_val, r__1;
+
+ /* Builtin functions */
+ double r_imag(complex *), sqrt(doublereal);
+
+ /* Local variables */
+ static integer ix;
+ static real ssq, temp, norm, scale;
+
+
+/*
+ SCNRM2 returns the euclidean norm of a vector via the function
+ name, so that
+
+ SCNRM2 := sqrt( conjg( x' )*x )
+
+
+ -- This version written on 25-October-1982.
+ Modified on 14-October-1993 to inline the call to CLASSQ.
+ Sven Hammarling, Nag Ltd.
+*/
+
+
+ /* Parameter adjustments */
+ --x;
+
+ /* Function Body */
+ if ((*n < 1) || (*incx < 1)) {
+ norm = 0.f;
+ } else {
+ scale = 0.f;
+ ssq = 1.f;
+/*
+ The following loop is equivalent to this call to the LAPACK
+ auxiliary routine:
+ CALL CLASSQ( N, X, INCX, SCALE, SSQ )
+*/
+
+ i__1 = (*n - 1) * *incx + 1;
+ i__2 = *incx;
+ for (ix = 1; i__2 < 0 ? ix >= i__1 : ix <= i__1; ix += i__2) {
+ i__3 = ix;
+ if (x[i__3].r != 0.f) {
+ i__3 = ix;
+ temp = (r__1 = x[i__3].r, dabs(r__1));
+ if (scale < temp) {
+/* Computing 2nd power */
+ r__1 = scale / temp;
+ ssq = ssq * (r__1 * r__1) + 1.f;
+ scale = temp;
+ } else {
+/* Computing 2nd power */
+ r__1 = temp / scale;
+ ssq += r__1 * r__1;
+ }
+ }
+ if (r_imag(&x[ix]) != 0.f) {
+ temp = (r__1 = r_imag(&x[ix]), dabs(r__1));
+ if (scale < temp) {
+/* Computing 2nd power */
+ r__1 = scale / temp;
+ ssq = ssq * (r__1 * r__1) + 1.f;
+ scale = temp;
+ } else {
+/* Computing 2nd power */
+ r__1 = temp / scale;
+ ssq += r__1 * r__1;
+ }
+ }
+/* L10: */
+ }
+ norm = scale * sqrt(ssq);
+ }
+
+ ret_val = norm;
+ return ret_val;
+
+/* End of SCNRM2. */
+
+} /* scnrm2_ */
+
+/* Subroutine */ int scopy_(integer *n, real *sx, integer *incx, real *sy,
+ integer *incy)
+{
+ /* System generated locals */
+ integer i__1;
+
+ /* Local variables */
+ static integer i__, m, ix, iy, mp1;
+
+
+/*
+ copies a vector, x, to a vector, y.
+ uses unrolled loops for increments equal to 1.
+ jack dongarra, linpack, 3/11/78.
+ modified 12/3/93, array(1) declarations changed to array(*)
+*/
+
+
+ /* Parameter adjustments */
+ --sy;
+ --sx;
+
+ /* Function Body */
+ if (*n <= 0) {
+ return 0;
+ }
+ if (*incx == 1 && *incy == 1) {
+ goto L20;
+ }
+
+/*
+ code for unequal increments or equal increments
+ not equal to 1
+*/
+
+ ix = 1;
+ iy = 1;
+ if (*incx < 0) {
+ ix = (-(*n) + 1) * *incx + 1;
+ }
+ if (*incy < 0) {
+ iy = (-(*n) + 1) * *incy + 1;
+ }
+ i__1 = *n;
+ for (i__ = 1; i__ <= i__1; ++i__) {
+ sy[iy] = sx[ix];
+ ix += *incx;
+ iy += *incy;
+/* L10: */
+ }
+ return 0;
+
+/*
+ code for both increments equal to 1
+
+
+ clean-up loop
+*/
+
+L20:
+ m = *n % 7;
+ if (m == 0) {
+ goto L40;
+ }
+ i__1 = m;
+ for (i__ = 1; i__ <= i__1; ++i__) {
+ sy[i__] = sx[i__];
+/* L30: */
+ }
+ if (*n < 7) {
+ return 0;
+ }
+L40:
+ mp1 = m + 1;
+ i__1 = *n;
+ for (i__ = mp1; i__ <= i__1; i__ += 7) {
+ sy[i__] = sx[i__];
+ sy[i__ + 1] = sx[i__ + 1];
+ sy[i__ + 2] = sx[i__ + 2];
+ sy[i__ + 3] = sx[i__ + 3];
+ sy[i__ + 4] = sx[i__ + 4];
+ sy[i__ + 5] = sx[i__ + 5];
+ sy[i__ + 6] = sx[i__ + 6];
+/* L50: */
+ }
+ return 0;
+} /* scopy_ */
+
+doublereal sdot_(integer *n, real *sx, integer *incx, real *sy, integer *incy)
+{
+ /* System generated locals */
+ integer i__1;
+ real ret_val;
+
+ /* Local variables */
+ static integer i__, m, ix, iy, mp1;
+ static real stemp;
+
+
+/*
+ forms the dot product of two vectors.
+ uses unrolled loops for increments equal to one.
+ jack dongarra, linpack, 3/11/78.
+ modified 12/3/93, array(1) declarations changed to array(*)
+*/
+
+
+ /* Parameter adjustments */
+ --sy;
+ --sx;
+
+ /* Function Body */
+ stemp = 0.f;
+ ret_val = 0.f;
+ if (*n <= 0) {
+ return ret_val;
+ }
+ if (*incx == 1 && *incy == 1) {
+ goto L20;
+ }
+
+/*
+ code for unequal increments or equal increments
+ not equal to 1
+*/
+
+ ix = 1;
+ iy = 1;
+ if (*incx < 0) {
+ ix = (-(*n) + 1) * *incx + 1;
+ }
+ if (*incy < 0) {
+ iy = (-(*n) + 1) * *incy + 1;
+ }
+ i__1 = *n;
+ for (i__ = 1; i__ <= i__1; ++i__) {
+ stemp += sx[ix] * sy[iy];
+ ix += *incx;
+ iy += *incy;
+/* L10: */
+ }
+ ret_val = stemp;
+ return ret_val;
+
+/*
+ code for both increments equal to 1
+
+
+ clean-up loop
+*/
+
+L20:
+ m = *n % 5;
+ if (m == 0) {
+ goto L40;
+ }
+ i__1 = m;
+ for (i__ = 1; i__ <= i__1; ++i__) {
+ stemp += sx[i__] * sy[i__];
+/* L30: */
+ }
+ if (*n < 5) {
+ goto L60;
+ }
+L40:
+ mp1 = m + 1;
+ i__1 = *n;
+ for (i__ = mp1; i__ <= i__1; i__ += 5) {
+ stemp = stemp + sx[i__] * sy[i__] + sx[i__ + 1] * sy[i__ + 1] + sx[
+ i__ + 2] * sy[i__ + 2] + sx[i__ + 3] * sy[i__ + 3] + sx[i__ +
+ 4] * sy[i__ + 4];
+/* L50: */
+ }
+L60:
+ ret_val = stemp;
+ return ret_val;
+} /* sdot_ */
+
+/* Subroutine */ int sgemm_(char *transa, char *transb, integer *m, integer *
+ n, integer *k, real *alpha, real *a, integer *lda, real *b, integer *
+ ldb, real *beta, real *c__, integer *ldc)
+{
+ /* System generated locals */
+ integer a_dim1, a_offset, b_dim1, b_offset, c_dim1, c_offset, i__1, i__2,
+ i__3;
+
+ /* Local variables */
+ static integer i__, j, l, info;
+ static logical nota, notb;
+ static real temp;
+ static integer ncola;
+ extern logical lsame_(char *, char *);
+ static integer nrowa, nrowb;
+ extern /* Subroutine */ int xerbla_(char *, integer *);
+
+
+/*
+ Purpose
+ =======
+
+ SGEMM performs one of the matrix-matrix operations
+
+ C := alpha*op( A )*op( B ) + beta*C,
+
+ where op( X ) is one of
+
+ op( X ) = X or op( X ) = X',
+
+ alpha and beta are scalars, and A, B and C are matrices, with op( A )
+ an m by k matrix, op( B ) a k by n matrix and C an m by n matrix.
+
+ Parameters
+ ==========
+
+ TRANSA - CHARACTER*1.
+ On entry, TRANSA specifies the form of op( A ) to be used in
+ the matrix multiplication as follows:
+
+ TRANSA = 'N' or 'n', op( A ) = A.
+
+ TRANSA = 'T' or 't', op( A ) = A'.
+
+ TRANSA = 'C' or 'c', op( A ) = A'.
+
+ Unchanged on exit.
+
+ TRANSB - CHARACTER*1.
+ On entry, TRANSB specifies the form of op( B ) to be used in
+ the matrix multiplication as follows:
+
+ TRANSB = 'N' or 'n', op( B ) = B.
+
+ TRANSB = 'T' or 't', op( B ) = B'.
+
+ TRANSB = 'C' or 'c', op( B ) = B'.
+
+ Unchanged on exit.
+
+ M - INTEGER.
+ On entry, M specifies the number of rows of the matrix
+ op( A ) and of the matrix C. M must be at least zero.
+ Unchanged on exit.
+
+ N - INTEGER.
+ On entry, N specifies the number of columns of the matrix
+ op( B ) and the number of columns of the matrix C. N must be
+ at least zero.
+ Unchanged on exit.
+
+ K - INTEGER.
+ On entry, K specifies the number of columns of the matrix
+ op( A ) and the number of rows of the matrix op( B ). K must
+ be at least zero.
+ Unchanged on exit.
+
+ ALPHA - REAL .
+ On entry, ALPHA specifies the scalar alpha.
+ Unchanged on exit.
+
+ A - REAL array of DIMENSION ( LDA, ka ), where ka is
+ k when TRANSA = 'N' or 'n', and is m otherwise.
+ Before entry with TRANSA = 'N' or 'n', the leading m by k
+ part of the array A must contain the matrix A, otherwise
+ the leading k by m part of the array A must contain the
+ matrix A.
+ Unchanged on exit.
+
+ LDA - INTEGER.
+ On entry, LDA specifies the first dimension of A as declared
+ in the calling (sub) program. When TRANSA = 'N' or 'n' then
+ LDA must be at least max( 1, m ), otherwise LDA must be at
+ least max( 1, k ).
+ Unchanged on exit.
+
+ B - REAL array of DIMENSION ( LDB, kb ), where kb is
+ n when TRANSB = 'N' or 'n', and is k otherwise.
+ Before entry with TRANSB = 'N' or 'n', the leading k by n
+ part of the array B must contain the matrix B, otherwise
+ the leading n by k part of the array B must contain the
+ matrix B.
+ Unchanged on exit.
+
+ LDB - INTEGER.
+ On entry, LDB specifies the first dimension of B as declared
+ in the calling (sub) program. When TRANSB = 'N' or 'n' then
+ LDB must be at least max( 1, k ), otherwise LDB must be at
+ least max( 1, n ).
+ Unchanged on exit.
+
+ BETA - REAL .
+ On entry, BETA specifies the scalar beta. When BETA is
+ supplied as zero then C need not be set on input.
+ Unchanged on exit.
+
+ C - REAL array of DIMENSION ( LDC, n ).
+ Before entry, the leading m by n part of the array C must
+ contain the matrix C, except when beta is zero, in which
+ case C need not be set on entry.
+ On exit, the array C is overwritten by the m by n matrix
+ ( alpha*op( A )*op( B ) + beta*C ).
+
+ LDC - INTEGER.
+ On entry, LDC specifies the first dimension of C as declared
+ in the calling (sub) program. LDC must be at least
+ max( 1, m ).
+ Unchanged on exit.
+
+
+ Level 3 Blas routine.
+
+ -- Written on 8-February-1989.
+ Jack Dongarra, Argonne National Laboratory.
+ Iain Duff, AERE Harwell.
+ Jeremy Du Croz, Numerical Algorithms Group Ltd.
+ Sven Hammarling, Numerical Algorithms Group Ltd.
+
+
+ Set NOTA and NOTB as true if A and B respectively are not
+ transposed and set NROWA, NCOLA and NROWB as the number of rows
+ and columns of A and the number of rows of B respectively.
+*/
+
+ /* Parameter adjustments */
+ a_dim1 = *lda;
+ a_offset = 1 + a_dim1;
+ a -= a_offset;
+ b_dim1 = *ldb;
+ b_offset = 1 + b_dim1;
+ b -= b_offset;
+ c_dim1 = *ldc;
+ c_offset = 1 + c_dim1;
+ c__ -= c_offset;
+
+ /* Function Body */
+ nota = lsame_(transa, "N");
+ notb = lsame_(transb, "N");
+ if (nota) {
+ nrowa = *m;
+ ncola = *k;
+ } else {
+ nrowa = *k;
+ ncola = *m;
+ }
+ if (notb) {
+ nrowb = *k;
+ } else {
+ nrowb = *n;
+ }
+
+/* Test the input parameters. */
+
+ info = 0;
+ if (! nota && ! lsame_(transa, "C") && ! lsame_(
+ transa, "T")) {
+ info = 1;
+ } else if (! notb && ! lsame_(transb, "C") && !
+ lsame_(transb, "T")) {
+ info = 2;
+ } else if (*m < 0) {
+ info = 3;
+ } else if (*n < 0) {
+ info = 4;
+ } else if (*k < 0) {
+ info = 5;
+ } else if (*lda < max(1,nrowa)) {
+ info = 8;
+ } else if (*ldb < max(1,nrowb)) {
+ info = 10;
+ } else if (*ldc < max(1,*m)) {
+ info = 13;
+ }
+ if (info != 0) {
+ xerbla_("SGEMM ", &info);
+ return 0;
+ }
+
+/* Quick return if possible. */
+
+ if (((*m == 0) || (*n == 0)) || (((*alpha == 0.f) || (*k == 0)) && *beta
+ == 1.f)) {
+ return 0;
+ }
+
+/* And if alpha.eq.zero. */
+
+ if (*alpha == 0.f) {
+ if (*beta == 0.f) {
+ i__1 = *n;
+ for (j = 1; j <= i__1; ++j) {
+ i__2 = *m;
+ for (i__ = 1; i__ <= i__2; ++i__) {
+ c__[i__ + j * c_dim1] = 0.f;
+/* L10: */
+ }
+/* L20: */
+ }
+ } else {
+ i__1 = *n;
+ for (j = 1; j <= i__1; ++j) {
+ i__2 = *m;
+ for (i__ = 1; i__ <= i__2; ++i__) {
+ c__[i__ + j * c_dim1] = *beta * c__[i__ + j * c_dim1];
+/* L30: */
+ }
+/* L40: */
+ }
+ }
+ return 0;
+ }
+
+/* Start the operations. */
+
+ if (notb) {
+ if (nota) {
+
+/* Form C := alpha*A*B + beta*C. */
+
+ i__1 = *n;
+ for (j = 1; j <= i__1; ++j) {
+ if (*beta == 0.f) {
+ i__2 = *m;
+ for (i__ = 1; i__ <= i__2; ++i__) {
+ c__[i__ + j * c_dim1] = 0.f;
+/* L50: */
+ }
+ } else if (*beta != 1.f) {
+ i__2 = *m;
+ for (i__ = 1; i__ <= i__2; ++i__) {
+ c__[i__ + j * c_dim1] = *beta * c__[i__ + j * c_dim1];
+/* L60: */
+ }
+ }
+ i__2 = *k;
+ for (l = 1; l <= i__2; ++l) {
+ if (b[l + j * b_dim1] != 0.f) {
+ temp = *alpha * b[l + j * b_dim1];
+ i__3 = *m;
+ for (i__ = 1; i__ <= i__3; ++i__) {
+ c__[i__ + j * c_dim1] += temp * a[i__ + l *
+ a_dim1];
+/* L70: */
+ }
+ }
+/* L80: */
+ }
+/* L90: */
+ }
+ } else {
+
+/* Form C := alpha*A'*B + beta*C */
+
+ i__1 = *n;
+ for (j = 1; j <= i__1; ++j) {
+ i__2 = *m;
+ for (i__ = 1; i__ <= i__2; ++i__) {
+ temp = 0.f;
+ i__3 = *k;
+ for (l = 1; l <= i__3; ++l) {
+ temp += a[l + i__ * a_dim1] * b[l + j * b_dim1];
+/* L100: */
+ }
+ if (*beta == 0.f) {
+ c__[i__ + j * c_dim1] = *alpha * temp;
+ } else {
+ c__[i__ + j * c_dim1] = *alpha * temp + *beta * c__[
+ i__ + j * c_dim1];
+ }
+/* L110: */
+ }
+/* L120: */
+ }
+ }
+ } else {
+ if (nota) {
+
+/* Form C := alpha*A*B' + beta*C */
+
+ i__1 = *n;
+ for (j = 1; j <= i__1; ++j) {
+ if (*beta == 0.f) {
+ i__2 = *m;
+ for (i__ = 1; i__ <= i__2; ++i__) {
+ c__[i__ + j * c_dim1] = 0.f;
+/* L130: */
+ }
+ } else if (*beta != 1.f) {
+ i__2 = *m;
+ for (i__ = 1; i__ <= i__2; ++i__) {
+ c__[i__ + j * c_dim1] = *beta * c__[i__ + j * c_dim1];
+/* L140: */
+ }
+ }
+ i__2 = *k;
+ for (l = 1; l <= i__2; ++l) {
+ if (b[j + l * b_dim1] != 0.f) {
+ temp = *alpha * b[j + l * b_dim1];
+ i__3 = *m;
+ for (i__ = 1; i__ <= i__3; ++i__) {
+ c__[i__ + j * c_dim1] += temp * a[i__ + l *
+ a_dim1];
+/* L150: */
+ }
+ }
+/* L160: */
+ }
+/* L170: */
+ }
+ } else {
+
+/* Form C := alpha*A'*B' + beta*C */
+
+ i__1 = *n;
+ for (j = 1; j <= i__1; ++j) {
+ i__2 = *m;
+ for (i__ = 1; i__ <= i__2; ++i__) {
+ temp = 0.f;
+ i__3 = *k;
+ for (l = 1; l <= i__3; ++l) {
+ temp += a[l + i__ * a_dim1] * b[j + l * b_dim1];
+/* L180: */
+ }
+ if (*beta == 0.f) {
+ c__[i__ + j * c_dim1] = *alpha * temp;
+ } else {
+ c__[i__ + j * c_dim1] = *alpha * temp + *beta * c__[
+ i__ + j * c_dim1];
+ }
+/* L190: */
+ }
+/* L200: */
+ }
+ }
+ }
+
+ return 0;
+
+/* End of SGEMM . */
+
+} /* sgemm_ */
+
+/* Subroutine */ int sgemv_(char *trans, integer *m, integer *n, real *alpha,
+ real *a, integer *lda, real *x, integer *incx, real *beta, real *y,
+ integer *incy)
+{
+ /* System generated locals */
+ integer a_dim1, a_offset, i__1, i__2;
+
+ /* Local variables */
+ static integer i__, j, ix, iy, jx, jy, kx, ky, info;
+ static real temp;
+ static integer lenx, leny;
+ extern logical lsame_(char *, char *);
+ extern /* Subroutine */ int xerbla_(char *, integer *);
+
+
+/*
+ Purpose
+ =======
+
+ SGEMV performs one of the matrix-vector operations
+
+ y := alpha*A*x + beta*y, or y := alpha*A'*x + beta*y,
+
+ where alpha and beta are scalars, x and y are vectors and A is an
+ m by n matrix.
+
+ Parameters
+ ==========
+
+ TRANS - CHARACTER*1.
+ On entry, TRANS specifies the operation to be performed as
+ follows:
+
+ TRANS = 'N' or 'n' y := alpha*A*x + beta*y.
+
+ TRANS = 'T' or 't' y := alpha*A'*x + beta*y.
+
+ TRANS = 'C' or 'c' y := alpha*A'*x + beta*y.
+
+ Unchanged on exit.
+
+ M - INTEGER.
+ On entry, M specifies the number of rows of the matrix A.
+ M must be at least zero.
+ Unchanged on exit.
+
+ N - INTEGER.
+ On entry, N specifies the number of columns of the matrix A.
+ N must be at least zero.
+ Unchanged on exit.
+
+ ALPHA - REAL .
+ On entry, ALPHA specifies the scalar alpha.
+ Unchanged on exit.
+
+ A - REAL array of DIMENSION ( LDA, n ).
+ Before entry, the leading m by n part of the array A must
+ contain the matrix of coefficients.
+ Unchanged on exit.
+
+ LDA - INTEGER.
+ On entry, LDA specifies the first dimension of A as declared
+ in the calling (sub) program. LDA must be at least
+ max( 1, m ).
+ Unchanged on exit.
+
+ X - REAL array of DIMENSION at least
+ ( 1 + ( n - 1 )*abs( INCX ) ) when TRANS = 'N' or 'n'
+ and at least
+ ( 1 + ( m - 1 )*abs( INCX ) ) otherwise.
+ Before entry, the incremented array X must contain the
+ vector x.
+ Unchanged on exit.
+
+ INCX - INTEGER.
+ On entry, INCX specifies the increment for the elements of
+ X. INCX must not be zero.
+ Unchanged on exit.
+
+ BETA - REAL .
+ On entry, BETA specifies the scalar beta. When BETA is
+ supplied as zero then Y need not be set on input.
+ Unchanged on exit.
+
+ Y - REAL array of DIMENSION at least
+ ( 1 + ( m - 1 )*abs( INCY ) ) when TRANS = 'N' or 'n'
+ and at least
+ ( 1 + ( n - 1 )*abs( INCY ) ) otherwise.
+ Before entry with BETA non-zero, the incremented array Y
+ must contain the vector y. On exit, Y is overwritten by the
+ updated vector y.
+
+ INCY - INTEGER.
+ On entry, INCY specifies the increment for the elements of
+ Y. INCY must not be zero.
+ Unchanged on exit.
+
+
+ Level 2 Blas routine.
+
+ -- Written on 22-October-1986.
+ Jack Dongarra, Argonne National Lab.
+ Jeremy Du Croz, Nag Central Office.
+ Sven Hammarling, Nag Central Office.
+ Richard Hanson, Sandia National Labs.
+
+
+ Test the input parameters.
+*/
+
+ /* Parameter adjustments */
+ a_dim1 = *lda;
+ a_offset = 1 + a_dim1;
+ a -= a_offset;
+ --x;
+ --y;
+
+ /* Function Body */
+ info = 0;
+ if (! lsame_(trans, "N") && ! lsame_(trans, "T") && ! lsame_(trans, "C")
+ ) {
+ info = 1;
+ } else if (*m < 0) {
+ info = 2;
+ } else if (*n < 0) {
+ info = 3;
+ } else if (*lda < max(1,*m)) {
+ info = 6;
+ } else if (*incx == 0) {
+ info = 8;
+ } else if (*incy == 0) {
+ info = 11;
+ }
+ if (info != 0) {
+ xerbla_("SGEMV ", &info);
+ return 0;
+ }
+
+/* Quick return if possible. */
+
+ if (((*m == 0) || (*n == 0)) || (*alpha == 0.f && *beta == 1.f)) {
+ return 0;
+ }
+
+/*
+ Set LENX and LENY, the lengths of the vectors x and y, and set
+ up the start points in X and Y.
+*/
+
+ if (lsame_(trans, "N")) {
+ lenx = *n;
+ leny = *m;
+ } else {
+ lenx = *m;
+ leny = *n;
+ }
+ if (*incx > 0) {
+ kx = 1;
+ } else {
+ kx = 1 - (lenx - 1) * *incx;
+ }
+ if (*incy > 0) {
+ ky = 1;
+ } else {
+ ky = 1 - (leny - 1) * *incy;
+ }
+
+/*
+ Start the operations. In this version the elements of A are
+ accessed sequentially with one pass through A.
+
+ First form y := beta*y.
+*/
+
+ if (*beta != 1.f) {
+ if (*incy == 1) {
+ if (*beta == 0.f) {
+ i__1 = leny;
+ for (i__ = 1; i__ <= i__1; ++i__) {
+ y[i__] = 0.f;
+/* L10: */
+ }
+ } else {
+ i__1 = leny;
+ for (i__ = 1; i__ <= i__1; ++i__) {
+ y[i__] = *beta * y[i__];
+/* L20: */
+ }
+ }
+ } else {
+ iy = ky;
+ if (*beta == 0.f) {
+ i__1 = leny;
+ for (i__ = 1; i__ <= i__1; ++i__) {
+ y[iy] = 0.f;
+ iy += *incy;
+/* L30: */
+ }
+ } else {
+ i__1 = leny;
+ for (i__ = 1; i__ <= i__1; ++i__) {
+ y[iy] = *beta * y[iy];
+ iy += *incy;
+/* L40: */
+ }
+ }
+ }
+ }
+ if (*alpha == 0.f) {
+ return 0;
+ }
+ if (lsame_(trans, "N")) {
+
+/* Form y := alpha*A*x + y. */
+
+ jx = kx;
+ if (*incy == 1) {
+ i__1 = *n;
+ for (j = 1; j <= i__1; ++j) {
+ if (x[jx] != 0.f) {
+ temp = *alpha * x[jx];
+ i__2 = *m;
+ for (i__ = 1; i__ <= i__2; ++i__) {
+ y[i__] += temp * a[i__ + j * a_dim1];
+/* L50: */
+ }
+ }
+ jx += *incx;
+/* L60: */
+ }
+ } else {
+ i__1 = *n;
+ for (j = 1; j <= i__1; ++j) {
+ if (x[jx] != 0.f) {
+ temp = *alpha * x[jx];
+ iy = ky;
+ i__2 = *m;
+ for (i__ = 1; i__ <= i__2; ++i__) {
+ y[iy] += temp * a[i__ + j * a_dim1];
+ iy += *incy;
+/* L70: */
+ }
+ }
+ jx += *incx;
+/* L80: */
+ }
+ }
+ } else {
+
+/* Form y := alpha*A'*x + y. */
+
+ jy = ky;
+ if (*incx == 1) {
+ i__1 = *n;
+ for (j = 1; j <= i__1; ++j) {
+ temp = 0.f;
+ i__2 = *m;
+ for (i__ = 1; i__ <= i__2; ++i__) {
+ temp += a[i__ + j * a_dim1] * x[i__];
+/* L90: */
+ }
+ y[jy] += *alpha * temp;
+ jy += *incy;
+/* L100: */
+ }
+ } else {
+ i__1 = *n;
+ for (j = 1; j <= i__1; ++j) {
+ temp = 0.f;
+ ix = kx;
+ i__2 = *m;
+ for (i__ = 1; i__ <= i__2; ++i__) {
+ temp += a[i__ + j * a_dim1] * x[ix];
+ ix += *incx;
+/* L110: */
+ }
+ y[jy] += *alpha * temp;
+ jy += *incy;
+/* L120: */
+ }
+ }
+ }
+
+ return 0;
+
+/* End of SGEMV . */
+
+} /* sgemv_ */
+
+/* Subroutine */ int sger_(integer *m, integer *n, real *alpha, real *x,
+ integer *incx, real *y, integer *incy, real *a, integer *lda)
+{
+ /* System generated locals */
+ integer a_dim1, a_offset, i__1, i__2;
+
+ /* Local variables */
+ static integer i__, j, ix, jy, kx, info;
+ static real temp;
+ extern /* Subroutine */ int xerbla_(char *, integer *);
+
+
+/*
+ Purpose
+ =======
+
+ SGER performs the rank 1 operation
+
+ A := alpha*x*y' + A,
+
+ where alpha is a scalar, x is an m element vector, y is an n element
+ vector and A is an m by n matrix.
+
+ Parameters
+ ==========
+
+ M - INTEGER.
+ On entry, M specifies the number of rows of the matrix A.
+ M must be at least zero.
+ Unchanged on exit.
+
+ N - INTEGER.
+ On entry, N specifies the number of columns of the matrix A.
+ N must be at least zero.
+ Unchanged on exit.
+
+ ALPHA - REAL .
+ On entry, ALPHA specifies the scalar alpha.
+ Unchanged on exit.
+
+ X - REAL array of dimension at least
+ ( 1 + ( m - 1 )*abs( INCX ) ).
+ Before entry, the incremented array X must contain the m
+ element vector x.
+ Unchanged on exit.
+
+ INCX - INTEGER.
+ On entry, INCX specifies the increment for the elements of
+ X. INCX must not be zero.
+ Unchanged on exit.
+
+ Y - REAL array of dimension at least
+ ( 1 + ( n - 1 )*abs( INCY ) ).
+ Before entry, the incremented array Y must contain the n
+ element vector y.
+ Unchanged on exit.
+
+ INCY - INTEGER.
+ On entry, INCY specifies the increment for the elements of
+ Y. INCY must not be zero.
+ Unchanged on exit.
+
+ A - REAL array of DIMENSION ( LDA, n ).
+ Before entry, the leading m by n part of the array A must
+ contain the matrix of coefficients. On exit, A is
+ overwritten by the updated matrix.
+
+ LDA - INTEGER.
+ On entry, LDA specifies the first dimension of A as declared
+ in the calling (sub) program. LDA must be at least
+ max( 1, m ).
+ Unchanged on exit.
+
+
+ Level 2 Blas routine.
+
+ -- Written on 22-October-1986.
+ Jack Dongarra, Argonne National Lab.
+ Jeremy Du Croz, Nag Central Office.
+ Sven Hammarling, Nag Central Office.
+ Richard Hanson, Sandia National Labs.
+
+
+ Test the input parameters.
+*/
+
+ /* Parameter adjustments */
+ --x;
+ --y;
+ a_dim1 = *lda;
+ a_offset = 1 + a_dim1;
+ a -= a_offset;
+
+ /* Function Body */
+ info = 0;
+ if (*m < 0) {
+ info = 1;
+ } else if (*n < 0) {
+ info = 2;
+ } else if (*incx == 0) {
+ info = 5;
+ } else if (*incy == 0) {
+ info = 7;
+ } else if (*lda < max(1,*m)) {
+ info = 9;
+ }
+ if (info != 0) {
+ xerbla_("SGER ", &info);
+ return 0;
+ }
+
+/* Quick return if possible. */
+
+ if (((*m == 0) || (*n == 0)) || (*alpha == 0.f)) {
+ return 0;
+ }
+
+/*
+ Start the operations. In this version the elements of A are
+ accessed sequentially with one pass through A.
+*/
+
+ if (*incy > 0) {
+ jy = 1;
+ } else {
+ jy = 1 - (*n - 1) * *incy;
+ }
+ if (*incx == 1) {
+ i__1 = *n;
+ for (j = 1; j <= i__1; ++j) {
+ if (y[jy] != 0.f) {
+ temp = *alpha * y[jy];
+ i__2 = *m;
+ for (i__ = 1; i__ <= i__2; ++i__) {
+ a[i__ + j * a_dim1] += x[i__] * temp;
+/* L10: */
+ }
+ }
+ jy += *incy;
+/* L20: */
+ }
+ } else {
+ if (*incx > 0) {
+ kx = 1;
+ } else {
+ kx = 1 - (*m - 1) * *incx;
+ }
+ i__1 = *n;
+ for (j = 1; j <= i__1; ++j) {
+ if (y[jy] != 0.f) {
+ temp = *alpha * y[jy];
+ ix = kx;
+ i__2 = *m;
+ for (i__ = 1; i__ <= i__2; ++i__) {
+ a[i__ + j * a_dim1] += x[ix] * temp;
+ ix += *incx;
+/* L30: */
+ }
+ }
+ jy += *incy;
+/* L40: */
+ }
+ }
+
+ return 0;
+
+/* End of SGER . */
+
+} /* sger_ */
+
+doublereal snrm2_(integer *n, real *x, integer *incx)
+{
+ /* System generated locals */
+ integer i__1, i__2;
+ real ret_val, r__1;
+
+ /* Builtin functions */
+ double sqrt(doublereal);
+
+ /* Local variables */
+ static integer ix;
+ static real ssq, norm, scale, absxi;
+
+
+/*
+ SNRM2 returns the euclidean norm of a vector via the function
+ name, so that
+
+ SNRM2 := sqrt( x'*x )
+
+
+ -- This version written on 25-October-1982.
+ Modified on 14-October-1993 to inline the call to SLASSQ.
+ Sven Hammarling, Nag Ltd.
+*/
+
+
+ /* Parameter adjustments */
+ --x;
+
+ /* Function Body */
+ if ((*n < 1) || (*incx < 1)) {
+ norm = 0.f;
+ } else if (*n == 1) {
+ norm = dabs(x[1]);
+ } else {
+ scale = 0.f;
+ ssq = 1.f;
+/*
+ The following loop is equivalent to this call to the LAPACK
+ auxiliary routine:
+ CALL SLASSQ( N, X, INCX, SCALE, SSQ )
+*/
+
+ i__1 = (*n - 1) * *incx + 1;
+ i__2 = *incx;
+ for (ix = 1; i__2 < 0 ? ix >= i__1 : ix <= i__1; ix += i__2) {
+ if (x[ix] != 0.f) {
+ absxi = (r__1 = x[ix], dabs(r__1));
+ if (scale < absxi) {
+/* Computing 2nd power */
+ r__1 = scale / absxi;
+ ssq = ssq * (r__1 * r__1) + 1.f;
+ scale = absxi;
+ } else {
+/* Computing 2nd power */
+ r__1 = absxi / scale;
+ ssq += r__1 * r__1;
+ }
+ }
+/* L10: */
+ }
+ norm = scale * sqrt(ssq);
+ }
+
+ ret_val = norm;
+ return ret_val;
+
+/* End of SNRM2. */
+
+} /* snrm2_ */
+
+/* Subroutine */ int srot_(integer *n, real *sx, integer *incx, real *sy,
+ integer *incy, real *c__, real *s)
+{
+ /* System generated locals */
+ integer i__1;
+
+ /* Local variables */
+ static integer i__, ix, iy;
+ static real stemp;
+
+
+/*
+ applies a plane rotation.
+ jack dongarra, linpack, 3/11/78.
+ modified 12/3/93, array(1) declarations changed to array(*)
+*/
+
+
+ /* Parameter adjustments */
+ --sy;
+ --sx;
+
+ /* Function Body */
+ if (*n <= 0) {
+ return 0;
+ }
+ if (*incx == 1 && *incy == 1) {
+ goto L20;
+ }
+
+/*
+ code for unequal increments or equal increments not equal
+ to 1
+*/
+
+ ix = 1;
+ iy = 1;
+ if (*incx < 0) {
+ ix = (-(*n) + 1) * *incx + 1;
+ }
+ if (*incy < 0) {
+ iy = (-(*n) + 1) * *incy + 1;
+ }
+ i__1 = *n;
+ for (i__ = 1; i__ <= i__1; ++i__) {
+ stemp = *c__ * sx[ix] + *s * sy[iy];
+ sy[iy] = *c__ * sy[iy] - *s * sx[ix];
+ sx[ix] = stemp;
+ ix += *incx;
+ iy += *incy;
+/* L10: */
+ }
+ return 0;
+
+/* code for both increments equal to 1 */
+
+L20:
+ i__1 = *n;
+ for (i__ = 1; i__ <= i__1; ++i__) {
+ stemp = *c__ * sx[i__] + *s * sy[i__];
+ sy[i__] = *c__ * sy[i__] - *s * sx[i__];
+ sx[i__] = stemp;
+/* L30: */
+ }
+ return 0;
+} /* srot_ */
+
+/* Subroutine */ int sscal_(integer *n, real *sa, real *sx, integer *incx)
+{
+ /* System generated locals */
+ integer i__1, i__2;
+
+ /* Local variables */
+ static integer i__, m, mp1, nincx;
+
+
+/*
+ scales a vector by a constant.
+ uses unrolled loops for increment equal to 1.
+ jack dongarra, linpack, 3/11/78.
+ modified 3/93 to return if incx .le. 0.
+ modified 12/3/93, array(1) declarations changed to array(*)
+*/
+
+
+ /* Parameter adjustments */
+ --sx;
+
+ /* Function Body */
+ if ((*n <= 0) || (*incx <= 0)) {
+ return 0;
+ }
+ if (*incx == 1) {
+ goto L20;
+ }
+
+/* code for increment not equal to 1 */
+
+ nincx = *n * *incx;
+ i__1 = nincx;
+ i__2 = *incx;
+ for (i__ = 1; i__2 < 0 ? i__ >= i__1 : i__ <= i__1; i__ += i__2) {
+ sx[i__] = *sa * sx[i__];
+/* L10: */
+ }
+ return 0;
+
+/*
+ code for increment equal to 1
+
+
+ clean-up loop
+*/
+
+L20:
+ m = *n % 5;
+ if (m == 0) {
+ goto L40;
+ }
+ i__2 = m;
+ for (i__ = 1; i__ <= i__2; ++i__) {
+ sx[i__] = *sa * sx[i__];
+/* L30: */
+ }
+ if (*n < 5) {
+ return 0;
+ }
+L40:
+ mp1 = m + 1;
+ i__2 = *n;
+ for (i__ = mp1; i__ <= i__2; i__ += 5) {
+ sx[i__] = *sa * sx[i__];
+ sx[i__ + 1] = *sa * sx[i__ + 1];
+ sx[i__ + 2] = *sa * sx[i__ + 2];
+ sx[i__ + 3] = *sa * sx[i__ + 3];
+ sx[i__ + 4] = *sa * sx[i__ + 4];
+/* L50: */
+ }
+ return 0;
+} /* sscal_ */
+
+/* Subroutine */ int sswap_(integer *n, real *sx, integer *incx, real *sy,
+ integer *incy)
+{
+ /* System generated locals */
+ integer i__1;
+
+ /* Local variables */
+ static integer i__, m, ix, iy, mp1;
+ static real stemp;
+
+
+/*
+ interchanges two vectors.
+ uses unrolled loops for increments equal to 1.
+ jack dongarra, linpack, 3/11/78.
+ modified 12/3/93, array(1) declarations changed to array(*)
+*/
+
+
+ /* Parameter adjustments */
+ --sy;
+ --sx;
+
+ /* Function Body */
+ if (*n <= 0) {
+ return 0;
+ }
+ if (*incx == 1 && *incy == 1) {
+ goto L20;
+ }
+
+/*
+ code for unequal increments or equal increments not equal
+ to 1
+*/
+
+ ix = 1;
+ iy = 1;
+ if (*incx < 0) {
+ ix = (-(*n) + 1) * *incx + 1;
+ }
+ if (*incy < 0) {
+ iy = (-(*n) + 1) * *incy + 1;
+ }
+ i__1 = *n;
+ for (i__ = 1; i__ <= i__1; ++i__) {
+ stemp = sx[ix];
+ sx[ix] = sy[iy];
+ sy[iy] = stemp;
+ ix += *incx;
+ iy += *incy;
+/* L10: */
+ }
+ return 0;
+
+/*
+ code for both increments equal to 1
+
+
+ clean-up loop
+*/
+
+L20:
+ m = *n % 3;
+ if (m == 0) {
+ goto L40;
+ }
+ i__1 = m;
+ for (i__ = 1; i__ <= i__1; ++i__) {
+ stemp = sx[i__];
+ sx[i__] = sy[i__];
+ sy[i__] = stemp;
+/* L30: */
+ }
+ if (*n < 3) {
+ return 0;
+ }
+L40:
+ mp1 = m + 1;
+ i__1 = *n;
+ for (i__ = mp1; i__ <= i__1; i__ += 3) {
+ stemp = sx[i__];
+ sx[i__] = sy[i__];
+ sy[i__] = stemp;
+ stemp = sx[i__ + 1];
+ sx[i__ + 1] = sy[i__ + 1];
+ sy[i__ + 1] = stemp;
+ stemp = sx[i__ + 2];
+ sx[i__ + 2] = sy[i__ + 2];
+ sy[i__ + 2] = stemp;
+/* L50: */
+ }
+ return 0;
+} /* sswap_ */
+
+/* Subroutine */ int ssymv_(char *uplo, integer *n, real *alpha, real *a,
+ integer *lda, real *x, integer *incx, real *beta, real *y, integer *
+ incy)
+{
+ /* System generated locals */
+ integer a_dim1, a_offset, i__1, i__2;
+
+ /* Local variables */
+ static integer i__, j, ix, iy, jx, jy, kx, ky, info;
+ static real temp1, temp2;
+ extern logical lsame_(char *, char *);
+ extern /* Subroutine */ int xerbla_(char *, integer *);
+
+
+/*
+ Purpose
+ =======
+
+ SSYMV performs the matrix-vector operation
+
+ y := alpha*A*x + beta*y,
+
+ where alpha and beta are scalars, x and y are n element vectors and
+ A is an n by n symmetric matrix.
+
+ Parameters
+ ==========
+
+ UPLO - CHARACTER*1.
+ On entry, UPLO specifies whether the upper or lower
+ triangular part of the array A is to be referenced as
+ follows:
+
+ UPLO = 'U' or 'u' Only the upper triangular part of A
+ is to be referenced.
+
+ UPLO = 'L' or 'l' Only the lower triangular part of A
+ is to be referenced.
+
+ Unchanged on exit.
+
+ N - INTEGER.
+ On entry, N specifies the order of the matrix A.
+ N must be at least zero.
+ Unchanged on exit.
+
+ ALPHA - REAL .
+ On entry, ALPHA specifies the scalar alpha.
+ Unchanged on exit.
+
+ A - REAL array of DIMENSION ( LDA, n ).
+ Before entry with UPLO = 'U' or 'u', the leading n by n
+ upper triangular part of the array A must contain the upper
+ triangular part of the symmetric matrix and the strictly
+ lower triangular part of A is not referenced.
+ Before entry with UPLO = 'L' or 'l', the leading n by n
+ lower triangular part of the array A must contain the lower
+ triangular part of the symmetric matrix and the strictly
+ upper triangular part of A is not referenced.
+ Unchanged on exit.
+
+ LDA - INTEGER.
+ On entry, LDA specifies the first dimension of A as declared
+ in the calling (sub) program. LDA must be at least
+ max( 1, n ).
+ Unchanged on exit.
+
+ X - REAL array of dimension at least
+ ( 1 + ( n - 1 )*abs( INCX ) ).
+ Before entry, the incremented array X must contain the n
+ element vector x.
+ Unchanged on exit.
+
+ INCX - INTEGER.
+ On entry, INCX specifies the increment for the elements of
+ X. INCX must not be zero.
+ Unchanged on exit.
+
+ BETA - REAL .
+ On entry, BETA specifies the scalar beta. When BETA is
+ supplied as zero then Y need not be set on input.
+ Unchanged on exit.
+
+ Y - REAL array of dimension at least
+ ( 1 + ( n - 1 )*abs( INCY ) ).
+ Before entry, the incremented array Y must contain the n
+ element vector y. On exit, Y is overwritten by the updated
+ vector y.
+
+ INCY - INTEGER.
+ On entry, INCY specifies the increment for the elements of
+ Y. INCY must not be zero.
+ Unchanged on exit.
+
+
+ Level 2 Blas routine.
+
+ -- Written on 22-October-1986.
+ Jack Dongarra, Argonne National Lab.
+ Jeremy Du Croz, Nag Central Office.
+ Sven Hammarling, Nag Central Office.
+ Richard Hanson, Sandia National Labs.
+
+
+ Test the input parameters.
+*/
+
+ /* Parameter adjustments */
+ a_dim1 = *lda;
+ a_offset = 1 + a_dim1;
+ a -= a_offset;
+ --x;
+ --y;
+
+ /* Function Body */
+ info = 0;
+ if (! lsame_(uplo, "U") && ! lsame_(uplo, "L")) {
+ info = 1;
+ } else if (*n < 0) {
+ info = 2;
+ } else if (*lda < max(1,*n)) {
+ info = 5;
+ } else if (*incx == 0) {
+ info = 7;
+ } else if (*incy == 0) {
+ info = 10;
+ }
+ if (info != 0) {
+ xerbla_("SSYMV ", &info);
+ return 0;
+ }
+
+/* Quick return if possible. */
+
+ if ((*n == 0) || (*alpha == 0.f && *beta == 1.f)) {
+ return 0;
+ }
+
+/* Set up the start points in X and Y. */
+
+ if (*incx > 0) {
+ kx = 1;
+ } else {
+ kx = 1 - (*n - 1) * *incx;
+ }
+ if (*incy > 0) {
+ ky = 1;
+ } else {
+ ky = 1 - (*n - 1) * *incy;
+ }
+
+/*
+ Start the operations. In this version the elements of A are
+ accessed sequentially with one pass through the triangular part
+ of A.
+
+ First form y := beta*y.
+*/
+
+ if (*beta != 1.f) {
+ if (*incy == 1) {
+ if (*beta == 0.f) {
+ i__1 = *n;
+ for (i__ = 1; i__ <= i__1; ++i__) {
+ y[i__] = 0.f;
+/* L10: */
+ }
+ } else {
+ i__1 = *n;
+ for (i__ = 1; i__ <= i__1; ++i__) {
+ y[i__] = *beta * y[i__];
+/* L20: */
+ }
+ }
+ } else {
+ iy = ky;
+ if (*beta == 0.f) {
+ i__1 = *n;
+ for (i__ = 1; i__ <= i__1; ++i__) {
+ y[iy] = 0.f;
+ iy += *incy;
+/* L30: */
+ }
+ } else {
+ i__1 = *n;
+ for (i__ = 1; i__ <= i__1; ++i__) {
+ y[iy] = *beta * y[iy];
+ iy += *incy;
+/* L40: */
+ }
+ }
+ }
+ }
+ if (*alpha == 0.f) {
+ return 0;
+ }
+ if (lsame_(uplo, "U")) {
+
+/* Form y when A is stored in upper triangle. */
+
+ if (*incx == 1 && *incy == 1) {
+ i__1 = *n;
+ for (j = 1; j <= i__1; ++j) {
+ temp1 = *alpha * x[j];
+ temp2 = 0.f;
+ i__2 = j - 1;
+ for (i__ = 1; i__ <= i__2; ++i__) {
+ y[i__] += temp1 * a[i__ + j * a_dim1];
+ temp2 += a[i__ + j * a_dim1] * x[i__];
+/* L50: */
+ }
+ y[j] = y[j] + temp1 * a[j + j * a_dim1] + *alpha * temp2;
+/* L60: */
+ }
+ } else {
+ jx = kx;
+ jy = ky;
+ i__1 = *n;
+ for (j = 1; j <= i__1; ++j) {
+ temp1 = *alpha * x[jx];
+ temp2 = 0.f;
+ ix = kx;
+ iy = ky;
+ i__2 = j - 1;
+ for (i__ = 1; i__ <= i__2; ++i__) {
+ y[iy] += temp1 * a[i__ + j * a_dim1];
+ temp2 += a[i__ + j * a_dim1] * x[ix];
+ ix += *incx;
+ iy += *incy;
+/* L70: */
+ }
+ y[jy] = y[jy] + temp1 * a[j + j * a_dim1] + *alpha * temp2;
+ jx += *incx;
+ jy += *incy;
+/* L80: */
+ }
+ }
+ } else {
+
+/* Form y when A is stored in lower triangle. */
+
+ if (*incx == 1 && *incy == 1) {
+ i__1 = *n;
+ for (j = 1; j <= i__1; ++j) {
+ temp1 = *alpha * x[j];
+ temp2 = 0.f;
+ y[j] += temp1 * a[j + j * a_dim1];
+ i__2 = *n;
+ for (i__ = j + 1; i__ <= i__2; ++i__) {
+ y[i__] += temp1 * a[i__ + j * a_dim1];
+ temp2 += a[i__ + j * a_dim1] * x[i__];
+/* L90: */
+ }
+ y[j] += *alpha * temp2;
+/* L100: */
+ }
+ } else {
+ jx = kx;
+ jy = ky;
+ i__1 = *n;
+ for (j = 1; j <= i__1; ++j) {
+ temp1 = *alpha * x[jx];
+ temp2 = 0.f;
+ y[jy] += temp1 * a[j + j * a_dim1];
+ ix = jx;
+ iy = jy;
+ i__2 = *n;
+ for (i__ = j + 1; i__ <= i__2; ++i__) {
+ ix += *incx;
+ iy += *incy;
+ y[iy] += temp1 * a[i__ + j * a_dim1];
+ temp2 += a[i__ + j * a_dim1] * x[ix];
+/* L110: */
+ }
+ y[jy] += *alpha * temp2;
+ jx += *incx;
+ jy += *incy;
+/* L120: */
+ }
+ }
+ }
+
+ return 0;
+
+/* End of SSYMV . */
+
+} /* ssymv_ */
+
+/* Subroutine */ int ssyr2_(char *uplo, integer *n, real *alpha, real *x,
+ integer *incx, real *y, integer *incy, real *a, integer *lda)
+{
+ /* System generated locals */
+ integer a_dim1, a_offset, i__1, i__2;
+
+ /* Local variables */
+ static integer i__, j, ix, iy, jx, jy, kx, ky, info;
+ static real temp1, temp2;
+ extern logical lsame_(char *, char *);
+ extern /* Subroutine */ int xerbla_(char *, integer *);
+
+
+/*
+ Purpose
+ =======
+
+ SSYR2 performs the symmetric rank 2 operation
+
+ A := alpha*x*y' + alpha*y*x' + A,
+
+ where alpha is a scalar, x and y are n element vectors and A is an n
+ by n symmetric matrix.
+
+ Parameters
+ ==========
+
+ UPLO - CHARACTER*1.
+ On entry, UPLO specifies whether the upper or lower
+ triangular part of the array A is to be referenced as
+ follows:
+
+ UPLO = 'U' or 'u' Only the upper triangular part of A
+ is to be referenced.
+
+ UPLO = 'L' or 'l' Only the lower triangular part of A
+ is to be referenced.
+
+ Unchanged on exit.
+
+ N - INTEGER.
+ On entry, N specifies the order of the matrix A.
+ N must be at least zero.
+ Unchanged on exit.
+
+ ALPHA - REAL .
+ On entry, ALPHA specifies the scalar alpha.
+ Unchanged on exit.
+
+ X - REAL array of dimension at least
+ ( 1 + ( n - 1 )*abs( INCX ) ).
+ Before entry, the incremented array X must contain the n
+ element vector x.
+ Unchanged on exit.
+
+ INCX - INTEGER.
+ On entry, INCX specifies the increment for the elements of
+ X. INCX must not be zero.
+ Unchanged on exit.
+
+ Y - REAL array of dimension at least
+ ( 1 + ( n - 1 )*abs( INCY ) ).
+ Before entry, the incremented array Y must contain the n
+ element vector y.
+ Unchanged on exit.
+
+ INCY - INTEGER.
+ On entry, INCY specifies the increment for the elements of
+ Y. INCY must not be zero.
+ Unchanged on exit.
+
+ A - REAL array of DIMENSION ( LDA, n ).
+ Before entry with UPLO = 'U' or 'u', the leading n by n
+ upper triangular part of the array A must contain the upper
+ triangular part of the symmetric matrix and the strictly
+ lower triangular part of A is not referenced. On exit, the
+ upper triangular part of the array A is overwritten by the
+ upper triangular part of the updated matrix.
+ Before entry with UPLO = 'L' or 'l', the leading n by n
+ lower triangular part of the array A must contain the lower
+ triangular part of the symmetric matrix and the strictly
+ upper triangular part of A is not referenced. On exit, the
+ lower triangular part of the array A is overwritten by the
+ lower triangular part of the updated matrix.
+
+ LDA - INTEGER.
+ On entry, LDA specifies the first dimension of A as declared
+ in the calling (sub) program. LDA must be at least
+ max( 1, n ).
+ Unchanged on exit.
+
+
+ Level 2 Blas routine.
+
+ -- Written on 22-October-1986.
+ Jack Dongarra, Argonne National Lab.
+ Jeremy Du Croz, Nag Central Office.
+ Sven Hammarling, Nag Central Office.
+ Richard Hanson, Sandia National Labs.
+
+
+ Test the input parameters.
+*/
+
+ /* Parameter adjustments */
+ --x;
+ --y;
+ a_dim1 = *lda;
+ a_offset = 1 + a_dim1;
+ a -= a_offset;
+
+ /* Function Body */
+ info = 0;
+ if (! lsame_(uplo, "U") && ! lsame_(uplo, "L")) {
+ info = 1;
+ } else if (*n < 0) {
+ info = 2;
+ } else if (*incx == 0) {
+ info = 5;
+ } else if (*incy == 0) {
+ info = 7;
+ } else if (*lda < max(1,*n)) {
+ info = 9;
+ }
+ if (info != 0) {
+ xerbla_("SSYR2 ", &info);
+ return 0;
+ }
+
+/* Quick return if possible. */
+
+ if ((*n == 0) || (*alpha == 0.f)) {
+ return 0;
+ }
+
+/*
+ Set up the start points in X and Y if the increments are not both
+ unity.
+*/
+
+ if ((*incx != 1) || (*incy != 1)) {
+ if (*incx > 0) {
+ kx = 1;
+ } else {
+ kx = 1 - (*n - 1) * *incx;
+ }
+ if (*incy > 0) {
+ ky = 1;
+ } else {
+ ky = 1 - (*n - 1) * *incy;
+ }
+ jx = kx;
+ jy = ky;
+ }
+
+/*
+ Start the operations. In this version the elements of A are
+ accessed sequentially with one pass through the triangular part
+ of A.
+*/
+
+ if (lsame_(uplo, "U")) {
+
+/* Form A when A is stored in the upper triangle. */
+
+ if (*incx == 1 && *incy == 1) {
+ i__1 = *n;
+ for (j = 1; j <= i__1; ++j) {
+ if ((x[j] != 0.f) || (y[j] != 0.f)) {
+ temp1 = *alpha * y[j];
+ temp2 = *alpha * x[j];
+ i__2 = j;
+ for (i__ = 1; i__ <= i__2; ++i__) {
+ a[i__ + j * a_dim1] = a[i__ + j * a_dim1] + x[i__] *
+ temp1 + y[i__] * temp2;
+/* L10: */
+ }
+ }
+/* L20: */
+ }
+ } else {
+ i__1 = *n;
+ for (j = 1; j <= i__1; ++j) {
+ if ((x[jx] != 0.f) || (y[jy] != 0.f)) {
+ temp1 = *alpha * y[jy];
+ temp2 = *alpha * x[jx];
+ ix = kx;
+ iy = ky;
+ i__2 = j;
+ for (i__ = 1; i__ <= i__2; ++i__) {
+ a[i__ + j * a_dim1] = a[i__ + j * a_dim1] + x[ix] *
+ temp1 + y[iy] * temp2;
+ ix += *incx;
+ iy += *incy;
+/* L30: */
+ }
+ }
+ jx += *incx;
+ jy += *incy;
+/* L40: */
+ }
+ }
+ } else {
+
+/* Form A when A is stored in the lower triangle. */
+
+ if (*incx == 1 && *incy == 1) {
+ i__1 = *n;
+ for (j = 1; j <= i__1; ++j) {
+ if ((x[j] != 0.f) || (y[j] != 0.f)) {
+ temp1 = *alpha * y[j];
+ temp2 = *alpha * x[j];
+ i__2 = *n;
+ for (i__ = j; i__ <= i__2; ++i__) {
+ a[i__ + j * a_dim1] = a[i__ + j * a_dim1] + x[i__] *
+ temp1 + y[i__] * temp2;
+/* L50: */
+ }
+ }
+/* L60: */
+ }
+ } else {
+ i__1 = *n;
+ for (j = 1; j <= i__1; ++j) {
+ if ((x[jx] != 0.f) || (y[jy] != 0.f)) {
+ temp1 = *alpha * y[jy];
+ temp2 = *alpha * x[jx];
+ ix = jx;
+ iy = jy;
+ i__2 = *n;
+ for (i__ = j; i__ <= i__2; ++i__) {
+ a[i__ + j * a_dim1] = a[i__ + j * a_dim1] + x[ix] *
+ temp1 + y[iy] * temp2;
+ ix += *incx;
+ iy += *incy;
+/* L70: */
+ }
+ }
+ jx += *incx;
+ jy += *incy;
+/* L80: */
+ }
+ }
+ }
+
+ return 0;
+
+/* End of SSYR2 . */
+
+} /* ssyr2_ */
+
+/* Subroutine */ int ssyr2k_(char *uplo, char *trans, integer *n, integer *k,
+ real *alpha, real *a, integer *lda, real *b, integer *ldb, real *beta,
+ real *c__, integer *ldc)
+{
+ /* System generated locals */
+ integer a_dim1, a_offset, b_dim1, b_offset, c_dim1, c_offset, i__1, i__2,
+ i__3;
+
+ /* Local variables */
+ static integer i__, j, l, info;
+ static real temp1, temp2;
+ extern logical lsame_(char *, char *);
+ static integer nrowa;
+ static logical upper;
+ extern /* Subroutine */ int xerbla_(char *, integer *);
+
+
+/*
+ Purpose
+ =======
+
+ SSYR2K performs one of the symmetric rank 2k operations
+
+ C := alpha*A*B' + alpha*B*A' + beta*C,
+
+ or
+
+ C := alpha*A'*B + alpha*B'*A + beta*C,
+
+ where alpha and beta are scalars, C is an n by n symmetric matrix
+ and A and B are n by k matrices in the first case and k by n
+ matrices in the second case.
+
+ Parameters
+ ==========
+
+ UPLO - CHARACTER*1.
+ On entry, UPLO specifies whether the upper or lower
+ triangular part of the array C is to be referenced as
+ follows:
+
+ UPLO = 'U' or 'u' Only the upper triangular part of C
+ is to be referenced.
+
+ UPLO = 'L' or 'l' Only the lower triangular part of C
+ is to be referenced.
+
+ Unchanged on exit.
+
+ TRANS - CHARACTER*1.
+ On entry, TRANS specifies the operation to be performed as
+ follows:
+
+ TRANS = 'N' or 'n' C := alpha*A*B' + alpha*B*A' +
+ beta*C.
+
+ TRANS = 'T' or 't' C := alpha*A'*B + alpha*B'*A +
+ beta*C.
+
+ TRANS = 'C' or 'c' C := alpha*A'*B + alpha*B'*A +
+ beta*C.
+
+ Unchanged on exit.
+
+ N - INTEGER.
+ On entry, N specifies the order of the matrix C. N must be
+ at least zero.
+ Unchanged on exit.
+
+ K - INTEGER.
+ On entry with TRANS = 'N' or 'n', K specifies the number
+ of columns of the matrices A and B, and on entry with
+ TRANS = 'T' or 't' or 'C' or 'c', K specifies the number
+ of rows of the matrices A and B. K must be at least zero.
+ Unchanged on exit.
+
+ ALPHA - REAL .
+ On entry, ALPHA specifies the scalar alpha.
+ Unchanged on exit.
+
+ A - REAL array of DIMENSION ( LDA, ka ), where ka is
+ k when TRANS = 'N' or 'n', and is n otherwise.
+ Before entry with TRANS = 'N' or 'n', the leading n by k
+ part of the array A must contain the matrix A, otherwise
+ the leading k by n part of the array A must contain the
+ matrix A.
+ Unchanged on exit.
+
+ LDA - INTEGER.
+ On entry, LDA specifies the first dimension of A as declared
+ in the calling (sub) program. When TRANS = 'N' or 'n'
+ then LDA must be at least max( 1, n ), otherwise LDA must
+ be at least max( 1, k ).
+ Unchanged on exit.
+
+ B - REAL array of DIMENSION ( LDB, kb ), where kb is
+ k when TRANS = 'N' or 'n', and is n otherwise.
+ Before entry with TRANS = 'N' or 'n', the leading n by k
+ part of the array B must contain the matrix B, otherwise
+ the leading k by n part of the array B must contain the
+ matrix B.
+ Unchanged on exit.
+
+ LDB - INTEGER.
+ On entry, LDB specifies the first dimension of B as declared
+ in the calling (sub) program. When TRANS = 'N' or 'n'
+ then LDB must be at least max( 1, n ), otherwise LDB must
+ be at least max( 1, k ).
+ Unchanged on exit.
+
+ BETA - REAL .
+ On entry, BETA specifies the scalar beta.
+ Unchanged on exit.
+
+ C - REAL array of DIMENSION ( LDC, n ).
+ Before entry with UPLO = 'U' or 'u', the leading n by n
+ upper triangular part of the array C must contain the upper
+ triangular part of the symmetric matrix and the strictly
+ lower triangular part of C is not referenced. On exit, the
+ upper triangular part of the array C is overwritten by the
+ upper triangular part of the updated matrix.
+ Before entry with UPLO = 'L' or 'l', the leading n by n
+ lower triangular part of the array C must contain the lower
+ triangular part of the symmetric matrix and the strictly
+ upper triangular part of C is not referenced. On exit, the
+ lower triangular part of the array C is overwritten by the
+ lower triangular part of the updated matrix.
+
+ LDC - INTEGER.
+ On entry, LDC specifies the first dimension of C as declared
+ in the calling (sub) program. LDC must be at least
+ max( 1, n ).
+ Unchanged on exit.
+
+
+ Level 3 Blas routine.
+
+
+ -- Written on 8-February-1989.
+ Jack Dongarra, Argonne National Laboratory.
+ Iain Duff, AERE Harwell.
+ Jeremy Du Croz, Numerical Algorithms Group Ltd.
+ Sven Hammarling, Numerical Algorithms Group Ltd.
+
+
+ Test the input parameters.
+*/
+
+ /* Parameter adjustments */
+ a_dim1 = *lda;
+ a_offset = 1 + a_dim1;
+ a -= a_offset;
+ b_dim1 = *ldb;
+ b_offset = 1 + b_dim1;
+ b -= b_offset;
+ c_dim1 = *ldc;
+ c_offset = 1 + c_dim1;
+ c__ -= c_offset;
+
+ /* Function Body */
+ if (lsame_(trans, "N")) {
+ nrowa = *n;
+ } else {
+ nrowa = *k;
+ }
+ upper = lsame_(uplo, "U");
+
+ info = 0;
+ if (! upper && ! lsame_(uplo, "L")) {
+ info = 1;
+ } else if (! lsame_(trans, "N") && ! lsame_(trans,
+ "T") && ! lsame_(trans, "C")) {
+ info = 2;
+ } else if (*n < 0) {
+ info = 3;
+ } else if (*k < 0) {
+ info = 4;
+ } else if (*lda < max(1,nrowa)) {
+ info = 7;
+ } else if (*ldb < max(1,nrowa)) {
+ info = 9;
+ } else if (*ldc < max(1,*n)) {
+ info = 12;
+ }
+ if (info != 0) {
+ xerbla_("SSYR2K", &info);
+ return 0;
+ }
+
+/* Quick return if possible. */
+
+ if ((*n == 0) || (((*alpha == 0.f) || (*k == 0)) && *beta == 1.f)) {
+ return 0;
+ }
+
+/* And when alpha.eq.zero. */
+
+ if (*alpha == 0.f) {
+ if (upper) {
+ if (*beta == 0.f) {
+ i__1 = *n;
+ for (j = 1; j <= i__1; ++j) {
+ i__2 = j;
+ for (i__ = 1; i__ <= i__2; ++i__) {
+ c__[i__ + j * c_dim1] = 0.f;
+/* L10: */
+ }
+/* L20: */
+ }
+ } else {
+ i__1 = *n;
+ for (j = 1; j <= i__1; ++j) {
+ i__2 = j;
+ for (i__ = 1; i__ <= i__2; ++i__) {
+ c__[i__ + j * c_dim1] = *beta * c__[i__ + j * c_dim1];
+/* L30: */
+ }
+/* L40: */
+ }
+ }
+ } else {
+ if (*beta == 0.f) {
+ i__1 = *n;
+ for (j = 1; j <= i__1; ++j) {
+ i__2 = *n;
+ for (i__ = j; i__ <= i__2; ++i__) {
+ c__[i__ + j * c_dim1] = 0.f;
+/* L50: */
+ }
+/* L60: */
+ }
+ } else {
+ i__1 = *n;
+ for (j = 1; j <= i__1; ++j) {
+ i__2 = *n;
+ for (i__ = j; i__ <= i__2; ++i__) {
+ c__[i__ + j * c_dim1] = *beta * c__[i__ + j * c_dim1];
+/* L70: */
+ }
+/* L80: */
+ }
+ }
+ }
+ return 0;
+ }
+
+/* Start the operations. */
+
+ if (lsame_(trans, "N")) {
+
+/* Form C := alpha*A*B' + alpha*B*A' + C. */
+
+ if (upper) {
+ i__1 = *n;
+ for (j = 1; j <= i__1; ++j) {
+ if (*beta == 0.f) {
+ i__2 = j;
+ for (i__ = 1; i__ <= i__2; ++i__) {
+ c__[i__ + j * c_dim1] = 0.f;
+/* L90: */
+ }
+ } else if (*beta != 1.f) {
+ i__2 = j;
+ for (i__ = 1; i__ <= i__2; ++i__) {
+ c__[i__ + j * c_dim1] = *beta * c__[i__ + j * c_dim1];
+/* L100: */
+ }
+ }
+ i__2 = *k;
+ for (l = 1; l <= i__2; ++l) {
+ if ((a[j + l * a_dim1] != 0.f) || (b[j + l * b_dim1] !=
+ 0.f)) {
+ temp1 = *alpha * b[j + l * b_dim1];
+ temp2 = *alpha * a[j + l * a_dim1];
+ i__3 = j;
+ for (i__ = 1; i__ <= i__3; ++i__) {
+ c__[i__ + j * c_dim1] = c__[i__ + j * c_dim1] + a[
+ i__ + l * a_dim1] * temp1 + b[i__ + l *
+ b_dim1] * temp2;
+/* L110: */
+ }
+ }
+/* L120: */
+ }
+/* L130: */
+ }
+ } else {
+ i__1 = *n;
+ for (j = 1; j <= i__1; ++j) {
+ if (*beta == 0.f) {
+ i__2 = *n;
+ for (i__ = j; i__ <= i__2; ++i__) {
+ c__[i__ + j * c_dim1] = 0.f;
+/* L140: */
+ }
+ } else if (*beta != 1.f) {
+ i__2 = *n;
+ for (i__ = j; i__ <= i__2; ++i__) {
+ c__[i__ + j * c_dim1] = *beta * c__[i__ + j * c_dim1];
+/* L150: */
+ }
+ }
+ i__2 = *k;
+ for (l = 1; l <= i__2; ++l) {
+ if ((a[j + l * a_dim1] != 0.f) || (b[j + l * b_dim1] !=
+ 0.f)) {
+ temp1 = *alpha * b[j + l * b_dim1];
+ temp2 = *alpha * a[j + l * a_dim1];
+ i__3 = *n;
+ for (i__ = j; i__ <= i__3; ++i__) {
+ c__[i__ + j * c_dim1] = c__[i__ + j * c_dim1] + a[
+ i__ + l * a_dim1] * temp1 + b[i__ + l *
+ b_dim1] * temp2;
+/* L160: */
+ }
+ }
+/* L170: */
+ }
+/* L180: */
+ }
+ }
+ } else {
+
+/* Form C := alpha*A'*B + alpha*B'*A + C. */
+
+ if (upper) {
+ i__1 = *n;
+ for (j = 1; j <= i__1; ++j) {
+ i__2 = j;
+ for (i__ = 1; i__ <= i__2; ++i__) {
+ temp1 = 0.f;
+ temp2 = 0.f;
+ i__3 = *k;
+ for (l = 1; l <= i__3; ++l) {
+ temp1 += a[l + i__ * a_dim1] * b[l + j * b_dim1];
+ temp2 += b[l + i__ * b_dim1] * a[l + j * a_dim1];
+/* L190: */
+ }
+ if (*beta == 0.f) {
+ c__[i__ + j * c_dim1] = *alpha * temp1 + *alpha *
+ temp2;
+ } else {
+ c__[i__ + j * c_dim1] = *beta * c__[i__ + j * c_dim1]
+ + *alpha * temp1 + *alpha * temp2;
+ }
+/* L200: */
+ }
+/* L210: */
+ }
+ } else {
+ i__1 = *n;
+ for (j = 1; j <= i__1; ++j) {
+ i__2 = *n;
+ for (i__ = j; i__ <= i__2; ++i__) {
+ temp1 = 0.f;
+ temp2 = 0.f;
+ i__3 = *k;
+ for (l = 1; l <= i__3; ++l) {
+ temp1 += a[l + i__ * a_dim1] * b[l + j * b_dim1];
+ temp2 += b[l + i__ * b_dim1] * a[l + j * a_dim1];
+/* L220: */
+ }
+ if (*beta == 0.f) {
+ c__[i__ + j * c_dim1] = *alpha * temp1 + *alpha *
+ temp2;
+ } else {
+ c__[i__ + j * c_dim1] = *beta * c__[i__ + j * c_dim1]
+ + *alpha * temp1 + *alpha * temp2;
+ }
+/* L230: */
+ }
+/* L240: */
+ }
+ }
+ }
+
+ return 0;
+
+/* End of SSYR2K. */
+
+} /* ssyr2k_ */
+
+/* Subroutine */ int ssyrk_(char *uplo, char *trans, integer *n, integer *k,
+ real *alpha, real *a, integer *lda, real *beta, real *c__, integer *
+ ldc)
+{
+ /* System generated locals */
+ integer a_dim1, a_offset, c_dim1, c_offset, i__1, i__2, i__3;
+
+ /* Local variables */
+ static integer i__, j, l, info;
+ static real temp;
+ extern logical lsame_(char *, char *);
+ static integer nrowa;
+ static logical upper;
+ extern /* Subroutine */ int xerbla_(char *, integer *);
+
+
+/*
+ Purpose
+ =======
+
+ SSYRK performs one of the symmetric rank k operations
+
+ C := alpha*A*A' + beta*C,
+
+ or
+
+ C := alpha*A'*A + beta*C,
+
+ where alpha and beta are scalars, C is an n by n symmetric matrix
+ and A is an n by k matrix in the first case and a k by n matrix
+ in the second case.
+
+ Parameters
+ ==========
+
+ UPLO - CHARACTER*1.
+ On entry, UPLO specifies whether the upper or lower
+ triangular part of the array C is to be referenced as
+ follows:
+
+ UPLO = 'U' or 'u' Only the upper triangular part of C
+ is to be referenced.
+
+ UPLO = 'L' or 'l' Only the lower triangular part of C
+ is to be referenced.
+
+ Unchanged on exit.
+
+ TRANS - CHARACTER*1.
+ On entry, TRANS specifies the operation to be performed as
+ follows:
+
+ TRANS = 'N' or 'n' C := alpha*A*A' + beta*C.
+
+ TRANS = 'T' or 't' C := alpha*A'*A + beta*C.
+
+ TRANS = 'C' or 'c' C := alpha*A'*A + beta*C.
+
+ Unchanged on exit.
+
+ N - INTEGER.
+ On entry, N specifies the order of the matrix C. N must be
+ at least zero.
+ Unchanged on exit.
+
+ K - INTEGER.
+ On entry with TRANS = 'N' or 'n', K specifies the number
+ of columns of the matrix A, and on entry with
+ TRANS = 'T' or 't' or 'C' or 'c', K specifies the number
+ of rows of the matrix A. K must be at least zero.
+ Unchanged on exit.
+
+ ALPHA - REAL .
+ On entry, ALPHA specifies the scalar alpha.
+ Unchanged on exit.
+
+ A - REAL array of DIMENSION ( LDA, ka ), where ka is
+ k when TRANS = 'N' or 'n', and is n otherwise.
+ Before entry with TRANS = 'N' or 'n', the leading n by k
+ part of the array A must contain the matrix A, otherwise
+ the leading k by n part of the array A must contain the
+ matrix A.
+ Unchanged on exit.
+
+ LDA - INTEGER.
+ On entry, LDA specifies the first dimension of A as declared
+ in the calling (sub) program. When TRANS = 'N' or 'n'
+ then LDA must be at least max( 1, n ), otherwise LDA must
+ be at least max( 1, k ).
+ Unchanged on exit.
+
+ BETA - REAL .
+ On entry, BETA specifies the scalar beta.
+ Unchanged on exit.
+
+ C - REAL array of DIMENSION ( LDC, n ).
+ Before entry with UPLO = 'U' or 'u', the leading n by n
+ upper triangular part of the array C must contain the upper
+ triangular part of the symmetric matrix and the strictly
+ lower triangular part of C is not referenced. On exit, the
+ upper triangular part of the array C is overwritten by the
+ upper triangular part of the updated matrix.
+ Before entry with UPLO = 'L' or 'l', the leading n by n
+ lower triangular part of the array C must contain the lower
+ triangular part of the symmetric matrix and the strictly
+ upper triangular part of C is not referenced. On exit, the
+ lower triangular part of the array C is overwritten by the
+ lower triangular part of the updated matrix.
+
+ LDC - INTEGER.
+ On entry, LDC specifies the first dimension of C as declared
+ in the calling (sub) program. LDC must be at least
+ max( 1, n ).
+ Unchanged on exit.
+
+
+ Level 3 Blas routine.
+
+ -- Written on 8-February-1989.
+ Jack Dongarra, Argonne National Laboratory.
+ Iain Duff, AERE Harwell.
+ Jeremy Du Croz, Numerical Algorithms Group Ltd.
+ Sven Hammarling, Numerical Algorithms Group Ltd.
+
+
+ Test the input parameters.
+*/
+
+ /* Parameter adjustments */
+ a_dim1 = *lda;
+ a_offset = 1 + a_dim1;
+ a -= a_offset;
+ c_dim1 = *ldc;
+ c_offset = 1 + c_dim1;
+ c__ -= c_offset;
+
+ /* Function Body */
+ if (lsame_(trans, "N")) {
+ nrowa = *n;
+ } else {
+ nrowa = *k;
+ }
+ upper = lsame_(uplo, "U");
+
+ info = 0;
+ if (! upper && ! lsame_(uplo, "L")) {
+ info = 1;
+ } else if (! lsame_(trans, "N") && ! lsame_(trans,
+ "T") && ! lsame_(trans, "C")) {
+ info = 2;
+ } else if (*n < 0) {
+ info = 3;
+ } else if (*k < 0) {
+ info = 4;
+ } else if (*lda < max(1,nrowa)) {
+ info = 7;
+ } else if (*ldc < max(1,*n)) {
+ info = 10;
+ }
+ if (info != 0) {
+ xerbla_("SSYRK ", &info);
+ return 0;
+ }
+
+/* Quick return if possible. */
+
+ if ((*n == 0) || (((*alpha == 0.f) || (*k == 0)) && *beta == 1.f)) {
+ return 0;
+ }
+
+/* And when alpha.eq.zero. */
+
+ if (*alpha == 0.f) {
+ if (upper) {
+ if (*beta == 0.f) {
+ i__1 = *n;
+ for (j = 1; j <= i__1; ++j) {
+ i__2 = j;
+ for (i__ = 1; i__ <= i__2; ++i__) {
+ c__[i__ + j * c_dim1] = 0.f;
+/* L10: */
+ }
+/* L20: */
+ }
+ } else {
+ i__1 = *n;
+ for (j = 1; j <= i__1; ++j) {
+ i__2 = j;
+ for (i__ = 1; i__ <= i__2; ++i__) {
+ c__[i__ + j * c_dim1] = *beta * c__[i__ + j * c_dim1];
+/* L30: */
+ }
+/* L40: */
+ }
+ }
+ } else {
+ if (*beta == 0.f) {
+ i__1 = *n;
+ for (j = 1; j <= i__1; ++j) {
+ i__2 = *n;
+ for (i__ = j; i__ <= i__2; ++i__) {
+ c__[i__ + j * c_dim1] = 0.f;
+/* L50: */
+ }
+/* L60: */
+ }
+ } else {
+ i__1 = *n;
+ for (j = 1; j <= i__1; ++j) {
+ i__2 = *n;
+ for (i__ = j; i__ <= i__2; ++i__) {
+ c__[i__ + j * c_dim1] = *beta * c__[i__ + j * c_dim1];
+/* L70: */
+ }
+/* L80: */
+ }
+ }
+ }
+ return 0;
+ }
+
+/* Start the operations. */
+
+ if (lsame_(trans, "N")) {
+
+/* Form C := alpha*A*A' + beta*C. */
+
+ if (upper) {
+ i__1 = *n;
+ for (j = 1; j <= i__1; ++j) {
+ if (*beta == 0.f) {
+ i__2 = j;
+ for (i__ = 1; i__ <= i__2; ++i__) {
+ c__[i__ + j * c_dim1] = 0.f;
+/* L90: */
+ }
+ } else if (*beta != 1.f) {
+ i__2 = j;
+ for (i__ = 1; i__ <= i__2; ++i__) {
+ c__[i__ + j * c_dim1] = *beta * c__[i__ + j * c_dim1];
+/* L100: */
+ }
+ }
+ i__2 = *k;
+ for (l = 1; l <= i__2; ++l) {
+ if (a[j + l * a_dim1] != 0.f) {
+ temp = *alpha * a[j + l * a_dim1];
+ i__3 = j;
+ for (i__ = 1; i__ <= i__3; ++i__) {
+ c__[i__ + j * c_dim1] += temp * a[i__ + l *
+ a_dim1];
+/* L110: */
+ }
+ }
+/* L120: */
+ }
+/* L130: */
+ }
+ } else {
+ i__1 = *n;
+ for (j = 1; j <= i__1; ++j) {
+ if (*beta == 0.f) {
+ i__2 = *n;
+ for (i__ = j; i__ <= i__2; ++i__) {
+ c__[i__ + j * c_dim1] = 0.f;
+/* L140: */
+ }
+ } else if (*beta != 1.f) {
+ i__2 = *n;
+ for (i__ = j; i__ <= i__2; ++i__) {
+ c__[i__ + j * c_dim1] = *beta * c__[i__ + j * c_dim1];
+/* L150: */
+ }
+ }
+ i__2 = *k;
+ for (l = 1; l <= i__2; ++l) {
+ if (a[j + l * a_dim1] != 0.f) {
+ temp = *alpha * a[j + l * a_dim1];
+ i__3 = *n;
+ for (i__ = j; i__ <= i__3; ++i__) {
+ c__[i__ + j * c_dim1] += temp * a[i__ + l *
+ a_dim1];
+/* L160: */
+ }
+ }
+/* L170: */
+ }
+/* L180: */
+ }
+ }
+ } else {
+
+/* Form C := alpha*A'*A + beta*C. */
+
+ if (upper) {
+ i__1 = *n;
+ for (j = 1; j <= i__1; ++j) {
+ i__2 = j;
+ for (i__ = 1; i__ <= i__2; ++i__) {
+ temp = 0.f;
+ i__3 = *k;
+ for (l = 1; l <= i__3; ++l) {
+ temp += a[l + i__ * a_dim1] * a[l + j * a_dim1];
+/* L190: */
+ }
+ if (*beta == 0.f) {
+ c__[i__ + j * c_dim1] = *alpha * temp;
+ } else {
+ c__[i__ + j * c_dim1] = *alpha * temp + *beta * c__[
+ i__ + j * c_dim1];
+ }
+/* L200: */
+ }
+/* L210: */
+ }
+ } else {
+ i__1 = *n;
+ for (j = 1; j <= i__1; ++j) {
+ i__2 = *n;
+ for (i__ = j; i__ <= i__2; ++i__) {
+ temp = 0.f;
+ i__3 = *k;
+ for (l = 1; l <= i__3; ++l) {
+ temp += a[l + i__ * a_dim1] * a[l + j * a_dim1];
+/* L220: */
+ }
+ if (*beta == 0.f) {
+ c__[i__ + j * c_dim1] = *alpha * temp;
+ } else {
+ c__[i__ + j * c_dim1] = *alpha * temp + *beta * c__[
+ i__ + j * c_dim1];
+ }
+/* L230: */
+ }
+/* L240: */
+ }
+ }
+ }
+
+ return 0;
+
+/* End of SSYRK . */
+
+} /* ssyrk_ */
+
+/* Subroutine */ int strmm_(char *side, char *uplo, char *transa, char *diag,
+ integer *m, integer *n, real *alpha, real *a, integer *lda, real *b,
+ integer *ldb)
+{
+ /* System generated locals */
+ integer a_dim1, a_offset, b_dim1, b_offset, i__1, i__2, i__3;
+
+ /* Local variables */
+ static integer i__, j, k, info;
+ static real temp;
+ static logical lside;
+ extern logical lsame_(char *, char *);
+ static integer nrowa;
+ static logical upper;
+ extern /* Subroutine */ int xerbla_(char *, integer *);
+ static logical nounit;
+
+
+/*
+ Purpose
+ =======
+
+ STRMM performs one of the matrix-matrix operations
+
+ B := alpha*op( A )*B, or B := alpha*B*op( A ),
+
+ where alpha is a scalar, B is an m by n matrix, A is a unit, or
+ non-unit, upper or lower triangular matrix and op( A ) is one of
+
+ op( A ) = A or op( A ) = A'.
+
+ Parameters
+ ==========
+
+ SIDE - CHARACTER*1.
+ On entry, SIDE specifies whether op( A ) multiplies B from
+ the left or right as follows:
+
+ SIDE = 'L' or 'l' B := alpha*op( A )*B.
+
+ SIDE = 'R' or 'r' B := alpha*B*op( A ).
+
+ Unchanged on exit.
+
+ UPLO - CHARACTER*1.
+ On entry, UPLO specifies whether the matrix A is an upper or
+ lower triangular matrix as follows:
+
+ UPLO = 'U' or 'u' A is an upper triangular matrix.
+
+ UPLO = 'L' or 'l' A is a lower triangular matrix.
+
+ Unchanged on exit.
+
+ TRANSA - CHARACTER*1.
+ On entry, TRANSA specifies the form of op( A ) to be used in
+ the matrix multiplication as follows:
+
+ TRANSA = 'N' or 'n' op( A ) = A.
+
+ TRANSA = 'T' or 't' op( A ) = A'.
+
+ TRANSA = 'C' or 'c' op( A ) = A'.
+
+ Unchanged on exit.
+
+ DIAG - CHARACTER*1.
+ On entry, DIAG specifies whether or not A is unit triangular
+ as follows:
+
+ DIAG = 'U' or 'u' A is assumed to be unit triangular.
+
+ DIAG = 'N' or 'n' A is not assumed to be unit
+ triangular.
+
+ Unchanged on exit.
+
+ M - INTEGER.
+ On entry, M specifies the number of rows of B. M must be at
+ least zero.
+ Unchanged on exit.
+
+ N - INTEGER.
+ On entry, N specifies the number of columns of B. N must be
+ at least zero.
+ Unchanged on exit.
+
+ ALPHA - REAL .
+ On entry, ALPHA specifies the scalar alpha. When alpha is
+ zero then A is not referenced and B need not be set before
+ entry.
+ Unchanged on exit.
+
+ A - REAL array of DIMENSION ( LDA, k ), where k is m
+ when SIDE = 'L' or 'l' and is n when SIDE = 'R' or 'r'.
+ Before entry with UPLO = 'U' or 'u', the leading k by k
+ upper triangular part of the array A must contain the upper
+ triangular matrix and the strictly lower triangular part of
+ A is not referenced.
+ Before entry with UPLO = 'L' or 'l', the leading k by k
+ lower triangular part of the array A must contain the lower
+ triangular matrix and the strictly upper triangular part of
+ A is not referenced.
+ Note that when DIAG = 'U' or 'u', the diagonal elements of
+ A are not referenced either, but are assumed to be unity.
+ Unchanged on exit.
+
+ LDA - INTEGER.
+ On entry, LDA specifies the first dimension of A as declared
+ in the calling (sub) program. When SIDE = 'L' or 'l' then
+ LDA must be at least max( 1, m ), when SIDE = 'R' or 'r'
+ then LDA must be at least max( 1, n ).
+ Unchanged on exit.
+
+ B - REAL array of DIMENSION ( LDB, n ).
+ Before entry, the leading m by n part of the array B must
+ contain the matrix B, and on exit is overwritten by the
+ transformed matrix.
+
+ LDB - INTEGER.
+ On entry, LDB specifies the first dimension of B as declared
+ in the calling (sub) program. LDB must be at least
+ max( 1, m ).
+ Unchanged on exit.
+
+
+ Level 3 Blas routine.
+
+ -- Written on 8-February-1989.
+ Jack Dongarra, Argonne National Laboratory.
+ Iain Duff, AERE Harwell.
+ Jeremy Du Croz, Numerical Algorithms Group Ltd.
+ Sven Hammarling, Numerical Algorithms Group Ltd.
+
+
+ Test the input parameters.
+*/
+
+ /* Parameter adjustments */
+ a_dim1 = *lda;
+ a_offset = 1 + a_dim1;
+ a -= a_offset;
+ b_dim1 = *ldb;
+ b_offset = 1 + b_dim1;
+ b -= b_offset;
+
+ /* Function Body */
+ lside = lsame_(side, "L");
+ if (lside) {
+ nrowa = *m;
+ } else {
+ nrowa = *n;
+ }
+ nounit = lsame_(diag, "N");
+ upper = lsame_(uplo, "U");
+
+ info = 0;
+ if (! lside && ! lsame_(side, "R")) {
+ info = 1;
+ } else if (! upper && ! lsame_(uplo, "L")) {
+ info = 2;
+ } else if (! lsame_(transa, "N") && ! lsame_(transa,
+ "T") && ! lsame_(transa, "C")) {
+ info = 3;
+ } else if (! lsame_(diag, "U") && ! lsame_(diag,
+ "N")) {
+ info = 4;
+ } else if (*m < 0) {
+ info = 5;
+ } else if (*n < 0) {
+ info = 6;
+ } else if (*lda < max(1,nrowa)) {
+ info = 9;
+ } else if (*ldb < max(1,*m)) {
+ info = 11;
+ }
+ if (info != 0) {
+ xerbla_("STRMM ", &info);
+ return 0;
+ }
+
+/* Quick return if possible. */
+
+ if (*n == 0) {
+ return 0;
+ }
+
+/* And when alpha.eq.zero. */
+
+ if (*alpha == 0.f) {
+ i__1 = *n;
+ for (j = 1; j <= i__1; ++j) {
+ i__2 = *m;
+ for (i__ = 1; i__ <= i__2; ++i__) {
+ b[i__ + j * b_dim1] = 0.f;
+/* L10: */
+ }
+/* L20: */
+ }
+ return 0;
+ }
+
+/* Start the operations. */
+
+ if (lside) {
+ if (lsame_(transa, "N")) {
+
+/* Form B := alpha*A*B. */
+
+ if (upper) {
+ i__1 = *n;
+ for (j = 1; j <= i__1; ++j) {
+ i__2 = *m;
+ for (k = 1; k <= i__2; ++k) {
+ if (b[k + j * b_dim1] != 0.f) {
+ temp = *alpha * b[k + j * b_dim1];
+ i__3 = k - 1;
+ for (i__ = 1; i__ <= i__3; ++i__) {
+ b[i__ + j * b_dim1] += temp * a[i__ + k *
+ a_dim1];
+/* L30: */
+ }
+ if (nounit) {
+ temp *= a[k + k * a_dim1];
+ }
+ b[k + j * b_dim1] = temp;
+ }
+/* L40: */
+ }
+/* L50: */
+ }
+ } else {
+ i__1 = *n;
+ for (j = 1; j <= i__1; ++j) {
+ for (k = *m; k >= 1; --k) {
+ if (b[k + j * b_dim1] != 0.f) {
+ temp = *alpha * b[k + j * b_dim1];
+ b[k + j * b_dim1] = temp;
+ if (nounit) {
+ b[k + j * b_dim1] *= a[k + k * a_dim1];
+ }
+ i__2 = *m;
+ for (i__ = k + 1; i__ <= i__2; ++i__) {
+ b[i__ + j * b_dim1] += temp * a[i__ + k *
+ a_dim1];
+/* L60: */
+ }
+ }
+/* L70: */
+ }
+/* L80: */
+ }
+ }
+ } else {
+
+/* Form B := alpha*A'*B. */
+
+ if (upper) {
+ i__1 = *n;
+ for (j = 1; j <= i__1; ++j) {
+ for (i__ = *m; i__ >= 1; --i__) {
+ temp = b[i__ + j * b_dim1];
+ if (nounit) {
+ temp *= a[i__ + i__ * a_dim1];
+ }
+ i__2 = i__ - 1;
+ for (k = 1; k <= i__2; ++k) {
+ temp += a[k + i__ * a_dim1] * b[k + j * b_dim1];
+/* L90: */
+ }
+ b[i__ + j * b_dim1] = *alpha * temp;
+/* L100: */
+ }
+/* L110: */
+ }
+ } else {
+ i__1 = *n;
+ for (j = 1; j <= i__1; ++j) {
+ i__2 = *m;
+ for (i__ = 1; i__ <= i__2; ++i__) {
+ temp = b[i__ + j * b_dim1];
+ if (nounit) {
+ temp *= a[i__ + i__ * a_dim1];
+ }
+ i__3 = *m;
+ for (k = i__ + 1; k <= i__3; ++k) {
+ temp += a[k + i__ * a_dim1] * b[k + j * b_dim1];
+/* L120: */
+ }
+ b[i__ + j * b_dim1] = *alpha * temp;
+/* L130: */
+ }
+/* L140: */
+ }
+ }
+ }
+ } else {
+ if (lsame_(transa, "N")) {
+
+/* Form B := alpha*B*A. */
+
+ if (upper) {
+ for (j = *n; j >= 1; --j) {
+ temp = *alpha;
+ if (nounit) {
+ temp *= a[j + j * a_dim1];
+ }
+ i__1 = *m;
+ for (i__ = 1; i__ <= i__1; ++i__) {
+ b[i__ + j * b_dim1] = temp * b[i__ + j * b_dim1];
+/* L150: */
+ }
+ i__1 = j - 1;
+ for (k = 1; k <= i__1; ++k) {
+ if (a[k + j * a_dim1] != 0.f) {
+ temp = *alpha * a[k + j * a_dim1];
+ i__2 = *m;
+ for (i__ = 1; i__ <= i__2; ++i__) {
+ b[i__ + j * b_dim1] += temp * b[i__ + k *
+ b_dim1];
+/* L160: */
+ }
+ }
+/* L170: */
+ }
+/* L180: */
+ }
+ } else {
+ i__1 = *n;
+ for (j = 1; j <= i__1; ++j) {
+ temp = *alpha;
+ if (nounit) {
+ temp *= a[j + j * a_dim1];
+ }
+ i__2 = *m;
+ for (i__ = 1; i__ <= i__2; ++i__) {
+ b[i__ + j * b_dim1] = temp * b[i__ + j * b_dim1];
+/* L190: */
+ }
+ i__2 = *n;
+ for (k = j + 1; k <= i__2; ++k) {
+ if (a[k + j * a_dim1] != 0.f) {
+ temp = *alpha * a[k + j * a_dim1];
+ i__3 = *m;
+ for (i__ = 1; i__ <= i__3; ++i__) {
+ b[i__ + j * b_dim1] += temp * b[i__ + k *
+ b_dim1];
+/* L200: */
+ }
+ }
+/* L210: */
+ }
+/* L220: */
+ }
+ }
+ } else {
+
+/* Form B := alpha*B*A'. */
+
+ if (upper) {
+ i__1 = *n;
+ for (k = 1; k <= i__1; ++k) {
+ i__2 = k - 1;
+ for (j = 1; j <= i__2; ++j) {
+ if (a[j + k * a_dim1] != 0.f) {
+ temp = *alpha * a[j + k * a_dim1];
+ i__3 = *m;
+ for (i__ = 1; i__ <= i__3; ++i__) {
+ b[i__ + j * b_dim1] += temp * b[i__ + k *
+ b_dim1];
+/* L230: */
+ }
+ }
+/* L240: */
+ }
+ temp = *alpha;
+ if (nounit) {
+ temp *= a[k + k * a_dim1];
+ }
+ if (temp != 1.f) {
+ i__2 = *m;
+ for (i__ = 1; i__ <= i__2; ++i__) {
+ b[i__ + k * b_dim1] = temp * b[i__ + k * b_dim1];
+/* L250: */
+ }
+ }
+/* L260: */
+ }
+ } else {
+ for (k = *n; k >= 1; --k) {
+ i__1 = *n;
+ for (j = k + 1; j <= i__1; ++j) {
+ if (a[j + k * a_dim1] != 0.f) {
+ temp = *alpha * a[j + k * a_dim1];
+ i__2 = *m;
+ for (i__ = 1; i__ <= i__2; ++i__) {
+ b[i__ + j * b_dim1] += temp * b[i__ + k *
+ b_dim1];
+/* L270: */
+ }
+ }
+/* L280: */
+ }
+ temp = *alpha;
+ if (nounit) {
+ temp *= a[k + k * a_dim1];
+ }
+ if (temp != 1.f) {
+ i__1 = *m;
+ for (i__ = 1; i__ <= i__1; ++i__) {
+ b[i__ + k * b_dim1] = temp * b[i__ + k * b_dim1];
+/* L290: */
+ }
+ }
+/* L300: */
+ }
+ }
+ }
+ }
+
+ return 0;
+
+/* End of STRMM . */
+
+} /* strmm_ */
+
+/* Subroutine */ int strmv_(char *uplo, char *trans, char *diag, integer *n,
+ real *a, integer *lda, real *x, integer *incx)
+{
+ /* System generated locals */
+ integer a_dim1, a_offset, i__1, i__2;
+
+ /* Local variables */
+ static integer i__, j, ix, jx, kx, info;
+ static real temp;
+ extern logical lsame_(char *, char *);
+ extern /* Subroutine */ int xerbla_(char *, integer *);
+ static logical nounit;
+
+
+/*
+ Purpose
+ =======
+
+ STRMV performs one of the matrix-vector operations
+
+ x := A*x, or x := A'*x,
+
+ where x is an n element vector and A is an n by n unit, or non-unit,
+ upper or lower triangular matrix.
+
+ Parameters
+ ==========
+
+ UPLO - CHARACTER*1.
+ On entry, UPLO specifies whether the matrix is an upper or
+ lower triangular matrix as follows:
+
+ UPLO = 'U' or 'u' A is an upper triangular matrix.
+
+ UPLO = 'L' or 'l' A is a lower triangular matrix.
+
+ Unchanged on exit.
+
+ TRANS - CHARACTER*1.
+ On entry, TRANS specifies the operation to be performed as
+ follows:
+
+ TRANS = 'N' or 'n' x := A*x.
+
+ TRANS = 'T' or 't' x := A'*x.
+
+ TRANS = 'C' or 'c' x := A'*x.
+
+ Unchanged on exit.
+
+ DIAG - CHARACTER*1.
+ On entry, DIAG specifies whether or not A is unit
+ triangular as follows:
+
+ DIAG = 'U' or 'u' A is assumed to be unit triangular.
+
+ DIAG = 'N' or 'n' A is not assumed to be unit
+ triangular.
+
+ Unchanged on exit.
+
+ N - INTEGER.
+ On entry, N specifies the order of the matrix A.
+ N must be at least zero.
+ Unchanged on exit.
+
+ A - REAL array of DIMENSION ( LDA, n ).
+ Before entry with UPLO = 'U' or 'u', the leading n by n
+ upper triangular part of the array A must contain the upper
+ triangular matrix and the strictly lower triangular part of
+ A is not referenced.
+ Before entry with UPLO = 'L' or 'l', the leading n by n
+ lower triangular part of the array A must contain the lower
+ triangular matrix and the strictly upper triangular part of
+ A is not referenced.
+ Note that when DIAG = 'U' or 'u', the diagonal elements of
+ A are not referenced either, but are assumed to be unity.
+ Unchanged on exit.
+
+ LDA - INTEGER.
+ On entry, LDA specifies the first dimension of A as declared
+ in the calling (sub) program. LDA must be at least
+ max( 1, n ).
+ Unchanged on exit.
+
+ X - REAL array of dimension at least
+ ( 1 + ( n - 1 )*abs( INCX ) ).
+ Before entry, the incremented array X must contain the n
+ element vector x. On exit, X is overwritten with the
+ tranformed vector x.
+
+ INCX - INTEGER.
+ On entry, INCX specifies the increment for the elements of
+ X. INCX must not be zero.
+ Unchanged on exit.
+
+
+ Level 2 Blas routine.
+
+ -- Written on 22-October-1986.
+ Jack Dongarra, Argonne National Lab.
+ Jeremy Du Croz, Nag Central Office.
+ Sven Hammarling, Nag Central Office.
+ Richard Hanson, Sandia National Labs.
+
+
+ Test the input parameters.
+*/
+
+ /* Parameter adjustments */
+ a_dim1 = *lda;
+ a_offset = 1 + a_dim1;
+ a -= a_offset;
+ --x;
+
+ /* Function Body */
+ info = 0;
+ if (! lsame_(uplo, "U") && ! lsame_(uplo, "L")) {
+ info = 1;
+ } else if (! lsame_(trans, "N") && ! lsame_(trans,
+ "T") && ! lsame_(trans, "C")) {
+ info = 2;
+ } else if (! lsame_(diag, "U") && ! lsame_(diag,
+ "N")) {
+ info = 3;
+ } else if (*n < 0) {
+ info = 4;
+ } else if (*lda < max(1,*n)) {
+ info = 6;
+ } else if (*incx == 0) {
+ info = 8;
+ }
+ if (info != 0) {
+ xerbla_("STRMV ", &info);
+ return 0;
+ }
+
+/* Quick return if possible. */
+
+ if (*n == 0) {
+ return 0;
+ }
+
+ nounit = lsame_(diag, "N");
+
+/*
+ Set up the start point in X if the increment is not unity. This
+ will be ( N - 1 )*INCX too small for descending loops.
+*/
+
+ if (*incx <= 0) {
+ kx = 1 - (*n - 1) * *incx;
+ } else if (*incx != 1) {
+ kx = 1;
+ }
+
+/*
+ Start the operations. In this version the elements of A are
+ accessed sequentially with one pass through A.
+*/
+
+ if (lsame_(trans, "N")) {
+
+/* Form x := A*x. */
+
+ if (lsame_(uplo, "U")) {
+ if (*incx == 1) {
+ i__1 = *n;
+ for (j = 1; j <= i__1; ++j) {
+ if (x[j] != 0.f) {
+ temp = x[j];
+ i__2 = j - 1;
+ for (i__ = 1; i__ <= i__2; ++i__) {
+ x[i__] += temp * a[i__ + j * a_dim1];
+/* L10: */
+ }
+ if (nounit) {
+ x[j] *= a[j + j * a_dim1];
+ }
+ }
+/* L20: */
+ }
+ } else {
+ jx = kx;
+ i__1 = *n;
+ for (j = 1; j <= i__1; ++j) {
+ if (x[jx] != 0.f) {
+ temp = x[jx];
+ ix = kx;
+ i__2 = j - 1;
+ for (i__ = 1; i__ <= i__2; ++i__) {
+ x[ix] += temp * a[i__ + j * a_dim1];
+ ix += *incx;
+/* L30: */
+ }
+ if (nounit) {
+ x[jx] *= a[j + j * a_dim1];
+ }
+ }
+ jx += *incx;
+/* L40: */
+ }
+ }
+ } else {
+ if (*incx == 1) {
+ for (j = *n; j >= 1; --j) {
+ if (x[j] != 0.f) {
+ temp = x[j];
+ i__1 = j + 1;
+ for (i__ = *n; i__ >= i__1; --i__) {
+ x[i__] += temp * a[i__ + j * a_dim1];
+/* L50: */
+ }
+ if (nounit) {
+ x[j] *= a[j + j * a_dim1];
+ }
+ }
+/* L60: */
+ }
+ } else {
+ kx += (*n - 1) * *incx;
+ jx = kx;
+ for (j = *n; j >= 1; --j) {
+ if (x[jx] != 0.f) {
+ temp = x[jx];
+ ix = kx;
+ i__1 = j + 1;
+ for (i__ = *n; i__ >= i__1; --i__) {
+ x[ix] += temp * a[i__ + j * a_dim1];
+ ix -= *incx;
+/* L70: */
+ }
+ if (nounit) {
+ x[jx] *= a[j + j * a_dim1];
+ }
+ }
+ jx -= *incx;
+/* L80: */
+ }
+ }
+ }
+ } else {
+
+/* Form x := A'*x. */
+
+ if (lsame_(uplo, "U")) {
+ if (*incx == 1) {
+ for (j = *n; j >= 1; --j) {
+ temp = x[j];
+ if (nounit) {
+ temp *= a[j + j * a_dim1];
+ }
+ for (i__ = j - 1; i__ >= 1; --i__) {
+ temp += a[i__ + j * a_dim1] * x[i__];
+/* L90: */
+ }
+ x[j] = temp;
+/* L100: */
+ }
+ } else {
+ jx = kx + (*n - 1) * *incx;
+ for (j = *n; j >= 1; --j) {
+ temp = x[jx];
+ ix = jx;
+ if (nounit) {
+ temp *= a[j + j * a_dim1];
+ }
+ for (i__ = j - 1; i__ >= 1; --i__) {
+ ix -= *incx;
+ temp += a[i__ + j * a_dim1] * x[ix];
+/* L110: */
+ }
+ x[jx] = temp;
+ jx -= *incx;
+/* L120: */
+ }
+ }
+ } else {
+ if (*incx == 1) {
+ i__1 = *n;
+ for (j = 1; j <= i__1; ++j) {
+ temp = x[j];
+ if (nounit) {
+ temp *= a[j + j * a_dim1];
+ }
+ i__2 = *n;
+ for (i__ = j + 1; i__ <= i__2; ++i__) {
+ temp += a[i__ + j * a_dim1] * x[i__];
+/* L130: */
+ }
+ x[j] = temp;
+/* L140: */
+ }
+ } else {
+ jx = kx;
+ i__1 = *n;
+ for (j = 1; j <= i__1; ++j) {
+ temp = x[jx];
+ ix = jx;
+ if (nounit) {
+ temp *= a[j + j * a_dim1];
+ }
+ i__2 = *n;
+ for (i__ = j + 1; i__ <= i__2; ++i__) {
+ ix += *incx;
+ temp += a[i__ + j * a_dim1] * x[ix];
+/* L150: */
+ }
+ x[jx] = temp;
+ jx += *incx;
+/* L160: */
+ }
+ }
+ }
+ }
+
+ return 0;
+
+/* End of STRMV . */
+
+} /* strmv_ */
+
+/* Subroutine */ int strsm_(char *side, char *uplo, char *transa, char *diag,
+ integer *m, integer *n, real *alpha, real *a, integer *lda, real *b,
+ integer *ldb)
+{
+ /* System generated locals */
+ integer a_dim1, a_offset, b_dim1, b_offset, i__1, i__2, i__3;
+
+ /* Local variables */
+ static integer i__, j, k, info;
+ static real temp;
+ static logical lside;
+ extern logical lsame_(char *, char *);
+ static integer nrowa;
+ static logical upper;
+ extern /* Subroutine */ int xerbla_(char *, integer *);
+ static logical nounit;
+
+
+/*
+ Purpose
+ =======
+
+ STRSM solves one of the matrix equations
+
+ op( A )*X = alpha*B, or X*op( A ) = alpha*B,
+
+ where alpha is a scalar, X and B are m by n matrices, A is a unit, or
+ non-unit, upper or lower triangular matrix and op( A ) is one of
+
+ op( A ) = A or op( A ) = A'.
+
+ The matrix X is overwritten on B.
+
+ Parameters
+ ==========
+
+ SIDE - CHARACTER*1.
+ On entry, SIDE specifies whether op( A ) appears on the left
+ or right of X as follows:
+
+ SIDE = 'L' or 'l' op( A )*X = alpha*B.
+
+ SIDE = 'R' or 'r' X*op( A ) = alpha*B.
+
+ Unchanged on exit.
+
+ UPLO - CHARACTER*1.
+ On entry, UPLO specifies whether the matrix A is an upper or
+ lower triangular matrix as follows:
+
+ UPLO = 'U' or 'u' A is an upper triangular matrix.
+
+ UPLO = 'L' or 'l' A is a lower triangular matrix.
+
+ Unchanged on exit.
+
+ TRANSA - CHARACTER*1.
+ On entry, TRANSA specifies the form of op( A ) to be used in
+ the matrix multiplication as follows:
+
+ TRANSA = 'N' or 'n' op( A ) = A.
+
+ TRANSA = 'T' or 't' op( A ) = A'.
+
+ TRANSA = 'C' or 'c' op( A ) = A'.
+
+ Unchanged on exit.
+
+ DIAG - CHARACTER*1.
+ On entry, DIAG specifies whether or not A is unit triangular
+ as follows:
+
+ DIAG = 'U' or 'u' A is assumed to be unit triangular.
+
+ DIAG = 'N' or 'n' A is not assumed to be unit
+ triangular.
+
+ Unchanged on exit.
+
+ M - INTEGER.
+ On entry, M specifies the number of rows of B. M must be at
+ least zero.
+ Unchanged on exit.
+
+ N - INTEGER.
+ On entry, N specifies the number of columns of B. N must be
+ at least zero.
+ Unchanged on exit.
+
+ ALPHA - REAL .
+ On entry, ALPHA specifies the scalar alpha. When alpha is
+ zero then A is not referenced and B need not be set before
+ entry.
+ Unchanged on exit.
+
+ A - REAL array of DIMENSION ( LDA, k ), where k is m
+ when SIDE = 'L' or 'l' and is n when SIDE = 'R' or 'r'.
+ Before entry with UPLO = 'U' or 'u', the leading k by k
+ upper triangular part of the array A must contain the upper
+ triangular matrix and the strictly lower triangular part of
+ A is not referenced.
+ Before entry with UPLO = 'L' or 'l', the leading k by k
+ lower triangular part of the array A must contain the lower
+ triangular matrix and the strictly upper triangular part of
+ A is not referenced.
+ Note that when DIAG = 'U' or 'u', the diagonal elements of
+ A are not referenced either, but are assumed to be unity.
+ Unchanged on exit.
+
+ LDA - INTEGER.
+ On entry, LDA specifies the first dimension of A as declared
+ in the calling (sub) program. When SIDE = 'L' or 'l' then
+ LDA must be at least max( 1, m ), when SIDE = 'R' or 'r'
+ then LDA must be at least max( 1, n ).
+ Unchanged on exit.
+
+ B - REAL array of DIMENSION ( LDB, n ).
+ Before entry, the leading m by n part of the array B must
+ contain the right-hand side matrix B, and on exit is
+ overwritten by the solution matrix X.
+
+ LDB - INTEGER.
+ On entry, LDB specifies the first dimension of B as declared
+ in the calling (sub) program. LDB must be at least
+ max( 1, m ).
+ Unchanged on exit.
+
+
+ Level 3 Blas routine.
+
+
+ -- Written on 8-February-1989.
+ Jack Dongarra, Argonne National Laboratory.
+ Iain Duff, AERE Harwell.
+ Jeremy Du Croz, Numerical Algorithms Group Ltd.
+ Sven Hammarling, Numerical Algorithms Group Ltd.
+
+
+ Test the input parameters.
+*/
+
+ /* Parameter adjustments */
+ a_dim1 = *lda;
+ a_offset = 1 + a_dim1;
+ a -= a_offset;
+ b_dim1 = *ldb;
+ b_offset = 1 + b_dim1;
+ b -= b_offset;
+
+ /* Function Body */
+ lside = lsame_(side, "L");
+ if (lside) {
+ nrowa = *m;
+ } else {
+ nrowa = *n;
+ }
+ nounit = lsame_(diag, "N");
+ upper = lsame_(uplo, "U");
+
+ info = 0;
+ if (! lside && ! lsame_(side, "R")) {
+ info = 1;
+ } else if (! upper && ! lsame_(uplo, "L")) {
+ info = 2;
+ } else if (! lsame_(transa, "N") && ! lsame_(transa,
+ "T") && ! lsame_(transa, "C")) {
+ info = 3;
+ } else if (! lsame_(diag, "U") && ! lsame_(diag,
+ "N")) {
+ info = 4;
+ } else if (*m < 0) {
+ info = 5;
+ } else if (*n < 0) {
+ info = 6;
+ } else if (*lda < max(1,nrowa)) {
+ info = 9;
+ } else if (*ldb < max(1,*m)) {
+ info = 11;
+ }
+ if (info != 0) {
+ xerbla_("STRSM ", &info);
+ return 0;
+ }
+
+/* Quick return if possible. */
+
+ if (*n == 0) {
+ return 0;
+ }
+
+/* And when alpha.eq.zero. */
+
+ if (*alpha == 0.f) {
+ i__1 = *n;
+ for (j = 1; j <= i__1; ++j) {
+ i__2 = *m;
+ for (i__ = 1; i__ <= i__2; ++i__) {
+ b[i__ + j * b_dim1] = 0.f;
+/* L10: */
+ }
+/* L20: */
+ }
+ return 0;
+ }
+
+/* Start the operations. */
+
+ if (lside) {
+ if (lsame_(transa, "N")) {
+
+/* Form B := alpha*inv( A )*B. */
+
+ if (upper) {
+ i__1 = *n;
+ for (j = 1; j <= i__1; ++j) {
+ if (*alpha != 1.f) {
+ i__2 = *m;
+ for (i__ = 1; i__ <= i__2; ++i__) {
+ b[i__ + j * b_dim1] = *alpha * b[i__ + j * b_dim1]
+ ;
+/* L30: */
+ }
+ }
+ for (k = *m; k >= 1; --k) {
+ if (b[k + j * b_dim1] != 0.f) {
+ if (nounit) {
+ b[k + j * b_dim1] /= a[k + k * a_dim1];
+ }
+ i__2 = k - 1;
+ for (i__ = 1; i__ <= i__2; ++i__) {
+ b[i__ + j * b_dim1] -= b[k + j * b_dim1] * a[
+ i__ + k * a_dim1];
+/* L40: */
+ }
+ }
+/* L50: */
+ }
+/* L60: */
+ }
+ } else {
+ i__1 = *n;
+ for (j = 1; j <= i__1; ++j) {
+ if (*alpha != 1.f) {
+ i__2 = *m;
+ for (i__ = 1; i__ <= i__2; ++i__) {
+ b[i__ + j * b_dim1] = *alpha * b[i__ + j * b_dim1]
+ ;
+/* L70: */
+ }
+ }
+ i__2 = *m;
+ for (k = 1; k <= i__2; ++k) {
+ if (b[k + j * b_dim1] != 0.f) {
+ if (nounit) {
+ b[k + j * b_dim1] /= a[k + k * a_dim1];
+ }
+ i__3 = *m;
+ for (i__ = k + 1; i__ <= i__3; ++i__) {
+ b[i__ + j * b_dim1] -= b[k + j * b_dim1] * a[
+ i__ + k * a_dim1];
+/* L80: */
+ }
+ }
+/* L90: */
+ }
+/* L100: */
+ }
+ }
+ } else {
+
+/* Form B := alpha*inv( A' )*B. */
+
+ if (upper) {
+ i__1 = *n;
+ for (j = 1; j <= i__1; ++j) {
+ i__2 = *m;
+ for (i__ = 1; i__ <= i__2; ++i__) {
+ temp = *alpha * b[i__ + j * b_dim1];
+ i__3 = i__ - 1;
+ for (k = 1; k <= i__3; ++k) {
+ temp -= a[k + i__ * a_dim1] * b[k + j * b_dim1];
+/* L110: */
+ }
+ if (nounit) {
+ temp /= a[i__ + i__ * a_dim1];
+ }
+ b[i__ + j * b_dim1] = temp;
+/* L120: */
+ }
+/* L130: */
+ }
+ } else {
+ i__1 = *n;
+ for (j = 1; j <= i__1; ++j) {
+ for (i__ = *m; i__ >= 1; --i__) {
+ temp = *alpha * b[i__ + j * b_dim1];
+ i__2 = *m;
+ for (k = i__ + 1; k <= i__2; ++k) {
+ temp -= a[k + i__ * a_dim1] * b[k + j * b_dim1];
+/* L140: */
+ }
+ if (nounit) {
+ temp /= a[i__ + i__ * a_dim1];
+ }
+ b[i__ + j * b_dim1] = temp;
+/* L150: */
+ }
+/* L160: */
+ }
+ }
+ }
+ } else {
+ if (lsame_(transa, "N")) {
+
+/* Form B := alpha*B*inv( A ). */
+
+ if (upper) {
+ i__1 = *n;
+ for (j = 1; j <= i__1; ++j) {
+ if (*alpha != 1.f) {
+ i__2 = *m;
+ for (i__ = 1; i__ <= i__2; ++i__) {
+ b[i__ + j * b_dim1] = *alpha * b[i__ + j * b_dim1]
+ ;
+/* L170: */
+ }
+ }
+ i__2 = j - 1;
+ for (k = 1; k <= i__2; ++k) {
+ if (a[k + j * a_dim1] != 0.f) {
+ i__3 = *m;
+ for (i__ = 1; i__ <= i__3; ++i__) {
+ b[i__ + j * b_dim1] -= a[k + j * a_dim1] * b[
+ i__ + k * b_dim1];
+/* L180: */
+ }
+ }
+/* L190: */
+ }
+ if (nounit) {
+ temp = 1.f / a[j + j * a_dim1];
+ i__2 = *m;
+ for (i__ = 1; i__ <= i__2; ++i__) {
+ b[i__ + j * b_dim1] = temp * b[i__ + j * b_dim1];
+/* L200: */
+ }
+ }
+/* L210: */
+ }
+ } else {
+ for (j = *n; j >= 1; --j) {
+ if (*alpha != 1.f) {
+ i__1 = *m;
+ for (i__ = 1; i__ <= i__1; ++i__) {
+ b[i__ + j * b_dim1] = *alpha * b[i__ + j * b_dim1]
+ ;
+/* L220: */
+ }
+ }
+ i__1 = *n;
+ for (k = j + 1; k <= i__1; ++k) {
+ if (a[k + j * a_dim1] != 0.f) {
+ i__2 = *m;
+ for (i__ = 1; i__ <= i__2; ++i__) {
+ b[i__ + j * b_dim1] -= a[k + j * a_dim1] * b[
+ i__ + k * b_dim1];
+/* L230: */
+ }
+ }
+/* L240: */
+ }
+ if (nounit) {
+ temp = 1.f / a[j + j * a_dim1];
+ i__1 = *m;
+ for (i__ = 1; i__ <= i__1; ++i__) {
+ b[i__ + j * b_dim1] = temp * b[i__ + j * b_dim1];
+/* L250: */
+ }
+ }
+/* L260: */
+ }
+ }
+ } else {
+
+/* Form B := alpha*B*inv( A' ). */
+
+ if (upper) {
+ for (k = *n; k >= 1; --k) {
+ if (nounit) {
+ temp = 1.f / a[k + k * a_dim1];
+ i__1 = *m;
+ for (i__ = 1; i__ <= i__1; ++i__) {
+ b[i__ + k * b_dim1] = temp * b[i__ + k * b_dim1];
+/* L270: */
+ }
+ }
+ i__1 = k - 1;
+ for (j = 1; j <= i__1; ++j) {
+ if (a[j + k * a_dim1] != 0.f) {
+ temp = a[j + k * a_dim1];
+ i__2 = *m;
+ for (i__ = 1; i__ <= i__2; ++i__) {
+ b[i__ + j * b_dim1] -= temp * b[i__ + k *
+ b_dim1];
+/* L280: */
+ }
+ }
+/* L290: */
+ }
+ if (*alpha != 1.f) {
+ i__1 = *m;
+ for (i__ = 1; i__ <= i__1; ++i__) {
+ b[i__ + k * b_dim1] = *alpha * b[i__ + k * b_dim1]
+ ;
+/* L300: */
+ }
+ }
+/* L310: */
+ }
+ } else {
+ i__1 = *n;
+ for (k = 1; k <= i__1; ++k) {
+ if (nounit) {
+ temp = 1.f / a[k + k * a_dim1];
+ i__2 = *m;
+ for (i__ = 1; i__ <= i__2; ++i__) {
+ b[i__ + k * b_dim1] = temp * b[i__ + k * b_dim1];
+/* L320: */
+ }
+ }
+ i__2 = *n;
+ for (j = k + 1; j <= i__2; ++j) {
+ if (a[j + k * a_dim1] != 0.f) {
+ temp = a[j + k * a_dim1];
+ i__3 = *m;
+ for (i__ = 1; i__ <= i__3; ++i__) {
+ b[i__ + j * b_dim1] -= temp * b[i__ + k *
+ b_dim1];
+/* L330: */
+ }
+ }
+/* L340: */
+ }
+ if (*alpha != 1.f) {
+ i__2 = *m;
+ for (i__ = 1; i__ <= i__2; ++i__) {
+ b[i__ + k * b_dim1] = *alpha * b[i__ + k * b_dim1]
+ ;
+/* L350: */
+ }
+ }
+/* L360: */
+ }
+ }
+ }
+ }
+
+ return 0;
+
+/* End of STRSM . */
+
+} /* strsm_ */
+#if 0
+/* Subroutine */ int xerbla_(char *srname, integer *info)
+{
+ /* Format strings */
+ static char fmt_9999[] = "(\002 ** On entry to \002,a6,\002 parameter nu"
+ "mber \002,i2,\002 had \002,\002an illegal value\002)";
+
+ /* Builtin functions */
+ integer s_wsfe(cilist *), do_fio(integer *, char *, ftnlen), e_wsfe(void);
+ /* Subroutine */ int s_stop(char *, ftnlen);
+
+ /* Fortran I/O blocks */
+ static cilist io___425 = { 0, 6, 0, fmt_9999, 0 };
+
+
+/*
+ -- LAPACK auxiliary routine (preliminary version) --
+ Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
+ Courant Institute, Argonne National Lab, and Rice University
+ February 29, 1992
+
+
+ Purpose
+ =======
+
+ XERBLA is an error handler for the LAPACK routines.
+ It is called by an LAPACK routine if an input parameter has an
+ invalid value. A message is printed and execution stops.
+
+ Installers may consider modifying the STOP statement in order to
+ call system-specific exception-handling facilities.
+
+ Arguments
+ =========
+
+ SRNAME (input) CHARACTER*6
+ The name of the routine which called XERBLA.
+
+ INFO (input) INTEGER
+ The position of the invalid parameter in the parameter list
+ of the calling routine.
+*/
+
+
+ s_wsfe(&io___425);
+ do_fio(&c__1, srname, (ftnlen)6);
+ do_fio(&c__1, (char *)&(*info), (ftnlen)sizeof(integer));
+ e_wsfe();
+
+ s_stop("", (ftnlen)0);
+
+
+/* End of XERBLA */
+
+ return 0;
+} /* xerbla_ */
+#endif
+
+/* Subroutine */ int zaxpy_(integer *n, doublecomplex *za, doublecomplex *zx,
+ integer *incx, doublecomplex *zy, integer *incy)
+{
+ /* System generated locals */
+ integer i__1, i__2, i__3, i__4;
+ doublecomplex z__1, z__2;
+
+ /* Local variables */
+ static integer i__, ix, iy;
+ extern doublereal dcabs1_(doublecomplex *);
+
+
+/*
+ constant times a vector plus a vector.
+ jack dongarra, 3/11/78.
+ modified 12/3/93, array(1) declarations changed to array(*)
+*/
+
+ /* Parameter adjustments */
+ --zy;
+ --zx;
+
+ /* Function Body */
+ if (*n <= 0) {
+ return 0;
+ }
+ if (dcabs1_(za) == 0.) {
+ return 0;
+ }
+ if (*incx == 1 && *incy == 1) {
+ goto L20;
+ }
+
+/*
+ code for unequal increments or equal increments
+ not equal to 1
+*/
+
+ ix = 1;
+ iy = 1;
+ if (*incx < 0) {
+ ix = (-(*n) + 1) * *incx + 1;
+ }
+ if (*incy < 0) {
+ iy = (-(*n) + 1) * *incy + 1;
+ }
+ i__1 = *n;
+ for (i__ = 1; i__ <= i__1; ++i__) {
+ i__2 = iy;
+ i__3 = iy;
+ i__4 = ix;
+ z__2.r = za->r * zx[i__4].r - za->i * zx[i__4].i, z__2.i = za->r * zx[
+ i__4].i + za->i * zx[i__4].r;
+ z__1.r = zy[i__3].r + z__2.r, z__1.i = zy[i__3].i + z__2.i;
+ zy[i__2].r = z__1.r, zy[i__2].i = z__1.i;
+ ix += *incx;
+ iy += *incy;
+/* L10: */
+ }
+ return 0;
+
+/* code for both increments equal to 1 */
+
+L20:
+ i__1 = *n;
+ for (i__ = 1; i__ <= i__1; ++i__) {
+ i__2 = i__;
+ i__3 = i__;
+ i__4 = i__;
+ z__2.r = za->r * zx[i__4].r - za->i * zx[i__4].i, z__2.i = za->r * zx[
+ i__4].i + za->i * zx[i__4].r;
+ z__1.r = zy[i__3].r + z__2.r, z__1.i = zy[i__3].i + z__2.i;
+ zy[i__2].r = z__1.r, zy[i__2].i = z__1.i;
+/* L30: */
+ }
+ return 0;
+} /* zaxpy_ */
+
+/* Subroutine */ int zcopy_(integer *n, doublecomplex *zx, integer *incx,
+ doublecomplex *zy, integer *incy)
+{
+ /* System generated locals */
+ integer i__1, i__2, i__3;
+
+ /* Local variables */
+ static integer i__, ix, iy;
+
+
+/*
+ copies a vector, x, to a vector, y.
+ jack dongarra, linpack, 4/11/78.
+ modified 12/3/93, array(1) declarations changed to array(*)
+*/
+
+
+ /* Parameter adjustments */
+ --zy;
+ --zx;
+
+ /* Function Body */
+ if (*n <= 0) {
+ return 0;
+ }
+ if (*incx == 1 && *incy == 1) {
+ goto L20;
+ }
+
+/*
+ code for unequal increments or equal increments
+ not equal to 1
+*/
+
+ ix = 1;
+ iy = 1;
+ if (*incx < 0) {
+ ix = (-(*n) + 1) * *incx + 1;
+ }
+ if (*incy < 0) {
+ iy = (-(*n) + 1) * *incy + 1;
+ }
+ i__1 = *n;
+ for (i__ = 1; i__ <= i__1; ++i__) {
+ i__2 = iy;
+ i__3 = ix;
+ zy[i__2].r = zx[i__3].r, zy[i__2].i = zx[i__3].i;
+ ix += *incx;
+ iy += *incy;
+/* L10: */
+ }
+ return 0;
+
+/* code for both increments equal to 1 */
+
+L20:
+ i__1 = *n;
+ for (i__ = 1; i__ <= i__1; ++i__) {
+ i__2 = i__;
+ i__3 = i__;
+ zy[i__2].r = zx[i__3].r, zy[i__2].i = zx[i__3].i;
+/* L30: */
+ }
+ return 0;
+} /* zcopy_ */
+
+/* Double Complex */ VOID zdotc_(doublecomplex * ret_val, integer *n,
+ doublecomplex *zx, integer *incx, doublecomplex *zy, integer *incy)
+{
+ /* System generated locals */
+ integer i__1, i__2;
+ doublecomplex z__1, z__2, z__3;
+
+ /* Builtin functions */
+ void d_cnjg(doublecomplex *, doublecomplex *);
+
+ /* Local variables */
+ static integer i__, ix, iy;
+ static doublecomplex ztemp;
+
+
+/*
+ forms the dot product of a vector.
+ jack dongarra, 3/11/78.
+ modified 12/3/93, array(1) declarations changed to array(*)
+*/
+
+ /* Parameter adjustments */
+ --zy;
+ --zx;
+
+ /* Function Body */
+ ztemp.r = 0., ztemp.i = 0.;
+ ret_val->r = 0., ret_val->i = 0.;
+ if (*n <= 0) {
+ return ;
+ }
+ if (*incx == 1 && *incy == 1) {
+ goto L20;
+ }
+
+/*
+ code for unequal increments or equal increments
+ not equal to 1
+*/
+
+ ix = 1;
+ iy = 1;
+ if (*incx < 0) {
+ ix = (-(*n) + 1) * *incx + 1;
+ }
+ if (*incy < 0) {
+ iy = (-(*n) + 1) * *incy + 1;
+ }
+ i__1 = *n;
+ for (i__ = 1; i__ <= i__1; ++i__) {
+ d_cnjg(&z__3, &zx[ix]);
+ i__2 = iy;
+ z__2.r = z__3.r * zy[i__2].r - z__3.i * zy[i__2].i, z__2.i = z__3.r *
+ zy[i__2].i + z__3.i * zy[i__2].r;
+ z__1.r = ztemp.r + z__2.r, z__1.i = ztemp.i + z__2.i;
+ ztemp.r = z__1.r, ztemp.i = z__1.i;
+ ix += *incx;
+ iy += *incy;
+/* L10: */
+ }
+ ret_val->r = ztemp.r, ret_val->i = ztemp.i;
+ return ;
+
+/* code for both increments equal to 1 */
+
+L20:
+ i__1 = *n;
+ for (i__ = 1; i__ <= i__1; ++i__) {
+ d_cnjg(&z__3, &zx[i__]);
+ i__2 = i__;
+ z__2.r = z__3.r * zy[i__2].r - z__3.i * zy[i__2].i, z__2.i = z__3.r *
+ zy[i__2].i + z__3.i * zy[i__2].r;
+ z__1.r = ztemp.r + z__2.r, z__1.i = ztemp.i + z__2.i;
+ ztemp.r = z__1.r, ztemp.i = z__1.i;
+/* L30: */
+ }
+ ret_val->r = ztemp.r, ret_val->i = ztemp.i;
+ return ;
+} /* zdotc_ */
+
+/* Double Complex */ VOID zdotu_(doublecomplex * ret_val, integer *n,
+ doublecomplex *zx, integer *incx, doublecomplex *zy, integer *incy)
+{
+ /* System generated locals */
+ integer i__1, i__2, i__3;
+ doublecomplex z__1, z__2;
+
+ /* Local variables */
+ static integer i__, ix, iy;
+ static doublecomplex ztemp;
+
+
+/*
+ forms the dot product of two vectors.
+ jack dongarra, 3/11/78.
+ modified 12/3/93, array(1) declarations changed to array(*)
+*/
+
+ /* Parameter adjustments */
+ --zy;
+ --zx;
+
+ /* Function Body */
+ ztemp.r = 0., ztemp.i = 0.;
+ ret_val->r = 0., ret_val->i = 0.;
+ if (*n <= 0) {
+ return ;
+ }
+ if (*incx == 1 && *incy == 1) {
+ goto L20;
+ }
+
+/*
+ code for unequal increments or equal increments
+ not equal to 1
+*/
+
+ ix = 1;
+ iy = 1;
+ if (*incx < 0) {
+ ix = (-(*n) + 1) * *incx + 1;
+ }
+ if (*incy < 0) {
+ iy = (-(*n) + 1) * *incy + 1;
+ }
+ i__1 = *n;
+ for (i__ = 1; i__ <= i__1; ++i__) {
+ i__2 = ix;
+ i__3 = iy;
+ z__2.r = zx[i__2].r * zy[i__3].r - zx[i__2].i * zy[i__3].i, z__2.i =
+ zx[i__2].r * zy[i__3].i + zx[i__2].i * zy[i__3].r;
+ z__1.r = ztemp.r + z__2.r, z__1.i = ztemp.i + z__2.i;
+ ztemp.r = z__1.r, ztemp.i = z__1.i;
+ ix += *incx;
+ iy += *incy;
+/* L10: */
+ }
+ ret_val->r = ztemp.r, ret_val->i = ztemp.i;
+ return ;
+
+/* code for both increments equal to 1 */
+
+L20:
+ i__1 = *n;
+ for (i__ = 1; i__ <= i__1; ++i__) {
+ i__2 = i__;
+ i__3 = i__;
+ z__2.r = zx[i__2].r * zy[i__3].r - zx[i__2].i * zy[i__3].i, z__2.i =
+ zx[i__2].r * zy[i__3].i + zx[i__2].i * zy[i__3].r;
+ z__1.r = ztemp.r + z__2.r, z__1.i = ztemp.i + z__2.i;
+ ztemp.r = z__1.r, ztemp.i = z__1.i;
+/* L30: */
+ }
+ ret_val->r = ztemp.r, ret_val->i = ztemp.i;
+ return ;
+} /* zdotu_ */
+
+/* Subroutine */ int zdscal_(integer *n, doublereal *da, doublecomplex *zx,
+ integer *incx)
+{
+ /* System generated locals */
+ integer i__1, i__2, i__3;
+ doublecomplex z__1, z__2;
+
+ /* Local variables */
+ static integer i__, ix;
+
+
+/*
+ scales a vector by a constant.
+ jack dongarra, 3/11/78.
+ modified 3/93 to return if incx .le. 0.
+ modified 12/3/93, array(1) declarations changed to array(*)
+*/
+
+
+ /* Parameter adjustments */
+ --zx;
+
+ /* Function Body */
+ if ((*n <= 0) || (*incx <= 0)) {
+ return 0;
+ }
+ if (*incx == 1) {
+ goto L20;
+ }
+
+/* code for increment not equal to 1 */
+
+ ix = 1;
+ i__1 = *n;
+ for (i__ = 1; i__ <= i__1; ++i__) {
+ i__2 = ix;
+ z__2.r = *da, z__2.i = 0.;
+ i__3 = ix;
+ z__1.r = z__2.r * zx[i__3].r - z__2.i * zx[i__3].i, z__1.i = z__2.r *
+ zx[i__3].i + z__2.i * zx[i__3].r;
+ zx[i__2].r = z__1.r, zx[i__2].i = z__1.i;
+ ix += *incx;
+/* L10: */
+ }
+ return 0;
+
+/* code for increment equal to 1 */
+
+L20:
+ i__1 = *n;
+ for (i__ = 1; i__ <= i__1; ++i__) {
+ i__2 = i__;
+ z__2.r = *da, z__2.i = 0.;
+ i__3 = i__;
+ z__1.r = z__2.r * zx[i__3].r - z__2.i * zx[i__3].i, z__1.i = z__2.r *
+ zx[i__3].i + z__2.i * zx[i__3].r;
+ zx[i__2].r = z__1.r, zx[i__2].i = z__1.i;
+/* L30: */
+ }
+ return 0;
+} /* zdscal_ */
+
+/* Subroutine */ int zgemm_(char *transa, char *transb, integer *m, integer *
+ n, integer *k, doublecomplex *alpha, doublecomplex *a, integer *lda,
+ doublecomplex *b, integer *ldb, doublecomplex *beta, doublecomplex *
+ c__, integer *ldc)
+{
+ /* System generated locals */
+ integer a_dim1, a_offset, b_dim1, b_offset, c_dim1, c_offset, i__1, i__2,
+ i__3, i__4, i__5, i__6;
+ doublecomplex z__1, z__2, z__3, z__4;
+
+ /* Builtin functions */
+ void d_cnjg(doublecomplex *, doublecomplex *);
+
+ /* Local variables */
+ static integer i__, j, l, info;
+ static logical nota, notb;
+ static doublecomplex temp;
+ static logical conja, conjb;
+ static integer ncola;
+ extern logical lsame_(char *, char *);
+ static integer nrowa, nrowb;
+ extern /* Subroutine */ int xerbla_(char *, integer *);
+
+
+/*
+ Purpose
+ =======
+
+ ZGEMM performs one of the matrix-matrix operations
+
+ C := alpha*op( A )*op( B ) + beta*C,
+
+ where op( X ) is one of
+
+ op( X ) = X or op( X ) = X' or op( X ) = conjg( X' ),
+
+ alpha and beta are scalars, and A, B and C are matrices, with op( A )
+ an m by k matrix, op( B ) a k by n matrix and C an m by n matrix.
+
+ Parameters
+ ==========
+
+ TRANSA - CHARACTER*1.
+ On entry, TRANSA specifies the form of op( A ) to be used in
+ the matrix multiplication as follows:
+
+ TRANSA = 'N' or 'n', op( A ) = A.
+
+ TRANSA = 'T' or 't', op( A ) = A'.
+
+ TRANSA = 'C' or 'c', op( A ) = conjg( A' ).
+
+ Unchanged on exit.
+
+ TRANSB - CHARACTER*1.
+ On entry, TRANSB specifies the form of op( B ) to be used in
+ the matrix multiplication as follows:
+
+ TRANSB = 'N' or 'n', op( B ) = B.
+
+ TRANSB = 'T' or 't', op( B ) = B'.
+
+ TRANSB = 'C' or 'c', op( B ) = conjg( B' ).
+
+ Unchanged on exit.
+
+ M - INTEGER.
+ On entry, M specifies the number of rows of the matrix
+ op( A ) and of the matrix C. M must be at least zero.
+ Unchanged on exit.
+
+ N - INTEGER.
+ On entry, N specifies the number of columns of the matrix
+ op( B ) and the number of columns of the matrix C. N must be
+ at least zero.
+ Unchanged on exit.
+
+ K - INTEGER.
+ On entry, K specifies the number of columns of the matrix
+ op( A ) and the number of rows of the matrix op( B ). K must
+ be at least zero.
+ Unchanged on exit.
+
+ ALPHA - COMPLEX*16 .
+ On entry, ALPHA specifies the scalar alpha.
+ Unchanged on exit.
+
+ A - COMPLEX*16 array of DIMENSION ( LDA, ka ), where ka is
+ k when TRANSA = 'N' or 'n', and is m otherwise.
+ Before entry with TRANSA = 'N' or 'n', the leading m by k
+ part of the array A must contain the matrix A, otherwise
+ the leading k by m part of the array A must contain the
+ matrix A.
+ Unchanged on exit.
+
+ LDA - INTEGER.
+ On entry, LDA specifies the first dimension of A as declared
+ in the calling (sub) program. When TRANSA = 'N' or 'n' then
+ LDA must be at least max( 1, m ), otherwise LDA must be at
+ least max( 1, k ).
+ Unchanged on exit.
+
+ B - COMPLEX*16 array of DIMENSION ( LDB, kb ), where kb is
+ n when TRANSB = 'N' or 'n', and is k otherwise.
+ Before entry with TRANSB = 'N' or 'n', the leading k by n
+ part of the array B must contain the matrix B, otherwise
+ the leading n by k part of the array B must contain the
+ matrix B.
+ Unchanged on exit.
+
+ LDB - INTEGER.
+ On entry, LDB specifies the first dimension of B as declared
+ in the calling (sub) program. When TRANSB = 'N' or 'n' then
+ LDB must be at least max( 1, k ), otherwise LDB must be at
+ least max( 1, n ).
+ Unchanged on exit.
+
+ BETA - COMPLEX*16 .
+ On entry, BETA specifies the scalar beta. When BETA is
+ supplied as zero then C need not be set on input.
+ Unchanged on exit.
+
+ C - COMPLEX*16 array of DIMENSION ( LDC, n ).
+ Before entry, the leading m by n part of the array C must
+ contain the matrix C, except when beta is zero, in which
+ case C need not be set on entry.
+ On exit, the array C is overwritten by the m by n matrix
+ ( alpha*op( A )*op( B ) + beta*C ).
+
+ LDC - INTEGER.
+ On entry, LDC specifies the first dimension of C as declared
+ in the calling (sub) program. LDC must be at least
+ max( 1, m ).
+ Unchanged on exit.
+
+
+ Level 3 Blas routine.
+
+ -- Written on 8-February-1989.
+ Jack Dongarra, Argonne National Laboratory.
+ Iain Duff, AERE Harwell.
+ Jeremy Du Croz, Numerical Algorithms Group Ltd.
+ Sven Hammarling, Numerical Algorithms Group Ltd.
+
+
+ Set NOTA and NOTB as true if A and B respectively are not
+ conjugated or transposed, set CONJA and CONJB as true if A and
+ B respectively are to be transposed but not conjugated and set
+ NROWA, NCOLA and NROWB as the number of rows and columns of A
+ and the number of rows of B respectively.
+*/
+
+ /* Parameter adjustments */
+ a_dim1 = *lda;
+ a_offset = 1 + a_dim1;
+ a -= a_offset;
+ b_dim1 = *ldb;
+ b_offset = 1 + b_dim1;
+ b -= b_offset;
+ c_dim1 = *ldc;
+ c_offset = 1 + c_dim1;
+ c__ -= c_offset;
+
+ /* Function Body */
+ nota = lsame_(transa, "N");
+ notb = lsame_(transb, "N");
+ conja = lsame_(transa, "C");
+ conjb = lsame_(transb, "C");
+ if (nota) {
+ nrowa = *m;
+ ncola = *k;
+ } else {
+ nrowa = *k;
+ ncola = *m;
+ }
+ if (notb) {
+ nrowb = *k;
+ } else {
+ nrowb = *n;
+ }
+
+/* Test the input parameters. */
+
+ info = 0;
+ if (! nota && ! conja && ! lsame_(transa, "T")) {
+ info = 1;
+ } else if (! notb && ! conjb && ! lsame_(transb, "T")) {
+ info = 2;
+ } else if (*m < 0) {
+ info = 3;
+ } else if (*n < 0) {
+ info = 4;
+ } else if (*k < 0) {
+ info = 5;
+ } else if (*lda < max(1,nrowa)) {
+ info = 8;
+ } else if (*ldb < max(1,nrowb)) {
+ info = 10;
+ } else if (*ldc < max(1,*m)) {
+ info = 13;
+ }
+ if (info != 0) {
+ xerbla_("ZGEMM ", &info);
+ return 0;
+ }
+
+/* Quick return if possible. */
+
+ if (((*m == 0) || (*n == 0)) || (((alpha->r == 0. && alpha->i == 0.) || (*
+ k == 0)) && (beta->r == 1. && beta->i == 0.))) {
+ return 0;
+ }
+
+/* And when alpha.eq.zero. */
+
+ if (alpha->r == 0. && alpha->i == 0.) {
+ if (beta->r == 0. && beta->i == 0.) {
+ i__1 = *n;
+ for (j = 1; j <= i__1; ++j) {
+ i__2 = *m;
+ for (i__ = 1; i__ <= i__2; ++i__) {
+ i__3 = i__ + j * c_dim1;
+ c__[i__3].r = 0., c__[i__3].i = 0.;
+/* L10: */
+ }
+/* L20: */
+ }
+ } else {
+ i__1 = *n;
+ for (j = 1; j <= i__1; ++j) {
+ i__2 = *m;
+ for (i__ = 1; i__ <= i__2; ++i__) {
+ i__3 = i__ + j * c_dim1;
+ i__4 = i__ + j * c_dim1;
+ z__1.r = beta->r * c__[i__4].r - beta->i * c__[i__4].i,
+ z__1.i = beta->r * c__[i__4].i + beta->i * c__[
+ i__4].r;
+ c__[i__3].r = z__1.r, c__[i__3].i = z__1.i;
+/* L30: */
+ }
+/* L40: */
+ }
+ }
+ return 0;
+ }
+
+/* Start the operations. */
+
+ if (notb) {
+ if (nota) {
+
+/* Form C := alpha*A*B + beta*C. */
+
+ i__1 = *n;
+ for (j = 1; j <= i__1; ++j) {
+ if (beta->r == 0. && beta->i == 0.) {
+ i__2 = *m;
+ for (i__ = 1; i__ <= i__2; ++i__) {
+ i__3 = i__ + j * c_dim1;
+ c__[i__3].r = 0., c__[i__3].i = 0.;
+/* L50: */
+ }
+ } else if ((beta->r != 1.) || (beta->i != 0.)) {
+ i__2 = *m;
+ for (i__ = 1; i__ <= i__2; ++i__) {
+ i__3 = i__ + j * c_dim1;
+ i__4 = i__ + j * c_dim1;
+ z__1.r = beta->r * c__[i__4].r - beta->i * c__[i__4]
+ .i, z__1.i = beta->r * c__[i__4].i + beta->i *
+ c__[i__4].r;
+ c__[i__3].r = z__1.r, c__[i__3].i = z__1.i;
+/* L60: */
+ }
+ }
+ i__2 = *k;
+ for (l = 1; l <= i__2; ++l) {
+ i__3 = l + j * b_dim1;
+ if ((b[i__3].r != 0.) || (b[i__3].i != 0.)) {
+ i__3 = l + j * b_dim1;
+ z__1.r = alpha->r * b[i__3].r - alpha->i * b[i__3].i,
+ z__1.i = alpha->r * b[i__3].i + alpha->i * b[
+ i__3].r;
+ temp.r = z__1.r, temp.i = z__1.i;
+ i__3 = *m;
+ for (i__ = 1; i__ <= i__3; ++i__) {
+ i__4 = i__ + j * c_dim1;
+ i__5 = i__ + j * c_dim1;
+ i__6 = i__ + l * a_dim1;
+ z__2.r = temp.r * a[i__6].r - temp.i * a[i__6].i,
+ z__2.i = temp.r * a[i__6].i + temp.i * a[
+ i__6].r;
+ z__1.r = c__[i__5].r + z__2.r, z__1.i = c__[i__5]
+ .i + z__2.i;
+ c__[i__4].r = z__1.r, c__[i__4].i = z__1.i;
+/* L70: */
+ }
+ }
+/* L80: */
+ }
+/* L90: */
+ }
+ } else if (conja) {
+
+/* Form C := alpha*conjg( A' )*B + beta*C. */
+
+ i__1 = *n;
+ for (j = 1; j <= i__1; ++j) {
+ i__2 = *m;
+ for (i__ = 1; i__ <= i__2; ++i__) {
+ temp.r = 0., temp.i = 0.;
+ i__3 = *k;
+ for (l = 1; l <= i__3; ++l) {
+ d_cnjg(&z__3, &a[l + i__ * a_dim1]);
+ i__4 = l + j * b_dim1;
+ z__2.r = z__3.r * b[i__4].r - z__3.i * b[i__4].i,
+ z__2.i = z__3.r * b[i__4].i + z__3.i * b[i__4]
+ .r;
+ z__1.r = temp.r + z__2.r, z__1.i = temp.i + z__2.i;
+ temp.r = z__1.r, temp.i = z__1.i;
+/* L100: */
+ }
+ if (beta->r == 0. && beta->i == 0.) {
+ i__3 = i__ + j * c_dim1;
+ z__1.r = alpha->r * temp.r - alpha->i * temp.i,
+ z__1.i = alpha->r * temp.i + alpha->i *
+ temp.r;
+ c__[i__3].r = z__1.r, c__[i__3].i = z__1.i;
+ } else {
+ i__3 = i__ + j * c_dim1;
+ z__2.r = alpha->r * temp.r - alpha->i * temp.i,
+ z__2.i = alpha->r * temp.i + alpha->i *
+ temp.r;
+ i__4 = i__ + j * c_dim1;
+ z__3.r = beta->r * c__[i__4].r - beta->i * c__[i__4]
+ .i, z__3.i = beta->r * c__[i__4].i + beta->i *
+ c__[i__4].r;
+ z__1.r = z__2.r + z__3.r, z__1.i = z__2.i + z__3.i;
+ c__[i__3].r = z__1.r, c__[i__3].i = z__1.i;
+ }
+/* L110: */
+ }
+/* L120: */
+ }
+ } else {
+
+/* Form C := alpha*A'*B + beta*C */
+
+ i__1 = *n;
+ for (j = 1; j <= i__1; ++j) {
+ i__2 = *m;
+ for (i__ = 1; i__ <= i__2; ++i__) {
+ temp.r = 0., temp.i = 0.;
+ i__3 = *k;
+ for (l = 1; l <= i__3; ++l) {
+ i__4 = l + i__ * a_dim1;
+ i__5 = l + j * b_dim1;
+ z__2.r = a[i__4].r * b[i__5].r - a[i__4].i * b[i__5]
+ .i, z__2.i = a[i__4].r * b[i__5].i + a[i__4]
+ .i * b[i__5].r;
+ z__1.r = temp.r + z__2.r, z__1.i = temp.i + z__2.i;
+ temp.r = z__1.r, temp.i = z__1.i;
+/* L130: */
+ }
+ if (beta->r == 0. && beta->i == 0.) {
+ i__3 = i__ + j * c_dim1;
+ z__1.r = alpha->r * temp.r - alpha->i * temp.i,
+ z__1.i = alpha->r * temp.i + alpha->i *
+ temp.r;
+ c__[i__3].r = z__1.r, c__[i__3].i = z__1.i;
+ } else {
+ i__3 = i__ + j * c_dim1;
+ z__2.r = alpha->r * temp.r - alpha->i * temp.i,
+ z__2.i = alpha->r * temp.i + alpha->i *
+ temp.r;
+ i__4 = i__ + j * c_dim1;
+ z__3.r = beta->r * c__[i__4].r - beta->i * c__[i__4]
+ .i, z__3.i = beta->r * c__[i__4].i + beta->i *
+ c__[i__4].r;
+ z__1.r = z__2.r + z__3.r, z__1.i = z__2.i + z__3.i;
+ c__[i__3].r = z__1.r, c__[i__3].i = z__1.i;
+ }
+/* L140: */
+ }
+/* L150: */
+ }
+ }
+ } else if (nota) {
+ if (conjb) {
+
+/* Form C := alpha*A*conjg( B' ) + beta*C. */
+
+ i__1 = *n;
+ for (j = 1; j <= i__1; ++j) {
+ if (beta->r == 0. && beta->i == 0.) {
+ i__2 = *m;
+ for (i__ = 1; i__ <= i__2; ++i__) {
+ i__3 = i__ + j * c_dim1;
+ c__[i__3].r = 0., c__[i__3].i = 0.;
+/* L160: */
+ }
+ } else if ((beta->r != 1.) || (beta->i != 0.)) {
+ i__2 = *m;
+ for (i__ = 1; i__ <= i__2; ++i__) {
+ i__3 = i__ + j * c_dim1;
+ i__4 = i__ + j * c_dim1;
+ z__1.r = beta->r * c__[i__4].r - beta->i * c__[i__4]
+ .i, z__1.i = beta->r * c__[i__4].i + beta->i *
+ c__[i__4].r;
+ c__[i__3].r = z__1.r, c__[i__3].i = z__1.i;
+/* L170: */
+ }
+ }
+ i__2 = *k;
+ for (l = 1; l <= i__2; ++l) {
+ i__3 = j + l * b_dim1;
+ if ((b[i__3].r != 0.) || (b[i__3].i != 0.)) {
+ d_cnjg(&z__2, &b[j + l * b_dim1]);
+ z__1.r = alpha->r * z__2.r - alpha->i * z__2.i,
+ z__1.i = alpha->r * z__2.i + alpha->i *
+ z__2.r;
+ temp.r = z__1.r, temp.i = z__1.i;
+ i__3 = *m;
+ for (i__ = 1; i__ <= i__3; ++i__) {
+ i__4 = i__ + j * c_dim1;
+ i__5 = i__ + j * c_dim1;
+ i__6 = i__ + l * a_dim1;
+ z__2.r = temp.r * a[i__6].r - temp.i * a[i__6].i,
+ z__2.i = temp.r * a[i__6].i + temp.i * a[
+ i__6].r;
+ z__1.r = c__[i__5].r + z__2.r, z__1.i = c__[i__5]
+ .i + z__2.i;
+ c__[i__4].r = z__1.r, c__[i__4].i = z__1.i;
+/* L180: */
+ }
+ }
+/* L190: */
+ }
+/* L200: */
+ }
+ } else {
+
+/* Form C := alpha*A*B' + beta*C */
+
+ i__1 = *n;
+ for (j = 1; j <= i__1; ++j) {
+ if (beta->r == 0. && beta->i == 0.) {
+ i__2 = *m;
+ for (i__ = 1; i__ <= i__2; ++i__) {
+ i__3 = i__ + j * c_dim1;
+ c__[i__3].r = 0., c__[i__3].i = 0.;
+/* L210: */
+ }
+ } else if ((beta->r != 1.) || (beta->i != 0.)) {
+ i__2 = *m;
+ for (i__ = 1; i__ <= i__2; ++i__) {
+ i__3 = i__ + j * c_dim1;
+ i__4 = i__ + j * c_dim1;
+ z__1.r = beta->r * c__[i__4].r - beta->i * c__[i__4]
+ .i, z__1.i = beta->r * c__[i__4].i + beta->i *
+ c__[i__4].r;
+ c__[i__3].r = z__1.r, c__[i__3].i = z__1.i;
+/* L220: */
+ }
+ }
+ i__2 = *k;
+ for (l = 1; l <= i__2; ++l) {
+ i__3 = j + l * b_dim1;
+ if ((b[i__3].r != 0.) || (b[i__3].i != 0.)) {
+ i__3 = j + l * b_dim1;
+ z__1.r = alpha->r * b[i__3].r - alpha->i * b[i__3].i,
+ z__1.i = alpha->r * b[i__3].i + alpha->i * b[
+ i__3].r;
+ temp.r = z__1.r, temp.i = z__1.i;
+ i__3 = *m;
+ for (i__ = 1; i__ <= i__3; ++i__) {
+ i__4 = i__ + j * c_dim1;
+ i__5 = i__ + j * c_dim1;
+ i__6 = i__ + l * a_dim1;
+ z__2.r = temp.r * a[i__6].r - temp.i * a[i__6].i,
+ z__2.i = temp.r * a[i__6].i + temp.i * a[
+ i__6].r;
+ z__1.r = c__[i__5].r + z__2.r, z__1.i = c__[i__5]
+ .i + z__2.i;
+ c__[i__4].r = z__1.r, c__[i__4].i = z__1.i;
+/* L230: */
+ }
+ }
+/* L240: */
+ }
+/* L250: */
+ }
+ }
+ } else if (conja) {
+ if (conjb) {
+
+/* Form C := alpha*conjg( A' )*conjg( B' ) + beta*C. */
+
+ i__1 = *n;
+ for (j = 1; j <= i__1; ++j) {
+ i__2 = *m;
+ for (i__ = 1; i__ <= i__2; ++i__) {
+ temp.r = 0., temp.i = 0.;
+ i__3 = *k;
+ for (l = 1; l <= i__3; ++l) {
+ d_cnjg(&z__3, &a[l + i__ * a_dim1]);
+ d_cnjg(&z__4, &b[j + l * b_dim1]);
+ z__2.r = z__3.r * z__4.r - z__3.i * z__4.i, z__2.i =
+ z__3.r * z__4.i + z__3.i * z__4.r;
+ z__1.r = temp.r + z__2.r, z__1.i = temp.i + z__2.i;
+ temp.r = z__1.r, temp.i = z__1.i;
+/* L260: */
+ }
+ if (beta->r == 0. && beta->i == 0.) {
+ i__3 = i__ + j * c_dim1;
+ z__1.r = alpha->r * temp.r - alpha->i * temp.i,
+ z__1.i = alpha->r * temp.i + alpha->i *
+ temp.r;
+ c__[i__3].r = z__1.r, c__[i__3].i = z__1.i;
+ } else {
+ i__3 = i__ + j * c_dim1;
+ z__2.r = alpha->r * temp.r - alpha->i * temp.i,
+ z__2.i = alpha->r * temp.i + alpha->i *
+ temp.r;
+ i__4 = i__ + j * c_dim1;
+ z__3.r = beta->r * c__[i__4].r - beta->i * c__[i__4]
+ .i, z__3.i = beta->r * c__[i__4].i + beta->i *
+ c__[i__4].r;
+ z__1.r = z__2.r + z__3.r, z__1.i = z__2.i + z__3.i;
+ c__[i__3].r = z__1.r, c__[i__3].i = z__1.i;
+ }
+/* L270: */
+ }
+/* L280: */
+ }
+ } else {
+
+/* Form C := alpha*conjg( A' )*B' + beta*C */
+
+ i__1 = *n;
+ for (j = 1; j <= i__1; ++j) {
+ i__2 = *m;
+ for (i__ = 1; i__ <= i__2; ++i__) {
+ temp.r = 0., temp.i = 0.;
+ i__3 = *k;
+ for (l = 1; l <= i__3; ++l) {
+ d_cnjg(&z__3, &a[l + i__ * a_dim1]);
+ i__4 = j + l * b_dim1;
+ z__2.r = z__3.r * b[i__4].r - z__3.i * b[i__4].i,
+ z__2.i = z__3.r * b[i__4].i + z__3.i * b[i__4]
+ .r;
+ z__1.r = temp.r + z__2.r, z__1.i = temp.i + z__2.i;
+ temp.r = z__1.r, temp.i = z__1.i;
+/* L290: */
+ }
+ if (beta->r == 0. && beta->i == 0.) {
+ i__3 = i__ + j * c_dim1;
+ z__1.r = alpha->r * temp.r - alpha->i * temp.i,
+ z__1.i = alpha->r * temp.i + alpha->i *
+ temp.r;
+ c__[i__3].r = z__1.r, c__[i__3].i = z__1.i;
+ } else {
+ i__3 = i__ + j * c_dim1;
+ z__2.r = alpha->r * temp.r - alpha->i * temp.i,
+ z__2.i = alpha->r * temp.i + alpha->i *
+ temp.r;
+ i__4 = i__ + j * c_dim1;
+ z__3.r = beta->r * c__[i__4].r - beta->i * c__[i__4]
+ .i, z__3.i = beta->r * c__[i__4].i + beta->i *
+ c__[i__4].r;
+ z__1.r = z__2.r + z__3.r, z__1.i = z__2.i + z__3.i;
+ c__[i__3].r = z__1.r, c__[i__3].i = z__1.i;
+ }
+/* L300: */
+ }
+/* L310: */
+ }
+ }
+ } else {
+ if (conjb) {
+
+/* Form C := alpha*A'*conjg( B' ) + beta*C */
+
+ i__1 = *n;
+ for (j = 1; j <= i__1; ++j) {
+ i__2 = *m;
+ for (i__ = 1; i__ <= i__2; ++i__) {
+ temp.r = 0., temp.i = 0.;
+ i__3 = *k;
+ for (l = 1; l <= i__3; ++l) {
+ i__4 = l + i__ * a_dim1;
+ d_cnjg(&z__3, &b[j + l * b_dim1]);
+ z__2.r = a[i__4].r * z__3.r - a[i__4].i * z__3.i,
+ z__2.i = a[i__4].r * z__3.i + a[i__4].i *
+ z__3.r;
+ z__1.r = temp.r + z__2.r, z__1.i = temp.i + z__2.i;
+ temp.r = z__1.r, temp.i = z__1.i;
+/* L320: */
+ }
+ if (beta->r == 0. && beta->i == 0.) {
+ i__3 = i__ + j * c_dim1;
+ z__1.r = alpha->r * temp.r - alpha->i * temp.i,
+ z__1.i = alpha->r * temp.i + alpha->i *
+ temp.r;
+ c__[i__3].r = z__1.r, c__[i__3].i = z__1.i;
+ } else {
+ i__3 = i__ + j * c_dim1;
+ z__2.r = alpha->r * temp.r - alpha->i * temp.i,
+ z__2.i = alpha->r * temp.i + alpha->i *
+ temp.r;
+ i__4 = i__ + j * c_dim1;
+ z__3.r = beta->r * c__[i__4].r - beta->i * c__[i__4]
+ .i, z__3.i = beta->r * c__[i__4].i + beta->i *
+ c__[i__4].r;
+ z__1.r = z__2.r + z__3.r, z__1.i = z__2.i + z__3.i;
+ c__[i__3].r = z__1.r, c__[i__3].i = z__1.i;
+ }
+/* L330: */
+ }
+/* L340: */
+ }
+ } else {
+
+/* Form C := alpha*A'*B' + beta*C */
+
+ i__1 = *n;
+ for (j = 1; j <= i__1; ++j) {
+ i__2 = *m;
+ for (i__ = 1; i__ <= i__2; ++i__) {
+ temp.r = 0., temp.i = 0.;
+ i__3 = *k;
+ for (l = 1; l <= i__3; ++l) {
+ i__4 = l + i__ * a_dim1;
+ i__5 = j + l * b_dim1;
+ z__2.r = a[i__4].r * b[i__5].r - a[i__4].i * b[i__5]
+ .i, z__2.i = a[i__4].r * b[i__5].i + a[i__4]
+ .i * b[i__5].r;
+ z__1.r = temp.r + z__2.r, z__1.i = temp.i + z__2.i;
+ temp.r = z__1.r, temp.i = z__1.i;
+/* L350: */
+ }
+ if (beta->r == 0. && beta->i == 0.) {
+ i__3 = i__ + j * c_dim1;
+ z__1.r = alpha->r * temp.r - alpha->i * temp.i,
+ z__1.i = alpha->r * temp.i + alpha->i *
+ temp.r;
+ c__[i__3].r = z__1.r, c__[i__3].i = z__1.i;
+ } else {
+ i__3 = i__ + j * c_dim1;
+ z__2.r = alpha->r * temp.r - alpha->i * temp.i,
+ z__2.i = alpha->r * temp.i + alpha->i *
+ temp.r;
+ i__4 = i__ + j * c_dim1;
+ z__3.r = beta->r * c__[i__4].r - beta->i * c__[i__4]
+ .i, z__3.i = beta->r * c__[i__4].i + beta->i *
+ c__[i__4].r;
+ z__1.r = z__2.r + z__3.r, z__1.i = z__2.i + z__3.i;
+ c__[i__3].r = z__1.r, c__[i__3].i = z__1.i;
+ }
+/* L360: */
+ }
+/* L370: */
+ }
+ }
+ }
+
+ return 0;
+
+/* End of ZGEMM . */
+
+} /* zgemm_ */
+
+/* Subroutine */ int zgemv_(char *trans, integer *m, integer *n,
+ doublecomplex *alpha, doublecomplex *a, integer *lda, doublecomplex *
+ x, integer *incx, doublecomplex *beta, doublecomplex *y, integer *
+ incy)
+{
+ /* System generated locals */
+ integer a_dim1, a_offset, i__1, i__2, i__3, i__4, i__5;
+ doublecomplex z__1, z__2, z__3;
+
+ /* Builtin functions */
+ void d_cnjg(doublecomplex *, doublecomplex *);
+
+ /* Local variables */
+ static integer i__, j, ix, iy, jx, jy, kx, ky, info;
+ static doublecomplex temp;
+ static integer lenx, leny;
+ extern logical lsame_(char *, char *);
+ extern /* Subroutine */ int xerbla_(char *, integer *);
+ static logical noconj;
+
+
+/*
+ Purpose
+ =======
+
+ ZGEMV performs one of the matrix-vector operations
+
+ y := alpha*A*x + beta*y, or y := alpha*A'*x + beta*y, or
+
+ y := alpha*conjg( A' )*x + beta*y,
+
+ where alpha and beta are scalars, x and y are vectors and A is an
+ m by n matrix.
+
+ Parameters
+ ==========
+
+ TRANS - CHARACTER*1.
+ On entry, TRANS specifies the operation to be performed as
+ follows:
+
+ TRANS = 'N' or 'n' y := alpha*A*x + beta*y.
+
+ TRANS = 'T' or 't' y := alpha*A'*x + beta*y.
+
+ TRANS = 'C' or 'c' y := alpha*conjg( A' )*x + beta*y.
+
+ Unchanged on exit.
+
+ M - INTEGER.
+ On entry, M specifies the number of rows of the matrix A.
+ M must be at least zero.
+ Unchanged on exit.
+
+ N - INTEGER.
+ On entry, N specifies the number of columns of the matrix A.
+ N must be at least zero.
+ Unchanged on exit.
+
+ ALPHA - COMPLEX*16 .
+ On entry, ALPHA specifies the scalar alpha.
+ Unchanged on exit.
+
+ A - COMPLEX*16 array of DIMENSION ( LDA, n ).
+ Before entry, the leading m by n part of the array A must
+ contain the matrix of coefficients.
+ Unchanged on exit.
+
+ LDA - INTEGER.
+ On entry, LDA specifies the first dimension of A as declared
+ in the calling (sub) program. LDA must be at least
+ max( 1, m ).
+ Unchanged on exit.
+
+ X - COMPLEX*16 array of DIMENSION at least
+ ( 1 + ( n - 1 )*abs( INCX ) ) when TRANS = 'N' or 'n'
+ and at least
+ ( 1 + ( m - 1 )*abs( INCX ) ) otherwise.
+ Before entry, the incremented array X must contain the
+ vector x.
+ Unchanged on exit.
+
+ INCX - INTEGER.
+ On entry, INCX specifies the increment for the elements of
+ X. INCX must not be zero.
+ Unchanged on exit.
+
+ BETA - COMPLEX*16 .
+ On entry, BETA specifies the scalar beta. When BETA is
+ supplied as zero then Y need not be set on input.
+ Unchanged on exit.
+
+ Y - COMPLEX*16 array of DIMENSION at least
+ ( 1 + ( m - 1 )*abs( INCY ) ) when TRANS = 'N' or 'n'
+ and at least
+ ( 1 + ( n - 1 )*abs( INCY ) ) otherwise.
+ Before entry with BETA non-zero, the incremented array Y
+ must contain the vector y. On exit, Y is overwritten by the
+ updated vector y.
+
+ INCY - INTEGER.
+ On entry, INCY specifies the increment for the elements of
+ Y. INCY must not be zero.
+ Unchanged on exit.
+
+
+ Level 2 Blas routine.
+
+ -- Written on 22-October-1986.
+ Jack Dongarra, Argonne National Lab.
+ Jeremy Du Croz, Nag Central Office.
+ Sven Hammarling, Nag Central Office.
+ Richard Hanson, Sandia National Labs.
+
+
+ Test the input parameters.
+*/
+
+ /* Parameter adjustments */
+ a_dim1 = *lda;
+ a_offset = 1 + a_dim1;
+ a -= a_offset;
+ --x;
+ --y;
+
+ /* Function Body */
+ info = 0;
+ if (! lsame_(trans, "N") && ! lsame_(trans, "T") && ! lsame_(trans, "C")
+ ) {
+ info = 1;
+ } else if (*m < 0) {
+ info = 2;
+ } else if (*n < 0) {
+ info = 3;
+ } else if (*lda < max(1,*m)) {
+ info = 6;
+ } else if (*incx == 0) {
+ info = 8;
+ } else if (*incy == 0) {
+ info = 11;
+ }
+ if (info != 0) {
+ xerbla_("ZGEMV ", &info);
+ return 0;
+ }
+
+/* Quick return if possible. */
+
+ if (((*m == 0) || (*n == 0)) || (alpha->r == 0. && alpha->i == 0. && (
+ beta->r == 1. && beta->i == 0.))) {
+ return 0;
+ }
+
+ noconj = lsame_(trans, "T");
+
+/*
+ Set LENX and LENY, the lengths of the vectors x and y, and set
+ up the start points in X and Y.
+*/
+
+ if (lsame_(trans, "N")) {
+ lenx = *n;
+ leny = *m;
+ } else {
+ lenx = *m;
+ leny = *n;
+ }
+ if (*incx > 0) {
+ kx = 1;
+ } else {
+ kx = 1 - (lenx - 1) * *incx;
+ }
+ if (*incy > 0) {
+ ky = 1;
+ } else {
+ ky = 1 - (leny - 1) * *incy;
+ }
+
+/*
+ Start the operations. In this version the elements of A are
+ accessed sequentially with one pass through A.
+
+ First form y := beta*y.
+*/
+
+ if ((beta->r != 1.) || (beta->i != 0.)) {
+ if (*incy == 1) {
+ if (beta->r == 0. && beta->i == 0.) {
+ i__1 = leny;
+ for (i__ = 1; i__ <= i__1; ++i__) {
+ i__2 = i__;
+ y[i__2].r = 0., y[i__2].i = 0.;
+/* L10: */
+ }
+ } else {
+ i__1 = leny;
+ for (i__ = 1; i__ <= i__1; ++i__) {
+ i__2 = i__;
+ i__3 = i__;
+ z__1.r = beta->r * y[i__3].r - beta->i * y[i__3].i,
+ z__1.i = beta->r * y[i__3].i + beta->i * y[i__3]
+ .r;
+ y[i__2].r = z__1.r, y[i__2].i = z__1.i;
+/* L20: */
+ }
+ }
+ } else {
+ iy = ky;
+ if (beta->r == 0. && beta->i == 0.) {
+ i__1 = leny;
+ for (i__ = 1; i__ <= i__1; ++i__) {
+ i__2 = iy;
+ y[i__2].r = 0., y[i__2].i = 0.;
+ iy += *incy;
+/* L30: */
+ }
+ } else {
+ i__1 = leny;
+ for (i__ = 1; i__ <= i__1; ++i__) {
+ i__2 = iy;
+ i__3 = iy;
+ z__1.r = beta->r * y[i__3].r - beta->i * y[i__3].i,
+ z__1.i = beta->r * y[i__3].i + beta->i * y[i__3]
+ .r;
+ y[i__2].r = z__1.r, y[i__2].i = z__1.i;
+ iy += *incy;
+/* L40: */
+ }
+ }
+ }
+ }
+ if (alpha->r == 0. && alpha->i == 0.) {
+ return 0;
+ }
+ if (lsame_(trans, "N")) {
+
+/* Form y := alpha*A*x + y. */
+
+ jx = kx;
+ if (*incy == 1) {
+ i__1 = *n;
+ for (j = 1; j <= i__1; ++j) {
+ i__2 = jx;
+ if ((x[i__2].r != 0.) || (x[i__2].i != 0.)) {
+ i__2 = jx;
+ z__1.r = alpha->r * x[i__2].r - alpha->i * x[i__2].i,
+ z__1.i = alpha->r * x[i__2].i + alpha->i * x[i__2]
+ .r;
+ temp.r = z__1.r, temp.i = z__1.i;
+ i__2 = *m;
+ for (i__ = 1; i__ <= i__2; ++i__) {
+ i__3 = i__;
+ i__4 = i__;
+ i__5 = i__ + j * a_dim1;
+ z__2.r = temp.r * a[i__5].r - temp.i * a[i__5].i,
+ z__2.i = temp.r * a[i__5].i + temp.i * a[i__5]
+ .r;
+ z__1.r = y[i__4].r + z__2.r, z__1.i = y[i__4].i +
+ z__2.i;
+ y[i__3].r = z__1.r, y[i__3].i = z__1.i;
+/* L50: */
+ }
+ }
+ jx += *incx;
+/* L60: */
+ }
+ } else {
+ i__1 = *n;
+ for (j = 1; j <= i__1; ++j) {
+ i__2 = jx;
+ if ((x[i__2].r != 0.) || (x[i__2].i != 0.)) {
+ i__2 = jx;
+ z__1.r = alpha->r * x[i__2].r - alpha->i * x[i__2].i,
+ z__1.i = alpha->r * x[i__2].i + alpha->i * x[i__2]
+ .r;
+ temp.r = z__1.r, temp.i = z__1.i;
+ iy = ky;
+ i__2 = *m;
+ for (i__ = 1; i__ <= i__2; ++i__) {
+ i__3 = iy;
+ i__4 = iy;
+ i__5 = i__ + j * a_dim1;
+ z__2.r = temp.r * a[i__5].r - temp.i * a[i__5].i,
+ z__2.i = temp.r * a[i__5].i + temp.i * a[i__5]
+ .r;
+ z__1.r = y[i__4].r + z__2.r, z__1.i = y[i__4].i +
+ z__2.i;
+ y[i__3].r = z__1.r, y[i__3].i = z__1.i;
+ iy += *incy;
+/* L70: */
+ }
+ }
+ jx += *incx;
+/* L80: */
+ }
+ }
+ } else {
+
+/* Form y := alpha*A'*x + y or y := alpha*conjg( A' )*x + y. */
+
+ jy = ky;
+ if (*incx == 1) {
+ i__1 = *n;
+ for (j = 1; j <= i__1; ++j) {
+ temp.r = 0., temp.i = 0.;
+ if (noconj) {
+ i__2 = *m;
+ for (i__ = 1; i__ <= i__2; ++i__) {
+ i__3 = i__ + j * a_dim1;
+ i__4 = i__;
+ z__2.r = a[i__3].r * x[i__4].r - a[i__3].i * x[i__4]
+ .i, z__2.i = a[i__3].r * x[i__4].i + a[i__3]
+ .i * x[i__4].r;
+ z__1.r = temp.r + z__2.r, z__1.i = temp.i + z__2.i;
+ temp.r = z__1.r, temp.i = z__1.i;
+/* L90: */
+ }
+ } else {
+ i__2 = *m;
+ for (i__ = 1; i__ <= i__2; ++i__) {
+ d_cnjg(&z__3, &a[i__ + j * a_dim1]);
+ i__3 = i__;
+ z__2.r = z__3.r * x[i__3].r - z__3.i * x[i__3].i,
+ z__2.i = z__3.r * x[i__3].i + z__3.i * x[i__3]
+ .r;
+ z__1.r = temp.r + z__2.r, z__1.i = temp.i + z__2.i;
+ temp.r = z__1.r, temp.i = z__1.i;
+/* L100: */
+ }
+ }
+ i__2 = jy;
+ i__3 = jy;
+ z__2.r = alpha->r * temp.r - alpha->i * temp.i, z__2.i =
+ alpha->r * temp.i + alpha->i * temp.r;
+ z__1.r = y[i__3].r + z__2.r, z__1.i = y[i__3].i + z__2.i;
+ y[i__2].r = z__1.r, y[i__2].i = z__1.i;
+ jy += *incy;
+/* L110: */
+ }
+ } else {
+ i__1 = *n;
+ for (j = 1; j <= i__1; ++j) {
+ temp.r = 0., temp.i = 0.;
+ ix = kx;
+ if (noconj) {
+ i__2 = *m;
+ for (i__ = 1; i__ <= i__2; ++i__) {
+ i__3 = i__ + j * a_dim1;
+ i__4 = ix;
+ z__2.r = a[i__3].r * x[i__4].r - a[i__3].i * x[i__4]
+ .i, z__2.i = a[i__3].r * x[i__4].i + a[i__3]
+ .i * x[i__4].r;
+ z__1.r = temp.r + z__2.r, z__1.i = temp.i + z__2.i;
+ temp.r = z__1.r, temp.i = z__1.i;
+ ix += *incx;
+/* L120: */
+ }
+ } else {
+ i__2 = *m;
+ for (i__ = 1; i__ <= i__2; ++i__) {
+ d_cnjg(&z__3, &a[i__ + j * a_dim1]);
+ i__3 = ix;
+ z__2.r = z__3.r * x[i__3].r - z__3.i * x[i__3].i,
+ z__2.i = z__3.r * x[i__3].i + z__3.i * x[i__3]
+ .r;
+ z__1.r = temp.r + z__2.r, z__1.i = temp.i + z__2.i;
+ temp.r = z__1.r, temp.i = z__1.i;
+ ix += *incx;
+/* L130: */
+ }
+ }
+ i__2 = jy;
+ i__3 = jy;
+ z__2.r = alpha->r * temp.r - alpha->i * temp.i, z__2.i =
+ alpha->r * temp.i + alpha->i * temp.r;
+ z__1.r = y[i__3].r + z__2.r, z__1.i = y[i__3].i + z__2.i;
+ y[i__2].r = z__1.r, y[i__2].i = z__1.i;
+ jy += *incy;
+/* L140: */
+ }
+ }
+ }
+
+ return 0;
+
+/* End of ZGEMV . */
+
+} /* zgemv_ */
+
+/* Subroutine */ int zgerc_(integer *m, integer *n, doublecomplex *alpha,
+ doublecomplex *x, integer *incx, doublecomplex *y, integer *incy,
+ doublecomplex *a, integer *lda)
+{
+ /* System generated locals */
+ integer a_dim1, a_offset, i__1, i__2, i__3, i__4, i__5;
+ doublecomplex z__1, z__2;
+
+ /* Builtin functions */
+ void d_cnjg(doublecomplex *, doublecomplex *);
+
+ /* Local variables */
+ static integer i__, j, ix, jy, kx, info;
+ static doublecomplex temp;
+ extern /* Subroutine */ int xerbla_(char *, integer *);
+
+
+/*
+ Purpose
+ =======
+
+ ZGERC performs the rank 1 operation
+
+ A := alpha*x*conjg( y' ) + A,
+
+ where alpha is a scalar, x is an m element vector, y is an n element
+ vector and A is an m by n matrix.
+
+ Parameters
+ ==========
+
+ M - INTEGER.
+ On entry, M specifies the number of rows of the matrix A.
+ M must be at least zero.
+ Unchanged on exit.
+
+ N - INTEGER.
+ On entry, N specifies the number of columns of the matrix A.
+ N must be at least zero.
+ Unchanged on exit.
+
+ ALPHA - COMPLEX*16 .
+ On entry, ALPHA specifies the scalar alpha.
+ Unchanged on exit.
+
+ X - COMPLEX*16 array of dimension at least
+ ( 1 + ( m - 1 )*abs( INCX ) ).
+ Before entry, the incremented array X must contain the m
+ element vector x.
+ Unchanged on exit.
+
+ INCX - INTEGER.
+ On entry, INCX specifies the increment for the elements of
+ X. INCX must not be zero.
+ Unchanged on exit.
+
+ Y - COMPLEX*16 array of dimension at least
+ ( 1 + ( n - 1 )*abs( INCY ) ).
+ Before entry, the incremented array Y must contain the n
+ element vector y.
+ Unchanged on exit.
+
+ INCY - INTEGER.
+ On entry, INCY specifies the increment for the elements of
+ Y. INCY must not be zero.
+ Unchanged on exit.
+
+ A - COMPLEX*16 array of DIMENSION ( LDA, n ).
+ Before entry, the leading m by n part of the array A must
+ contain the matrix of coefficients. On exit, A is
+ overwritten by the updated matrix.
+
+ LDA - INTEGER.
+ On entry, LDA specifies the first dimension of A as declared
+ in the calling (sub) program. LDA must be at least
+ max( 1, m ).
+ Unchanged on exit.
+
+
+ Level 2 Blas routine.
+
+ -- Written on 22-October-1986.
+ Jack Dongarra, Argonne National Lab.
+ Jeremy Du Croz, Nag Central Office.
+ Sven Hammarling, Nag Central Office.
+ Richard Hanson, Sandia National Labs.
+
+
+ Test the input parameters.
+*/
+
+ /* Parameter adjustments */
+ --x;
+ --y;
+ a_dim1 = *lda;
+ a_offset = 1 + a_dim1;
+ a -= a_offset;
+
+ /* Function Body */
+ info = 0;
+ if (*m < 0) {
+ info = 1;
+ } else if (*n < 0) {
+ info = 2;
+ } else if (*incx == 0) {
+ info = 5;
+ } else if (*incy == 0) {
+ info = 7;
+ } else if (*lda < max(1,*m)) {
+ info = 9;
+ }
+ if (info != 0) {
+ xerbla_("ZGERC ", &info);
+ return 0;
+ }
+
+/* Quick return if possible. */
+
+ if (((*m == 0) || (*n == 0)) || (alpha->r == 0. && alpha->i == 0.)) {
+ return 0;
+ }
+
+/*
+ Start the operations. In this version the elements of A are
+ accessed sequentially with one pass through A.
+*/
+
+ if (*incy > 0) {
+ jy = 1;
+ } else {
+ jy = 1 - (*n - 1) * *incy;
+ }
+ if (*incx == 1) {
+ i__1 = *n;
+ for (j = 1; j <= i__1; ++j) {
+ i__2 = jy;
+ if ((y[i__2].r != 0.) || (y[i__2].i != 0.)) {
+ d_cnjg(&z__2, &y[jy]);
+ z__1.r = alpha->r * z__2.r - alpha->i * z__2.i, z__1.i =
+ alpha->r * z__2.i + alpha->i * z__2.r;
+ temp.r = z__1.r, temp.i = z__1.i;
+ i__2 = *m;
+ for (i__ = 1; i__ <= i__2; ++i__) {
+ i__3 = i__ + j * a_dim1;
+ i__4 = i__ + j * a_dim1;
+ i__5 = i__;
+ z__2.r = x[i__5].r * temp.r - x[i__5].i * temp.i, z__2.i =
+ x[i__5].r * temp.i + x[i__5].i * temp.r;
+ z__1.r = a[i__4].r + z__2.r, z__1.i = a[i__4].i + z__2.i;
+ a[i__3].r = z__1.r, a[i__3].i = z__1.i;
+/* L10: */
+ }
+ }
+ jy += *incy;
+/* L20: */
+ }
+ } else {
+ if (*incx > 0) {
+ kx = 1;
+ } else {
+ kx = 1 - (*m - 1) * *incx;
+ }
+ i__1 = *n;
+ for (j = 1; j <= i__1; ++j) {
+ i__2 = jy;
+ if ((y[i__2].r != 0.) || (y[i__2].i != 0.)) {
+ d_cnjg(&z__2, &y[jy]);
+ z__1.r = alpha->r * z__2.r - alpha->i * z__2.i, z__1.i =
+ alpha->r * z__2.i + alpha->i * z__2.r;
+ temp.r = z__1.r, temp.i = z__1.i;
+ ix = kx;
+ i__2 = *m;
+ for (i__ = 1; i__ <= i__2; ++i__) {
+ i__3 = i__ + j * a_dim1;
+ i__4 = i__ + j * a_dim1;
+ i__5 = ix;
+ z__2.r = x[i__5].r * temp.r - x[i__5].i * temp.i, z__2.i =
+ x[i__5].r * temp.i + x[i__5].i * temp.r;
+ z__1.r = a[i__4].r + z__2.r, z__1.i = a[i__4].i + z__2.i;
+ a[i__3].r = z__1.r, a[i__3].i = z__1.i;
+ ix += *incx;
+/* L30: */
+ }
+ }
+ jy += *incy;
+/* L40: */
+ }
+ }
+
+ return 0;
+
+/* End of ZGERC . */
+
+} /* zgerc_ */
+
+/* Subroutine */ int zgeru_(integer *m, integer *n, doublecomplex *alpha,
+ doublecomplex *x, integer *incx, doublecomplex *y, integer *incy,
+ doublecomplex *a, integer *lda)
+{
+ /* System generated locals */
+ integer a_dim1, a_offset, i__1, i__2, i__3, i__4, i__5;
+ doublecomplex z__1, z__2;
+
+ /* Local variables */
+ static integer i__, j, ix, jy, kx, info;
+ static doublecomplex temp;
+ extern /* Subroutine */ int xerbla_(char *, integer *);
+
+
+/*
+ Purpose
+ =======
+
+ ZGERU performs the rank 1 operation
+
+ A := alpha*x*y' + A,
+
+ where alpha is a scalar, x is an m element vector, y is an n element
+ vector and A is an m by n matrix.
+
+ Parameters
+ ==========
+
+ M - INTEGER.
+ On entry, M specifies the number of rows of the matrix A.
+ M must be at least zero.
+ Unchanged on exit.
+
+ N - INTEGER.
+ On entry, N specifies the number of columns of the matrix A.
+ N must be at least zero.
+ Unchanged on exit.
+
+ ALPHA - COMPLEX*16 .
+ On entry, ALPHA specifies the scalar alpha.
+ Unchanged on exit.
+
+ X - COMPLEX*16 array of dimension at least
+ ( 1 + ( m - 1 )*abs( INCX ) ).
+ Before entry, the incremented array X must contain the m
+ element vector x.
+ Unchanged on exit.
+
+ INCX - INTEGER.
+ On entry, INCX specifies the increment for the elements of
+ X. INCX must not be zero.
+ Unchanged on exit.
+
+ Y - COMPLEX*16 array of dimension at least
+ ( 1 + ( n - 1 )*abs( INCY ) ).
+ Before entry, the incremented array Y must contain the n
+ element vector y.
+ Unchanged on exit.
+
+ INCY - INTEGER.
+ On entry, INCY specifies the increment for the elements of
+ Y. INCY must not be zero.
+ Unchanged on exit.
+
+ A - COMPLEX*16 array of DIMENSION ( LDA, n ).
+ Before entry, the leading m by n part of the array A must
+ contain the matrix of coefficients. On exit, A is
+ overwritten by the updated matrix.
+
+ LDA - INTEGER.
+ On entry, LDA specifies the first dimension of A as declared
+ in the calling (sub) program. LDA must be at least
+ max( 1, m ).
+ Unchanged on exit.
+
+
+ Level 2 Blas routine.
+
+ -- Written on 22-October-1986.
+ Jack Dongarra, Argonne National Lab.
+ Jeremy Du Croz, Nag Central Office.
+ Sven Hammarling, Nag Central Office.
+ Richard Hanson, Sandia National Labs.
+
+
+ Test the input parameters.
+*/
+
+ /* Parameter adjustments */
+ --x;
+ --y;
+ a_dim1 = *lda;
+ a_offset = 1 + a_dim1;
+ a -= a_offset;
+
+ /* Function Body */
+ info = 0;
+ if (*m < 0) {
+ info = 1;
+ } else if (*n < 0) {
+ info = 2;
+ } else if (*incx == 0) {
+ info = 5;
+ } else if (*incy == 0) {
+ info = 7;
+ } else if (*lda < max(1,*m)) {
+ info = 9;
+ }
+ if (info != 0) {
+ xerbla_("ZGERU ", &info);
+ return 0;
+ }
+
+/* Quick return if possible. */
+
+ if (((*m == 0) || (*n == 0)) || (alpha->r == 0. && alpha->i == 0.)) {
+ return 0;
+ }
+
+/*
+ Start the operations. In this version the elements of A are
+ accessed sequentially with one pass through A.
+*/
+
+ if (*incy > 0) {
+ jy = 1;
+ } else {
+ jy = 1 - (*n - 1) * *incy;
+ }
+ if (*incx == 1) {
+ i__1 = *n;
+ for (j = 1; j <= i__1; ++j) {
+ i__2 = jy;
+ if ((y[i__2].r != 0.) || (y[i__2].i != 0.)) {
+ i__2 = jy;
+ z__1.r = alpha->r * y[i__2].r - alpha->i * y[i__2].i, z__1.i =
+ alpha->r * y[i__2].i + alpha->i * y[i__2].r;
+ temp.r = z__1.r, temp.i = z__1.i;
+ i__2 = *m;
+ for (i__ = 1; i__ <= i__2; ++i__) {
+ i__3 = i__ + j * a_dim1;
+ i__4 = i__ + j * a_dim1;
+ i__5 = i__;
+ z__2.r = x[i__5].r * temp.r - x[i__5].i * temp.i, z__2.i =
+ x[i__5].r * temp.i + x[i__5].i * temp.r;
+ z__1.r = a[i__4].r + z__2.r, z__1.i = a[i__4].i + z__2.i;
+ a[i__3].r = z__1.r, a[i__3].i = z__1.i;
+/* L10: */
+ }
+ }
+ jy += *incy;
+/* L20: */
+ }
+ } else {
+ if (*incx > 0) {
+ kx = 1;
+ } else {
+ kx = 1 - (*m - 1) * *incx;
+ }
+ i__1 = *n;
+ for (j = 1; j <= i__1; ++j) {
+ i__2 = jy;
+ if ((y[i__2].r != 0.) || (y[i__2].i != 0.)) {
+ i__2 = jy;
+ z__1.r = alpha->r * y[i__2].r - alpha->i * y[i__2].i, z__1.i =
+ alpha->r * y[i__2].i + alpha->i * y[i__2].r;
+ temp.r = z__1.r, temp.i = z__1.i;
+ ix = kx;
+ i__2 = *m;
+ for (i__ = 1; i__ <= i__2; ++i__) {
+ i__3 = i__ + j * a_dim1;
+ i__4 = i__ + j * a_dim1;
+ i__5 = ix;
+ z__2.r = x[i__5].r * temp.r - x[i__5].i * temp.i, z__2.i =
+ x[i__5].r * temp.i + x[i__5].i * temp.r;
+ z__1.r = a[i__4].r + z__2.r, z__1.i = a[i__4].i + z__2.i;
+ a[i__3].r = z__1.r, a[i__3].i = z__1.i;
+ ix += *incx;
+/* L30: */
+ }
+ }
+ jy += *incy;
+/* L40: */
+ }
+ }
+
+ return 0;
+
+/* End of ZGERU . */
+
+} /* zgeru_ */
+
+/* Subroutine */ int zhemv_(char *uplo, integer *n, doublecomplex *alpha,
+ doublecomplex *a, integer *lda, doublecomplex *x, integer *incx,
+ doublecomplex *beta, doublecomplex *y, integer *incy)
+{
+ /* System generated locals */
+ integer a_dim1, a_offset, i__1, i__2, i__3, i__4, i__5;
+ doublereal d__1;
+ doublecomplex z__1, z__2, z__3, z__4;
+
+ /* Builtin functions */
+ void d_cnjg(doublecomplex *, doublecomplex *);
+
+ /* Local variables */
+ static integer i__, j, ix, iy, jx, jy, kx, ky, info;
+ static doublecomplex temp1, temp2;
+ extern logical lsame_(char *, char *);
+ extern /* Subroutine */ int xerbla_(char *, integer *);
+
+
+/*
+ Purpose
+ =======
+
+ ZHEMV performs the matrix-vector operation
+
+ y := alpha*A*x + beta*y,
+
+ where alpha and beta are scalars, x and y are n element vectors and
+ A is an n by n hermitian matrix.
+
+ Parameters
+ ==========
+
+ UPLO - CHARACTER*1.
+ On entry, UPLO specifies whether the upper or lower
+ triangular part of the array A is to be referenced as
+ follows:
+
+ UPLO = 'U' or 'u' Only the upper triangular part of A
+ is to be referenced.
+
+ UPLO = 'L' or 'l' Only the lower triangular part of A
+ is to be referenced.
+
+ Unchanged on exit.
+
+ N - INTEGER.
+ On entry, N specifies the order of the matrix A.
+ N must be at least zero.
+ Unchanged on exit.
+
+ ALPHA - COMPLEX*16 .
+ On entry, ALPHA specifies the scalar alpha.
+ Unchanged on exit.
+
+ A - COMPLEX*16 array of DIMENSION ( LDA, n ).
+ Before entry with UPLO = 'U' or 'u', the leading n by n
+ upper triangular part of the array A must contain the upper
+ triangular part of the hermitian matrix and the strictly
+ lower triangular part of A is not referenced.
+ Before entry with UPLO = 'L' or 'l', the leading n by n
+ lower triangular part of the array A must contain the lower
+ triangular part of the hermitian matrix and the strictly
+ upper triangular part of A is not referenced.
+ Note that the imaginary parts of the diagonal elements need
+ not be set and are assumed to be zero.
+ Unchanged on exit.
+
+ LDA - INTEGER.
+ On entry, LDA specifies the first dimension of A as declared
+ in the calling (sub) program. LDA must be at least
+ max( 1, n ).
+ Unchanged on exit.
+
+ X - COMPLEX*16 array of dimension at least
+ ( 1 + ( n - 1 )*abs( INCX ) ).
+ Before entry, the incremented array X must contain the n
+ element vector x.
+ Unchanged on exit.
+
+ INCX - INTEGER.
+ On entry, INCX specifies the increment for the elements of
+ X. INCX must not be zero.
+ Unchanged on exit.
+
+ BETA - COMPLEX*16 .
+ On entry, BETA specifies the scalar beta. When BETA is
+ supplied as zero then Y need not be set on input.
+ Unchanged on exit.
+
+ Y - COMPLEX*16 array of dimension at least
+ ( 1 + ( n - 1 )*abs( INCY ) ).
+ Before entry, the incremented array Y must contain the n
+ element vector y. On exit, Y is overwritten by the updated
+ vector y.
+
+ INCY - INTEGER.
+ On entry, INCY specifies the increment for the elements of
+ Y. INCY must not be zero.
+ Unchanged on exit.
+
+
+ Level 2 Blas routine.
+
+ -- Written on 22-October-1986.
+ Jack Dongarra, Argonne National Lab.
+ Jeremy Du Croz, Nag Central Office.
+ Sven Hammarling, Nag Central Office.
+ Richard Hanson, Sandia National Labs.
+
+
+ Test the input parameters.
+*/
+
+ /* Parameter adjustments */
+ a_dim1 = *lda;
+ a_offset = 1 + a_dim1;
+ a -= a_offset;
+ --x;
+ --y;
+
+ /* Function Body */
+ info = 0;
+ if (! lsame_(uplo, "U") && ! lsame_(uplo, "L")) {
+ info = 1;
+ } else if (*n < 0) {
+ info = 2;
+ } else if (*lda < max(1,*n)) {
+ info = 5;
+ } else if (*incx == 0) {
+ info = 7;
+ } else if (*incy == 0) {
+ info = 10;
+ }
+ if (info != 0) {
+ xerbla_("ZHEMV ", &info);
+ return 0;
+ }
+
+/* Quick return if possible. */
+
+ if ((*n == 0) || (alpha->r == 0. && alpha->i == 0. && (beta->r == 1. &&
+ beta->i == 0.))) {
+ return 0;
+ }
+
+/* Set up the start points in X and Y. */
+
+ if (*incx > 0) {
+ kx = 1;
+ } else {
+ kx = 1 - (*n - 1) * *incx;
+ }
+ if (*incy > 0) {
+ ky = 1;
+ } else {
+ ky = 1 - (*n - 1) * *incy;
+ }
+
+/*
+ Start the operations. In this version the elements of A are
+ accessed sequentially with one pass through the triangular part
+ of A.
+
+ First form y := beta*y.
+*/
+
+ if ((beta->r != 1.) || (beta->i != 0.)) {
+ if (*incy == 1) {
+ if (beta->r == 0. && beta->i == 0.) {
+ i__1 = *n;
+ for (i__ = 1; i__ <= i__1; ++i__) {
+ i__2 = i__;
+ y[i__2].r = 0., y[i__2].i = 0.;
+/* L10: */
+ }
+ } else {
+ i__1 = *n;
+ for (i__ = 1; i__ <= i__1; ++i__) {
+ i__2 = i__;
+ i__3 = i__;
+ z__1.r = beta->r * y[i__3].r - beta->i * y[i__3].i,
+ z__1.i = beta->r * y[i__3].i + beta->i * y[i__3]
+ .r;
+ y[i__2].r = z__1.r, y[i__2].i = z__1.i;
+/* L20: */
+ }
+ }
+ } else {
+ iy = ky;
+ if (beta->r == 0. && beta->i == 0.) {
+ i__1 = *n;
+ for (i__ = 1; i__ <= i__1; ++i__) {
+ i__2 = iy;
+ y[i__2].r = 0., y[i__2].i = 0.;
+ iy += *incy;
+/* L30: */
+ }
+ } else {
+ i__1 = *n;
+ for (i__ = 1; i__ <= i__1; ++i__) {
+ i__2 = iy;
+ i__3 = iy;
+ z__1.r = beta->r * y[i__3].r - beta->i * y[i__3].i,
+ z__1.i = beta->r * y[i__3].i + beta->i * y[i__3]
+ .r;
+ y[i__2].r = z__1.r, y[i__2].i = z__1.i;
+ iy += *incy;
+/* L40: */
+ }
+ }
+ }
+ }
+ if (alpha->r == 0. && alpha->i == 0.) {
+ return 0;
+ }
+ if (lsame_(uplo, "U")) {
+
+/* Form y when A is stored in upper triangle. */
+
+ if (*incx == 1 && *incy == 1) {
+ i__1 = *n;
+ for (j = 1; j <= i__1; ++j) {
+ i__2 = j;
+ z__1.r = alpha->r * x[i__2].r - alpha->i * x[i__2].i, z__1.i =
+ alpha->r * x[i__2].i + alpha->i * x[i__2].r;
+ temp1.r = z__1.r, temp1.i = z__1.i;
+ temp2.r = 0., temp2.i = 0.;
+ i__2 = j - 1;
+ for (i__ = 1; i__ <= i__2; ++i__) {
+ i__3 = i__;
+ i__4 = i__;
+ i__5 = i__ + j * a_dim1;
+ z__2.r = temp1.r * a[i__5].r - temp1.i * a[i__5].i,
+ z__2.i = temp1.r * a[i__5].i + temp1.i * a[i__5]
+ .r;
+ z__1.r = y[i__4].r + z__2.r, z__1.i = y[i__4].i + z__2.i;
+ y[i__3].r = z__1.r, y[i__3].i = z__1.i;
+ d_cnjg(&z__3, &a[i__ + j * a_dim1]);
+ i__3 = i__;
+ z__2.r = z__3.r * x[i__3].r - z__3.i * x[i__3].i, z__2.i =
+ z__3.r * x[i__3].i + z__3.i * x[i__3].r;
+ z__1.r = temp2.r + z__2.r, z__1.i = temp2.i + z__2.i;
+ temp2.r = z__1.r, temp2.i = z__1.i;
+/* L50: */
+ }
+ i__2 = j;
+ i__3 = j;
+ i__4 = j + j * a_dim1;
+ d__1 = a[i__4].r;
+ z__3.r = d__1 * temp1.r, z__3.i = d__1 * temp1.i;
+ z__2.r = y[i__3].r + z__3.r, z__2.i = y[i__3].i + z__3.i;
+ z__4.r = alpha->r * temp2.r - alpha->i * temp2.i, z__4.i =
+ alpha->r * temp2.i + alpha->i * temp2.r;
+ z__1.r = z__2.r + z__4.r, z__1.i = z__2.i + z__4.i;
+ y[i__2].r = z__1.r, y[i__2].i = z__1.i;
+/* L60: */
+ }
+ } else {
+ jx = kx;
+ jy = ky;
+ i__1 = *n;
+ for (j = 1; j <= i__1; ++j) {
+ i__2 = jx;
+ z__1.r = alpha->r * x[i__2].r - alpha->i * x[i__2].i, z__1.i =
+ alpha->r * x[i__2].i + alpha->i * x[i__2].r;
+ temp1.r = z__1.r, temp1.i = z__1.i;
+ temp2.r = 0., temp2.i = 0.;
+ ix = kx;
+ iy = ky;
+ i__2 = j - 1;
+ for (i__ = 1; i__ <= i__2; ++i__) {
+ i__3 = iy;
+ i__4 = iy;
+ i__5 = i__ + j * a_dim1;
+ z__2.r = temp1.r * a[i__5].r - temp1.i * a[i__5].i,
+ z__2.i = temp1.r * a[i__5].i + temp1.i * a[i__5]
+ .r;
+ z__1.r = y[i__4].r + z__2.r, z__1.i = y[i__4].i + z__2.i;
+ y[i__3].r = z__1.r, y[i__3].i = z__1.i;
+ d_cnjg(&z__3, &a[i__ + j * a_dim1]);
+ i__3 = ix;
+ z__2.r = z__3.r * x[i__3].r - z__3.i * x[i__3].i, z__2.i =
+ z__3.r * x[i__3].i + z__3.i * x[i__3].r;
+ z__1.r = temp2.r + z__2.r, z__1.i = temp2.i + z__2.i;
+ temp2.r = z__1.r, temp2.i = z__1.i;
+ ix += *incx;
+ iy += *incy;
+/* L70: */
+ }
+ i__2 = jy;
+ i__3 = jy;
+ i__4 = j + j * a_dim1;
+ d__1 = a[i__4].r;
+ z__3.r = d__1 * temp1.r, z__3.i = d__1 * temp1.i;
+ z__2.r = y[i__3].r + z__3.r, z__2.i = y[i__3].i + z__3.i;
+ z__4.r = alpha->r * temp2.r - alpha->i * temp2.i, z__4.i =
+ alpha->r * temp2.i + alpha->i * temp2.r;
+ z__1.r = z__2.r + z__4.r, z__1.i = z__2.i + z__4.i;
+ y[i__2].r = z__1.r, y[i__2].i = z__1.i;
+ jx += *incx;
+ jy += *incy;
+/* L80: */
+ }
+ }
+ } else {
+
+/* Form y when A is stored in lower triangle. */
+
+ if (*incx == 1 && *incy == 1) {
+ i__1 = *n;
+ for (j = 1; j <= i__1; ++j) {
+ i__2 = j;
+ z__1.r = alpha->r * x[i__2].r - alpha->i * x[i__2].i, z__1.i =
+ alpha->r * x[i__2].i + alpha->i * x[i__2].r;
+ temp1.r = z__1.r, temp1.i = z__1.i;
+ temp2.r = 0., temp2.i = 0.;
+ i__2 = j;
+ i__3 = j;
+ i__4 = j + j * a_dim1;
+ d__1 = a[i__4].r;
+ z__2.r = d__1 * temp1.r, z__2.i = d__1 * temp1.i;
+ z__1.r = y[i__3].r + z__2.r, z__1.i = y[i__3].i + z__2.i;
+ y[i__2].r = z__1.r, y[i__2].i = z__1.i;
+ i__2 = *n;
+ for (i__ = j + 1; i__ <= i__2; ++i__) {
+ i__3 = i__;
+ i__4 = i__;
+ i__5 = i__ + j * a_dim1;
+ z__2.r = temp1.r * a[i__5].r - temp1.i * a[i__5].i,
+ z__2.i = temp1.r * a[i__5].i + temp1.i * a[i__5]
+ .r;
+ z__1.r = y[i__4].r + z__2.r, z__1.i = y[i__4].i + z__2.i;
+ y[i__3].r = z__1.r, y[i__3].i = z__1.i;
+ d_cnjg(&z__3, &a[i__ + j * a_dim1]);
+ i__3 = i__;
+ z__2.r = z__3.r * x[i__3].r - z__3.i * x[i__3].i, z__2.i =
+ z__3.r * x[i__3].i + z__3.i * x[i__3].r;
+ z__1.r = temp2.r + z__2.r, z__1.i = temp2.i + z__2.i;
+ temp2.r = z__1.r, temp2.i = z__1.i;
+/* L90: */
+ }
+ i__2 = j;
+ i__3 = j;
+ z__2.r = alpha->r * temp2.r - alpha->i * temp2.i, z__2.i =
+ alpha->r * temp2.i + alpha->i * temp2.r;
+ z__1.r = y[i__3].r + z__2.r, z__1.i = y[i__3].i + z__2.i;
+ y[i__2].r = z__1.r, y[i__2].i = z__1.i;
+/* L100: */
+ }
+ } else {
+ jx = kx;
+ jy = ky;
+ i__1 = *n;
+ for (j = 1; j <= i__1; ++j) {
+ i__2 = jx;
+ z__1.r = alpha->r * x[i__2].r - alpha->i * x[i__2].i, z__1.i =
+ alpha->r * x[i__2].i + alpha->i * x[i__2].r;
+ temp1.r = z__1.r, temp1.i = z__1.i;
+ temp2.r = 0., temp2.i = 0.;
+ i__2 = jy;
+ i__3 = jy;
+ i__4 = j + j * a_dim1;
+ d__1 = a[i__4].r;
+ z__2.r = d__1 * temp1.r, z__2.i = d__1 * temp1.i;
+ z__1.r = y[i__3].r + z__2.r, z__1.i = y[i__3].i + z__2.i;
+ y[i__2].r = z__1.r, y[i__2].i = z__1.i;
+ ix = jx;
+ iy = jy;
+ i__2 = *n;
+ for (i__ = j + 1; i__ <= i__2; ++i__) {
+ ix += *incx;
+ iy += *incy;
+ i__3 = iy;
+ i__4 = iy;
+ i__5 = i__ + j * a_dim1;
+ z__2.r = temp1.r * a[i__5].r - temp1.i * a[i__5].i,
+ z__2.i = temp1.r * a[i__5].i + temp1.i * a[i__5]
+ .r;
+ z__1.r = y[i__4].r + z__2.r, z__1.i = y[i__4].i + z__2.i;
+ y[i__3].r = z__1.r, y[i__3].i = z__1.i;
+ d_cnjg(&z__3, &a[i__ + j * a_dim1]);
+ i__3 = ix;
+ z__2.r = z__3.r * x[i__3].r - z__3.i * x[i__3].i, z__2.i =
+ z__3.r * x[i__3].i + z__3.i * x[i__3].r;
+ z__1.r = temp2.r + z__2.r, z__1.i = temp2.i + z__2.i;
+ temp2.r = z__1.r, temp2.i = z__1.i;
+/* L110: */
+ }
+ i__2 = jy;
+ i__3 = jy;
+ z__2.r = alpha->r * temp2.r - alpha->i * temp2.i, z__2.i =
+ alpha->r * temp2.i + alpha->i * temp2.r;
+ z__1.r = y[i__3].r + z__2.r, z__1.i = y[i__3].i + z__2.i;
+ y[i__2].r = z__1.r, y[i__2].i = z__1.i;
+ jx += *incx;
+ jy += *incy;
+/* L120: */
+ }
+ }
+ }
+
+ return 0;
+
+/* End of ZHEMV . */
+
+} /* zhemv_ */
+
+/* Subroutine */ int zher2_(char *uplo, integer *n, doublecomplex *alpha,
+ doublecomplex *x, integer *incx, doublecomplex *y, integer *incy,
+ doublecomplex *a, integer *lda)
+{
+ /* System generated locals */
+ integer a_dim1, a_offset, i__1, i__2, i__3, i__4, i__5, i__6;
+ doublereal d__1;
+ doublecomplex z__1, z__2, z__3, z__4;
+
+ /* Builtin functions */
+ void d_cnjg(doublecomplex *, doublecomplex *);
+
+ /* Local variables */
+ static integer i__, j, ix, iy, jx, jy, kx, ky, info;
+ static doublecomplex temp1, temp2;
+ extern logical lsame_(char *, char *);
+ extern /* Subroutine */ int xerbla_(char *, integer *);
+
+
+/*
+ Purpose
+ =======
+
+ ZHER2 performs the hermitian rank 2 operation
+
+ A := alpha*x*conjg( y' ) + conjg( alpha )*y*conjg( x' ) + A,
+
+ where alpha is a scalar, x and y are n element vectors and A is an n
+ by n hermitian matrix.
+
+ Parameters
+ ==========
+
+ UPLO - CHARACTER*1.
+ On entry, UPLO specifies whether the upper or lower
+ triangular part of the array A is to be referenced as
+ follows:
+
+ UPLO = 'U' or 'u' Only the upper triangular part of A
+ is to be referenced.
+
+ UPLO = 'L' or 'l' Only the lower triangular part of A
+ is to be referenced.
+
+ Unchanged on exit.
+
+ N - INTEGER.
+ On entry, N specifies the order of the matrix A.
+ N must be at least zero.
+ Unchanged on exit.
+
+ ALPHA - COMPLEX*16 .
+ On entry, ALPHA specifies the scalar alpha.
+ Unchanged on exit.
+
+ X - COMPLEX*16 array of dimension at least
+ ( 1 + ( n - 1 )*abs( INCX ) ).
+ Before entry, the incremented array X must contain the n
+ element vector x.
+ Unchanged on exit.
+
+ INCX - INTEGER.
+ On entry, INCX specifies the increment for the elements of
+ X. INCX must not be zero.
+ Unchanged on exit.
+
+ Y - COMPLEX*16 array of dimension at least
+ ( 1 + ( n - 1 )*abs( INCY ) ).
+ Before entry, the incremented array Y must contain the n
+ element vector y.
+ Unchanged on exit.
+
+ INCY - INTEGER.
+ On entry, INCY specifies the increment for the elements of
+ Y. INCY must not be zero.
+ Unchanged on exit.
+
+ A - COMPLEX*16 array of DIMENSION ( LDA, n ).
+ Before entry with UPLO = 'U' or 'u', the leading n by n
+ upper triangular part of the array A must contain the upper
+ triangular part of the hermitian matrix and the strictly
+ lower triangular part of A is not referenced. On exit, the
+ upper triangular part of the array A is overwritten by the
+ upper triangular part of the updated matrix.
+ Before entry with UPLO = 'L' or 'l', the leading n by n
+ lower triangular part of the array A must contain the lower
+ triangular part of the hermitian matrix and the strictly
+ upper triangular part of A is not referenced. On exit, the
+ lower triangular part of the array A is overwritten by the
+ lower triangular part of the updated matrix.
+ Note that the imaginary parts of the diagonal elements need
+ not be set, they are assumed to be zero, and on exit they
+ are set to zero.
+
+ LDA - INTEGER.
+ On entry, LDA specifies the first dimension of A as declared
+ in the calling (sub) program. LDA must be at least
+ max( 1, n ).
+ Unchanged on exit.
+
+
+ Level 2 Blas routine.
+
+ -- Written on 22-October-1986.
+ Jack Dongarra, Argonne National Lab.
+ Jeremy Du Croz, Nag Central Office.
+ Sven Hammarling, Nag Central Office.
+ Richard Hanson, Sandia National Labs.
+
+
+ Test the input parameters.
+*/
+
+ /* Parameter adjustments */
+ --x;
+ --y;
+ a_dim1 = *lda;
+ a_offset = 1 + a_dim1;
+ a -= a_offset;
+
+ /* Function Body */
+ info = 0;
+ if (! lsame_(uplo, "U") && ! lsame_(uplo, "L")) {
+ info = 1;
+ } else if (*n < 0) {
+ info = 2;
+ } else if (*incx == 0) {
+ info = 5;
+ } else if (*incy == 0) {
+ info = 7;
+ } else if (*lda < max(1,*n)) {
+ info = 9;
+ }
+ if (info != 0) {
+ xerbla_("ZHER2 ", &info);
+ return 0;
+ }
+
+/* Quick return if possible. */
+
+ if ((*n == 0) || (alpha->r == 0. && alpha->i == 0.)) {
+ return 0;
+ }
+
+/*
+ Set up the start points in X and Y if the increments are not both
+ unity.
+*/
+
+ if ((*incx != 1) || (*incy != 1)) {
+ if (*incx > 0) {
+ kx = 1;
+ } else {
+ kx = 1 - (*n - 1) * *incx;
+ }
+ if (*incy > 0) {
+ ky = 1;
+ } else {
+ ky = 1 - (*n - 1) * *incy;
+ }
+ jx = kx;
+ jy = ky;
+ }
+
+/*
+ Start the operations. In this version the elements of A are
+ accessed sequentially with one pass through the triangular part
+ of A.
+*/
+
+ if (lsame_(uplo, "U")) {
+
+/* Form A when A is stored in the upper triangle. */
+
+ if (*incx == 1 && *incy == 1) {
+ i__1 = *n;
+ for (j = 1; j <= i__1; ++j) {
+ i__2 = j;
+ i__3 = j;
+ if (((x[i__2].r != 0.) || (x[i__2].i != 0.)) || (((y[i__3].r
+ != 0.) || (y[i__3].i != 0.)))) {
+ d_cnjg(&z__2, &y[j]);
+ z__1.r = alpha->r * z__2.r - alpha->i * z__2.i, z__1.i =
+ alpha->r * z__2.i + alpha->i * z__2.r;
+ temp1.r = z__1.r, temp1.i = z__1.i;
+ i__2 = j;
+ z__2.r = alpha->r * x[i__2].r - alpha->i * x[i__2].i,
+ z__2.i = alpha->r * x[i__2].i + alpha->i * x[i__2]
+ .r;
+ d_cnjg(&z__1, &z__2);
+ temp2.r = z__1.r, temp2.i = z__1.i;
+ i__2 = j - 1;
+ for (i__ = 1; i__ <= i__2; ++i__) {
+ i__3 = i__ + j * a_dim1;
+ i__4 = i__ + j * a_dim1;
+ i__5 = i__;
+ z__3.r = x[i__5].r * temp1.r - x[i__5].i * temp1.i,
+ z__3.i = x[i__5].r * temp1.i + x[i__5].i *
+ temp1.r;
+ z__2.r = a[i__4].r + z__3.r, z__2.i = a[i__4].i +
+ z__3.i;
+ i__6 = i__;
+ z__4.r = y[i__6].r * temp2.r - y[i__6].i * temp2.i,
+ z__4.i = y[i__6].r * temp2.i + y[i__6].i *
+ temp2.r;
+ z__1.r = z__2.r + z__4.r, z__1.i = z__2.i + z__4.i;
+ a[i__3].r = z__1.r, a[i__3].i = z__1.i;
+/* L10: */
+ }
+ i__2 = j + j * a_dim1;
+ i__3 = j + j * a_dim1;
+ i__4 = j;
+ z__2.r = x[i__4].r * temp1.r - x[i__4].i * temp1.i,
+ z__2.i = x[i__4].r * temp1.i + x[i__4].i *
+ temp1.r;
+ i__5 = j;
+ z__3.r = y[i__5].r * temp2.r - y[i__5].i * temp2.i,
+ z__3.i = y[i__5].r * temp2.i + y[i__5].i *
+ temp2.r;
+ z__1.r = z__2.r + z__3.r, z__1.i = z__2.i + z__3.i;
+ d__1 = a[i__3].r + z__1.r;
+ a[i__2].r = d__1, a[i__2].i = 0.;
+ } else {
+ i__2 = j + j * a_dim1;
+ i__3 = j + j * a_dim1;
+ d__1 = a[i__3].r;
+ a[i__2].r = d__1, a[i__2].i = 0.;
+ }
+/* L20: */
+ }
+ } else {
+ i__1 = *n;
+ for (j = 1; j <= i__1; ++j) {
+ i__2 = jx;
+ i__3 = jy;
+ if (((x[i__2].r != 0.) || (x[i__2].i != 0.)) || (((y[i__3].r
+ != 0.) || (y[i__3].i != 0.)))) {
+ d_cnjg(&z__2, &y[jy]);
+ z__1.r = alpha->r * z__2.r - alpha->i * z__2.i, z__1.i =
+ alpha->r * z__2.i + alpha->i * z__2.r;
+ temp1.r = z__1.r, temp1.i = z__1.i;
+ i__2 = jx;
+ z__2.r = alpha->r * x[i__2].r - alpha->i * x[i__2].i,
+ z__2.i = alpha->r * x[i__2].i + alpha->i * x[i__2]
+ .r;
+ d_cnjg(&z__1, &z__2);
+ temp2.r = z__1.r, temp2.i = z__1.i;
+ ix = kx;
+ iy = ky;
+ i__2 = j - 1;
+ for (i__ = 1; i__ <= i__2; ++i__) {
+ i__3 = i__ + j * a_dim1;
+ i__4 = i__ + j * a_dim1;
+ i__5 = ix;
+ z__3.r = x[i__5].r * temp1.r - x[i__5].i * temp1.i,
+ z__3.i = x[i__5].r * temp1.i + x[i__5].i *
+ temp1.r;
+ z__2.r = a[i__4].r + z__3.r, z__2.i = a[i__4].i +
+ z__3.i;
+ i__6 = iy;
+ z__4.r = y[i__6].r * temp2.r - y[i__6].i * temp2.i,
+ z__4.i = y[i__6].r * temp2.i + y[i__6].i *
+ temp2.r;
+ z__1.r = z__2.r + z__4.r, z__1.i = z__2.i + z__4.i;
+ a[i__3].r = z__1.r, a[i__3].i = z__1.i;
+ ix += *incx;
+ iy += *incy;
+/* L30: */
+ }
+ i__2 = j + j * a_dim1;
+ i__3 = j + j * a_dim1;
+ i__4 = jx;
+ z__2.r = x[i__4].r * temp1.r - x[i__4].i * temp1.i,
+ z__2.i = x[i__4].r * temp1.i + x[i__4].i *
+ temp1.r;
+ i__5 = jy;
+ z__3.r = y[i__5].r * temp2.r - y[i__5].i * temp2.i,
+ z__3.i = y[i__5].r * temp2.i + y[i__5].i *
+ temp2.r;
+ z__1.r = z__2.r + z__3.r, z__1.i = z__2.i + z__3.i;
+ d__1 = a[i__3].r + z__1.r;
+ a[i__2].r = d__1, a[i__2].i = 0.;
+ } else {
+ i__2 = j + j * a_dim1;
+ i__3 = j + j * a_dim1;
+ d__1 = a[i__3].r;
+ a[i__2].r = d__1, a[i__2].i = 0.;
+ }
+ jx += *incx;
+ jy += *incy;
+/* L40: */
+ }
+ }
+ } else {
+
+/* Form A when A is stored in the lower triangle. */
+
+ if (*incx == 1 && *incy == 1) {
+ i__1 = *n;
+ for (j = 1; j <= i__1; ++j) {
+ i__2 = j;
+ i__3 = j;
+ if (((x[i__2].r != 0.) || (x[i__2].i != 0.)) || (((y[i__3].r
+ != 0.) || (y[i__3].i != 0.)))) {
+ d_cnjg(&z__2, &y[j]);
+ z__1.r = alpha->r * z__2.r - alpha->i * z__2.i, z__1.i =
+ alpha->r * z__2.i + alpha->i * z__2.r;
+ temp1.r = z__1.r, temp1.i = z__1.i;
+ i__2 = j;
+ z__2.r = alpha->r * x[i__2].r - alpha->i * x[i__2].i,
+ z__2.i = alpha->r * x[i__2].i + alpha->i * x[i__2]
+ .r;
+ d_cnjg(&z__1, &z__2);
+ temp2.r = z__1.r, temp2.i = z__1.i;
+ i__2 = j + j * a_dim1;
+ i__3 = j + j * a_dim1;
+ i__4 = j;
+ z__2.r = x[i__4].r * temp1.r - x[i__4].i * temp1.i,
+ z__2.i = x[i__4].r * temp1.i + x[i__4].i *
+ temp1.r;
+ i__5 = j;
+ z__3.r = y[i__5].r * temp2.r - y[i__5].i * temp2.i,
+ z__3.i = y[i__5].r * temp2.i + y[i__5].i *
+ temp2.r;
+ z__1.r = z__2.r + z__3.r, z__1.i = z__2.i + z__3.i;
+ d__1 = a[i__3].r + z__1.r;
+ a[i__2].r = d__1, a[i__2].i = 0.;
+ i__2 = *n;
+ for (i__ = j + 1; i__ <= i__2; ++i__) {
+ i__3 = i__ + j * a_dim1;
+ i__4 = i__ + j * a_dim1;
+ i__5 = i__;
+ z__3.r = x[i__5].r * temp1.r - x[i__5].i * temp1.i,
+ z__3.i = x[i__5].r * temp1.i + x[i__5].i *
+ temp1.r;
+ z__2.r = a[i__4].r + z__3.r, z__2.i = a[i__4].i +
+ z__3.i;
+ i__6 = i__;
+ z__4.r = y[i__6].r * temp2.r - y[i__6].i * temp2.i,
+ z__4.i = y[i__6].r * temp2.i + y[i__6].i *
+ temp2.r;
+ z__1.r = z__2.r + z__4.r, z__1.i = z__2.i + z__4.i;
+ a[i__3].r = z__1.r, a[i__3].i = z__1.i;
+/* L50: */
+ }
+ } else {
+ i__2 = j + j * a_dim1;
+ i__3 = j + j * a_dim1;
+ d__1 = a[i__3].r;
+ a[i__2].r = d__1, a[i__2].i = 0.;
+ }
+/* L60: */
+ }
+ } else {
+ i__1 = *n;
+ for (j = 1; j <= i__1; ++j) {
+ i__2 = jx;
+ i__3 = jy;
+ if (((x[i__2].r != 0.) || (x[i__2].i != 0.)) || (((y[i__3].r
+ != 0.) || (y[i__3].i != 0.)))) {
+ d_cnjg(&z__2, &y[jy]);
+ z__1.r = alpha->r * z__2.r - alpha->i * z__2.i, z__1.i =
+ alpha->r * z__2.i + alpha->i * z__2.r;
+ temp1.r = z__1.r, temp1.i = z__1.i;
+ i__2 = jx;
+ z__2.r = alpha->r * x[i__2].r - alpha->i * x[i__2].i,
+ z__2.i = alpha->r * x[i__2].i + alpha->i * x[i__2]
+ .r;
+ d_cnjg(&z__1, &z__2);
+ temp2.r = z__1.r, temp2.i = z__1.i;
+ i__2 = j + j * a_dim1;
+ i__3 = j + j * a_dim1;
+ i__4 = jx;
+ z__2.r = x[i__4].r * temp1.r - x[i__4].i * temp1.i,
+ z__2.i = x[i__4].r * temp1.i + x[i__4].i *
+ temp1.r;
+ i__5 = jy;
+ z__3.r = y[i__5].r * temp2.r - y[i__5].i * temp2.i,
+ z__3.i = y[i__5].r * temp2.i + y[i__5].i *
+ temp2.r;
+ z__1.r = z__2.r + z__3.r, z__1.i = z__2.i + z__3.i;
+ d__1 = a[i__3].r + z__1.r;
+ a[i__2].r = d__1, a[i__2].i = 0.;
+ ix = jx;
+ iy = jy;
+ i__2 = *n;
+ for (i__ = j + 1; i__ <= i__2; ++i__) {
+ ix += *incx;
+ iy += *incy;
+ i__3 = i__ + j * a_dim1;
+ i__4 = i__ + j * a_dim1;
+ i__5 = ix;
+ z__3.r = x[i__5].r * temp1.r - x[i__5].i * temp1.i,
+ z__3.i = x[i__5].r * temp1.i + x[i__5].i *
+ temp1.r;
+ z__2.r = a[i__4].r + z__3.r, z__2.i = a[i__4].i +
+ z__3.i;
+ i__6 = iy;
+ z__4.r = y[i__6].r * temp2.r - y[i__6].i * temp2.i,
+ z__4.i = y[i__6].r * temp2.i + y[i__6].i *
+ temp2.r;
+ z__1.r = z__2.r + z__4.r, z__1.i = z__2.i + z__4.i;
+ a[i__3].r = z__1.r, a[i__3].i = z__1.i;
+/* L70: */
+ }
+ } else {
+ i__2 = j + j * a_dim1;
+ i__3 = j + j * a_dim1;
+ d__1 = a[i__3].r;
+ a[i__2].r = d__1, a[i__2].i = 0.;
+ }
+ jx += *incx;
+ jy += *incy;
+/* L80: */
+ }
+ }
+ }
+
+ return 0;
+
+/* End of ZHER2 . */
+
+} /* zher2_ */
+
+/* Subroutine */ int zher2k_(char *uplo, char *trans, integer *n, integer *k,
+ doublecomplex *alpha, doublecomplex *a, integer *lda, doublecomplex *
+ b, integer *ldb, doublereal *beta, doublecomplex *c__, integer *ldc)
+{
+ /* System generated locals */
+ integer a_dim1, a_offset, b_dim1, b_offset, c_dim1, c_offset, i__1, i__2,
+ i__3, i__4, i__5, i__6, i__7;
+ doublereal d__1;
+ doublecomplex z__1, z__2, z__3, z__4, z__5, z__6;
+
+ /* Builtin functions */
+ void d_cnjg(doublecomplex *, doublecomplex *);
+
+ /* Local variables */
+ static integer i__, j, l, info;
+ static doublecomplex temp1, temp2;
+ extern logical lsame_(char *, char *);
+ static integer nrowa;
+ static logical upper;
+ extern /* Subroutine */ int xerbla_(char *, integer *);
+
+
+/*
+ Purpose
+ =======
+
+ ZHER2K performs one of the hermitian rank 2k operations
+
+ C := alpha*A*conjg( B' ) + conjg( alpha )*B*conjg( A' ) + beta*C,
+
+ or
+
+ C := alpha*conjg( A' )*B + conjg( alpha )*conjg( B' )*A + beta*C,
+
+ where alpha and beta are scalars with beta real, C is an n by n
+ hermitian matrix and A and B are n by k matrices in the first case
+ and k by n matrices in the second case.
+
+ Parameters
+ ==========
+
+ UPLO - CHARACTER*1.
+ On entry, UPLO specifies whether the upper or lower
+ triangular part of the array C is to be referenced as
+ follows:
+
+ UPLO = 'U' or 'u' Only the upper triangular part of C
+ is to be referenced.
+
+ UPLO = 'L' or 'l' Only the lower triangular part of C
+ is to be referenced.
+
+ Unchanged on exit.
+
+ TRANS - CHARACTER*1.
+ On entry, TRANS specifies the operation to be performed as
+ follows:
+
+ TRANS = 'N' or 'n' C := alpha*A*conjg( B' ) +
+ conjg( alpha )*B*conjg( A' ) +
+ beta*C.
+
+ TRANS = 'C' or 'c' C := alpha*conjg( A' )*B +
+ conjg( alpha )*conjg( B' )*A +
+ beta*C.
+
+ Unchanged on exit.
+
+ N - INTEGER.
+ On entry, N specifies the order of the matrix C. N must be
+ at least zero.
+ Unchanged on exit.
+
+ K - INTEGER.
+ On entry with TRANS = 'N' or 'n', K specifies the number
+ of columns of the matrices A and B, and on entry with
+ TRANS = 'C' or 'c', K specifies the number of rows of the
+ matrices A and B. K must be at least zero.
+ Unchanged on exit.
+
+ ALPHA - COMPLEX*16 .
+ On entry, ALPHA specifies the scalar alpha.
+ Unchanged on exit.
+
+ A - COMPLEX*16 array of DIMENSION ( LDA, ka ), where ka is
+ k when TRANS = 'N' or 'n', and is n otherwise.
+ Before entry with TRANS = 'N' or 'n', the leading n by k
+ part of the array A must contain the matrix A, otherwise
+ the leading k by n part of the array A must contain the
+ matrix A.
+ Unchanged on exit.
+
+ LDA - INTEGER.
+ On entry, LDA specifies the first dimension of A as declared
+ in the calling (sub) program. When TRANS = 'N' or 'n'
+ then LDA must be at least max( 1, n ), otherwise LDA must
+ be at least max( 1, k ).
+ Unchanged on exit.
+
+ B - COMPLEX*16 array of DIMENSION ( LDB, kb ), where kb is
+ k when TRANS = 'N' or 'n', and is n otherwise.
+ Before entry with TRANS = 'N' or 'n', the leading n by k
+ part of the array B must contain the matrix B, otherwise
+ the leading k by n part of the array B must contain the
+ matrix B.
+ Unchanged on exit.
+
+ LDB - INTEGER.
+ On entry, LDB specifies the first dimension of B as declared
+ in the calling (sub) program. When TRANS = 'N' or 'n'
+ then LDB must be at least max( 1, n ), otherwise LDB must
+ be at least max( 1, k ).
+ Unchanged on exit.
+
+ BETA - DOUBLE PRECISION .
+ On entry, BETA specifies the scalar beta.
+ Unchanged on exit.
+
+ C - COMPLEX*16 array of DIMENSION ( LDC, n ).
+ Before entry with UPLO = 'U' or 'u', the leading n by n
+ upper triangular part of the array C must contain the upper
+ triangular part of the hermitian matrix and the strictly
+ lower triangular part of C is not referenced. On exit, the
+ upper triangular part of the array C is overwritten by the
+ upper triangular part of the updated matrix.
+ Before entry with UPLO = 'L' or 'l', the leading n by n
+ lower triangular part of the array C must contain the lower
+ triangular part of the hermitian matrix and the strictly
+ upper triangular part of C is not referenced. On exit, the
+ lower triangular part of the array C is overwritten by the
+ lower triangular part of the updated matrix.
+ Note that the imaginary parts of the diagonal elements need
+ not be set, they are assumed to be zero, and on exit they
+ are set to zero.
+
+ LDC - INTEGER.
+ On entry, LDC specifies the first dimension of C as declared
+ in the calling (sub) program. LDC must be at least
+ max( 1, n ).
+ Unchanged on exit.
+
+
+ Level 3 Blas routine.
+
+ -- Written on 8-February-1989.
+ Jack Dongarra, Argonne National Laboratory.
+ Iain Duff, AERE Harwell.
+ Jeremy Du Croz, Numerical Algorithms Group Ltd.
+ Sven Hammarling, Numerical Algorithms Group Ltd.
+
+ -- Modified 8-Nov-93 to set C(J,J) to DBLE( C(J,J) ) when BETA = 1.
+ Ed Anderson, Cray Research Inc.
+
+
+ Test the input parameters.
+*/
+
+ /* Parameter adjustments */
+ a_dim1 = *lda;
+ a_offset = 1 + a_dim1;
+ a -= a_offset;
+ b_dim1 = *ldb;
+ b_offset = 1 + b_dim1;
+ b -= b_offset;
+ c_dim1 = *ldc;
+ c_offset = 1 + c_dim1;
+ c__ -= c_offset;
+
+ /* Function Body */
+ if (lsame_(trans, "N")) {
+ nrowa = *n;
+ } else {
+ nrowa = *k;
+ }
+ upper = lsame_(uplo, "U");
+
+ info = 0;
+ if (! upper && ! lsame_(uplo, "L")) {
+ info = 1;
+ } else if (! lsame_(trans, "N") && ! lsame_(trans,
+ "C")) {
+ info = 2;
+ } else if (*n < 0) {
+ info = 3;
+ } else if (*k < 0) {
+ info = 4;
+ } else if (*lda < max(1,nrowa)) {
+ info = 7;
+ } else if (*ldb < max(1,nrowa)) {
+ info = 9;
+ } else if (*ldc < max(1,*n)) {
+ info = 12;
+ }
+ if (info != 0) {
+ xerbla_("ZHER2K", &info);
+ return 0;
+ }
+
+/* Quick return if possible. */
+
+ if ((*n == 0) || (((alpha->r == 0. && alpha->i == 0.) || (*k == 0)) && *
+ beta == 1.)) {
+ return 0;
+ }
+
+/* And when alpha.eq.zero. */
+
+ if (alpha->r == 0. && alpha->i == 0.) {
+ if (upper) {
+ if (*beta == 0.) {
+ i__1 = *n;
+ for (j = 1; j <= i__1; ++j) {
+ i__2 = j;
+ for (i__ = 1; i__ <= i__2; ++i__) {
+ i__3 = i__ + j * c_dim1;
+ c__[i__3].r = 0., c__[i__3].i = 0.;
+/* L10: */
+ }
+/* L20: */
+ }
+ } else {
+ i__1 = *n;
+ for (j = 1; j <= i__1; ++j) {
+ i__2 = j - 1;
+ for (i__ = 1; i__ <= i__2; ++i__) {
+ i__3 = i__ + j * c_dim1;
+ i__4 = i__ + j * c_dim1;
+ z__1.r = *beta * c__[i__4].r, z__1.i = *beta * c__[
+ i__4].i;
+ c__[i__3].r = z__1.r, c__[i__3].i = z__1.i;
+/* L30: */
+ }
+ i__2 = j + j * c_dim1;
+ i__3 = j + j * c_dim1;
+ d__1 = *beta * c__[i__3].r;
+ c__[i__2].r = d__1, c__[i__2].i = 0.;
+/* L40: */
+ }
+ }
+ } else {
+ if (*beta == 0.) {
+ i__1 = *n;
+ for (j = 1; j <= i__1; ++j) {
+ i__2 = *n;
+ for (i__ = j; i__ <= i__2; ++i__) {
+ i__3 = i__ + j * c_dim1;
+ c__[i__3].r = 0., c__[i__3].i = 0.;
+/* L50: */
+ }
+/* L60: */
+ }
+ } else {
+ i__1 = *n;
+ for (j = 1; j <= i__1; ++j) {
+ i__2 = j + j * c_dim1;
+ i__3 = j + j * c_dim1;
+ d__1 = *beta * c__[i__3].r;
+ c__[i__2].r = d__1, c__[i__2].i = 0.;
+ i__2 = *n;
+ for (i__ = j + 1; i__ <= i__2; ++i__) {
+ i__3 = i__ + j * c_dim1;
+ i__4 = i__ + j * c_dim1;
+ z__1.r = *beta * c__[i__4].r, z__1.i = *beta * c__[
+ i__4].i;
+ c__[i__3].r = z__1.r, c__[i__3].i = z__1.i;
+/* L70: */
+ }
+/* L80: */
+ }
+ }
+ }
+ return 0;
+ }
+
+/* Start the operations. */
+
+ if (lsame_(trans, "N")) {
+
+/*
+ Form C := alpha*A*conjg( B' ) + conjg( alpha )*B*conjg( A' ) +
+ C.
+*/
+
+ if (upper) {
+ i__1 = *n;
+ for (j = 1; j <= i__1; ++j) {
+ if (*beta == 0.) {
+ i__2 = j;
+ for (i__ = 1; i__ <= i__2; ++i__) {
+ i__3 = i__ + j * c_dim1;
+ c__[i__3].r = 0., c__[i__3].i = 0.;
+/* L90: */
+ }
+ } else if (*beta != 1.) {
+ i__2 = j - 1;
+ for (i__ = 1; i__ <= i__2; ++i__) {
+ i__3 = i__ + j * c_dim1;
+ i__4 = i__ + j * c_dim1;
+ z__1.r = *beta * c__[i__4].r, z__1.i = *beta * c__[
+ i__4].i;
+ c__[i__3].r = z__1.r, c__[i__3].i = z__1.i;
+/* L100: */
+ }
+ i__2 = j + j * c_dim1;
+ i__3 = j + j * c_dim1;
+ d__1 = *beta * c__[i__3].r;
+ c__[i__2].r = d__1, c__[i__2].i = 0.;
+ } else {
+ i__2 = j + j * c_dim1;
+ i__3 = j + j * c_dim1;
+ d__1 = c__[i__3].r;
+ c__[i__2].r = d__1, c__[i__2].i = 0.;
+ }
+ i__2 = *k;
+ for (l = 1; l <= i__2; ++l) {
+ i__3 = j + l * a_dim1;
+ i__4 = j + l * b_dim1;
+ if (((a[i__3].r != 0.) || (a[i__3].i != 0.)) || (((b[i__4]
+ .r != 0.) || (b[i__4].i != 0.)))) {
+ d_cnjg(&z__2, &b[j + l * b_dim1]);
+ z__1.r = alpha->r * z__2.r - alpha->i * z__2.i,
+ z__1.i = alpha->r * z__2.i + alpha->i *
+ z__2.r;
+ temp1.r = z__1.r, temp1.i = z__1.i;
+ i__3 = j + l * a_dim1;
+ z__2.r = alpha->r * a[i__3].r - alpha->i * a[i__3].i,
+ z__2.i = alpha->r * a[i__3].i + alpha->i * a[
+ i__3].r;
+ d_cnjg(&z__1, &z__2);
+ temp2.r = z__1.r, temp2.i = z__1.i;
+ i__3 = j - 1;
+ for (i__ = 1; i__ <= i__3; ++i__) {
+ i__4 = i__ + j * c_dim1;
+ i__5 = i__ + j * c_dim1;
+ i__6 = i__ + l * a_dim1;
+ z__3.r = a[i__6].r * temp1.r - a[i__6].i *
+ temp1.i, z__3.i = a[i__6].r * temp1.i + a[
+ i__6].i * temp1.r;
+ z__2.r = c__[i__5].r + z__3.r, z__2.i = c__[i__5]
+ .i + z__3.i;
+ i__7 = i__ + l * b_dim1;
+ z__4.r = b[i__7].r * temp2.r - b[i__7].i *
+ temp2.i, z__4.i = b[i__7].r * temp2.i + b[
+ i__7].i * temp2.r;
+ z__1.r = z__2.r + z__4.r, z__1.i = z__2.i +
+ z__4.i;
+ c__[i__4].r = z__1.r, c__[i__4].i = z__1.i;
+/* L110: */
+ }
+ i__3 = j + j * c_dim1;
+ i__4 = j + j * c_dim1;
+ i__5 = j + l * a_dim1;
+ z__2.r = a[i__5].r * temp1.r - a[i__5].i * temp1.i,
+ z__2.i = a[i__5].r * temp1.i + a[i__5].i *
+ temp1.r;
+ i__6 = j + l * b_dim1;
+ z__3.r = b[i__6].r * temp2.r - b[i__6].i * temp2.i,
+ z__3.i = b[i__6].r * temp2.i + b[i__6].i *
+ temp2.r;
+ z__1.r = z__2.r + z__3.r, z__1.i = z__2.i + z__3.i;
+ d__1 = c__[i__4].r + z__1.r;
+ c__[i__3].r = d__1, c__[i__3].i = 0.;
+ }
+/* L120: */
+ }
+/* L130: */
+ }
+ } else {
+ i__1 = *n;
+ for (j = 1; j <= i__1; ++j) {
+ if (*beta == 0.) {
+ i__2 = *n;
+ for (i__ = j; i__ <= i__2; ++i__) {
+ i__3 = i__ + j * c_dim1;
+ c__[i__3].r = 0., c__[i__3].i = 0.;
+/* L140: */
+ }
+ } else if (*beta != 1.) {
+ i__2 = *n;
+ for (i__ = j + 1; i__ <= i__2; ++i__) {
+ i__3 = i__ + j * c_dim1;
+ i__4 = i__ + j * c_dim1;
+ z__1.r = *beta * c__[i__4].r, z__1.i = *beta * c__[
+ i__4].i;
+ c__[i__3].r = z__1.r, c__[i__3].i = z__1.i;
+/* L150: */
+ }
+ i__2 = j + j * c_dim1;
+ i__3 = j + j * c_dim1;
+ d__1 = *beta * c__[i__3].r;
+ c__[i__2].r = d__1, c__[i__2].i = 0.;
+ } else {
+ i__2 = j + j * c_dim1;
+ i__3 = j + j * c_dim1;
+ d__1 = c__[i__3].r;
+ c__[i__2].r = d__1, c__[i__2].i = 0.;
+ }
+ i__2 = *k;
+ for (l = 1; l <= i__2; ++l) {
+ i__3 = j + l * a_dim1;
+ i__4 = j + l * b_dim1;
+ if (((a[i__3].r != 0.) || (a[i__3].i != 0.)) || (((b[i__4]
+ .r != 0.) || (b[i__4].i != 0.)))) {
+ d_cnjg(&z__2, &b[j + l * b_dim1]);
+ z__1.r = alpha->r * z__2.r - alpha->i * z__2.i,
+ z__1.i = alpha->r * z__2.i + alpha->i *
+ z__2.r;
+ temp1.r = z__1.r, temp1.i = z__1.i;
+ i__3 = j + l * a_dim1;
+ z__2.r = alpha->r * a[i__3].r - alpha->i * a[i__3].i,
+ z__2.i = alpha->r * a[i__3].i + alpha->i * a[
+ i__3].r;
+ d_cnjg(&z__1, &z__2);
+ temp2.r = z__1.r, temp2.i = z__1.i;
+ i__3 = *n;
+ for (i__ = j + 1; i__ <= i__3; ++i__) {
+ i__4 = i__ + j * c_dim1;
+ i__5 = i__ + j * c_dim1;
+ i__6 = i__ + l * a_dim1;
+ z__3.r = a[i__6].r * temp1.r - a[i__6].i *
+ temp1.i, z__3.i = a[i__6].r * temp1.i + a[
+ i__6].i * temp1.r;
+ z__2.r = c__[i__5].r + z__3.r, z__2.i = c__[i__5]
+ .i + z__3.i;
+ i__7 = i__ + l * b_dim1;
+ z__4.r = b[i__7].r * temp2.r - b[i__7].i *
+ temp2.i, z__4.i = b[i__7].r * temp2.i + b[
+ i__7].i * temp2.r;
+ z__1.r = z__2.r + z__4.r, z__1.i = z__2.i +
+ z__4.i;
+ c__[i__4].r = z__1.r, c__[i__4].i = z__1.i;
+/* L160: */
+ }
+ i__3 = j + j * c_dim1;
+ i__4 = j + j * c_dim1;
+ i__5 = j + l * a_dim1;
+ z__2.r = a[i__5].r * temp1.r - a[i__5].i * temp1.i,
+ z__2.i = a[i__5].r * temp1.i + a[i__5].i *
+ temp1.r;
+ i__6 = j + l * b_dim1;
+ z__3.r = b[i__6].r * temp2.r - b[i__6].i * temp2.i,
+ z__3.i = b[i__6].r * temp2.i + b[i__6].i *
+ temp2.r;
+ z__1.r = z__2.r + z__3.r, z__1.i = z__2.i + z__3.i;
+ d__1 = c__[i__4].r + z__1.r;
+ c__[i__3].r = d__1, c__[i__3].i = 0.;
+ }
+/* L170: */
+ }
+/* L180: */
+ }
+ }
+ } else {
+
+/*
+ Form C := alpha*conjg( A' )*B + conjg( alpha )*conjg( B' )*A +
+ C.
+*/
+
+ if (upper) {
+ i__1 = *n;
+ for (j = 1; j <= i__1; ++j) {
+ i__2 = j;
+ for (i__ = 1; i__ <= i__2; ++i__) {
+ temp1.r = 0., temp1.i = 0.;
+ temp2.r = 0., temp2.i = 0.;
+ i__3 = *k;
+ for (l = 1; l <= i__3; ++l) {
+ d_cnjg(&z__3, &a[l + i__ * a_dim1]);
+ i__4 = l + j * b_dim1;
+ z__2.r = z__3.r * b[i__4].r - z__3.i * b[i__4].i,
+ z__2.i = z__3.r * b[i__4].i + z__3.i * b[i__4]
+ .r;
+ z__1.r = temp1.r + z__2.r, z__1.i = temp1.i + z__2.i;
+ temp1.r = z__1.r, temp1.i = z__1.i;
+ d_cnjg(&z__3, &b[l + i__ * b_dim1]);
+ i__4 = l + j * a_dim1;
+ z__2.r = z__3.r * a[i__4].r - z__3.i * a[i__4].i,
+ z__2.i = z__3.r * a[i__4].i + z__3.i * a[i__4]
+ .r;
+ z__1.r = temp2.r + z__2.r, z__1.i = temp2.i + z__2.i;
+ temp2.r = z__1.r, temp2.i = z__1.i;
+/* L190: */
+ }
+ if (i__ == j) {
+ if (*beta == 0.) {
+ i__3 = j + j * c_dim1;
+ z__2.r = alpha->r * temp1.r - alpha->i * temp1.i,
+ z__2.i = alpha->r * temp1.i + alpha->i *
+ temp1.r;
+ d_cnjg(&z__4, alpha);
+ z__3.r = z__4.r * temp2.r - z__4.i * temp2.i,
+ z__3.i = z__4.r * temp2.i + z__4.i *
+ temp2.r;
+ z__1.r = z__2.r + z__3.r, z__1.i = z__2.i +
+ z__3.i;
+ d__1 = z__1.r;
+ c__[i__3].r = d__1, c__[i__3].i = 0.;
+ } else {
+ i__3 = j + j * c_dim1;
+ i__4 = j + j * c_dim1;
+ z__2.r = alpha->r * temp1.r - alpha->i * temp1.i,
+ z__2.i = alpha->r * temp1.i + alpha->i *
+ temp1.r;
+ d_cnjg(&z__4, alpha);
+ z__3.r = z__4.r * temp2.r - z__4.i * temp2.i,
+ z__3.i = z__4.r * temp2.i + z__4.i *
+ temp2.r;
+ z__1.r = z__2.r + z__3.r, z__1.i = z__2.i +
+ z__3.i;
+ d__1 = *beta * c__[i__4].r + z__1.r;
+ c__[i__3].r = d__1, c__[i__3].i = 0.;
+ }
+ } else {
+ if (*beta == 0.) {
+ i__3 = i__ + j * c_dim1;
+ z__2.r = alpha->r * temp1.r - alpha->i * temp1.i,
+ z__2.i = alpha->r * temp1.i + alpha->i *
+ temp1.r;
+ d_cnjg(&z__4, alpha);
+ z__3.r = z__4.r * temp2.r - z__4.i * temp2.i,
+ z__3.i = z__4.r * temp2.i + z__4.i *
+ temp2.r;
+ z__1.r = z__2.r + z__3.r, z__1.i = z__2.i +
+ z__3.i;
+ c__[i__3].r = z__1.r, c__[i__3].i = z__1.i;
+ } else {
+ i__3 = i__ + j * c_dim1;
+ i__4 = i__ + j * c_dim1;
+ z__3.r = *beta * c__[i__4].r, z__3.i = *beta *
+ c__[i__4].i;
+ z__4.r = alpha->r * temp1.r - alpha->i * temp1.i,
+ z__4.i = alpha->r * temp1.i + alpha->i *
+ temp1.r;
+ z__2.r = z__3.r + z__4.r, z__2.i = z__3.i +
+ z__4.i;
+ d_cnjg(&z__6, alpha);
+ z__5.r = z__6.r * temp2.r - z__6.i * temp2.i,
+ z__5.i = z__6.r * temp2.i + z__6.i *
+ temp2.r;
+ z__1.r = z__2.r + z__5.r, z__1.i = z__2.i +
+ z__5.i;
+ c__[i__3].r = z__1.r, c__[i__3].i = z__1.i;
+ }
+ }
+/* L200: */
+ }
+/* L210: */
+ }
+ } else {
+ i__1 = *n;
+ for (j = 1; j <= i__1; ++j) {
+ i__2 = *n;
+ for (i__ = j; i__ <= i__2; ++i__) {
+ temp1.r = 0., temp1.i = 0.;
+ temp2.r = 0., temp2.i = 0.;
+ i__3 = *k;
+ for (l = 1; l <= i__3; ++l) {
+ d_cnjg(&z__3, &a[l + i__ * a_dim1]);
+ i__4 = l + j * b_dim1;
+ z__2.r = z__3.r * b[i__4].r - z__3.i * b[i__4].i,
+ z__2.i = z__3.r * b[i__4].i + z__3.i * b[i__4]
+ .r;
+ z__1.r = temp1.r + z__2.r, z__1.i = temp1.i + z__2.i;
+ temp1.r = z__1.r, temp1.i = z__1.i;
+ d_cnjg(&z__3, &b[l + i__ * b_dim1]);
+ i__4 = l + j * a_dim1;
+ z__2.r = z__3.r * a[i__4].r - z__3.i * a[i__4].i,
+ z__2.i = z__3.r * a[i__4].i + z__3.i * a[i__4]
+ .r;
+ z__1.r = temp2.r + z__2.r, z__1.i = temp2.i + z__2.i;
+ temp2.r = z__1.r, temp2.i = z__1.i;
+/* L220: */
+ }
+ if (i__ == j) {
+ if (*beta == 0.) {
+ i__3 = j + j * c_dim1;
+ z__2.r = alpha->r * temp1.r - alpha->i * temp1.i,
+ z__2.i = alpha->r * temp1.i + alpha->i *
+ temp1.r;
+ d_cnjg(&z__4, alpha);
+ z__3.r = z__4.r * temp2.r - z__4.i * temp2.i,
+ z__3.i = z__4.r * temp2.i + z__4.i *
+ temp2.r;
+ z__1.r = z__2.r + z__3.r, z__1.i = z__2.i +
+ z__3.i;
+ d__1 = z__1.r;
+ c__[i__3].r = d__1, c__[i__3].i = 0.;
+ } else {
+ i__3 = j + j * c_dim1;
+ i__4 = j + j * c_dim1;
+ z__2.r = alpha->r * temp1.r - alpha->i * temp1.i,
+ z__2.i = alpha->r * temp1.i + alpha->i *
+ temp1.r;
+ d_cnjg(&z__4, alpha);
+ z__3.r = z__4.r * temp2.r - z__4.i * temp2.i,
+ z__3.i = z__4.r * temp2.i + z__4.i *
+ temp2.r;
+ z__1.r = z__2.r + z__3.r, z__1.i = z__2.i +
+ z__3.i;
+ d__1 = *beta * c__[i__4].r + z__1.r;
+ c__[i__3].r = d__1, c__[i__3].i = 0.;
+ }
+ } else {
+ if (*beta == 0.) {
+ i__3 = i__ + j * c_dim1;
+ z__2.r = alpha->r * temp1.r - alpha->i * temp1.i,
+ z__2.i = alpha->r * temp1.i + alpha->i *
+ temp1.r;
+ d_cnjg(&z__4, alpha);
+ z__3.r = z__4.r * temp2.r - z__4.i * temp2.i,
+ z__3.i = z__4.r * temp2.i + z__4.i *
+ temp2.r;
+ z__1.r = z__2.r + z__3.r, z__1.i = z__2.i +
+ z__3.i;
+ c__[i__3].r = z__1.r, c__[i__3].i = z__1.i;
+ } else {
+ i__3 = i__ + j * c_dim1;
+ i__4 = i__ + j * c_dim1;
+ z__3.r = *beta * c__[i__4].r, z__3.i = *beta *
+ c__[i__4].i;
+ z__4.r = alpha->r * temp1.r - alpha->i * temp1.i,
+ z__4.i = alpha->r * temp1.i + alpha->i *
+ temp1.r;
+ z__2.r = z__3.r + z__4.r, z__2.i = z__3.i +
+ z__4.i;
+ d_cnjg(&z__6, alpha);
+ z__5.r = z__6.r * temp2.r - z__6.i * temp2.i,
+ z__5.i = z__6.r * temp2.i + z__6.i *
+ temp2.r;
+ z__1.r = z__2.r + z__5.r, z__1.i = z__2.i +
+ z__5.i;
+ c__[i__3].r = z__1.r, c__[i__3].i = z__1.i;
+ }
+ }
+/* L230: */
+ }
+/* L240: */
+ }
+ }
+ }
+
+ return 0;
+
+/* End of ZHER2K. */
+
+} /* zher2k_ */
+
+/* Subroutine */ int zherk_(char *uplo, char *trans, integer *n, integer *k,
+ doublereal *alpha, doublecomplex *a, integer *lda, doublereal *beta,
+ doublecomplex *c__, integer *ldc)
+{
+ /* System generated locals */
+ integer a_dim1, a_offset, c_dim1, c_offset, i__1, i__2, i__3, i__4, i__5,
+ i__6;
+ doublereal d__1;
+ doublecomplex z__1, z__2, z__3;
+
+ /* Builtin functions */
+ void d_cnjg(doublecomplex *, doublecomplex *);
+
+ /* Local variables */
+ static integer i__, j, l, info;
+ static doublecomplex temp;
+ extern logical lsame_(char *, char *);
+ static integer nrowa;
+ static doublereal rtemp;
+ static logical upper;
+ extern /* Subroutine */ int xerbla_(char *, integer *);
+
+
+/*
+ Purpose
+ =======
+
+ ZHERK performs one of the hermitian rank k operations
+
+ C := alpha*A*conjg( A' ) + beta*C,
+
+ or
+
+ C := alpha*conjg( A' )*A + beta*C,
+
+ where alpha and beta are real scalars, C is an n by n hermitian
+ matrix and A is an n by k matrix in the first case and a k by n
+ matrix in the second case.
+
+ Parameters
+ ==========
+
+ UPLO - CHARACTER*1.
+ On entry, UPLO specifies whether the upper or lower
+ triangular part of the array C is to be referenced as
+ follows:
+
+ UPLO = 'U' or 'u' Only the upper triangular part of C
+ is to be referenced.
+
+ UPLO = 'L' or 'l' Only the lower triangular part of C
+ is to be referenced.
+
+ Unchanged on exit.
+
+ TRANS - CHARACTER*1.
+ On entry, TRANS specifies the operation to be performed as
+ follows:
+
+ TRANS = 'N' or 'n' C := alpha*A*conjg( A' ) + beta*C.
+
+ TRANS = 'C' or 'c' C := alpha*conjg( A' )*A + beta*C.
+
+ Unchanged on exit.
+
+ N - INTEGER.
+ On entry, N specifies the order of the matrix C. N must be
+ at least zero.
+ Unchanged on exit.
+
+ K - INTEGER.
+ On entry with TRANS = 'N' or 'n', K specifies the number
+ of columns of the matrix A, and on entry with
+ TRANS = 'C' or 'c', K specifies the number of rows of the
+ matrix A. K must be at least zero.
+ Unchanged on exit.
+
+ ALPHA - DOUBLE PRECISION .
+ On entry, ALPHA specifies the scalar alpha.
+ Unchanged on exit.
+
+ A - COMPLEX*16 array of DIMENSION ( LDA, ka ), where ka is
+ k when TRANS = 'N' or 'n', and is n otherwise.
+ Before entry with TRANS = 'N' or 'n', the leading n by k
+ part of the array A must contain the matrix A, otherwise
+ the leading k by n part of the array A must contain the
+ matrix A.
+ Unchanged on exit.
+
+ LDA - INTEGER.
+ On entry, LDA specifies the first dimension of A as declared
+ in the calling (sub) program. When TRANS = 'N' or 'n'
+ then LDA must be at least max( 1, n ), otherwise LDA must
+ be at least max( 1, k ).
+ Unchanged on exit.
+
+ BETA - DOUBLE PRECISION.
+ On entry, BETA specifies the scalar beta.
+ Unchanged on exit.
+
+ C - COMPLEX*16 array of DIMENSION ( LDC, n ).
+ Before entry with UPLO = 'U' or 'u', the leading n by n
+ upper triangular part of the array C must contain the upper
+ triangular part of the hermitian matrix and the strictly
+ lower triangular part of C is not referenced. On exit, the
+ upper triangular part of the array C is overwritten by the
+ upper triangular part of the updated matrix.
+ Before entry with UPLO = 'L' or 'l', the leading n by n
+ lower triangular part of the array C must contain the lower
+ triangular part of the hermitian matrix and the strictly
+ upper triangular part of C is not referenced. On exit, the
+ lower triangular part of the array C is overwritten by the
+ lower triangular part of the updated matrix.
+ Note that the imaginary parts of the diagonal elements need
+ not be set, they are assumed to be zero, and on exit they
+ are set to zero.
+
+ LDC - INTEGER.
+ On entry, LDC specifies the first dimension of C as declared
+ in the calling (sub) program. LDC must be at least
+ max( 1, n ).
+ Unchanged on exit.
+
+
+ Level 3 Blas routine.
+
+ -- Written on 8-February-1989.
+ Jack Dongarra, Argonne National Laboratory.
+ Iain Duff, AERE Harwell.
+ Jeremy Du Croz, Numerical Algorithms Group Ltd.
+ Sven Hammarling, Numerical Algorithms Group Ltd.
+
+ -- Modified 8-Nov-93 to set C(J,J) to DBLE( C(J,J) ) when BETA = 1.
+ Ed Anderson, Cray Research Inc.
+
+
+ Test the input parameters.
+*/
+
+ /* Parameter adjustments */
+ a_dim1 = *lda;
+ a_offset = 1 + a_dim1;
+ a -= a_offset;
+ c_dim1 = *ldc;
+ c_offset = 1 + c_dim1;
+ c__ -= c_offset;
+
+ /* Function Body */
+ if (lsame_(trans, "N")) {
+ nrowa = *n;
+ } else {
+ nrowa = *k;
+ }
+ upper = lsame_(uplo, "U");
+
+ info = 0;
+ if (! upper && ! lsame_(uplo, "L")) {
+ info = 1;
+ } else if (! lsame_(trans, "N") && ! lsame_(trans,
+ "C")) {
+ info = 2;
+ } else if (*n < 0) {
+ info = 3;
+ } else if (*k < 0) {
+ info = 4;
+ } else if (*lda < max(1,nrowa)) {
+ info = 7;
+ } else if (*ldc < max(1,*n)) {
+ info = 10;
+ }
+ if (info != 0) {
+ xerbla_("ZHERK ", &info);
+ return 0;
+ }
+
+/* Quick return if possible. */
+
+ if ((*n == 0) || (((*alpha == 0.) || (*k == 0)) && *beta == 1.)) {
+ return 0;
+ }
+
+/* And when alpha.eq.zero. */
+
+ if (*alpha == 0.) {
+ if (upper) {
+ if (*beta == 0.) {
+ i__1 = *n;
+ for (j = 1; j <= i__1; ++j) {
+ i__2 = j;
+ for (i__ = 1; i__ <= i__2; ++i__) {
+ i__3 = i__ + j * c_dim1;
+ c__[i__3].r = 0., c__[i__3].i = 0.;
+/* L10: */
+ }
+/* L20: */
+ }
+ } else {
+ i__1 = *n;
+ for (j = 1; j <= i__1; ++j) {
+ i__2 = j - 1;
+ for (i__ = 1; i__ <= i__2; ++i__) {
+ i__3 = i__ + j * c_dim1;
+ i__4 = i__ + j * c_dim1;
+ z__1.r = *beta * c__[i__4].r, z__1.i = *beta * c__[
+ i__4].i;
+ c__[i__3].r = z__1.r, c__[i__3].i = z__1.i;
+/* L30: */
+ }
+ i__2 = j + j * c_dim1;
+ i__3 = j + j * c_dim1;
+ d__1 = *beta * c__[i__3].r;
+ c__[i__2].r = d__1, c__[i__2].i = 0.;
+/* L40: */
+ }
+ }
+ } else {
+ if (*beta == 0.) {
+ i__1 = *n;
+ for (j = 1; j <= i__1; ++j) {
+ i__2 = *n;
+ for (i__ = j; i__ <= i__2; ++i__) {
+ i__3 = i__ + j * c_dim1;
+ c__[i__3].r = 0., c__[i__3].i = 0.;
+/* L50: */
+ }
+/* L60: */
+ }
+ } else {
+ i__1 = *n;
+ for (j = 1; j <= i__1; ++j) {
+ i__2 = j + j * c_dim1;
+ i__3 = j + j * c_dim1;
+ d__1 = *beta * c__[i__3].r;
+ c__[i__2].r = d__1, c__[i__2].i = 0.;
+ i__2 = *n;
+ for (i__ = j + 1; i__ <= i__2; ++i__) {
+ i__3 = i__ + j * c_dim1;
+ i__4 = i__ + j * c_dim1;
+ z__1.r = *beta * c__[i__4].r, z__1.i = *beta * c__[
+ i__4].i;
+ c__[i__3].r = z__1.r, c__[i__3].i = z__1.i;
+/* L70: */
+ }
+/* L80: */
+ }
+ }
+ }
+ return 0;
+ }
+
+/* Start the operations. */
+
+ if (lsame_(trans, "N")) {
+
+/* Form C := alpha*A*conjg( A' ) + beta*C. */
+
+ if (upper) {
+ i__1 = *n;
+ for (j = 1; j <= i__1; ++j) {
+ if (*beta == 0.) {
+ i__2 = j;
+ for (i__ = 1; i__ <= i__2; ++i__) {
+ i__3 = i__ + j * c_dim1;
+ c__[i__3].r = 0., c__[i__3].i = 0.;
+/* L90: */
+ }
+ } else if (*beta != 1.) {
+ i__2 = j - 1;
+ for (i__ = 1; i__ <= i__2; ++i__) {
+ i__3 = i__ + j * c_dim1;
+ i__4 = i__ + j * c_dim1;
+ z__1.r = *beta * c__[i__4].r, z__1.i = *beta * c__[
+ i__4].i;
+ c__[i__3].r = z__1.r, c__[i__3].i = z__1.i;
+/* L100: */
+ }
+ i__2 = j + j * c_dim1;
+ i__3 = j + j * c_dim1;
+ d__1 = *beta * c__[i__3].r;
+ c__[i__2].r = d__1, c__[i__2].i = 0.;
+ } else {
+ i__2 = j + j * c_dim1;
+ i__3 = j + j * c_dim1;
+ d__1 = c__[i__3].r;
+ c__[i__2].r = d__1, c__[i__2].i = 0.;
+ }
+ i__2 = *k;
+ for (l = 1; l <= i__2; ++l) {
+ i__3 = j + l * a_dim1;
+ if ((a[i__3].r != 0.) || (a[i__3].i != 0.)) {
+ d_cnjg(&z__2, &a[j + l * a_dim1]);
+ z__1.r = *alpha * z__2.r, z__1.i = *alpha * z__2.i;
+ temp.r = z__1.r, temp.i = z__1.i;
+ i__3 = j - 1;
+ for (i__ = 1; i__ <= i__3; ++i__) {
+ i__4 = i__ + j * c_dim1;
+ i__5 = i__ + j * c_dim1;
+ i__6 = i__ + l * a_dim1;
+ z__2.r = temp.r * a[i__6].r - temp.i * a[i__6].i,
+ z__2.i = temp.r * a[i__6].i + temp.i * a[
+ i__6].r;
+ z__1.r = c__[i__5].r + z__2.r, z__1.i = c__[i__5]
+ .i + z__2.i;
+ c__[i__4].r = z__1.r, c__[i__4].i = z__1.i;
+/* L110: */
+ }
+ i__3 = j + j * c_dim1;
+ i__4 = j + j * c_dim1;
+ i__5 = i__ + l * a_dim1;
+ z__1.r = temp.r * a[i__5].r - temp.i * a[i__5].i,
+ z__1.i = temp.r * a[i__5].i + temp.i * a[i__5]
+ .r;
+ d__1 = c__[i__4].r + z__1.r;
+ c__[i__3].r = d__1, c__[i__3].i = 0.;
+ }
+/* L120: */
+ }
+/* L130: */
+ }
+ } else {
+ i__1 = *n;
+ for (j = 1; j <= i__1; ++j) {
+ if (*beta == 0.) {
+ i__2 = *n;
+ for (i__ = j; i__ <= i__2; ++i__) {
+ i__3 = i__ + j * c_dim1;
+ c__[i__3].r = 0., c__[i__3].i = 0.;
+/* L140: */
+ }
+ } else if (*beta != 1.) {
+ i__2 = j + j * c_dim1;
+ i__3 = j + j * c_dim1;
+ d__1 = *beta * c__[i__3].r;
+ c__[i__2].r = d__1, c__[i__2].i = 0.;
+ i__2 = *n;
+ for (i__ = j + 1; i__ <= i__2; ++i__) {
+ i__3 = i__ + j * c_dim1;
+ i__4 = i__ + j * c_dim1;
+ z__1.r = *beta * c__[i__4].r, z__1.i = *beta * c__[
+ i__4].i;
+ c__[i__3].r = z__1.r, c__[i__3].i = z__1.i;
+/* L150: */
+ }
+ } else {
+ i__2 = j + j * c_dim1;
+ i__3 = j + j * c_dim1;
+ d__1 = c__[i__3].r;
+ c__[i__2].r = d__1, c__[i__2].i = 0.;
+ }
+ i__2 = *k;
+ for (l = 1; l <= i__2; ++l) {
+ i__3 = j + l * a_dim1;
+ if ((a[i__3].r != 0.) || (a[i__3].i != 0.)) {
+ d_cnjg(&z__2, &a[j + l * a_dim1]);
+ z__1.r = *alpha * z__2.r, z__1.i = *alpha * z__2.i;
+ temp.r = z__1.r, temp.i = z__1.i;
+ i__3 = j + j * c_dim1;
+ i__4 = j + j * c_dim1;
+ i__5 = j + l * a_dim1;
+ z__1.r = temp.r * a[i__5].r - temp.i * a[i__5].i,
+ z__1.i = temp.r * a[i__5].i + temp.i * a[i__5]
+ .r;
+ d__1 = c__[i__4].r + z__1.r;
+ c__[i__3].r = d__1, c__[i__3].i = 0.;
+ i__3 = *n;
+ for (i__ = j + 1; i__ <= i__3; ++i__) {
+ i__4 = i__ + j * c_dim1;
+ i__5 = i__ + j * c_dim1;
+ i__6 = i__ + l * a_dim1;
+ z__2.r = temp.r * a[i__6].r - temp.i * a[i__6].i,
+ z__2.i = temp.r * a[i__6].i + temp.i * a[
+ i__6].r;
+ z__1.r = c__[i__5].r + z__2.r, z__1.i = c__[i__5]
+ .i + z__2.i;
+ c__[i__4].r = z__1.r, c__[i__4].i = z__1.i;
+/* L160: */
+ }
+ }
+/* L170: */
+ }
+/* L180: */
+ }
+ }
+ } else {
+
+/* Form C := alpha*conjg( A' )*A + beta*C. */
+
+ if (upper) {
+ i__1 = *n;
+ for (j = 1; j <= i__1; ++j) {
+ i__2 = j - 1;
+ for (i__ = 1; i__ <= i__2; ++i__) {
+ temp.r = 0., temp.i = 0.;
+ i__3 = *k;
+ for (l = 1; l <= i__3; ++l) {
+ d_cnjg(&z__3, &a[l + i__ * a_dim1]);
+ i__4 = l + j * a_dim1;
+ z__2.r = z__3.r * a[i__4].r - z__3.i * a[i__4].i,
+ z__2.i = z__3.r * a[i__4].i + z__3.i * a[i__4]
+ .r;
+ z__1.r = temp.r + z__2.r, z__1.i = temp.i + z__2.i;
+ temp.r = z__1.r, temp.i = z__1.i;
+/* L190: */
+ }
+ if (*beta == 0.) {
+ i__3 = i__ + j * c_dim1;
+ z__1.r = *alpha * temp.r, z__1.i = *alpha * temp.i;
+ c__[i__3].r = z__1.r, c__[i__3].i = z__1.i;
+ } else {
+ i__3 = i__ + j * c_dim1;
+ z__2.r = *alpha * temp.r, z__2.i = *alpha * temp.i;
+ i__4 = i__ + j * c_dim1;
+ z__3.r = *beta * c__[i__4].r, z__3.i = *beta * c__[
+ i__4].i;
+ z__1.r = z__2.r + z__3.r, z__1.i = z__2.i + z__3.i;
+ c__[i__3].r = z__1.r, c__[i__3].i = z__1.i;
+ }
+/* L200: */
+ }
+ rtemp = 0.;
+ i__2 = *k;
+ for (l = 1; l <= i__2; ++l) {
+ d_cnjg(&z__3, &a[l + j * a_dim1]);
+ i__3 = l + j * a_dim1;
+ z__2.r = z__3.r * a[i__3].r - z__3.i * a[i__3].i, z__2.i =
+ z__3.r * a[i__3].i + z__3.i * a[i__3].r;
+ z__1.r = rtemp + z__2.r, z__1.i = z__2.i;
+ rtemp = z__1.r;
+/* L210: */
+ }
+ if (*beta == 0.) {
+ i__2 = j + j * c_dim1;
+ d__1 = *alpha * rtemp;
+ c__[i__2].r = d__1, c__[i__2].i = 0.;
+ } else {
+ i__2 = j + j * c_dim1;
+ i__3 = j + j * c_dim1;
+ d__1 = *alpha * rtemp + *beta * c__[i__3].r;
+ c__[i__2].r = d__1, c__[i__2].i = 0.;
+ }
+/* L220: */
+ }
+ } else {
+ i__1 = *n;
+ for (j = 1; j <= i__1; ++j) {
+ rtemp = 0.;
+ i__2 = *k;
+ for (l = 1; l <= i__2; ++l) {
+ d_cnjg(&z__3, &a[l + j * a_dim1]);
+ i__3 = l + j * a_dim1;
+ z__2.r = z__3.r * a[i__3].r - z__3.i * a[i__3].i, z__2.i =
+ z__3.r * a[i__3].i + z__3.i * a[i__3].r;
+ z__1.r = rtemp + z__2.r, z__1.i = z__2.i;
+ rtemp = z__1.r;
+/* L230: */
+ }
+ if (*beta == 0.) {
+ i__2 = j + j * c_dim1;
+ d__1 = *alpha * rtemp;
+ c__[i__2].r = d__1, c__[i__2].i = 0.;
+ } else {
+ i__2 = j + j * c_dim1;
+ i__3 = j + j * c_dim1;
+ d__1 = *alpha * rtemp + *beta * c__[i__3].r;
+ c__[i__2].r = d__1, c__[i__2].i = 0.;
+ }
+ i__2 = *n;
+ for (i__ = j + 1; i__ <= i__2; ++i__) {
+ temp.r = 0., temp.i = 0.;
+ i__3 = *k;
+ for (l = 1; l <= i__3; ++l) {
+ d_cnjg(&z__3, &a[l + i__ * a_dim1]);
+ i__4 = l + j * a_dim1;
+ z__2.r = z__3.r * a[i__4].r - z__3.i * a[i__4].i,
+ z__2.i = z__3.r * a[i__4].i + z__3.i * a[i__4]
+ .r;
+ z__1.r = temp.r + z__2.r, z__1.i = temp.i + z__2.i;
+ temp.r = z__1.r, temp.i = z__1.i;
+/* L240: */
+ }
+ if (*beta == 0.) {
+ i__3 = i__ + j * c_dim1;
+ z__1.r = *alpha * temp.r, z__1.i = *alpha * temp.i;
+ c__[i__3].r = z__1.r, c__[i__3].i = z__1.i;
+ } else {
+ i__3 = i__ + j * c_dim1;
+ z__2.r = *alpha * temp.r, z__2.i = *alpha * temp.i;
+ i__4 = i__ + j * c_dim1;
+ z__3.r = *beta * c__[i__4].r, z__3.i = *beta * c__[
+ i__4].i;
+ z__1.r = z__2.r + z__3.r, z__1.i = z__2.i + z__3.i;
+ c__[i__3].r = z__1.r, c__[i__3].i = z__1.i;
+ }
+/* L250: */
+ }
+/* L260: */
+ }
+ }
+ }
+
+ return 0;
+
+/* End of ZHERK . */
+
+} /* zherk_ */
+
+/* Subroutine */ int zscal_(integer *n, doublecomplex *za, doublecomplex *zx,
+ integer *incx)
+{
+ /* System generated locals */
+ integer i__1, i__2, i__3;
+ doublecomplex z__1;
+
+ /* Local variables */
+ static integer i__, ix;
+
+
+/*
+ scales a vector by a constant.
+ jack dongarra, 3/11/78.
+ modified 3/93 to return if incx .le. 0.
+ modified 12/3/93, array(1) declarations changed to array(*)
+*/
+
+
+ /* Parameter adjustments */
+ --zx;
+
+ /* Function Body */
+ if ((*n <= 0) || (*incx <= 0)) {
+ return 0;
+ }
+ if (*incx == 1) {
+ goto L20;
+ }
+
+/* code for increment not equal to 1 */
+
+ ix = 1;
+ i__1 = *n;
+ for (i__ = 1; i__ <= i__1; ++i__) {
+ i__2 = ix;
+ i__3 = ix;
+ z__1.r = za->r * zx[i__3].r - za->i * zx[i__3].i, z__1.i = za->r * zx[
+ i__3].i + za->i * zx[i__3].r;
+ zx[i__2].r = z__1.r, zx[i__2].i = z__1.i;
+ ix += *incx;
+/* L10: */
+ }
+ return 0;
+
+/* code for increment equal to 1 */
+
+L20:
+ i__1 = *n;
+ for (i__ = 1; i__ <= i__1; ++i__) {
+ i__2 = i__;
+ i__3 = i__;
+ z__1.r = za->r * zx[i__3].r - za->i * zx[i__3].i, z__1.i = za->r * zx[
+ i__3].i + za->i * zx[i__3].r;
+ zx[i__2].r = z__1.r, zx[i__2].i = z__1.i;
+/* L30: */
+ }
+ return 0;
+} /* zscal_ */
+
+/* Subroutine */ int zswap_(integer *n, doublecomplex *zx, integer *incx,
+ doublecomplex *zy, integer *incy)
+{
+ /* System generated locals */
+ integer i__1, i__2, i__3;
+
+ /* Local variables */
+ static integer i__, ix, iy;
+ static doublecomplex ztemp;
+
+
+/*
+ interchanges two vectors.
+ jack dongarra, 3/11/78.
+ modified 12/3/93, array(1) declarations changed to array(*)
+*/
+
+
+ /* Parameter adjustments */
+ --zy;
+ --zx;
+
+ /* Function Body */
+ if (*n <= 0) {
+ return 0;
+ }
+ if (*incx == 1 && *incy == 1) {
+ goto L20;
+ }
+
+/*
+ code for unequal increments or equal increments not equal
+ to 1
+*/
+
+ ix = 1;
+ iy = 1;
+ if (*incx < 0) {
+ ix = (-(*n) + 1) * *incx + 1;
+ }
+ if (*incy < 0) {
+ iy = (-(*n) + 1) * *incy + 1;
+ }
+ i__1 = *n;
+ for (i__ = 1; i__ <= i__1; ++i__) {
+ i__2 = ix;
+ ztemp.r = zx[i__2].r, ztemp.i = zx[i__2].i;
+ i__2 = ix;
+ i__3 = iy;
+ zx[i__2].r = zy[i__3].r, zx[i__2].i = zy[i__3].i;
+ i__2 = iy;
+ zy[i__2].r = ztemp.r, zy[i__2].i = ztemp.i;
+ ix += *incx;
+ iy += *incy;
+/* L10: */
+ }
+ return 0;
+
+/* code for both increments equal to 1 */
+L20:
+ i__1 = *n;
+ for (i__ = 1; i__ <= i__1; ++i__) {
+ i__2 = i__;
+ ztemp.r = zx[i__2].r, ztemp.i = zx[i__2].i;
+ i__2 = i__;
+ i__3 = i__;
+ zx[i__2].r = zy[i__3].r, zx[i__2].i = zy[i__3].i;
+ i__2 = i__;
+ zy[i__2].r = ztemp.r, zy[i__2].i = ztemp.i;
+/* L30: */
+ }
+ return 0;
+} /* zswap_ */
+
+/* Subroutine */ int ztrmm_(char *side, char *uplo, char *transa, char *diag,
+ integer *m, integer *n, doublecomplex *alpha, doublecomplex *a,
+ integer *lda, doublecomplex *b, integer *ldb)
+{
+ /* System generated locals */
+ integer a_dim1, a_offset, b_dim1, b_offset, i__1, i__2, i__3, i__4, i__5,
+ i__6;
+ doublecomplex z__1, z__2, z__3;
+
+ /* Builtin functions */
+ void d_cnjg(doublecomplex *, doublecomplex *);
+
+ /* Local variables */
+ static integer i__, j, k, info;
+ static doublecomplex temp;
+ static logical lside;
+ extern logical lsame_(char *, char *);
+ static integer nrowa;
+ static logical upper;
+ extern /* Subroutine */ int xerbla_(char *, integer *);
+ static logical noconj, nounit;
+
+
+/*
+ Purpose
+ =======
+
+ ZTRMM performs one of the matrix-matrix operations
+
+ B := alpha*op( A )*B, or B := alpha*B*op( A )
+
+ where alpha is a scalar, B is an m by n matrix, A is a unit, or
+ non-unit, upper or lower triangular matrix and op( A ) is one of
+
+ op( A ) = A or op( A ) = A' or op( A ) = conjg( A' ).
+
+ Parameters
+ ==========
+
+ SIDE - CHARACTER*1.
+ On entry, SIDE specifies whether op( A ) multiplies B from
+ the left or right as follows:
+
+ SIDE = 'L' or 'l' B := alpha*op( A )*B.
+
+ SIDE = 'R' or 'r' B := alpha*B*op( A ).
+
+ Unchanged on exit.
+
+ UPLO - CHARACTER*1.
+ On entry, UPLO specifies whether the matrix A is an upper or
+ lower triangular matrix as follows:
+
+ UPLO = 'U' or 'u' A is an upper triangular matrix.
+
+ UPLO = 'L' or 'l' A is a lower triangular matrix.
+
+ Unchanged on exit.
+
+ TRANSA - CHARACTER*1.
+ On entry, TRANSA specifies the form of op( A ) to be used in
+ the matrix multiplication as follows:
+
+ TRANSA = 'N' or 'n' op( A ) = A.
+
+ TRANSA = 'T' or 't' op( A ) = A'.
+
+ TRANSA = 'C' or 'c' op( A ) = conjg( A' ).
+
+ Unchanged on exit.
+
+ DIAG - CHARACTER*1.
+ On entry, DIAG specifies whether or not A is unit triangular
+ as follows:
+
+ DIAG = 'U' or 'u' A is assumed to be unit triangular.
+
+ DIAG = 'N' or 'n' A is not assumed to be unit
+ triangular.
+
+ Unchanged on exit.
+
+ M - INTEGER.
+ On entry, M specifies the number of rows of B. M must be at
+ least zero.
+ Unchanged on exit.
+
+ N - INTEGER.
+ On entry, N specifies the number of columns of B. N must be
+ at least zero.
+ Unchanged on exit.
+
+ ALPHA - COMPLEX*16 .
+ On entry, ALPHA specifies the scalar alpha. When alpha is
+ zero then A is not referenced and B need not be set before
+ entry.
+ Unchanged on exit.
+
+ A - COMPLEX*16 array of DIMENSION ( LDA, k ), where k is m
+ when SIDE = 'L' or 'l' and is n when SIDE = 'R' or 'r'.
+ Before entry with UPLO = 'U' or 'u', the leading k by k
+ upper triangular part of the array A must contain the upper
+ triangular matrix and the strictly lower triangular part of
+ A is not referenced.
+ Before entry with UPLO = 'L' or 'l', the leading k by k
+ lower triangular part of the array A must contain the lower
+ triangular matrix and the strictly upper triangular part of
+ A is not referenced.
+ Note that when DIAG = 'U' or 'u', the diagonal elements of
+ A are not referenced either, but are assumed to be unity.
+ Unchanged on exit.
+
+ LDA - INTEGER.
+ On entry, LDA specifies the first dimension of A as declared
+ in the calling (sub) program. When SIDE = 'L' or 'l' then
+ LDA must be at least max( 1, m ), when SIDE = 'R' or 'r'
+ then LDA must be at least max( 1, n ).
+ Unchanged on exit.
+
+ B - COMPLEX*16 array of DIMENSION ( LDB, n ).
+ Before entry, the leading m by n part of the array B must
+ contain the matrix B, and on exit is overwritten by the
+ transformed matrix.
+
+ LDB - INTEGER.
+ On entry, LDB specifies the first dimension of B as declared
+ in the calling (sub) program. LDB must be at least
+ max( 1, m ).
+ Unchanged on exit.
+
+
+ Level 3 Blas routine.
+
+ -- Written on 8-February-1989.
+ Jack Dongarra, Argonne National Laboratory.
+ Iain Duff, AERE Harwell.
+ Jeremy Du Croz, Numerical Algorithms Group Ltd.
+ Sven Hammarling, Numerical Algorithms Group Ltd.
+
+
+ Test the input parameters.
+*/
+
+ /* Parameter adjustments */
+ a_dim1 = *lda;
+ a_offset = 1 + a_dim1;
+ a -= a_offset;
+ b_dim1 = *ldb;
+ b_offset = 1 + b_dim1;
+ b -= b_offset;
+
+ /* Function Body */
+ lside = lsame_(side, "L");
+ if (lside) {
+ nrowa = *m;
+ } else {
+ nrowa = *n;
+ }
+ noconj = lsame_(transa, "T");
+ nounit = lsame_(diag, "N");
+ upper = lsame_(uplo, "U");
+
+ info = 0;
+ if (! lside && ! lsame_(side, "R")) {
+ info = 1;
+ } else if (! upper && ! lsame_(uplo, "L")) {
+ info = 2;
+ } else if (! lsame_(transa, "N") && ! lsame_(transa,
+ "T") && ! lsame_(transa, "C")) {
+ info = 3;
+ } else if (! lsame_(diag, "U") && ! lsame_(diag,
+ "N")) {
+ info = 4;
+ } else if (*m < 0) {
+ info = 5;
+ } else if (*n < 0) {
+ info = 6;
+ } else if (*lda < max(1,nrowa)) {
+ info = 9;
+ } else if (*ldb < max(1,*m)) {
+ info = 11;
+ }
+ if (info != 0) {
+ xerbla_("ZTRMM ", &info);
+ return 0;
+ }
+
+/* Quick return if possible. */
+
+ if (*n == 0) {
+ return 0;
+ }
+
+/* And when alpha.eq.zero. */
+
+ if (alpha->r == 0. && alpha->i == 0.) {
+ i__1 = *n;
+ for (j = 1; j <= i__1; ++j) {
+ i__2 = *m;
+ for (i__ = 1; i__ <= i__2; ++i__) {
+ i__3 = i__ + j * b_dim1;
+ b[i__3].r = 0., b[i__3].i = 0.;
+/* L10: */
+ }
+/* L20: */
+ }
+ return 0;
+ }
+
+/* Start the operations. */
+
+ if (lside) {
+ if (lsame_(transa, "N")) {
+
+/* Form B := alpha*A*B. */
+
+ if (upper) {
+ i__1 = *n;
+ for (j = 1; j <= i__1; ++j) {
+ i__2 = *m;
+ for (k = 1; k <= i__2; ++k) {
+ i__3 = k + j * b_dim1;
+ if ((b[i__3].r != 0.) || (b[i__3].i != 0.)) {
+ i__3 = k + j * b_dim1;
+ z__1.r = alpha->r * b[i__3].r - alpha->i * b[i__3]
+ .i, z__1.i = alpha->r * b[i__3].i +
+ alpha->i * b[i__3].r;
+ temp.r = z__1.r, temp.i = z__1.i;
+ i__3 = k - 1;
+ for (i__ = 1; i__ <= i__3; ++i__) {
+ i__4 = i__ + j * b_dim1;
+ i__5 = i__ + j * b_dim1;
+ i__6 = i__ + k * a_dim1;
+ z__2.r = temp.r * a[i__6].r - temp.i * a[i__6]
+ .i, z__2.i = temp.r * a[i__6].i +
+ temp.i * a[i__6].r;
+ z__1.r = b[i__5].r + z__2.r, z__1.i = b[i__5]
+ .i + z__2.i;
+ b[i__4].r = z__1.r, b[i__4].i = z__1.i;
+/* L30: */
+ }
+ if (nounit) {
+ i__3 = k + k * a_dim1;
+ z__1.r = temp.r * a[i__3].r - temp.i * a[i__3]
+ .i, z__1.i = temp.r * a[i__3].i +
+ temp.i * a[i__3].r;
+ temp.r = z__1.r, temp.i = z__1.i;
+ }
+ i__3 = k + j * b_dim1;
+ b[i__3].r = temp.r, b[i__3].i = temp.i;
+ }
+/* L40: */
+ }
+/* L50: */
+ }
+ } else {
+ i__1 = *n;
+ for (j = 1; j <= i__1; ++j) {
+ for (k = *m; k >= 1; --k) {
+ i__2 = k + j * b_dim1;
+ if ((b[i__2].r != 0.) || (b[i__2].i != 0.)) {
+ i__2 = k + j * b_dim1;
+ z__1.r = alpha->r * b[i__2].r - alpha->i * b[i__2]
+ .i, z__1.i = alpha->r * b[i__2].i +
+ alpha->i * b[i__2].r;
+ temp.r = z__1.r, temp.i = z__1.i;
+ i__2 = k + j * b_dim1;
+ b[i__2].r = temp.r, b[i__2].i = temp.i;
+ if (nounit) {
+ i__2 = k + j * b_dim1;
+ i__3 = k + j * b_dim1;
+ i__4 = k + k * a_dim1;
+ z__1.r = b[i__3].r * a[i__4].r - b[i__3].i *
+ a[i__4].i, z__1.i = b[i__3].r * a[
+ i__4].i + b[i__3].i * a[i__4].r;
+ b[i__2].r = z__1.r, b[i__2].i = z__1.i;
+ }
+ i__2 = *m;
+ for (i__ = k + 1; i__ <= i__2; ++i__) {
+ i__3 = i__ + j * b_dim1;
+ i__4 = i__ + j * b_dim1;
+ i__5 = i__ + k * a_dim1;
+ z__2.r = temp.r * a[i__5].r - temp.i * a[i__5]
+ .i, z__2.i = temp.r * a[i__5].i +
+ temp.i * a[i__5].r;
+ z__1.r = b[i__4].r + z__2.r, z__1.i = b[i__4]
+ .i + z__2.i;
+ b[i__3].r = z__1.r, b[i__3].i = z__1.i;
+/* L60: */
+ }
+ }
+/* L70: */
+ }
+/* L80: */
+ }
+ }
+ } else {
+
+/* Form B := alpha*A'*B or B := alpha*conjg( A' )*B. */
+
+ if (upper) {
+ i__1 = *n;
+ for (j = 1; j <= i__1; ++j) {
+ for (i__ = *m; i__ >= 1; --i__) {
+ i__2 = i__ + j * b_dim1;
+ temp.r = b[i__2].r, temp.i = b[i__2].i;
+ if (noconj) {
+ if (nounit) {
+ i__2 = i__ + i__ * a_dim1;
+ z__1.r = temp.r * a[i__2].r - temp.i * a[i__2]
+ .i, z__1.i = temp.r * a[i__2].i +
+ temp.i * a[i__2].r;
+ temp.r = z__1.r, temp.i = z__1.i;
+ }
+ i__2 = i__ - 1;
+ for (k = 1; k <= i__2; ++k) {
+ i__3 = k + i__ * a_dim1;
+ i__4 = k + j * b_dim1;
+ z__2.r = a[i__3].r * b[i__4].r - a[i__3].i *
+ b[i__4].i, z__2.i = a[i__3].r * b[
+ i__4].i + a[i__3].i * b[i__4].r;
+ z__1.r = temp.r + z__2.r, z__1.i = temp.i +
+ z__2.i;
+ temp.r = z__1.r, temp.i = z__1.i;
+/* L90: */
+ }
+ } else {
+ if (nounit) {
+ d_cnjg(&z__2, &a[i__ + i__ * a_dim1]);
+ z__1.r = temp.r * z__2.r - temp.i * z__2.i,
+ z__1.i = temp.r * z__2.i + temp.i *
+ z__2.r;
+ temp.r = z__1.r, temp.i = z__1.i;
+ }
+ i__2 = i__ - 1;
+ for (k = 1; k <= i__2; ++k) {
+ d_cnjg(&z__3, &a[k + i__ * a_dim1]);
+ i__3 = k + j * b_dim1;
+ z__2.r = z__3.r * b[i__3].r - z__3.i * b[i__3]
+ .i, z__2.i = z__3.r * b[i__3].i +
+ z__3.i * b[i__3].r;
+ z__1.r = temp.r + z__2.r, z__1.i = temp.i +
+ z__2.i;
+ temp.r = z__1.r, temp.i = z__1.i;
+/* L100: */
+ }
+ }
+ i__2 = i__ + j * b_dim1;
+ z__1.r = alpha->r * temp.r - alpha->i * temp.i,
+ z__1.i = alpha->r * temp.i + alpha->i *
+ temp.r;
+ b[i__2].r = z__1.r, b[i__2].i = z__1.i;
+/* L110: */
+ }
+/* L120: */
+ }
+ } else {
+ i__1 = *n;
+ for (j = 1; j <= i__1; ++j) {
+ i__2 = *m;
+ for (i__ = 1; i__ <= i__2; ++i__) {
+ i__3 = i__ + j * b_dim1;
+ temp.r = b[i__3].r, temp.i = b[i__3].i;
+ if (noconj) {
+ if (nounit) {
+ i__3 = i__ + i__ * a_dim1;
+ z__1.r = temp.r * a[i__3].r - temp.i * a[i__3]
+ .i, z__1.i = temp.r * a[i__3].i +
+ temp.i * a[i__3].r;
+ temp.r = z__1.r, temp.i = z__1.i;
+ }
+ i__3 = *m;
+ for (k = i__ + 1; k <= i__3; ++k) {
+ i__4 = k + i__ * a_dim1;
+ i__5 = k + j * b_dim1;
+ z__2.r = a[i__4].r * b[i__5].r - a[i__4].i *
+ b[i__5].i, z__2.i = a[i__4].r * b[
+ i__5].i + a[i__4].i * b[i__5].r;
+ z__1.r = temp.r + z__2.r, z__1.i = temp.i +
+ z__2.i;
+ temp.r = z__1.r, temp.i = z__1.i;
+/* L130: */
+ }
+ } else {
+ if (nounit) {
+ d_cnjg(&z__2, &a[i__ + i__ * a_dim1]);
+ z__1.r = temp.r * z__2.r - temp.i * z__2.i,
+ z__1.i = temp.r * z__2.i + temp.i *
+ z__2.r;
+ temp.r = z__1.r, temp.i = z__1.i;
+ }
+ i__3 = *m;
+ for (k = i__ + 1; k <= i__3; ++k) {
+ d_cnjg(&z__3, &a[k + i__ * a_dim1]);
+ i__4 = k + j * b_dim1;
+ z__2.r = z__3.r * b[i__4].r - z__3.i * b[i__4]
+ .i, z__2.i = z__3.r * b[i__4].i +
+ z__3.i * b[i__4].r;
+ z__1.r = temp.r + z__2.r, z__1.i = temp.i +
+ z__2.i;
+ temp.r = z__1.r, temp.i = z__1.i;
+/* L140: */
+ }
+ }
+ i__3 = i__ + j * b_dim1;
+ z__1.r = alpha->r * temp.r - alpha->i * temp.i,
+ z__1.i = alpha->r * temp.i + alpha->i *
+ temp.r;
+ b[i__3].r = z__1.r, b[i__3].i = z__1.i;
+/* L150: */
+ }
+/* L160: */
+ }
+ }
+ }
+ } else {
+ if (lsame_(transa, "N")) {
+
+/* Form B := alpha*B*A. */
+
+ if (upper) {
+ for (j = *n; j >= 1; --j) {
+ temp.r = alpha->r, temp.i = alpha->i;
+ if (nounit) {
+ i__1 = j + j * a_dim1;
+ z__1.r = temp.r * a[i__1].r - temp.i * a[i__1].i,
+ z__1.i = temp.r * a[i__1].i + temp.i * a[i__1]
+ .r;
+ temp.r = z__1.r, temp.i = z__1.i;
+ }
+ i__1 = *m;
+ for (i__ = 1; i__ <= i__1; ++i__) {
+ i__2 = i__ + j * b_dim1;
+ i__3 = i__ + j * b_dim1;
+ z__1.r = temp.r * b[i__3].r - temp.i * b[i__3].i,
+ z__1.i = temp.r * b[i__3].i + temp.i * b[i__3]
+ .r;
+ b[i__2].r = z__1.r, b[i__2].i = z__1.i;
+/* L170: */
+ }
+ i__1 = j - 1;
+ for (k = 1; k <= i__1; ++k) {
+ i__2 = k + j * a_dim1;
+ if ((a[i__2].r != 0.) || (a[i__2].i != 0.)) {
+ i__2 = k + j * a_dim1;
+ z__1.r = alpha->r * a[i__2].r - alpha->i * a[i__2]
+ .i, z__1.i = alpha->r * a[i__2].i +
+ alpha->i * a[i__2].r;
+ temp.r = z__1.r, temp.i = z__1.i;
+ i__2 = *m;
+ for (i__ = 1; i__ <= i__2; ++i__) {
+ i__3 = i__ + j * b_dim1;
+ i__4 = i__ + j * b_dim1;
+ i__5 = i__ + k * b_dim1;
+ z__2.r = temp.r * b[i__5].r - temp.i * b[i__5]
+ .i, z__2.i = temp.r * b[i__5].i +
+ temp.i * b[i__5].r;
+ z__1.r = b[i__4].r + z__2.r, z__1.i = b[i__4]
+ .i + z__2.i;
+ b[i__3].r = z__1.r, b[i__3].i = z__1.i;
+/* L180: */
+ }
+ }
+/* L190: */
+ }
+/* L200: */
+ }
+ } else {
+ i__1 = *n;
+ for (j = 1; j <= i__1; ++j) {
+ temp.r = alpha->r, temp.i = alpha->i;
+ if (nounit) {
+ i__2 = j + j * a_dim1;
+ z__1.r = temp.r * a[i__2].r - temp.i * a[i__2].i,
+ z__1.i = temp.r * a[i__2].i + temp.i * a[i__2]
+ .r;
+ temp.r = z__1.r, temp.i = z__1.i;
+ }
+ i__2 = *m;
+ for (i__ = 1; i__ <= i__2; ++i__) {
+ i__3 = i__ + j * b_dim1;
+ i__4 = i__ + j * b_dim1;
+ z__1.r = temp.r * b[i__4].r - temp.i * b[i__4].i,
+ z__1.i = temp.r * b[i__4].i + temp.i * b[i__4]
+ .r;
+ b[i__3].r = z__1.r, b[i__3].i = z__1.i;
+/* L210: */
+ }
+ i__2 = *n;
+ for (k = j + 1; k <= i__2; ++k) {
+ i__3 = k + j * a_dim1;
+ if ((a[i__3].r != 0.) || (a[i__3].i != 0.)) {
+ i__3 = k + j * a_dim1;
+ z__1.r = alpha->r * a[i__3].r - alpha->i * a[i__3]
+ .i, z__1.i = alpha->r * a[i__3].i +
+ alpha->i * a[i__3].r;
+ temp.r = z__1.r, temp.i = z__1.i;
+ i__3 = *m;
+ for (i__ = 1; i__ <= i__3; ++i__) {
+ i__4 = i__ + j * b_dim1;
+ i__5 = i__ + j * b_dim1;
+ i__6 = i__ + k * b_dim1;
+ z__2.r = temp.r * b[i__6].r - temp.i * b[i__6]
+ .i, z__2.i = temp.r * b[i__6].i +
+ temp.i * b[i__6].r;
+ z__1.r = b[i__5].r + z__2.r, z__1.i = b[i__5]
+ .i + z__2.i;
+ b[i__4].r = z__1.r, b[i__4].i = z__1.i;
+/* L220: */
+ }
+ }
+/* L230: */
+ }
+/* L240: */
+ }
+ }
+ } else {
+
+/* Form B := alpha*B*A' or B := alpha*B*conjg( A' ). */
+
+ if (upper) {
+ i__1 = *n;
+ for (k = 1; k <= i__1; ++k) {
+ i__2 = k - 1;
+ for (j = 1; j <= i__2; ++j) {
+ i__3 = j + k * a_dim1;
+ if ((a[i__3].r != 0.) || (a[i__3].i != 0.)) {
+ if (noconj) {
+ i__3 = j + k * a_dim1;
+ z__1.r = alpha->r * a[i__3].r - alpha->i * a[
+ i__3].i, z__1.i = alpha->r * a[i__3]
+ .i + alpha->i * a[i__3].r;
+ temp.r = z__1.r, temp.i = z__1.i;
+ } else {
+ d_cnjg(&z__2, &a[j + k * a_dim1]);
+ z__1.r = alpha->r * z__2.r - alpha->i *
+ z__2.i, z__1.i = alpha->r * z__2.i +
+ alpha->i * z__2.r;
+ temp.r = z__1.r, temp.i = z__1.i;
+ }
+ i__3 = *m;
+ for (i__ = 1; i__ <= i__3; ++i__) {
+ i__4 = i__ + j * b_dim1;
+ i__5 = i__ + j * b_dim1;
+ i__6 = i__ + k * b_dim1;
+ z__2.r = temp.r * b[i__6].r - temp.i * b[i__6]
+ .i, z__2.i = temp.r * b[i__6].i +
+ temp.i * b[i__6].r;
+ z__1.r = b[i__5].r + z__2.r, z__1.i = b[i__5]
+ .i + z__2.i;
+ b[i__4].r = z__1.r, b[i__4].i = z__1.i;
+/* L250: */
+ }
+ }
+/* L260: */
+ }
+ temp.r = alpha->r, temp.i = alpha->i;
+ if (nounit) {
+ if (noconj) {
+ i__2 = k + k * a_dim1;
+ z__1.r = temp.r * a[i__2].r - temp.i * a[i__2].i,
+ z__1.i = temp.r * a[i__2].i + temp.i * a[
+ i__2].r;
+ temp.r = z__1.r, temp.i = z__1.i;
+ } else {
+ d_cnjg(&z__2, &a[k + k * a_dim1]);
+ z__1.r = temp.r * z__2.r - temp.i * z__2.i,
+ z__1.i = temp.r * z__2.i + temp.i *
+ z__2.r;
+ temp.r = z__1.r, temp.i = z__1.i;
+ }
+ }
+ if ((temp.r != 1.) || (temp.i != 0.)) {
+ i__2 = *m;
+ for (i__ = 1; i__ <= i__2; ++i__) {
+ i__3 = i__ + k * b_dim1;
+ i__4 = i__ + k * b_dim1;
+ z__1.r = temp.r * b[i__4].r - temp.i * b[i__4].i,
+ z__1.i = temp.r * b[i__4].i + temp.i * b[
+ i__4].r;
+ b[i__3].r = z__1.r, b[i__3].i = z__1.i;
+/* L270: */
+ }
+ }
+/* L280: */
+ }
+ } else {
+ for (k = *n; k >= 1; --k) {
+ i__1 = *n;
+ for (j = k + 1; j <= i__1; ++j) {
+ i__2 = j + k * a_dim1;
+ if ((a[i__2].r != 0.) || (a[i__2].i != 0.)) {
+ if (noconj) {
+ i__2 = j + k * a_dim1;
+ z__1.r = alpha->r * a[i__2].r - alpha->i * a[
+ i__2].i, z__1.i = alpha->r * a[i__2]
+ .i + alpha->i * a[i__2].r;
+ temp.r = z__1.r, temp.i = z__1.i;
+ } else {
+ d_cnjg(&z__2, &a[j + k * a_dim1]);
+ z__1.r = alpha->r * z__2.r - alpha->i *
+ z__2.i, z__1.i = alpha->r * z__2.i +
+ alpha->i * z__2.r;
+ temp.r = z__1.r, temp.i = z__1.i;
+ }
+ i__2 = *m;
+ for (i__ = 1; i__ <= i__2; ++i__) {
+ i__3 = i__ + j * b_dim1;
+ i__4 = i__ + j * b_dim1;
+ i__5 = i__ + k * b_dim1;
+ z__2.r = temp.r * b[i__5].r - temp.i * b[i__5]
+ .i, z__2.i = temp.r * b[i__5].i +
+ temp.i * b[i__5].r;
+ z__1.r = b[i__4].r + z__2.r, z__1.i = b[i__4]
+ .i + z__2.i;
+ b[i__3].r = z__1.r, b[i__3].i = z__1.i;
+/* L290: */
+ }
+ }
+/* L300: */
+ }
+ temp.r = alpha->r, temp.i = alpha->i;
+ if (nounit) {
+ if (noconj) {
+ i__1 = k + k * a_dim1;
+ z__1.r = temp.r * a[i__1].r - temp.i * a[i__1].i,
+ z__1.i = temp.r * a[i__1].i + temp.i * a[
+ i__1].r;
+ temp.r = z__1.r, temp.i = z__1.i;
+ } else {
+ d_cnjg(&z__2, &a[k + k * a_dim1]);
+ z__1.r = temp.r * z__2.r - temp.i * z__2.i,
+ z__1.i = temp.r * z__2.i + temp.i *
+ z__2.r;
+ temp.r = z__1.r, temp.i = z__1.i;
+ }
+ }
+ if ((temp.r != 1.) || (temp.i != 0.)) {
+ i__1 = *m;
+ for (i__ = 1; i__ <= i__1; ++i__) {
+ i__2 = i__ + k * b_dim1;
+ i__3 = i__ + k * b_dim1;
+ z__1.r = temp.r * b[i__3].r - temp.i * b[i__3].i,
+ z__1.i = temp.r * b[i__3].i + temp.i * b[
+ i__3].r;
+ b[i__2].r = z__1.r, b[i__2].i = z__1.i;
+/* L310: */
+ }
+ }
+/* L320: */
+ }
+ }
+ }
+ }
+
+ return 0;
+
+/* End of ZTRMM . */
+
+} /* ztrmm_ */
+
+/* Subroutine */ int ztrmv_(char *uplo, char *trans, char *diag, integer *n,
+ doublecomplex *a, integer *lda, doublecomplex *x, integer *incx)
+{
+ /* System generated locals */
+ integer a_dim1, a_offset, i__1, i__2, i__3, i__4, i__5;
+ doublecomplex z__1, z__2, z__3;
+
+ /* Builtin functions */
+ void d_cnjg(doublecomplex *, doublecomplex *);
+
+ /* Local variables */
+ static integer i__, j, ix, jx, kx, info;
+ static doublecomplex temp;
+ extern logical lsame_(char *, char *);
+ extern /* Subroutine */ int xerbla_(char *, integer *);
+ static logical noconj, nounit;
+
+
+/*
+ Purpose
+ =======
+
+ ZTRMV performs one of the matrix-vector operations
+
+ x := A*x, or x := A'*x, or x := conjg( A' )*x,
+
+ where x is an n element vector and A is an n by n unit, or non-unit,
+ upper or lower triangular matrix.
+
+ Parameters
+ ==========
+
+ UPLO - CHARACTER*1.
+ On entry, UPLO specifies whether the matrix is an upper or
+ lower triangular matrix as follows:
+
+ UPLO = 'U' or 'u' A is an upper triangular matrix.
+
+ UPLO = 'L' or 'l' A is a lower triangular matrix.
+
+ Unchanged on exit.
+
+ TRANS - CHARACTER*1.
+ On entry, TRANS specifies the operation to be performed as
+ follows:
+
+ TRANS = 'N' or 'n' x := A*x.
+
+ TRANS = 'T' or 't' x := A'*x.
+
+ TRANS = 'C' or 'c' x := conjg( A' )*x.
+
+ Unchanged on exit.
+
+ DIAG - CHARACTER*1.
+ On entry, DIAG specifies whether or not A is unit
+ triangular as follows:
+
+ DIAG = 'U' or 'u' A is assumed to be unit triangular.
+
+ DIAG = 'N' or 'n' A is not assumed to be unit
+ triangular.
+
+ Unchanged on exit.
+
+ N - INTEGER.
+ On entry, N specifies the order of the matrix A.
+ N must be at least zero.
+ Unchanged on exit.
+
+ A - COMPLEX*16 array of DIMENSION ( LDA, n ).
+ Before entry with UPLO = 'U' or 'u', the leading n by n
+ upper triangular part of the array A must contain the upper
+ triangular matrix and the strictly lower triangular part of
+ A is not referenced.
+ Before entry with UPLO = 'L' or 'l', the leading n by n
+ lower triangular part of the array A must contain the lower
+ triangular matrix and the strictly upper triangular part of
+ A is not referenced.
+ Note that when DIAG = 'U' or 'u', the diagonal elements of
+ A are not referenced either, but are assumed to be unity.
+ Unchanged on exit.
+
+ LDA - INTEGER.
+ On entry, LDA specifies the first dimension of A as declared
+ in the calling (sub) program. LDA must be at least
+ max( 1, n ).
+ Unchanged on exit.
+
+ X - COMPLEX*16 array of dimension at least
+ ( 1 + ( n - 1 )*abs( INCX ) ).
+ Before entry, the incremented array X must contain the n
+ element vector x. On exit, X is overwritten with the
+ tranformed vector x.
+
+ INCX - INTEGER.
+ On entry, INCX specifies the increment for the elements of
+ X. INCX must not be zero.
+ Unchanged on exit.
+
+
+ Level 2 Blas routine.
+
+ -- Written on 22-October-1986.
+ Jack Dongarra, Argonne National Lab.
+ Jeremy Du Croz, Nag Central Office.
+ Sven Hammarling, Nag Central Office.
+ Richard Hanson, Sandia National Labs.
+
+
+ Test the input parameters.
+*/
+
+ /* Parameter adjustments */
+ a_dim1 = *lda;
+ a_offset = 1 + a_dim1;
+ a -= a_offset;
+ --x;
+
+ /* Function Body */
+ info = 0;
+ if (! lsame_(uplo, "U") && ! lsame_(uplo, "L")) {
+ info = 1;
+ } else if (! lsame_(trans, "N") && ! lsame_(trans,
+ "T") && ! lsame_(trans, "C")) {
+ info = 2;
+ } else if (! lsame_(diag, "U") && ! lsame_(diag,
+ "N")) {
+ info = 3;
+ } else if (*n < 0) {
+ info = 4;
+ } else if (*lda < max(1,*n)) {
+ info = 6;
+ } else if (*incx == 0) {
+ info = 8;
+ }
+ if (info != 0) {
+ xerbla_("ZTRMV ", &info);
+ return 0;
+ }
+
+/* Quick return if possible. */
+
+ if (*n == 0) {
+ return 0;
+ }
+
+ noconj = lsame_(trans, "T");
+ nounit = lsame_(diag, "N");
+
+/*
+ Set up the start point in X if the increment is not unity. This
+ will be ( N - 1 )*INCX too small for descending loops.
+*/
+
+ if (*incx <= 0) {
+ kx = 1 - (*n - 1) * *incx;
+ } else if (*incx != 1) {
+ kx = 1;
+ }
+
+/*
+ Start the operations. In this version the elements of A are
+ accessed sequentially with one pass through A.
+*/
+
+ if (lsame_(trans, "N")) {
+
+/* Form x := A*x. */
+
+ if (lsame_(uplo, "U")) {
+ if (*incx == 1) {
+ i__1 = *n;
+ for (j = 1; j <= i__1; ++j) {
+ i__2 = j;
+ if ((x[i__2].r != 0.) || (x[i__2].i != 0.)) {
+ i__2 = j;
+ temp.r = x[i__2].r, temp.i = x[i__2].i;
+ i__2 = j - 1;
+ for (i__ = 1; i__ <= i__2; ++i__) {
+ i__3 = i__;
+ i__4 = i__;
+ i__5 = i__ + j * a_dim1;
+ z__2.r = temp.r * a[i__5].r - temp.i * a[i__5].i,
+ z__2.i = temp.r * a[i__5].i + temp.i * a[
+ i__5].r;
+ z__1.r = x[i__4].r + z__2.r, z__1.i = x[i__4].i +
+ z__2.i;
+ x[i__3].r = z__1.r, x[i__3].i = z__1.i;
+/* L10: */
+ }
+ if (nounit) {
+ i__2 = j;
+ i__3 = j;
+ i__4 = j + j * a_dim1;
+ z__1.r = x[i__3].r * a[i__4].r - x[i__3].i * a[
+ i__4].i, z__1.i = x[i__3].r * a[i__4].i +
+ x[i__3].i * a[i__4].r;
+ x[i__2].r = z__1.r, x[i__2].i = z__1.i;
+ }
+ }
+/* L20: */
+ }
+ } else {
+ jx = kx;
+ i__1 = *n;
+ for (j = 1; j <= i__1; ++j) {
+ i__2 = jx;
+ if ((x[i__2].r != 0.) || (x[i__2].i != 0.)) {
+ i__2 = jx;
+ temp.r = x[i__2].r, temp.i = x[i__2].i;
+ ix = kx;
+ i__2 = j - 1;
+ for (i__ = 1; i__ <= i__2; ++i__) {
+ i__3 = ix;
+ i__4 = ix;
+ i__5 = i__ + j * a_dim1;
+ z__2.r = temp.r * a[i__5].r - temp.i * a[i__5].i,
+ z__2.i = temp.r * a[i__5].i + temp.i * a[
+ i__5].r;
+ z__1.r = x[i__4].r + z__2.r, z__1.i = x[i__4].i +
+ z__2.i;
+ x[i__3].r = z__1.r, x[i__3].i = z__1.i;
+ ix += *incx;
+/* L30: */
+ }
+ if (nounit) {
+ i__2 = jx;
+ i__3 = jx;
+ i__4 = j + j * a_dim1;
+ z__1.r = x[i__3].r * a[i__4].r - x[i__3].i * a[
+ i__4].i, z__1.i = x[i__3].r * a[i__4].i +
+ x[i__3].i * a[i__4].r;
+ x[i__2].r = z__1.r, x[i__2].i = z__1.i;
+ }
+ }
+ jx += *incx;
+/* L40: */
+ }
+ }
+ } else {
+ if (*incx == 1) {
+ for (j = *n; j >= 1; --j) {
+ i__1 = j;
+ if ((x[i__1].r != 0.) || (x[i__1].i != 0.)) {
+ i__1 = j;
+ temp.r = x[i__1].r, temp.i = x[i__1].i;
+ i__1 = j + 1;
+ for (i__ = *n; i__ >= i__1; --i__) {
+ i__2 = i__;
+ i__3 = i__;
+ i__4 = i__ + j * a_dim1;
+ z__2.r = temp.r * a[i__4].r - temp.i * a[i__4].i,
+ z__2.i = temp.r * a[i__4].i + temp.i * a[
+ i__4].r;
+ z__1.r = x[i__3].r + z__2.r, z__1.i = x[i__3].i +
+ z__2.i;
+ x[i__2].r = z__1.r, x[i__2].i = z__1.i;
+/* L50: */
+ }
+ if (nounit) {
+ i__1 = j;
+ i__2 = j;
+ i__3 = j + j * a_dim1;
+ z__1.r = x[i__2].r * a[i__3].r - x[i__2].i * a[
+ i__3].i, z__1.i = x[i__2].r * a[i__3].i +
+ x[i__2].i * a[i__3].r;
+ x[i__1].r = z__1.r, x[i__1].i = z__1.i;
+ }
+ }
+/* L60: */
+ }
+ } else {
+ kx += (*n - 1) * *incx;
+ jx = kx;
+ for (j = *n; j >= 1; --j) {
+ i__1 = jx;
+ if ((x[i__1].r != 0.) || (x[i__1].i != 0.)) {
+ i__1 = jx;
+ temp.r = x[i__1].r, temp.i = x[i__1].i;
+ ix = kx;
+ i__1 = j + 1;
+ for (i__ = *n; i__ >= i__1; --i__) {
+ i__2 = ix;
+ i__3 = ix;
+ i__4 = i__ + j * a_dim1;
+ z__2.r = temp.r * a[i__4].r - temp.i * a[i__4].i,
+ z__2.i = temp.r * a[i__4].i + temp.i * a[
+ i__4].r;
+ z__1.r = x[i__3].r + z__2.r, z__1.i = x[i__3].i +
+ z__2.i;
+ x[i__2].r = z__1.r, x[i__2].i = z__1.i;
+ ix -= *incx;
+/* L70: */
+ }
+ if (nounit) {
+ i__1 = jx;
+ i__2 = jx;
+ i__3 = j + j * a_dim1;
+ z__1.r = x[i__2].r * a[i__3].r - x[i__2].i * a[
+ i__3].i, z__1.i = x[i__2].r * a[i__3].i +
+ x[i__2].i * a[i__3].r;
+ x[i__1].r = z__1.r, x[i__1].i = z__1.i;
+ }
+ }
+ jx -= *incx;
+/* L80: */
+ }
+ }
+ }
+ } else {
+
+/* Form x := A'*x or x := conjg( A' )*x. */
+
+ if (lsame_(uplo, "U")) {
+ if (*incx == 1) {
+ for (j = *n; j >= 1; --j) {
+ i__1 = j;
+ temp.r = x[i__1].r, temp.i = x[i__1].i;
+ if (noconj) {
+ if (nounit) {
+ i__1 = j + j * a_dim1;
+ z__1.r = temp.r * a[i__1].r - temp.i * a[i__1].i,
+ z__1.i = temp.r * a[i__1].i + temp.i * a[
+ i__1].r;
+ temp.r = z__1.r, temp.i = z__1.i;
+ }
+ for (i__ = j - 1; i__ >= 1; --i__) {
+ i__1 = i__ + j * a_dim1;
+ i__2 = i__;
+ z__2.r = a[i__1].r * x[i__2].r - a[i__1].i * x[
+ i__2].i, z__2.i = a[i__1].r * x[i__2].i +
+ a[i__1].i * x[i__2].r;
+ z__1.r = temp.r + z__2.r, z__1.i = temp.i +
+ z__2.i;
+ temp.r = z__1.r, temp.i = z__1.i;
+/* L90: */
+ }
+ } else {
+ if (nounit) {
+ d_cnjg(&z__2, &a[j + j * a_dim1]);
+ z__1.r = temp.r * z__2.r - temp.i * z__2.i,
+ z__1.i = temp.r * z__2.i + temp.i *
+ z__2.r;
+ temp.r = z__1.r, temp.i = z__1.i;
+ }
+ for (i__ = j - 1; i__ >= 1; --i__) {
+ d_cnjg(&z__3, &a[i__ + j * a_dim1]);
+ i__1 = i__;
+ z__2.r = z__3.r * x[i__1].r - z__3.i * x[i__1].i,
+ z__2.i = z__3.r * x[i__1].i + z__3.i * x[
+ i__1].r;
+ z__1.r = temp.r + z__2.r, z__1.i = temp.i +
+ z__2.i;
+ temp.r = z__1.r, temp.i = z__1.i;
+/* L100: */
+ }
+ }
+ i__1 = j;
+ x[i__1].r = temp.r, x[i__1].i = temp.i;
+/* L110: */
+ }
+ } else {
+ jx = kx + (*n - 1) * *incx;
+ for (j = *n; j >= 1; --j) {
+ i__1 = jx;
+ temp.r = x[i__1].r, temp.i = x[i__1].i;
+ ix = jx;
+ if (noconj) {
+ if (nounit) {
+ i__1 = j + j * a_dim1;
+ z__1.r = temp.r * a[i__1].r - temp.i * a[i__1].i,
+ z__1.i = temp.r * a[i__1].i + temp.i * a[
+ i__1].r;
+ temp.r = z__1.r, temp.i = z__1.i;
+ }
+ for (i__ = j - 1; i__ >= 1; --i__) {
+ ix -= *incx;
+ i__1 = i__ + j * a_dim1;
+ i__2 = ix;
+ z__2.r = a[i__1].r * x[i__2].r - a[i__1].i * x[
+ i__2].i, z__2.i = a[i__1].r * x[i__2].i +
+ a[i__1].i * x[i__2].r;
+ z__1.r = temp.r + z__2.r, z__1.i = temp.i +
+ z__2.i;
+ temp.r = z__1.r, temp.i = z__1.i;
+/* L120: */
+ }
+ } else {
+ if (nounit) {
+ d_cnjg(&z__2, &a[j + j * a_dim1]);
+ z__1.r = temp.r * z__2.r - temp.i * z__2.i,
+ z__1.i = temp.r * z__2.i + temp.i *
+ z__2.r;
+ temp.r = z__1.r, temp.i = z__1.i;
+ }
+ for (i__ = j - 1; i__ >= 1; --i__) {
+ ix -= *incx;
+ d_cnjg(&z__3, &a[i__ + j * a_dim1]);
+ i__1 = ix;
+ z__2.r = z__3.r * x[i__1].r - z__3.i * x[i__1].i,
+ z__2.i = z__3.r * x[i__1].i + z__3.i * x[
+ i__1].r;
+ z__1.r = temp.r + z__2.r, z__1.i = temp.i +
+ z__2.i;
+ temp.r = z__1.r, temp.i = z__1.i;
+/* L130: */
+ }
+ }
+ i__1 = jx;
+ x[i__1].r = temp.r, x[i__1].i = temp.i;
+ jx -= *incx;
+/* L140: */
+ }
+ }
+ } else {
+ if (*incx == 1) {
+ i__1 = *n;
+ for (j = 1; j <= i__1; ++j) {
+ i__2 = j;
+ temp.r = x[i__2].r, temp.i = x[i__2].i;
+ if (noconj) {
+ if (nounit) {
+ i__2 = j + j * a_dim1;
+ z__1.r = temp.r * a[i__2].r - temp.i * a[i__2].i,
+ z__1.i = temp.r * a[i__2].i + temp.i * a[
+ i__2].r;
+ temp.r = z__1.r, temp.i = z__1.i;
+ }
+ i__2 = *n;
+ for (i__ = j + 1; i__ <= i__2; ++i__) {
+ i__3 = i__ + j * a_dim1;
+ i__4 = i__;
+ z__2.r = a[i__3].r * x[i__4].r - a[i__3].i * x[
+ i__4].i, z__2.i = a[i__3].r * x[i__4].i +
+ a[i__3].i * x[i__4].r;
+ z__1.r = temp.r + z__2.r, z__1.i = temp.i +
+ z__2.i;
+ temp.r = z__1.r, temp.i = z__1.i;
+/* L150: */
+ }
+ } else {
+ if (nounit) {
+ d_cnjg(&z__2, &a[j + j * a_dim1]);
+ z__1.r = temp.r * z__2.r - temp.i * z__2.i,
+ z__1.i = temp.r * z__2.i + temp.i *
+ z__2.r;
+ temp.r = z__1.r, temp.i = z__1.i;
+ }
+ i__2 = *n;
+ for (i__ = j + 1; i__ <= i__2; ++i__) {
+ d_cnjg(&z__3, &a[i__ + j * a_dim1]);
+ i__3 = i__;
+ z__2.r = z__3.r * x[i__3].r - z__3.i * x[i__3].i,
+ z__2.i = z__3.r * x[i__3].i + z__3.i * x[
+ i__3].r;
+ z__1.r = temp.r + z__2.r, z__1.i = temp.i +
+ z__2.i;
+ temp.r = z__1.r, temp.i = z__1.i;
+/* L160: */
+ }
+ }
+ i__2 = j;
+ x[i__2].r = temp.r, x[i__2].i = temp.i;
+/* L170: */
+ }
+ } else {
+ jx = kx;
+ i__1 = *n;
+ for (j = 1; j <= i__1; ++j) {
+ i__2 = jx;
+ temp.r = x[i__2].r, temp.i = x[i__2].i;
+ ix = jx;
+ if (noconj) {
+ if (nounit) {
+ i__2 = j + j * a_dim1;
+ z__1.r = temp.r * a[i__2].r - temp.i * a[i__2].i,
+ z__1.i = temp.r * a[i__2].i + temp.i * a[
+ i__2].r;
+ temp.r = z__1.r, temp.i = z__1.i;
+ }
+ i__2 = *n;
+ for (i__ = j + 1; i__ <= i__2; ++i__) {
+ ix += *incx;
+ i__3 = i__ + j * a_dim1;
+ i__4 = ix;
+ z__2.r = a[i__3].r * x[i__4].r - a[i__3].i * x[
+ i__4].i, z__2.i = a[i__3].r * x[i__4].i +
+ a[i__3].i * x[i__4].r;
+ z__1.r = temp.r + z__2.r, z__1.i = temp.i +
+ z__2.i;
+ temp.r = z__1.r, temp.i = z__1.i;
+/* L180: */
+ }
+ } else {
+ if (nounit) {
+ d_cnjg(&z__2, &a[j + j * a_dim1]);
+ z__1.r = temp.r * z__2.r - temp.i * z__2.i,
+ z__1.i = temp.r * z__2.i + temp.i *
+ z__2.r;
+ temp.r = z__1.r, temp.i = z__1.i;
+ }
+ i__2 = *n;
+ for (i__ = j + 1; i__ <= i__2; ++i__) {
+ ix += *incx;
+ d_cnjg(&z__3, &a[i__ + j * a_dim1]);
+ i__3 = ix;
+ z__2.r = z__3.r * x[i__3].r - z__3.i * x[i__3].i,
+ z__2.i = z__3.r * x[i__3].i + z__3.i * x[
+ i__3].r;
+ z__1.r = temp.r + z__2.r, z__1.i = temp.i +
+ z__2.i;
+ temp.r = z__1.r, temp.i = z__1.i;
+/* L190: */
+ }
+ }
+ i__2 = jx;
+ x[i__2].r = temp.r, x[i__2].i = temp.i;
+ jx += *incx;
+/* L200: */
+ }
+ }
+ }
+ }
+
+ return 0;
+
+/* End of ZTRMV . */
+
+} /* ztrmv_ */
+
+/* Subroutine */ int ztrsm_(char *side, char *uplo, char *transa, char *diag,
+ integer *m, integer *n, doublecomplex *alpha, doublecomplex *a,
+ integer *lda, doublecomplex *b, integer *ldb)
+{
+ /* System generated locals */
+ integer a_dim1, a_offset, b_dim1, b_offset, i__1, i__2, i__3, i__4, i__5,
+ i__6, i__7;
+ doublecomplex z__1, z__2, z__3;
+
+ /* Builtin functions */
+ void z_div(doublecomplex *, doublecomplex *, doublecomplex *), d_cnjg(
+ doublecomplex *, doublecomplex *);
+
+ /* Local variables */
+ static integer i__, j, k, info;
+ static doublecomplex temp;
+ static logical lside;
+ extern logical lsame_(char *, char *);
+ static integer nrowa;
+ static logical upper;
+ extern /* Subroutine */ int xerbla_(char *, integer *);
+ static logical noconj, nounit;
+
+
+/*
+ Purpose
+ =======
+
+ ZTRSM solves one of the matrix equations
+
+ op( A )*X = alpha*B, or X*op( A ) = alpha*B,
+
+ where alpha is a scalar, X and B are m by n matrices, A is a unit, or
+ non-unit, upper or lower triangular matrix and op( A ) is one of
+
+ op( A ) = A or op( A ) = A' or op( A ) = conjg( A' ).
+
+ The matrix X is overwritten on B.
+
+ Parameters
+ ==========
+
+ SIDE - CHARACTER*1.
+ On entry, SIDE specifies whether op( A ) appears on the left
+ or right of X as follows:
+
+ SIDE = 'L' or 'l' op( A )*X = alpha*B.
+
+ SIDE = 'R' or 'r' X*op( A ) = alpha*B.
+
+ Unchanged on exit.
+
+ UPLO - CHARACTER*1.
+ On entry, UPLO specifies whether the matrix A is an upper or
+ lower triangular matrix as follows:
+
+ UPLO = 'U' or 'u' A is an upper triangular matrix.
+
+ UPLO = 'L' or 'l' A is a lower triangular matrix.
+
+ Unchanged on exit.
+
+ TRANSA - CHARACTER*1.
+ On entry, TRANSA specifies the form of op( A ) to be used in
+ the matrix multiplication as follows:
+
+ TRANSA = 'N' or 'n' op( A ) = A.
+
+ TRANSA = 'T' or 't' op( A ) = A'.
+
+ TRANSA = 'C' or 'c' op( A ) = conjg( A' ).
+
+ Unchanged on exit.
+
+ DIAG - CHARACTER*1.
+ On entry, DIAG specifies whether or not A is unit triangular
+ as follows:
+
+ DIAG = 'U' or 'u' A is assumed to be unit triangular.
+
+ DIAG = 'N' or 'n' A is not assumed to be unit
+ triangular.
+
+ Unchanged on exit.
+
+ M - INTEGER.
+ On entry, M specifies the number of rows of B. M must be at
+ least zero.
+ Unchanged on exit.
+
+ N - INTEGER.
+ On entry, N specifies the number of columns of B. N must be
+ at least zero.
+ Unchanged on exit.
+
+ ALPHA - COMPLEX*16 .
+ On entry, ALPHA specifies the scalar alpha. When alpha is
+ zero then A is not referenced and B need not be set before
+ entry.
+ Unchanged on exit.
+
+ A - COMPLEX*16 array of DIMENSION ( LDA, k ), where k is m
+ when SIDE = 'L' or 'l' and is n when SIDE = 'R' or 'r'.
+ Before entry with UPLO = 'U' or 'u', the leading k by k
+ upper triangular part of the array A must contain the upper
+ triangular matrix and the strictly lower triangular part of
+ A is not referenced.
+ Before entry with UPLO = 'L' or 'l', the leading k by k
+ lower triangular part of the array A must contain the lower
+ triangular matrix and the strictly upper triangular part of
+ A is not referenced.
+ Note that when DIAG = 'U' or 'u', the diagonal elements of
+ A are not referenced either, but are assumed to be unity.
+ Unchanged on exit.
+
+ LDA - INTEGER.
+ On entry, LDA specifies the first dimension of A as declared
+ in the calling (sub) program. When SIDE = 'L' or 'l' then
+ LDA must be at least max( 1, m ), when SIDE = 'R' or 'r'
+ then LDA must be at least max( 1, n ).
+ Unchanged on exit.
+
+ B - COMPLEX*16 array of DIMENSION ( LDB, n ).
+ Before entry, the leading m by n part of the array B must
+ contain the right-hand side matrix B, and on exit is
+ overwritten by the solution matrix X.
+
+ LDB - INTEGER.
+ On entry, LDB specifies the first dimension of B as declared
+ in the calling (sub) program. LDB must be at least
+ max( 1, m ).
+ Unchanged on exit.
+
+
+ Level 3 Blas routine.
+
+ -- Written on 8-February-1989.
+ Jack Dongarra, Argonne National Laboratory.
+ Iain Duff, AERE Harwell.
+ Jeremy Du Croz, Numerical Algorithms Group Ltd.
+ Sven Hammarling, Numerical Algorithms Group Ltd.
+
+
+ Test the input parameters.
+*/
+
+ /* Parameter adjustments */
+ a_dim1 = *lda;
+ a_offset = 1 + a_dim1;
+ a -= a_offset;
+ b_dim1 = *ldb;
+ b_offset = 1 + b_dim1;
+ b -= b_offset;
+
+ /* Function Body */
+ lside = lsame_(side, "L");
+ if (lside) {
+ nrowa = *m;
+ } else {
+ nrowa = *n;
+ }
+ noconj = lsame_(transa, "T");
+ nounit = lsame_(diag, "N");
+ upper = lsame_(uplo, "U");
+
+ info = 0;
+ if (! lside && ! lsame_(side, "R")) {
+ info = 1;
+ } else if (! upper && ! lsame_(uplo, "L")) {
+ info = 2;
+ } else if (! lsame_(transa, "N") && ! lsame_(transa,
+ "T") && ! lsame_(transa, "C")) {
+ info = 3;
+ } else if (! lsame_(diag, "U") && ! lsame_(diag,
+ "N")) {
+ info = 4;
+ } else if (*m < 0) {
+ info = 5;
+ } else if (*n < 0) {
+ info = 6;
+ } else if (*lda < max(1,nrowa)) {
+ info = 9;
+ } else if (*ldb < max(1,*m)) {
+ info = 11;
+ }
+ if (info != 0) {
+ xerbla_("ZTRSM ", &info);
+ return 0;
+ }
+
+/* Quick return if possible. */
+
+ if (*n == 0) {
+ return 0;
+ }
+
+/* And when alpha.eq.zero. */
+
+ if (alpha->r == 0. && alpha->i == 0.) {
+ i__1 = *n;
+ for (j = 1; j <= i__1; ++j) {
+ i__2 = *m;
+ for (i__ = 1; i__ <= i__2; ++i__) {
+ i__3 = i__ + j * b_dim1;
+ b[i__3].r = 0., b[i__3].i = 0.;
+/* L10: */
+ }
+/* L20: */
+ }
+ return 0;
+ }
+
+/* Start the operations. */
+
+ if (lside) {
+ if (lsame_(transa, "N")) {
+
+/* Form B := alpha*inv( A )*B. */
+
+ if (upper) {
+ i__1 = *n;
+ for (j = 1; j <= i__1; ++j) {
+ if ((alpha->r != 1.) || (alpha->i != 0.)) {
+ i__2 = *m;
+ for (i__ = 1; i__ <= i__2; ++i__) {
+ i__3 = i__ + j * b_dim1;
+ i__4 = i__ + j * b_dim1;
+ z__1.r = alpha->r * b[i__4].r - alpha->i * b[i__4]
+ .i, z__1.i = alpha->r * b[i__4].i +
+ alpha->i * b[i__4].r;
+ b[i__3].r = z__1.r, b[i__3].i = z__1.i;
+/* L30: */
+ }
+ }
+ for (k = *m; k >= 1; --k) {
+ i__2 = k + j * b_dim1;
+ if ((b[i__2].r != 0.) || (b[i__2].i != 0.)) {
+ if (nounit) {
+ i__2 = k + j * b_dim1;
+ z_div(&z__1, &b[k + j * b_dim1], &a[k + k *
+ a_dim1]);
+ b[i__2].r = z__1.r, b[i__2].i = z__1.i;
+ }
+ i__2 = k - 1;
+ for (i__ = 1; i__ <= i__2; ++i__) {
+ i__3 = i__ + j * b_dim1;
+ i__4 = i__ + j * b_dim1;
+ i__5 = k + j * b_dim1;
+ i__6 = i__ + k * a_dim1;
+ z__2.r = b[i__5].r * a[i__6].r - b[i__5].i *
+ a[i__6].i, z__2.i = b[i__5].r * a[
+ i__6].i + b[i__5].i * a[i__6].r;
+ z__1.r = b[i__4].r - z__2.r, z__1.i = b[i__4]
+ .i - z__2.i;
+ b[i__3].r = z__1.r, b[i__3].i = z__1.i;
+/* L40: */
+ }
+ }
+/* L50: */
+ }
+/* L60: */
+ }
+ } else {
+ i__1 = *n;
+ for (j = 1; j <= i__1; ++j) {
+ if ((alpha->r != 1.) || (alpha->i != 0.)) {
+ i__2 = *m;
+ for (i__ = 1; i__ <= i__2; ++i__) {
+ i__3 = i__ + j * b_dim1;
+ i__4 = i__ + j * b_dim1;
+ z__1.r = alpha->r * b[i__4].r - alpha->i * b[i__4]
+ .i, z__1.i = alpha->r * b[i__4].i +
+ alpha->i * b[i__4].r;
+ b[i__3].r = z__1.r, b[i__3].i = z__1.i;
+/* L70: */
+ }
+ }
+ i__2 = *m;
+ for (k = 1; k <= i__2; ++k) {
+ i__3 = k + j * b_dim1;
+ if ((b[i__3].r != 0.) || (b[i__3].i != 0.)) {
+ if (nounit) {
+ i__3 = k + j * b_dim1;
+ z_div(&z__1, &b[k + j * b_dim1], &a[k + k *
+ a_dim1]);
+ b[i__3].r = z__1.r, b[i__3].i = z__1.i;
+ }
+ i__3 = *m;
+ for (i__ = k + 1; i__ <= i__3; ++i__) {
+ i__4 = i__ + j * b_dim1;
+ i__5 = i__ + j * b_dim1;
+ i__6 = k + j * b_dim1;
+ i__7 = i__ + k * a_dim1;
+ z__2.r = b[i__6].r * a[i__7].r - b[i__6].i *
+ a[i__7].i, z__2.i = b[i__6].r * a[
+ i__7].i + b[i__6].i * a[i__7].r;
+ z__1.r = b[i__5].r - z__2.r, z__1.i = b[i__5]
+ .i - z__2.i;
+ b[i__4].r = z__1.r, b[i__4].i = z__1.i;
+/* L80: */
+ }
+ }
+/* L90: */
+ }
+/* L100: */
+ }
+ }
+ } else {
+
+/*
+ Form B := alpha*inv( A' )*B
+ or B := alpha*inv( conjg( A' ) )*B.
+*/
+
+ if (upper) {
+ i__1 = *n;
+ for (j = 1; j <= i__1; ++j) {
+ i__2 = *m;
+ for (i__ = 1; i__ <= i__2; ++i__) {
+ i__3 = i__ + j * b_dim1;
+ z__1.r = alpha->r * b[i__3].r - alpha->i * b[i__3].i,
+ z__1.i = alpha->r * b[i__3].i + alpha->i * b[
+ i__3].r;
+ temp.r = z__1.r, temp.i = z__1.i;
+ if (noconj) {
+ i__3 = i__ - 1;
+ for (k = 1; k <= i__3; ++k) {
+ i__4 = k + i__ * a_dim1;
+ i__5 = k + j * b_dim1;
+ z__2.r = a[i__4].r * b[i__5].r - a[i__4].i *
+ b[i__5].i, z__2.i = a[i__4].r * b[
+ i__5].i + a[i__4].i * b[i__5].r;
+ z__1.r = temp.r - z__2.r, z__1.i = temp.i -
+ z__2.i;
+ temp.r = z__1.r, temp.i = z__1.i;
+/* L110: */
+ }
+ if (nounit) {
+ z_div(&z__1, &temp, &a[i__ + i__ * a_dim1]);
+ temp.r = z__1.r, temp.i = z__1.i;
+ }
+ } else {
+ i__3 = i__ - 1;
+ for (k = 1; k <= i__3; ++k) {
+ d_cnjg(&z__3, &a[k + i__ * a_dim1]);
+ i__4 = k + j * b_dim1;
+ z__2.r = z__3.r * b[i__4].r - z__3.i * b[i__4]
+ .i, z__2.i = z__3.r * b[i__4].i +
+ z__3.i * b[i__4].r;
+ z__1.r = temp.r - z__2.r, z__1.i = temp.i -
+ z__2.i;
+ temp.r = z__1.r, temp.i = z__1.i;
+/* L120: */
+ }
+ if (nounit) {
+ d_cnjg(&z__2, &a[i__ + i__ * a_dim1]);
+ z_div(&z__1, &temp, &z__2);
+ temp.r = z__1.r, temp.i = z__1.i;
+ }
+ }
+ i__3 = i__ + j * b_dim1;
+ b[i__3].r = temp.r, b[i__3].i = temp.i;
+/* L130: */
+ }
+/* L140: */
+ }
+ } else {
+ i__1 = *n;
+ for (j = 1; j <= i__1; ++j) {
+ for (i__ = *m; i__ >= 1; --i__) {
+ i__2 = i__ + j * b_dim1;
+ z__1.r = alpha->r * b[i__2].r - alpha->i * b[i__2].i,
+ z__1.i = alpha->r * b[i__2].i + alpha->i * b[
+ i__2].r;
+ temp.r = z__1.r, temp.i = z__1.i;
+ if (noconj) {
+ i__2 = *m;
+ for (k = i__ + 1; k <= i__2; ++k) {
+ i__3 = k + i__ * a_dim1;
+ i__4 = k + j * b_dim1;
+ z__2.r = a[i__3].r * b[i__4].r - a[i__3].i *
+ b[i__4].i, z__2.i = a[i__3].r * b[
+ i__4].i + a[i__3].i * b[i__4].r;
+ z__1.r = temp.r - z__2.r, z__1.i = temp.i -
+ z__2.i;
+ temp.r = z__1.r, temp.i = z__1.i;
+/* L150: */
+ }
+ if (nounit) {
+ z_div(&z__1, &temp, &a[i__ + i__ * a_dim1]);
+ temp.r = z__1.r, temp.i = z__1.i;
+ }
+ } else {
+ i__2 = *m;
+ for (k = i__ + 1; k <= i__2; ++k) {
+ d_cnjg(&z__3, &a[k + i__ * a_dim1]);
+ i__3 = k + j * b_dim1;
+ z__2.r = z__3.r * b[i__3].r - z__3.i * b[i__3]
+ .i, z__2.i = z__3.r * b[i__3].i +
+ z__3.i * b[i__3].r;
+ z__1.r = temp.r - z__2.r, z__1.i = temp.i -
+ z__2.i;
+ temp.r = z__1.r, temp.i = z__1.i;
+/* L160: */
+ }
+ if (nounit) {
+ d_cnjg(&z__2, &a[i__ + i__ * a_dim1]);
+ z_div(&z__1, &temp, &z__2);
+ temp.r = z__1.r, temp.i = z__1.i;
+ }
+ }
+ i__2 = i__ + j * b_dim1;
+ b[i__2].r = temp.r, b[i__2].i = temp.i;
+/* L170: */
+ }
+/* L180: */
+ }
+ }
+ }
+ } else {
+ if (lsame_(transa, "N")) {
+
+/* Form B := alpha*B*inv( A ). */
+
+ if (upper) {
+ i__1 = *n;
+ for (j = 1; j <= i__1; ++j) {
+ if ((alpha->r != 1.) || (alpha->i != 0.)) {
+ i__2 = *m;
+ for (i__ = 1; i__ <= i__2; ++i__) {
+ i__3 = i__ + j * b_dim1;
+ i__4 = i__ + j * b_dim1;
+ z__1.r = alpha->r * b[i__4].r - alpha->i * b[i__4]
+ .i, z__1.i = alpha->r * b[i__4].i +
+ alpha->i * b[i__4].r;
+ b[i__3].r = z__1.r, b[i__3].i = z__1.i;
+/* L190: */
+ }
+ }
+ i__2 = j - 1;
+ for (k = 1; k <= i__2; ++k) {
+ i__3 = k + j * a_dim1;
+ if ((a[i__3].r != 0.) || (a[i__3].i != 0.)) {
+ i__3 = *m;
+ for (i__ = 1; i__ <= i__3; ++i__) {
+ i__4 = i__ + j * b_dim1;
+ i__5 = i__ + j * b_dim1;
+ i__6 = k + j * a_dim1;
+ i__7 = i__ + k * b_dim1;
+ z__2.r = a[i__6].r * b[i__7].r - a[i__6].i *
+ b[i__7].i, z__2.i = a[i__6].r * b[
+ i__7].i + a[i__6].i * b[i__7].r;
+ z__1.r = b[i__5].r - z__2.r, z__1.i = b[i__5]
+ .i - z__2.i;
+ b[i__4].r = z__1.r, b[i__4].i = z__1.i;
+/* L200: */
+ }
+ }
+/* L210: */
+ }
+ if (nounit) {
+ z_div(&z__1, &c_b1077, &a[j + j * a_dim1]);
+ temp.r = z__1.r, temp.i = z__1.i;
+ i__2 = *m;
+ for (i__ = 1; i__ <= i__2; ++i__) {
+ i__3 = i__ + j * b_dim1;
+ i__4 = i__ + j * b_dim1;
+ z__1.r = temp.r * b[i__4].r - temp.i * b[i__4].i,
+ z__1.i = temp.r * b[i__4].i + temp.i * b[
+ i__4].r;
+ b[i__3].r = z__1.r, b[i__3].i = z__1.i;
+/* L220: */
+ }
+ }
+/* L230: */
+ }
+ } else {
+ for (j = *n; j >= 1; --j) {
+ if ((alpha->r != 1.) || (alpha->i != 0.)) {
+ i__1 = *m;
+ for (i__ = 1; i__ <= i__1; ++i__) {
+ i__2 = i__ + j * b_dim1;
+ i__3 = i__ + j * b_dim1;
+ z__1.r = alpha->r * b[i__3].r - alpha->i * b[i__3]
+ .i, z__1.i = alpha->r * b[i__3].i +
+ alpha->i * b[i__3].r;
+ b[i__2].r = z__1.r, b[i__2].i = z__1.i;
+/* L240: */
+ }
+ }
+ i__1 = *n;
+ for (k = j + 1; k <= i__1; ++k) {
+ i__2 = k + j * a_dim1;
+ if ((a[i__2].r != 0.) || (a[i__2].i != 0.)) {
+ i__2 = *m;
+ for (i__ = 1; i__ <= i__2; ++i__) {
+ i__3 = i__ + j * b_dim1;
+ i__4 = i__ + j * b_dim1;
+ i__5 = k + j * a_dim1;
+ i__6 = i__ + k * b_dim1;
+ z__2.r = a[i__5].r * b[i__6].r - a[i__5].i *
+ b[i__6].i, z__2.i = a[i__5].r * b[
+ i__6].i + a[i__5].i * b[i__6].r;
+ z__1.r = b[i__4].r - z__2.r, z__1.i = b[i__4]
+ .i - z__2.i;
+ b[i__3].r = z__1.r, b[i__3].i = z__1.i;
+/* L250: */
+ }
+ }
+/* L260: */
+ }
+ if (nounit) {
+ z_div(&z__1, &c_b1077, &a[j + j * a_dim1]);
+ temp.r = z__1.r, temp.i = z__1.i;
+ i__1 = *m;
+ for (i__ = 1; i__ <= i__1; ++i__) {
+ i__2 = i__ + j * b_dim1;
+ i__3 = i__ + j * b_dim1;
+ z__1.r = temp.r * b[i__3].r - temp.i * b[i__3].i,
+ z__1.i = temp.r * b[i__3].i + temp.i * b[
+ i__3].r;
+ b[i__2].r = z__1.r, b[i__2].i = z__1.i;
+/* L270: */
+ }
+ }
+/* L280: */
+ }
+ }
+ } else {
+
+/*
+ Form B := alpha*B*inv( A' )
+ or B := alpha*B*inv( conjg( A' ) ).
+*/
+
+ if (upper) {
+ for (k = *n; k >= 1; --k) {
+ if (nounit) {
+ if (noconj) {
+ z_div(&z__1, &c_b1077, &a[k + k * a_dim1]);
+ temp.r = z__1.r, temp.i = z__1.i;
+ } else {
+ d_cnjg(&z__2, &a[k + k * a_dim1]);
+ z_div(&z__1, &c_b1077, &z__2);
+ temp.r = z__1.r, temp.i = z__1.i;
+ }
+ i__1 = *m;
+ for (i__ = 1; i__ <= i__1; ++i__) {
+ i__2 = i__ + k * b_dim1;
+ i__3 = i__ + k * b_dim1;
+ z__1.r = temp.r * b[i__3].r - temp.i * b[i__3].i,
+ z__1.i = temp.r * b[i__3].i + temp.i * b[
+ i__3].r;
+ b[i__2].r = z__1.r, b[i__2].i = z__1.i;
+/* L290: */
+ }
+ }
+ i__1 = k - 1;
+ for (j = 1; j <= i__1; ++j) {
+ i__2 = j + k * a_dim1;
+ if ((a[i__2].r != 0.) || (a[i__2].i != 0.)) {
+ if (noconj) {
+ i__2 = j + k * a_dim1;
+ temp.r = a[i__2].r, temp.i = a[i__2].i;
+ } else {
+ d_cnjg(&z__1, &a[j + k * a_dim1]);
+ temp.r = z__1.r, temp.i = z__1.i;
+ }
+ i__2 = *m;
+ for (i__ = 1; i__ <= i__2; ++i__) {
+ i__3 = i__ + j * b_dim1;
+ i__4 = i__ + j * b_dim1;
+ i__5 = i__ + k * b_dim1;
+ z__2.r = temp.r * b[i__5].r - temp.i * b[i__5]
+ .i, z__2.i = temp.r * b[i__5].i +
+ temp.i * b[i__5].r;
+ z__1.r = b[i__4].r - z__2.r, z__1.i = b[i__4]
+ .i - z__2.i;
+ b[i__3].r = z__1.r, b[i__3].i = z__1.i;
+/* L300: */
+ }
+ }
+/* L310: */
+ }
+ if ((alpha->r != 1.) || (alpha->i != 0.)) {
+ i__1 = *m;
+ for (i__ = 1; i__ <= i__1; ++i__) {
+ i__2 = i__ + k * b_dim1;
+ i__3 = i__ + k * b_dim1;
+ z__1.r = alpha->r * b[i__3].r - alpha->i * b[i__3]
+ .i, z__1.i = alpha->r * b[i__3].i +
+ alpha->i * b[i__3].r;
+ b[i__2].r = z__1.r, b[i__2].i = z__1.i;
+/* L320: */
+ }
+ }
+/* L330: */
+ }
+ } else {
+ i__1 = *n;
+ for (k = 1; k <= i__1; ++k) {
+ if (nounit) {
+ if (noconj) {
+ z_div(&z__1, &c_b1077, &a[k + k * a_dim1]);
+ temp.r = z__1.r, temp.i = z__1.i;
+ } else {
+ d_cnjg(&z__2, &a[k + k * a_dim1]);
+ z_div(&z__1, &c_b1077, &z__2);
+ temp.r = z__1.r, temp.i = z__1.i;
+ }
+ i__2 = *m;
+ for (i__ = 1; i__ <= i__2; ++i__) {
+ i__3 = i__ + k * b_dim1;
+ i__4 = i__ + k * b_dim1;
+ z__1.r = temp.r * b[i__4].r - temp.i * b[i__4].i,
+ z__1.i = temp.r * b[i__4].i + temp.i * b[
+ i__4].r;
+ b[i__3].r = z__1.r, b[i__3].i = z__1.i;
+/* L340: */
+ }
+ }
+ i__2 = *n;
+ for (j = k + 1; j <= i__2; ++j) {
+ i__3 = j + k * a_dim1;
+ if ((a[i__3].r != 0.) || (a[i__3].i != 0.)) {
+ if (noconj) {
+ i__3 = j + k * a_dim1;
+ temp.r = a[i__3].r, temp.i = a[i__3].i;
+ } else {
+ d_cnjg(&z__1, &a[j + k * a_dim1]);
+ temp.r = z__1.r, temp.i = z__1.i;
+ }
+ i__3 = *m;
+ for (i__ = 1; i__ <= i__3; ++i__) {
+ i__4 = i__ + j * b_dim1;
+ i__5 = i__ + j * b_dim1;
+ i__6 = i__ + k * b_dim1;
+ z__2.r = temp.r * b[i__6].r - temp.i * b[i__6]
+ .i, z__2.i = temp.r * b[i__6].i +
+ temp.i * b[i__6].r;
+ z__1.r = b[i__5].r - z__2.r, z__1.i = b[i__5]
+ .i - z__2.i;
+ b[i__4].r = z__1.r, b[i__4].i = z__1.i;
+/* L350: */
+ }
+ }
+/* L360: */
+ }
+ if ((alpha->r != 1.) || (alpha->i != 0.)) {
+ i__2 = *m;
+ for (i__ = 1; i__ <= i__2; ++i__) {
+ i__3 = i__ + k * b_dim1;
+ i__4 = i__ + k * b_dim1;
+ z__1.r = alpha->r * b[i__4].r - alpha->i * b[i__4]
+ .i, z__1.i = alpha->r * b[i__4].i +
+ alpha->i * b[i__4].r;
+ b[i__3].r = z__1.r, b[i__3].i = z__1.i;
+/* L370: */
+ }
+ }
+/* L380: */
+ }
+ }
+ }
+ }
+
+ return 0;
+
+/* End of ZTRSM . */
+
+} /* ztrsm_ */
+
+/* Subroutine */ int ztrsv_(char *uplo, char *trans, char *diag, integer *n,
+ doublecomplex *a, integer *lda, doublecomplex *x, integer *incx)
+{
+ /* System generated locals */
+ integer a_dim1, a_offset, i__1, i__2, i__3, i__4, i__5;
+ doublecomplex z__1, z__2, z__3;
+
+ /* Builtin functions */
+ void z_div(doublecomplex *, doublecomplex *, doublecomplex *), d_cnjg(
+ doublecomplex *, doublecomplex *);
+
+ /* Local variables */
+ static integer i__, j, ix, jx, kx, info;
+ static doublecomplex temp;
+ extern logical lsame_(char *, char *);
+ extern /* Subroutine */ int xerbla_(char *, integer *);
+ static logical noconj, nounit;
+
+
+/*
+ Purpose
+ =======
+
+ ZTRSV solves one of the systems of equations
+
+ A*x = b, or A'*x = b, or conjg( A' )*x = b,
+
+ where b and x are n element vectors and A is an n by n unit, or
+ non-unit, upper or lower triangular matrix.
+
+ No test for singularity or near-singularity is included in this
+ routine. Such tests must be performed before calling this routine.
+
+ Parameters
+ ==========
+
+ UPLO - CHARACTER*1.
+ On entry, UPLO specifies whether the matrix is an upper or
+ lower triangular matrix as follows:
+
+ UPLO = 'U' or 'u' A is an upper triangular matrix.
+
+ UPLO = 'L' or 'l' A is a lower triangular matrix.
+
+ Unchanged on exit.
+
+ TRANS - CHARACTER*1.
+ On entry, TRANS specifies the equations to be solved as
+ follows:
+
+ TRANS = 'N' or 'n' A*x = b.
+
+ TRANS = 'T' or 't' A'*x = b.
+
+ TRANS = 'C' or 'c' conjg( A' )*x = b.
+
+ Unchanged on exit.
+
+ DIAG - CHARACTER*1.
+ On entry, DIAG specifies whether or not A is unit
+ triangular as follows:
+
+ DIAG = 'U' or 'u' A is assumed to be unit triangular.
+
+ DIAG = 'N' or 'n' A is not assumed to be unit
+ triangular.
+
+ Unchanged on exit.
+
+ N - INTEGER.
+ On entry, N specifies the order of the matrix A.
+ N must be at least zero.
+ Unchanged on exit.
+
+ A - COMPLEX*16 array of DIMENSION ( LDA, n ).
+ Before entry with UPLO = 'U' or 'u', the leading n by n
+ upper triangular part of the array A must contain the upper
+ triangular matrix and the strictly lower triangular part of
+ A is not referenced.
+ Before entry with UPLO = 'L' or 'l', the leading n by n
+ lower triangular part of the array A must contain the lower
+ triangular matrix and the strictly upper triangular part of
+ A is not referenced.
+ Note that when DIAG = 'U' or 'u', the diagonal elements of
+ A are not referenced either, but are assumed to be unity.
+ Unchanged on exit.
+
+ LDA - INTEGER.
+ On entry, LDA specifies the first dimension of A as declared
+ in the calling (sub) program. LDA must be at least
+ max( 1, n ).
+ Unchanged on exit.
+
+ X - COMPLEX*16 array of dimension at least
+ ( 1 + ( n - 1 )*abs( INCX ) ).
+ Before entry, the incremented array X must contain the n
+ element right-hand side vector b. On exit, X is overwritten
+ with the solution vector x.
+
+ INCX - INTEGER.
+ On entry, INCX specifies the increment for the elements of
+ X. INCX must not be zero.
+ Unchanged on exit.
+
+
+ Level 2 Blas routine.
+
+ -- Written on 22-October-1986.
+ Jack Dongarra, Argonne National Lab.
+ Jeremy Du Croz, Nag Central Office.
+ Sven Hammarling, Nag Central Office.
+ Richard Hanson, Sandia National Labs.
+
+
+ Test the input parameters.
+*/
+
+ /* Parameter adjustments */
+ a_dim1 = *lda;
+ a_offset = 1 + a_dim1;
+ a -= a_offset;
+ --x;
+
+ /* Function Body */
+ info = 0;
+ if (! lsame_(uplo, "U") && ! lsame_(uplo, "L")) {
+ info = 1;
+ } else if (! lsame_(trans, "N") && ! lsame_(trans,
+ "T") && ! lsame_(trans, "C")) {
+ info = 2;
+ } else if (! lsame_(diag, "U") && ! lsame_(diag,
+ "N")) {
+ info = 3;
+ } else if (*n < 0) {
+ info = 4;
+ } else if (*lda < max(1,*n)) {
+ info = 6;
+ } else if (*incx == 0) {
+ info = 8;
+ }
+ if (info != 0) {
+ xerbla_("ZTRSV ", &info);
+ return 0;
+ }
+
+/* Quick return if possible. */
+
+ if (*n == 0) {
+ return 0;
+ }
+
+ noconj = lsame_(trans, "T");
+ nounit = lsame_(diag, "N");
+
+/*
+ Set up the start point in X if the increment is not unity. This
+ will be ( N - 1 )*INCX too small for descending loops.
+*/
+
+ if (*incx <= 0) {
+ kx = 1 - (*n - 1) * *incx;
+ } else if (*incx != 1) {
+ kx = 1;
+ }
+
+/*
+ Start the operations. In this version the elements of A are
+ accessed sequentially with one pass through A.
+*/
+
+ if (lsame_(trans, "N")) {
+
+/* Form x := inv( A )*x. */
+
+ if (lsame_(uplo, "U")) {
+ if (*incx == 1) {
+ for (j = *n; j >= 1; --j) {
+ i__1 = j;
+ if ((x[i__1].r != 0.) || (x[i__1].i != 0.)) {
+ if (nounit) {
+ i__1 = j;
+ z_div(&z__1, &x[j], &a[j + j * a_dim1]);
+ x[i__1].r = z__1.r, x[i__1].i = z__1.i;
+ }
+ i__1 = j;
+ temp.r = x[i__1].r, temp.i = x[i__1].i;
+ for (i__ = j - 1; i__ >= 1; --i__) {
+ i__1 = i__;
+ i__2 = i__;
+ i__3 = i__ + j * a_dim1;
+ z__2.r = temp.r * a[i__3].r - temp.i * a[i__3].i,
+ z__2.i = temp.r * a[i__3].i + temp.i * a[
+ i__3].r;
+ z__1.r = x[i__2].r - z__2.r, z__1.i = x[i__2].i -
+ z__2.i;
+ x[i__1].r = z__1.r, x[i__1].i = z__1.i;
+/* L10: */
+ }
+ }
+/* L20: */
+ }
+ } else {
+ jx = kx + (*n - 1) * *incx;
+ for (j = *n; j >= 1; --j) {
+ i__1 = jx;
+ if ((x[i__1].r != 0.) || (x[i__1].i != 0.)) {
+ if (nounit) {
+ i__1 = jx;
+ z_div(&z__1, &x[jx], &a[j + j * a_dim1]);
+ x[i__1].r = z__1.r, x[i__1].i = z__1.i;
+ }
+ i__1 = jx;
+ temp.r = x[i__1].r, temp.i = x[i__1].i;
+ ix = jx;
+ for (i__ = j - 1; i__ >= 1; --i__) {
+ ix -= *incx;
+ i__1 = ix;
+ i__2 = ix;
+ i__3 = i__ + j * a_dim1;
+ z__2.r = temp.r * a[i__3].r - temp.i * a[i__3].i,
+ z__2.i = temp.r * a[i__3].i + temp.i * a[
+ i__3].r;
+ z__1.r = x[i__2].r - z__2.r, z__1.i = x[i__2].i -
+ z__2.i;
+ x[i__1].r = z__1.r, x[i__1].i = z__1.i;
+/* L30: */
+ }
+ }
+ jx -= *incx;
+/* L40: */
+ }
+ }
+ } else {
+ if (*incx == 1) {
+ i__1 = *n;
+ for (j = 1; j <= i__1; ++j) {
+ i__2 = j;
+ if ((x[i__2].r != 0.) || (x[i__2].i != 0.)) {
+ if (nounit) {
+ i__2 = j;
+ z_div(&z__1, &x[j], &a[j + j * a_dim1]);
+ x[i__2].r = z__1.r, x[i__2].i = z__1.i;
+ }
+ i__2 = j;
+ temp.r = x[i__2].r, temp.i = x[i__2].i;
+ i__2 = *n;
+ for (i__ = j + 1; i__ <= i__2; ++i__) {
+ i__3 = i__;
+ i__4 = i__;
+ i__5 = i__ + j * a_dim1;
+ z__2.r = temp.r * a[i__5].r - temp.i * a[i__5].i,
+ z__2.i = temp.r * a[i__5].i + temp.i * a[
+ i__5].r;
+ z__1.r = x[i__4].r - z__2.r, z__1.i = x[i__4].i -
+ z__2.i;
+ x[i__3].r = z__1.r, x[i__3].i = z__1.i;
+/* L50: */
+ }
+ }
+/* L60: */
+ }
+ } else {
+ jx = kx;
+ i__1 = *n;
+ for (j = 1; j <= i__1; ++j) {
+ i__2 = jx;
+ if ((x[i__2].r != 0.) || (x[i__2].i != 0.)) {
+ if (nounit) {
+ i__2 = jx;
+ z_div(&z__1, &x[jx], &a[j + j * a_dim1]);
+ x[i__2].r = z__1.r, x[i__2].i = z__1.i;
+ }
+ i__2 = jx;
+ temp.r = x[i__2].r, temp.i = x[i__2].i;
+ ix = jx;
+ i__2 = *n;
+ for (i__ = j + 1; i__ <= i__2; ++i__) {
+ ix += *incx;
+ i__3 = ix;
+ i__4 = ix;
+ i__5 = i__ + j * a_dim1;
+ z__2.r = temp.r * a[i__5].r - temp.i * a[i__5].i,
+ z__2.i = temp.r * a[i__5].i + temp.i * a[
+ i__5].r;
+ z__1.r = x[i__4].r - z__2.r, z__1.i = x[i__4].i -
+ z__2.i;
+ x[i__3].r = z__1.r, x[i__3].i = z__1.i;
+/* L70: */
+ }
+ }
+ jx += *incx;
+/* L80: */
+ }
+ }
+ }
+ } else {
+
+/* Form x := inv( A' )*x or x := inv( conjg( A' ) )*x. */
+
+ if (lsame_(uplo, "U")) {
+ if (*incx == 1) {
+ i__1 = *n;
+ for (j = 1; j <= i__1; ++j) {
+ i__2 = j;
+ temp.r = x[i__2].r, temp.i = x[i__2].i;
+ if (noconj) {
+ i__2 = j - 1;
+ for (i__ = 1; i__ <= i__2; ++i__) {
+ i__3 = i__ + j * a_dim1;
+ i__4 = i__;
+ z__2.r = a[i__3].r * x[i__4].r - a[i__3].i * x[
+ i__4].i, z__2.i = a[i__3].r * x[i__4].i +
+ a[i__3].i * x[i__4].r;
+ z__1.r = temp.r - z__2.r, z__1.i = temp.i -
+ z__2.i;
+ temp.r = z__1.r, temp.i = z__1.i;
+/* L90: */
+ }
+ if (nounit) {
+ z_div(&z__1, &temp, &a[j + j * a_dim1]);
+ temp.r = z__1.r, temp.i = z__1.i;
+ }
+ } else {
+ i__2 = j - 1;
+ for (i__ = 1; i__ <= i__2; ++i__) {
+ d_cnjg(&z__3, &a[i__ + j * a_dim1]);
+ i__3 = i__;
+ z__2.r = z__3.r * x[i__3].r - z__3.i * x[i__3].i,
+ z__2.i = z__3.r * x[i__3].i + z__3.i * x[
+ i__3].r;
+ z__1.r = temp.r - z__2.r, z__1.i = temp.i -
+ z__2.i;
+ temp.r = z__1.r, temp.i = z__1.i;
+/* L100: */
+ }
+ if (nounit) {
+ d_cnjg(&z__2, &a[j + j * a_dim1]);
+ z_div(&z__1, &temp, &z__2);
+ temp.r = z__1.r, temp.i = z__1.i;
+ }
+ }
+ i__2 = j;
+ x[i__2].r = temp.r, x[i__2].i = temp.i;
+/* L110: */
+ }
+ } else {
+ jx = kx;
+ i__1 = *n;
+ for (j = 1; j <= i__1; ++j) {
+ ix = kx;
+ i__2 = jx;
+ temp.r = x[i__2].r, temp.i = x[i__2].i;
+ if (noconj) {
+ i__2 = j - 1;
+ for (i__ = 1; i__ <= i__2; ++i__) {
+ i__3 = i__ + j * a_dim1;
+ i__4 = ix;
+ z__2.r = a[i__3].r * x[i__4].r - a[i__3].i * x[
+ i__4].i, z__2.i = a[i__3].r * x[i__4].i +
+ a[i__3].i * x[i__4].r;
+ z__1.r = temp.r - z__2.r, z__1.i = temp.i -
+ z__2.i;
+ temp.r = z__1.r, temp.i = z__1.i;
+ ix += *incx;
+/* L120: */
+ }
+ if (nounit) {
+ z_div(&z__1, &temp, &a[j + j * a_dim1]);
+ temp.r = z__1.r, temp.i = z__1.i;
+ }
+ } else {
+ i__2 = j - 1;
+ for (i__ = 1; i__ <= i__2; ++i__) {
+ d_cnjg(&z__3, &a[i__ + j * a_dim1]);
+ i__3 = ix;
+ z__2.r = z__3.r * x[i__3].r - z__3.i * x[i__3].i,
+ z__2.i = z__3.r * x[i__3].i + z__3.i * x[
+ i__3].r;
+ z__1.r = temp.r - z__2.r, z__1.i = temp.i -
+ z__2.i;
+ temp.r = z__1.r, temp.i = z__1.i;
+ ix += *incx;
+/* L130: */
+ }
+ if (nounit) {
+ d_cnjg(&z__2, &a[j + j * a_dim1]);
+ z_div(&z__1, &temp, &z__2);
+ temp.r = z__1.r, temp.i = z__1.i;
+ }
+ }
+ i__2 = jx;
+ x[i__2].r = temp.r, x[i__2].i = temp.i;
+ jx += *incx;
+/* L140: */
+ }
+ }
+ } else {
+ if (*incx == 1) {
+ for (j = *n; j >= 1; --j) {
+ i__1 = j;
+ temp.r = x[i__1].r, temp.i = x[i__1].i;
+ if (noconj) {
+ i__1 = j + 1;
+ for (i__ = *n; i__ >= i__1; --i__) {
+ i__2 = i__ + j * a_dim1;
+ i__3 = i__;
+ z__2.r = a[i__2].r * x[i__3].r - a[i__2].i * x[
+ i__3].i, z__2.i = a[i__2].r * x[i__3].i +
+ a[i__2].i * x[i__3].r;
+ z__1.r = temp.r - z__2.r, z__1.i = temp.i -
+ z__2.i;
+ temp.r = z__1.r, temp.i = z__1.i;
+/* L150: */
+ }
+ if (nounit) {
+ z_div(&z__1, &temp, &a[j + j * a_dim1]);
+ temp.r = z__1.r, temp.i = z__1.i;
+ }
+ } else {
+ i__1 = j + 1;
+ for (i__ = *n; i__ >= i__1; --i__) {
+ d_cnjg(&z__3, &a[i__ + j * a_dim1]);
+ i__2 = i__;
+ z__2.r = z__3.r * x[i__2].r - z__3.i * x[i__2].i,
+ z__2.i = z__3.r * x[i__2].i + z__3.i * x[
+ i__2].r;
+ z__1.r = temp.r - z__2.r, z__1.i = temp.i -
+ z__2.i;
+ temp.r = z__1.r, temp.i = z__1.i;
+/* L160: */
+ }
+ if (nounit) {
+ d_cnjg(&z__2, &a[j + j * a_dim1]);
+ z_div(&z__1, &temp, &z__2);
+ temp.r = z__1.r, temp.i = z__1.i;
+ }
+ }
+ i__1 = j;
+ x[i__1].r = temp.r, x[i__1].i = temp.i;
+/* L170: */
+ }
+ } else {
+ kx += (*n - 1) * *incx;
+ jx = kx;
+ for (j = *n; j >= 1; --j) {
+ ix = kx;
+ i__1 = jx;
+ temp.r = x[i__1].r, temp.i = x[i__1].i;
+ if (noconj) {
+ i__1 = j + 1;
+ for (i__ = *n; i__ >= i__1; --i__) {
+ i__2 = i__ + j * a_dim1;
+ i__3 = ix;
+ z__2.r = a[i__2].r * x[i__3].r - a[i__2].i * x[
+ i__3].i, z__2.i = a[i__2].r * x[i__3].i +
+ a[i__2].i * x[i__3].r;
+ z__1.r = temp.r - z__2.r, z__1.i = temp.i -
+ z__2.i;
+ temp.r = z__1.r, temp.i = z__1.i;
+ ix -= *incx;
+/* L180: */
+ }
+ if (nounit) {
+ z_div(&z__1, &temp, &a[j + j * a_dim1]);
+ temp.r = z__1.r, temp.i = z__1.i;
+ }
+ } else {
+ i__1 = j + 1;
+ for (i__ = *n; i__ >= i__1; --i__) {
+ d_cnjg(&z__3, &a[i__ + j * a_dim1]);
+ i__2 = ix;
+ z__2.r = z__3.r * x[i__2].r - z__3.i * x[i__2].i,
+ z__2.i = z__3.r * x[i__2].i + z__3.i * x[
+ i__2].r;
+ z__1.r = temp.r - z__2.r, z__1.i = temp.i -
+ z__2.i;
+ temp.r = z__1.r, temp.i = z__1.i;
+ ix -= *incx;
+/* L190: */
+ }
+ if (nounit) {
+ d_cnjg(&z__2, &a[j + j * a_dim1]);
+ z_div(&z__1, &temp, &z__2);
+ temp.r = z__1.r, temp.i = z__1.i;
+ }
+ }
+ i__1 = jx;
+ x[i__1].r = temp.r, x[i__1].i = temp.i;
+ jx -= *incx;
+/* L200: */
+ }
+ }
+ }
+ }
+
+ return 0;
+
+/* End of ZTRSV . */
+
+} /* ztrsv_ */
+