diff options
Diffstat (limited to 'numpy/linalg/lapack_lite/blas_lite.c')
-rw-r--r-- | numpy/linalg/lapack_lite/blas_lite.c | 21135 |
1 files changed, 21135 insertions, 0 deletions
diff --git a/numpy/linalg/lapack_lite/blas_lite.c b/numpy/linalg/lapack_lite/blas_lite.c new file mode 100644 index 000000000..bd24768c3 --- /dev/null +++ b/numpy/linalg/lapack_lite/blas_lite.c @@ -0,0 +1,21135 @@ +/* +NOTE: This is generated code. Look in Misc/lapack_lite for information on + remaking this file. +*/ +#include "f2c.h" + +#ifdef HAVE_CONFIG +#include "config.h" +#else +extern doublereal dlamch_(char *); +#define EPSILON dlamch_("Epsilon") +#define SAFEMINIMUM dlamch_("Safe minimum") +#define PRECISION dlamch_("Precision") +#define BASE dlamch_("Base") +#endif + +extern doublereal dlapy2_(doublereal *x, doublereal *y); + + + +/* Table of constant values */ + +static complex c_b21 = {1.f,0.f}; +static integer c__1 = 1; +static doublecomplex c_b1077 = {1.,0.}; + +/* Subroutine */ int caxpy_(integer *n, complex *ca, complex *cx, integer * + incx, complex *cy, integer *incy) +{ + /* System generated locals */ + integer i__1, i__2, i__3, i__4; + real r__1, r__2; + complex q__1, q__2; + + /* Builtin functions */ + double r_imag(complex *); + + /* Local variables */ + static integer i__, ix, iy; + + +/* + constant times a vector plus a vector. + jack dongarra, linpack, 3/11/78. + modified 12/3/93, array(1) declarations changed to array(*) +*/ + + + /* Parameter adjustments */ + --cy; + --cx; + + /* Function Body */ + if (*n <= 0) { + return 0; + } + if ((r__1 = ca->r, dabs(r__1)) + (r__2 = r_imag(ca), dabs(r__2)) == 0.f) { + return 0; + } + if (*incx == 1 && *incy == 1) { + goto L20; + } + +/* + code for unequal increments or equal increments + not equal to 1 +*/ + + ix = 1; + iy = 1; + if (*incx < 0) { + ix = (-(*n) + 1) * *incx + 1; + } + if (*incy < 0) { + iy = (-(*n) + 1) * *incy + 1; + } + i__1 = *n; + for (i__ = 1; i__ <= i__1; ++i__) { + i__2 = iy; + i__3 = iy; + i__4 = ix; + q__2.r = ca->r * cx[i__4].r - ca->i * cx[i__4].i, q__2.i = ca->r * cx[ + i__4].i + ca->i * cx[i__4].r; + q__1.r = cy[i__3].r + q__2.r, q__1.i = cy[i__3].i + q__2.i; + cy[i__2].r = q__1.r, cy[i__2].i = q__1.i; + ix += *incx; + iy += *incy; +/* L10: */ + } + return 0; + +/* code for both increments equal to 1 */ + +L20: + i__1 = *n; + for (i__ = 1; i__ <= i__1; ++i__) { + i__2 = i__; + i__3 = i__; + i__4 = i__; + q__2.r = ca->r * cx[i__4].r - ca->i * cx[i__4].i, q__2.i = ca->r * cx[ + i__4].i + ca->i * cx[i__4].r; + q__1.r = cy[i__3].r + q__2.r, q__1.i = cy[i__3].i + q__2.i; + cy[i__2].r = q__1.r, cy[i__2].i = q__1.i; +/* L30: */ + } + return 0; +} /* caxpy_ */ + +/* Subroutine */ int ccopy_(integer *n, complex *cx, integer *incx, complex * + cy, integer *incy) +{ + /* System generated locals */ + integer i__1, i__2, i__3; + + /* Local variables */ + static integer i__, ix, iy; + + +/* + copies a vector, x, to a vector, y. + jack dongarra, linpack, 3/11/78. + modified 12/3/93, array(1) declarations changed to array(*) +*/ + + + /* Parameter adjustments */ + --cy; + --cx; + + /* Function Body */ + if (*n <= 0) { + return 0; + } + if (*incx == 1 && *incy == 1) { + goto L20; + } + +/* + code for unequal increments or equal increments + not equal to 1 +*/ + + ix = 1; + iy = 1; + if (*incx < 0) { + ix = (-(*n) + 1) * *incx + 1; + } + if (*incy < 0) { + iy = (-(*n) + 1) * *incy + 1; + } + i__1 = *n; + for (i__ = 1; i__ <= i__1; ++i__) { + i__2 = iy; + i__3 = ix; + cy[i__2].r = cx[i__3].r, cy[i__2].i = cx[i__3].i; + ix += *incx; + iy += *incy; +/* L10: */ + } + return 0; + +/* code for both increments equal to 1 */ + +L20: + i__1 = *n; + for (i__ = 1; i__ <= i__1; ++i__) { + i__2 = i__; + i__3 = i__; + cy[i__2].r = cx[i__3].r, cy[i__2].i = cx[i__3].i; +/* L30: */ + } + return 0; +} /* ccopy_ */ + +/* Complex */ VOID cdotc_(complex * ret_val, integer *n, complex *cx, integer + *incx, complex *cy, integer *incy) +{ + /* System generated locals */ + integer i__1, i__2; + complex q__1, q__2, q__3; + + /* Builtin functions */ + void r_cnjg(complex *, complex *); + + /* Local variables */ + static integer i__, ix, iy; + static complex ctemp; + + +/* + forms the dot product of two vectors, conjugating the first + vector. + jack dongarra, linpack, 3/11/78. + modified 12/3/93, array(1) declarations changed to array(*) +*/ + + + /* Parameter adjustments */ + --cy; + --cx; + + /* Function Body */ + ctemp.r = 0.f, ctemp.i = 0.f; + ret_val->r = 0.f, ret_val->i = 0.f; + if (*n <= 0) { + return ; + } + if (*incx == 1 && *incy == 1) { + goto L20; + } + +/* + code for unequal increments or equal increments + not equal to 1 +*/ + + ix = 1; + iy = 1; + if (*incx < 0) { + ix = (-(*n) + 1) * *incx + 1; + } + if (*incy < 0) { + iy = (-(*n) + 1) * *incy + 1; + } + i__1 = *n; + for (i__ = 1; i__ <= i__1; ++i__) { + r_cnjg(&q__3, &cx[ix]); + i__2 = iy; + q__2.r = q__3.r * cy[i__2].r - q__3.i * cy[i__2].i, q__2.i = q__3.r * + cy[i__2].i + q__3.i * cy[i__2].r; + q__1.r = ctemp.r + q__2.r, q__1.i = ctemp.i + q__2.i; + ctemp.r = q__1.r, ctemp.i = q__1.i; + ix += *incx; + iy += *incy; +/* L10: */ + } + ret_val->r = ctemp.r, ret_val->i = ctemp.i; + return ; + +/* code for both increments equal to 1 */ + +L20: + i__1 = *n; + for (i__ = 1; i__ <= i__1; ++i__) { + r_cnjg(&q__3, &cx[i__]); + i__2 = i__; + q__2.r = q__3.r * cy[i__2].r - q__3.i * cy[i__2].i, q__2.i = q__3.r * + cy[i__2].i + q__3.i * cy[i__2].r; + q__1.r = ctemp.r + q__2.r, q__1.i = ctemp.i + q__2.i; + ctemp.r = q__1.r, ctemp.i = q__1.i; +/* L30: */ + } + ret_val->r = ctemp.r, ret_val->i = ctemp.i; + return ; +} /* cdotc_ */ + +/* Complex */ VOID cdotu_(complex * ret_val, integer *n, complex *cx, integer + *incx, complex *cy, integer *incy) +{ + /* System generated locals */ + integer i__1, i__2, i__3; + complex q__1, q__2; + + /* Local variables */ + static integer i__, ix, iy; + static complex ctemp; + + +/* + forms the dot product of two vectors. + jack dongarra, linpack, 3/11/78. + modified 12/3/93, array(1) declarations changed to array(*) +*/ + + + /* Parameter adjustments */ + --cy; + --cx; + + /* Function Body */ + ctemp.r = 0.f, ctemp.i = 0.f; + ret_val->r = 0.f, ret_val->i = 0.f; + if (*n <= 0) { + return ; + } + if (*incx == 1 && *incy == 1) { + goto L20; + } + +/* + code for unequal increments or equal increments + not equal to 1 +*/ + + ix = 1; + iy = 1; + if (*incx < 0) { + ix = (-(*n) + 1) * *incx + 1; + } + if (*incy < 0) { + iy = (-(*n) + 1) * *incy + 1; + } + i__1 = *n; + for (i__ = 1; i__ <= i__1; ++i__) { + i__2 = ix; + i__3 = iy; + q__2.r = cx[i__2].r * cy[i__3].r - cx[i__2].i * cy[i__3].i, q__2.i = + cx[i__2].r * cy[i__3].i + cx[i__2].i * cy[i__3].r; + q__1.r = ctemp.r + q__2.r, q__1.i = ctemp.i + q__2.i; + ctemp.r = q__1.r, ctemp.i = q__1.i; + ix += *incx; + iy += *incy; +/* L10: */ + } + ret_val->r = ctemp.r, ret_val->i = ctemp.i; + return ; + +/* code for both increments equal to 1 */ + +L20: + i__1 = *n; + for (i__ = 1; i__ <= i__1; ++i__) { + i__2 = i__; + i__3 = i__; + q__2.r = cx[i__2].r * cy[i__3].r - cx[i__2].i * cy[i__3].i, q__2.i = + cx[i__2].r * cy[i__3].i + cx[i__2].i * cy[i__3].r; + q__1.r = ctemp.r + q__2.r, q__1.i = ctemp.i + q__2.i; + ctemp.r = q__1.r, ctemp.i = q__1.i; +/* L30: */ + } + ret_val->r = ctemp.r, ret_val->i = ctemp.i; + return ; +} /* cdotu_ */ + +/* Subroutine */ int cgemm_(char *transa, char *transb, integer *m, integer * + n, integer *k, complex *alpha, complex *a, integer *lda, complex *b, + integer *ldb, complex *beta, complex *c__, integer *ldc) +{ + /* System generated locals */ + integer a_dim1, a_offset, b_dim1, b_offset, c_dim1, c_offset, i__1, i__2, + i__3, i__4, i__5, i__6; + complex q__1, q__2, q__3, q__4; + + /* Builtin functions */ + void r_cnjg(complex *, complex *); + + /* Local variables */ + static integer i__, j, l, info; + static logical nota, notb; + static complex temp; + static logical conja, conjb; + static integer ncola; + extern logical lsame_(char *, char *); + static integer nrowa, nrowb; + extern /* Subroutine */ int xerbla_(char *, integer *); + + +/* + Purpose + ======= + + CGEMM performs one of the matrix-matrix operations + + C := alpha*op( A )*op( B ) + beta*C, + + where op( X ) is one of + + op( X ) = X or op( X ) = X' or op( X ) = conjg( X' ), + + alpha and beta are scalars, and A, B and C are matrices, with op( A ) + an m by k matrix, op( B ) a k by n matrix and C an m by n matrix. + + Parameters + ========== + + TRANSA - CHARACTER*1. + On entry, TRANSA specifies the form of op( A ) to be used in + the matrix multiplication as follows: + + TRANSA = 'N' or 'n', op( A ) = A. + + TRANSA = 'T' or 't', op( A ) = A'. + + TRANSA = 'C' or 'c', op( A ) = conjg( A' ). + + Unchanged on exit. + + TRANSB - CHARACTER*1. + On entry, TRANSB specifies the form of op( B ) to be used in + the matrix multiplication as follows: + + TRANSB = 'N' or 'n', op( B ) = B. + + TRANSB = 'T' or 't', op( B ) = B'. + + TRANSB = 'C' or 'c', op( B ) = conjg( B' ). + + Unchanged on exit. + + M - INTEGER. + On entry, M specifies the number of rows of the matrix + op( A ) and of the matrix C. M must be at least zero. + Unchanged on exit. + + N - INTEGER. + On entry, N specifies the number of columns of the matrix + op( B ) and the number of columns of the matrix C. N must be + at least zero. + Unchanged on exit. + + K - INTEGER. + On entry, K specifies the number of columns of the matrix + op( A ) and the number of rows of the matrix op( B ). K must + be at least zero. + Unchanged on exit. + + ALPHA - COMPLEX . + On entry, ALPHA specifies the scalar alpha. + Unchanged on exit. + + A - COMPLEX array of DIMENSION ( LDA, ka ), where ka is + k when TRANSA = 'N' or 'n', and is m otherwise. + Before entry with TRANSA = 'N' or 'n', the leading m by k + part of the array A must contain the matrix A, otherwise + the leading k by m part of the array A must contain the + matrix A. + Unchanged on exit. + + LDA - INTEGER. + On entry, LDA specifies the first dimension of A as declared + in the calling (sub) program. When TRANSA = 'N' or 'n' then + LDA must be at least max( 1, m ), otherwise LDA must be at + least max( 1, k ). + Unchanged on exit. + + B - COMPLEX array of DIMENSION ( LDB, kb ), where kb is + n when TRANSB = 'N' or 'n', and is k otherwise. + Before entry with TRANSB = 'N' or 'n', the leading k by n + part of the array B must contain the matrix B, otherwise + the leading n by k part of the array B must contain the + matrix B. + Unchanged on exit. + + LDB - INTEGER. + On entry, LDB specifies the first dimension of B as declared + in the calling (sub) program. When TRANSB = 'N' or 'n' then + LDB must be at least max( 1, k ), otherwise LDB must be at + least max( 1, n ). + Unchanged on exit. + + BETA - COMPLEX . + On entry, BETA specifies the scalar beta. When BETA is + supplied as zero then C need not be set on input. + Unchanged on exit. + + C - COMPLEX array of DIMENSION ( LDC, n ). + Before entry, the leading m by n part of the array C must + contain the matrix C, except when beta is zero, in which + case C need not be set on entry. + On exit, the array C is overwritten by the m by n matrix + ( alpha*op( A )*op( B ) + beta*C ). + + LDC - INTEGER. + On entry, LDC specifies the first dimension of C as declared + in the calling (sub) program. LDC must be at least + max( 1, m ). + Unchanged on exit. + + + Level 3 Blas routine. + + -- Written on 8-February-1989. + Jack Dongarra, Argonne National Laboratory. + Iain Duff, AERE Harwell. + Jeremy Du Croz, Numerical Algorithms Group Ltd. + Sven Hammarling, Numerical Algorithms Group Ltd. + + + Set NOTA and NOTB as true if A and B respectively are not + conjugated or transposed, set CONJA and CONJB as true if A and + B respectively are to be transposed but not conjugated and set + NROWA, NCOLA and NROWB as the number of rows and columns of A + and the number of rows of B respectively. +*/ + + /* Parameter adjustments */ + a_dim1 = *lda; + a_offset = 1 + a_dim1; + a -= a_offset; + b_dim1 = *ldb; + b_offset = 1 + b_dim1; + b -= b_offset; + c_dim1 = *ldc; + c_offset = 1 + c_dim1; + c__ -= c_offset; + + /* Function Body */ + nota = lsame_(transa, "N"); + notb = lsame_(transb, "N"); + conja = lsame_(transa, "C"); + conjb = lsame_(transb, "C"); + if (nota) { + nrowa = *m; + ncola = *k; + } else { + nrowa = *k; + ncola = *m; + } + if (notb) { + nrowb = *k; + } else { + nrowb = *n; + } + +/* Test the input parameters. */ + + info = 0; + if (! nota && ! conja && ! lsame_(transa, "T")) { + info = 1; + } else if (! notb && ! conjb && ! lsame_(transb, "T")) { + info = 2; + } else if (*m < 0) { + info = 3; + } else if (*n < 0) { + info = 4; + } else if (*k < 0) { + info = 5; + } else if (*lda < max(1,nrowa)) { + info = 8; + } else if (*ldb < max(1,nrowb)) { + info = 10; + } else if (*ldc < max(1,*m)) { + info = 13; + } + if (info != 0) { + xerbla_("CGEMM ", &info); + return 0; + } + +/* Quick return if possible. */ + + if (((*m == 0) || (*n == 0)) || (((alpha->r == 0.f && alpha->i == 0.f) || + (*k == 0)) && (beta->r == 1.f && beta->i == 0.f))) { + return 0; + } + +/* And when alpha.eq.zero. */ + + if (alpha->r == 0.f && alpha->i == 0.f) { + if (beta->r == 0.f && beta->i == 0.f) { + i__1 = *n; + for (j = 1; j <= i__1; ++j) { + i__2 = *m; + for (i__ = 1; i__ <= i__2; ++i__) { + i__3 = i__ + j * c_dim1; + c__[i__3].r = 0.f, c__[i__3].i = 0.f; +/* L10: */ + } +/* L20: */ + } + } else { + i__1 = *n; + for (j = 1; j <= i__1; ++j) { + i__2 = *m; + for (i__ = 1; i__ <= i__2; ++i__) { + i__3 = i__ + j * c_dim1; + i__4 = i__ + j * c_dim1; + q__1.r = beta->r * c__[i__4].r - beta->i * c__[i__4].i, + q__1.i = beta->r * c__[i__4].i + beta->i * c__[ + i__4].r; + c__[i__3].r = q__1.r, c__[i__3].i = q__1.i; +/* L30: */ + } +/* L40: */ + } + } + return 0; + } + +/* Start the operations. */ + + if (notb) { + if (nota) { + +/* Form C := alpha*A*B + beta*C. */ + + i__1 = *n; + for (j = 1; j <= i__1; ++j) { + if (beta->r == 0.f && beta->i == 0.f) { + i__2 = *m; + for (i__ = 1; i__ <= i__2; ++i__) { + i__3 = i__ + j * c_dim1; + c__[i__3].r = 0.f, c__[i__3].i = 0.f; +/* L50: */ + } + } else if ((beta->r != 1.f) || (beta->i != 0.f)) { + i__2 = *m; + for (i__ = 1; i__ <= i__2; ++i__) { + i__3 = i__ + j * c_dim1; + i__4 = i__ + j * c_dim1; + q__1.r = beta->r * c__[i__4].r - beta->i * c__[i__4] + .i, q__1.i = beta->r * c__[i__4].i + beta->i * + c__[i__4].r; + c__[i__3].r = q__1.r, c__[i__3].i = q__1.i; +/* L60: */ + } + } + i__2 = *k; + for (l = 1; l <= i__2; ++l) { + i__3 = l + j * b_dim1; + if ((b[i__3].r != 0.f) || (b[i__3].i != 0.f)) { + i__3 = l + j * b_dim1; + q__1.r = alpha->r * b[i__3].r - alpha->i * b[i__3].i, + q__1.i = alpha->r * b[i__3].i + alpha->i * b[ + i__3].r; + temp.r = q__1.r, temp.i = q__1.i; + i__3 = *m; + for (i__ = 1; i__ <= i__3; ++i__) { + i__4 = i__ + j * c_dim1; + i__5 = i__ + j * c_dim1; + i__6 = i__ + l * a_dim1; + q__2.r = temp.r * a[i__6].r - temp.i * a[i__6].i, + q__2.i = temp.r * a[i__6].i + temp.i * a[ + i__6].r; + q__1.r = c__[i__5].r + q__2.r, q__1.i = c__[i__5] + .i + q__2.i; + c__[i__4].r = q__1.r, c__[i__4].i = q__1.i; +/* L70: */ + } + } +/* L80: */ + } +/* L90: */ + } + } else if (conja) { + +/* Form C := alpha*conjg( A' )*B + beta*C. */ + + i__1 = *n; + for (j = 1; j <= i__1; ++j) { + i__2 = *m; + for (i__ = 1; i__ <= i__2; ++i__) { + temp.r = 0.f, temp.i = 0.f; + i__3 = *k; + for (l = 1; l <= i__3; ++l) { + r_cnjg(&q__3, &a[l + i__ * a_dim1]); + i__4 = l + j * b_dim1; + q__2.r = q__3.r * b[i__4].r - q__3.i * b[i__4].i, + q__2.i = q__3.r * b[i__4].i + q__3.i * b[i__4] + .r; + q__1.r = temp.r + q__2.r, q__1.i = temp.i + q__2.i; + temp.r = q__1.r, temp.i = q__1.i; +/* L100: */ + } + if (beta->r == 0.f && beta->i == 0.f) { + i__3 = i__ + j * c_dim1; + q__1.r = alpha->r * temp.r - alpha->i * temp.i, + q__1.i = alpha->r * temp.i + alpha->i * + temp.r; + c__[i__3].r = q__1.r, c__[i__3].i = q__1.i; + } else { + i__3 = i__ + j * c_dim1; + q__2.r = alpha->r * temp.r - alpha->i * temp.i, + q__2.i = alpha->r * temp.i + alpha->i * + temp.r; + i__4 = i__ + j * c_dim1; + q__3.r = beta->r * c__[i__4].r - beta->i * c__[i__4] + .i, q__3.i = beta->r * c__[i__4].i + beta->i * + c__[i__4].r; + q__1.r = q__2.r + q__3.r, q__1.i = q__2.i + q__3.i; + c__[i__3].r = q__1.r, c__[i__3].i = q__1.i; + } +/* L110: */ + } +/* L120: */ + } + } else { + +/* Form C := alpha*A'*B + beta*C */ + + i__1 = *n; + for (j = 1; j <= i__1; ++j) { + i__2 = *m; + for (i__ = 1; i__ <= i__2; ++i__) { + temp.r = 0.f, temp.i = 0.f; + i__3 = *k; + for (l = 1; l <= i__3; ++l) { + i__4 = l + i__ * a_dim1; + i__5 = l + j * b_dim1; + q__2.r = a[i__4].r * b[i__5].r - a[i__4].i * b[i__5] + .i, q__2.i = a[i__4].r * b[i__5].i + a[i__4] + .i * b[i__5].r; + q__1.r = temp.r + q__2.r, q__1.i = temp.i + q__2.i; + temp.r = q__1.r, temp.i = q__1.i; +/* L130: */ + } + if (beta->r == 0.f && beta->i == 0.f) { + i__3 = i__ + j * c_dim1; + q__1.r = alpha->r * temp.r - alpha->i * temp.i, + q__1.i = alpha->r * temp.i + alpha->i * + temp.r; + c__[i__3].r = q__1.r, c__[i__3].i = q__1.i; + } else { + i__3 = i__ + j * c_dim1; + q__2.r = alpha->r * temp.r - alpha->i * temp.i, + q__2.i = alpha->r * temp.i + alpha->i * + temp.r; + i__4 = i__ + j * c_dim1; + q__3.r = beta->r * c__[i__4].r - beta->i * c__[i__4] + .i, q__3.i = beta->r * c__[i__4].i + beta->i * + c__[i__4].r; + q__1.r = q__2.r + q__3.r, q__1.i = q__2.i + q__3.i; + c__[i__3].r = q__1.r, c__[i__3].i = q__1.i; + } +/* L140: */ + } +/* L150: */ + } + } + } else if (nota) { + if (conjb) { + +/* Form C := alpha*A*conjg( B' ) + beta*C. */ + + i__1 = *n; + for (j = 1; j <= i__1; ++j) { + if (beta->r == 0.f && beta->i == 0.f) { + i__2 = *m; + for (i__ = 1; i__ <= i__2; ++i__) { + i__3 = i__ + j * c_dim1; + c__[i__3].r = 0.f, c__[i__3].i = 0.f; +/* L160: */ + } + } else if ((beta->r != 1.f) || (beta->i != 0.f)) { + i__2 = *m; + for (i__ = 1; i__ <= i__2; ++i__) { + i__3 = i__ + j * c_dim1; + i__4 = i__ + j * c_dim1; + q__1.r = beta->r * c__[i__4].r - beta->i * c__[i__4] + .i, q__1.i = beta->r * c__[i__4].i + beta->i * + c__[i__4].r; + c__[i__3].r = q__1.r, c__[i__3].i = q__1.i; +/* L170: */ + } + } + i__2 = *k; + for (l = 1; l <= i__2; ++l) { + i__3 = j + l * b_dim1; + if ((b[i__3].r != 0.f) || (b[i__3].i != 0.f)) { + r_cnjg(&q__2, &b[j + l * b_dim1]); + q__1.r = alpha->r * q__2.r - alpha->i * q__2.i, + q__1.i = alpha->r * q__2.i + alpha->i * + q__2.r; + temp.r = q__1.r, temp.i = q__1.i; + i__3 = *m; + for (i__ = 1; i__ <= i__3; ++i__) { + i__4 = i__ + j * c_dim1; + i__5 = i__ + j * c_dim1; + i__6 = i__ + l * a_dim1; + q__2.r = temp.r * a[i__6].r - temp.i * a[i__6].i, + q__2.i = temp.r * a[i__6].i + temp.i * a[ + i__6].r; + q__1.r = c__[i__5].r + q__2.r, q__1.i = c__[i__5] + .i + q__2.i; + c__[i__4].r = q__1.r, c__[i__4].i = q__1.i; +/* L180: */ + } + } +/* L190: */ + } +/* L200: */ + } + } else { + +/* Form C := alpha*A*B' + beta*C */ + + i__1 = *n; + for (j = 1; j <= i__1; ++j) { + if (beta->r == 0.f && beta->i == 0.f) { + i__2 = *m; + for (i__ = 1; i__ <= i__2; ++i__) { + i__3 = i__ + j * c_dim1; + c__[i__3].r = 0.f, c__[i__3].i = 0.f; +/* L210: */ + } + } else if ((beta->r != 1.f) || (beta->i != 0.f)) { + i__2 = *m; + for (i__ = 1; i__ <= i__2; ++i__) { + i__3 = i__ + j * c_dim1; + i__4 = i__ + j * c_dim1; + q__1.r = beta->r * c__[i__4].r - beta->i * c__[i__4] + .i, q__1.i = beta->r * c__[i__4].i + beta->i * + c__[i__4].r; + c__[i__3].r = q__1.r, c__[i__3].i = q__1.i; +/* L220: */ + } + } + i__2 = *k; + for (l = 1; l <= i__2; ++l) { + i__3 = j + l * b_dim1; + if ((b[i__3].r != 0.f) || (b[i__3].i != 0.f)) { + i__3 = j + l * b_dim1; + q__1.r = alpha->r * b[i__3].r - alpha->i * b[i__3].i, + q__1.i = alpha->r * b[i__3].i + alpha->i * b[ + i__3].r; + temp.r = q__1.r, temp.i = q__1.i; + i__3 = *m; + for (i__ = 1; i__ <= i__3; ++i__) { + i__4 = i__ + j * c_dim1; + i__5 = i__ + j * c_dim1; + i__6 = i__ + l * a_dim1; + q__2.r = temp.r * a[i__6].r - temp.i * a[i__6].i, + q__2.i = temp.r * a[i__6].i + temp.i * a[ + i__6].r; + q__1.r = c__[i__5].r + q__2.r, q__1.i = c__[i__5] + .i + q__2.i; + c__[i__4].r = q__1.r, c__[i__4].i = q__1.i; +/* L230: */ + } + } +/* L240: */ + } +/* L250: */ + } + } + } else if (conja) { + if (conjb) { + +/* Form C := alpha*conjg( A' )*conjg( B' ) + beta*C. */ + + i__1 = *n; + for (j = 1; j <= i__1; ++j) { + i__2 = *m; + for (i__ = 1; i__ <= i__2; ++i__) { + temp.r = 0.f, temp.i = 0.f; + i__3 = *k; + for (l = 1; l <= i__3; ++l) { + r_cnjg(&q__3, &a[l + i__ * a_dim1]); + r_cnjg(&q__4, &b[j + l * b_dim1]); + q__2.r = q__3.r * q__4.r - q__3.i * q__4.i, q__2.i = + q__3.r * q__4.i + q__3.i * q__4.r; + q__1.r = temp.r + q__2.r, q__1.i = temp.i + q__2.i; + temp.r = q__1.r, temp.i = q__1.i; +/* L260: */ + } + if (beta->r == 0.f && beta->i == 0.f) { + i__3 = i__ + j * c_dim1; + q__1.r = alpha->r * temp.r - alpha->i * temp.i, + q__1.i = alpha->r * temp.i + alpha->i * + temp.r; + c__[i__3].r = q__1.r, c__[i__3].i = q__1.i; + } else { + i__3 = i__ + j * c_dim1; + q__2.r = alpha->r * temp.r - alpha->i * temp.i, + q__2.i = alpha->r * temp.i + alpha->i * + temp.r; + i__4 = i__ + j * c_dim1; + q__3.r = beta->r * c__[i__4].r - beta->i * c__[i__4] + .i, q__3.i = beta->r * c__[i__4].i + beta->i * + c__[i__4].r; + q__1.r = q__2.r + q__3.r, q__1.i = q__2.i + q__3.i; + c__[i__3].r = q__1.r, c__[i__3].i = q__1.i; + } +/* L270: */ + } +/* L280: */ + } + } else { + +/* Form C := alpha*conjg( A' )*B' + beta*C */ + + i__1 = *n; + for (j = 1; j <= i__1; ++j) { + i__2 = *m; + for (i__ = 1; i__ <= i__2; ++i__) { + temp.r = 0.f, temp.i = 0.f; + i__3 = *k; + for (l = 1; l <= i__3; ++l) { + r_cnjg(&q__3, &a[l + i__ * a_dim1]); + i__4 = j + l * b_dim1; + q__2.r = q__3.r * b[i__4].r - q__3.i * b[i__4].i, + q__2.i = q__3.r * b[i__4].i + q__3.i * b[i__4] + .r; + q__1.r = temp.r + q__2.r, q__1.i = temp.i + q__2.i; + temp.r = q__1.r, temp.i = q__1.i; +/* L290: */ + } + if (beta->r == 0.f && beta->i == 0.f) { + i__3 = i__ + j * c_dim1; + q__1.r = alpha->r * temp.r - alpha->i * temp.i, + q__1.i = alpha->r * temp.i + alpha->i * + temp.r; + c__[i__3].r = q__1.r, c__[i__3].i = q__1.i; + } else { + i__3 = i__ + j * c_dim1; + q__2.r = alpha->r * temp.r - alpha->i * temp.i, + q__2.i = alpha->r * temp.i + alpha->i * + temp.r; + i__4 = i__ + j * c_dim1; + q__3.r = beta->r * c__[i__4].r - beta->i * c__[i__4] + .i, q__3.i = beta->r * c__[i__4].i + beta->i * + c__[i__4].r; + q__1.r = q__2.r + q__3.r, q__1.i = q__2.i + q__3.i; + c__[i__3].r = q__1.r, c__[i__3].i = q__1.i; + } +/* L300: */ + } +/* L310: */ + } + } + } else { + if (conjb) { + +/* Form C := alpha*A'*conjg( B' ) + beta*C */ + + i__1 = *n; + for (j = 1; j <= i__1; ++j) { + i__2 = *m; + for (i__ = 1; i__ <= i__2; ++i__) { + temp.r = 0.f, temp.i = 0.f; + i__3 = *k; + for (l = 1; l <= i__3; ++l) { + i__4 = l + i__ * a_dim1; + r_cnjg(&q__3, &b[j + l * b_dim1]); + q__2.r = a[i__4].r * q__3.r - a[i__4].i * q__3.i, + q__2.i = a[i__4].r * q__3.i + a[i__4].i * + q__3.r; + q__1.r = temp.r + q__2.r, q__1.i = temp.i + q__2.i; + temp.r = q__1.r, temp.i = q__1.i; +/* L320: */ + } + if (beta->r == 0.f && beta->i == 0.f) { + i__3 = i__ + j * c_dim1; + q__1.r = alpha->r * temp.r - alpha->i * temp.i, + q__1.i = alpha->r * temp.i + alpha->i * + temp.r; + c__[i__3].r = q__1.r, c__[i__3].i = q__1.i; + } else { + i__3 = i__ + j * c_dim1; + q__2.r = alpha->r * temp.r - alpha->i * temp.i, + q__2.i = alpha->r * temp.i + alpha->i * + temp.r; + i__4 = i__ + j * c_dim1; + q__3.r = beta->r * c__[i__4].r - beta->i * c__[i__4] + .i, q__3.i = beta->r * c__[i__4].i + beta->i * + c__[i__4].r; + q__1.r = q__2.r + q__3.r, q__1.i = q__2.i + q__3.i; + c__[i__3].r = q__1.r, c__[i__3].i = q__1.i; + } +/* L330: */ + } +/* L340: */ + } + } else { + +/* Form C := alpha*A'*B' + beta*C */ + + i__1 = *n; + for (j = 1; j <= i__1; ++j) { + i__2 = *m; + for (i__ = 1; i__ <= i__2; ++i__) { + temp.r = 0.f, temp.i = 0.f; + i__3 = *k; + for (l = 1; l <= i__3; ++l) { + i__4 = l + i__ * a_dim1; + i__5 = j + l * b_dim1; + q__2.r = a[i__4].r * b[i__5].r - a[i__4].i * b[i__5] + .i, q__2.i = a[i__4].r * b[i__5].i + a[i__4] + .i * b[i__5].r; + q__1.r = temp.r + q__2.r, q__1.i = temp.i + q__2.i; + temp.r = q__1.r, temp.i = q__1.i; +/* L350: */ + } + if (beta->r == 0.f && beta->i == 0.f) { + i__3 = i__ + j * c_dim1; + q__1.r = alpha->r * temp.r - alpha->i * temp.i, + q__1.i = alpha->r * temp.i + alpha->i * + temp.r; + c__[i__3].r = q__1.r, c__[i__3].i = q__1.i; + } else { + i__3 = i__ + j * c_dim1; + q__2.r = alpha->r * temp.r - alpha->i * temp.i, + q__2.i = alpha->r * temp.i + alpha->i * + temp.r; + i__4 = i__ + j * c_dim1; + q__3.r = beta->r * c__[i__4].r - beta->i * c__[i__4] + .i, q__3.i = beta->r * c__[i__4].i + beta->i * + c__[i__4].r; + q__1.r = q__2.r + q__3.r, q__1.i = q__2.i + q__3.i; + c__[i__3].r = q__1.r, c__[i__3].i = q__1.i; + } +/* L360: */ + } +/* L370: */ + } + } + } + + return 0; + +/* End of CGEMM . */ + +} /* cgemm_ */ + +/* Subroutine */ int cgemv_(char *trans, integer *m, integer *n, complex * + alpha, complex *a, integer *lda, complex *x, integer *incx, complex * + beta, complex *y, integer *incy) +{ + /* System generated locals */ + integer a_dim1, a_offset, i__1, i__2, i__3, i__4, i__5; + complex q__1, q__2, q__3; + + /* Builtin functions */ + void r_cnjg(complex *, complex *); + + /* Local variables */ + static integer i__, j, ix, iy, jx, jy, kx, ky, info; + static complex temp; + static integer lenx, leny; + extern logical lsame_(char *, char *); + extern /* Subroutine */ int xerbla_(char *, integer *); + static logical noconj; + + +/* + Purpose + ======= + + CGEMV performs one of the matrix-vector operations + + y := alpha*A*x + beta*y, or y := alpha*A'*x + beta*y, or + + y := alpha*conjg( A' )*x + beta*y, + + where alpha and beta are scalars, x and y are vectors and A is an + m by n matrix. + + Parameters + ========== + + TRANS - CHARACTER*1. + On entry, TRANS specifies the operation to be performed as + follows: + + TRANS = 'N' or 'n' y := alpha*A*x + beta*y. + + TRANS = 'T' or 't' y := alpha*A'*x + beta*y. + + TRANS = 'C' or 'c' y := alpha*conjg( A' )*x + beta*y. + + Unchanged on exit. + + M - INTEGER. + On entry, M specifies the number of rows of the matrix A. + M must be at least zero. + Unchanged on exit. + + N - INTEGER. + On entry, N specifies the number of columns of the matrix A. + N must be at least zero. + Unchanged on exit. + + ALPHA - COMPLEX . + On entry, ALPHA specifies the scalar alpha. + Unchanged on exit. + + A - COMPLEX array of DIMENSION ( LDA, n ). + Before entry, the leading m by n part of the array A must + contain the matrix of coefficients. + Unchanged on exit. + + LDA - INTEGER. + On entry, LDA specifies the first dimension of A as declared + in the calling (sub) program. LDA must be at least + max( 1, m ). + Unchanged on exit. + + X - COMPLEX array of DIMENSION at least + ( 1 + ( n - 1 )*abs( INCX ) ) when TRANS = 'N' or 'n' + and at least + ( 1 + ( m - 1 )*abs( INCX ) ) otherwise. + Before entry, the incremented array X must contain the + vector x. + Unchanged on exit. + + INCX - INTEGER. + On entry, INCX specifies the increment for the elements of + X. INCX must not be zero. + Unchanged on exit. + + BETA - COMPLEX . + On entry, BETA specifies the scalar beta. When BETA is + supplied as zero then Y need not be set on input. + Unchanged on exit. + + Y - COMPLEX array of DIMENSION at least + ( 1 + ( m - 1 )*abs( INCY ) ) when TRANS = 'N' or 'n' + and at least + ( 1 + ( n - 1 )*abs( INCY ) ) otherwise. + Before entry with BETA non-zero, the incremented array Y + must contain the vector y. On exit, Y is overwritten by the + updated vector y. + + INCY - INTEGER. + On entry, INCY specifies the increment for the elements of + Y. INCY must not be zero. + Unchanged on exit. + + + Level 2 Blas routine. + + -- Written on 22-October-1986. + Jack Dongarra, Argonne National Lab. + Jeremy Du Croz, Nag Central Office. + Sven Hammarling, Nag Central Office. + Richard Hanson, Sandia National Labs. + + + Test the input parameters. +*/ + + /* Parameter adjustments */ + a_dim1 = *lda; + a_offset = 1 + a_dim1; + a -= a_offset; + --x; + --y; + + /* Function Body */ + info = 0; + if (! lsame_(trans, "N") && ! lsame_(trans, "T") && ! lsame_(trans, "C") + ) { + info = 1; + } else if (*m < 0) { + info = 2; + } else if (*n < 0) { + info = 3; + } else if (*lda < max(1,*m)) { + info = 6; + } else if (*incx == 0) { + info = 8; + } else if (*incy == 0) { + info = 11; + } + if (info != 0) { + xerbla_("CGEMV ", &info); + return 0; + } + +/* Quick return if possible. */ + + if (((*m == 0) || (*n == 0)) || (alpha->r == 0.f && alpha->i == 0.f && ( + beta->r == 1.f && beta->i == 0.f))) { + return 0; + } + + noconj = lsame_(trans, "T"); + +/* + Set LENX and LENY, the lengths of the vectors x and y, and set + up the start points in X and Y. +*/ + + if (lsame_(trans, "N")) { + lenx = *n; + leny = *m; + } else { + lenx = *m; + leny = *n; + } + if (*incx > 0) { + kx = 1; + } else { + kx = 1 - (lenx - 1) * *incx; + } + if (*incy > 0) { + ky = 1; + } else { + ky = 1 - (leny - 1) * *incy; + } + +/* + Start the operations. In this version the elements of A are + accessed sequentially with one pass through A. + + First form y := beta*y. +*/ + + if ((beta->r != 1.f) || (beta->i != 0.f)) { + if (*incy == 1) { + if (beta->r == 0.f && beta->i == 0.f) { + i__1 = leny; + for (i__ = 1; i__ <= i__1; ++i__) { + i__2 = i__; + y[i__2].r = 0.f, y[i__2].i = 0.f; +/* L10: */ + } + } else { + i__1 = leny; + for (i__ = 1; i__ <= i__1; ++i__) { + i__2 = i__; + i__3 = i__; + q__1.r = beta->r * y[i__3].r - beta->i * y[i__3].i, + q__1.i = beta->r * y[i__3].i + beta->i * y[i__3] + .r; + y[i__2].r = q__1.r, y[i__2].i = q__1.i; +/* L20: */ + } + } + } else { + iy = ky; + if (beta->r == 0.f && beta->i == 0.f) { + i__1 = leny; + for (i__ = 1; i__ <= i__1; ++i__) { + i__2 = iy; + y[i__2].r = 0.f, y[i__2].i = 0.f; + iy += *incy; +/* L30: */ + } + } else { + i__1 = leny; + for (i__ = 1; i__ <= i__1; ++i__) { + i__2 = iy; + i__3 = iy; + q__1.r = beta->r * y[i__3].r - beta->i * y[i__3].i, + q__1.i = beta->r * y[i__3].i + beta->i * y[i__3] + .r; + y[i__2].r = q__1.r, y[i__2].i = q__1.i; + iy += *incy; +/* L40: */ + } + } + } + } + if (alpha->r == 0.f && alpha->i == 0.f) { + return 0; + } + if (lsame_(trans, "N")) { + +/* Form y := alpha*A*x + y. */ + + jx = kx; + if (*incy == 1) { + i__1 = *n; + for (j = 1; j <= i__1; ++j) { + i__2 = jx; + if ((x[i__2].r != 0.f) || (x[i__2].i != 0.f)) { + i__2 = jx; + q__1.r = alpha->r * x[i__2].r - alpha->i * x[i__2].i, + q__1.i = alpha->r * x[i__2].i + alpha->i * x[i__2] + .r; + temp.r = q__1.r, temp.i = q__1.i; + i__2 = *m; + for (i__ = 1; i__ <= i__2; ++i__) { + i__3 = i__; + i__4 = i__; + i__5 = i__ + j * a_dim1; + q__2.r = temp.r * a[i__5].r - temp.i * a[i__5].i, + q__2.i = temp.r * a[i__5].i + temp.i * a[i__5] + .r; + q__1.r = y[i__4].r + q__2.r, q__1.i = y[i__4].i + + q__2.i; + y[i__3].r = q__1.r, y[i__3].i = q__1.i; +/* L50: */ + } + } + jx += *incx; +/* L60: */ + } + } else { + i__1 = *n; + for (j = 1; j <= i__1; ++j) { + i__2 = jx; + if ((x[i__2].r != 0.f) || (x[i__2].i != 0.f)) { + i__2 = jx; + q__1.r = alpha->r * x[i__2].r - alpha->i * x[i__2].i, + q__1.i = alpha->r * x[i__2].i + alpha->i * x[i__2] + .r; + temp.r = q__1.r, temp.i = q__1.i; + iy = ky; + i__2 = *m; + for (i__ = 1; i__ <= i__2; ++i__) { + i__3 = iy; + i__4 = iy; + i__5 = i__ + j * a_dim1; + q__2.r = temp.r * a[i__5].r - temp.i * a[i__5].i, + q__2.i = temp.r * a[i__5].i + temp.i * a[i__5] + .r; + q__1.r = y[i__4].r + q__2.r, q__1.i = y[i__4].i + + q__2.i; + y[i__3].r = q__1.r, y[i__3].i = q__1.i; + iy += *incy; +/* L70: */ + } + } + jx += *incx; +/* L80: */ + } + } + } else { + +/* Form y := alpha*A'*x + y or y := alpha*conjg( A' )*x + y. */ + + jy = ky; + if (*incx == 1) { + i__1 = *n; + for (j = 1; j <= i__1; ++j) { + temp.r = 0.f, temp.i = 0.f; + if (noconj) { + i__2 = *m; + for (i__ = 1; i__ <= i__2; ++i__) { + i__3 = i__ + j * a_dim1; + i__4 = i__; + q__2.r = a[i__3].r * x[i__4].r - a[i__3].i * x[i__4] + .i, q__2.i = a[i__3].r * x[i__4].i + a[i__3] + .i * x[i__4].r; + q__1.r = temp.r + q__2.r, q__1.i = temp.i + q__2.i; + temp.r = q__1.r, temp.i = q__1.i; +/* L90: */ + } + } else { + i__2 = *m; + for (i__ = 1; i__ <= i__2; ++i__) { + r_cnjg(&q__3, &a[i__ + j * a_dim1]); + i__3 = i__; + q__2.r = q__3.r * x[i__3].r - q__3.i * x[i__3].i, + q__2.i = q__3.r * x[i__3].i + q__3.i * x[i__3] + .r; + q__1.r = temp.r + q__2.r, q__1.i = temp.i + q__2.i; + temp.r = q__1.r, temp.i = q__1.i; +/* L100: */ + } + } + i__2 = jy; + i__3 = jy; + q__2.r = alpha->r * temp.r - alpha->i * temp.i, q__2.i = + alpha->r * temp.i + alpha->i * temp.r; + q__1.r = y[i__3].r + q__2.r, q__1.i = y[i__3].i + q__2.i; + y[i__2].r = q__1.r, y[i__2].i = q__1.i; + jy += *incy; +/* L110: */ + } + } else { + i__1 = *n; + for (j = 1; j <= i__1; ++j) { + temp.r = 0.f, temp.i = 0.f; + ix = kx; + if (noconj) { + i__2 = *m; + for (i__ = 1; i__ <= i__2; ++i__) { + i__3 = i__ + j * a_dim1; + i__4 = ix; + q__2.r = a[i__3].r * x[i__4].r - a[i__3].i * x[i__4] + .i, q__2.i = a[i__3].r * x[i__4].i + a[i__3] + .i * x[i__4].r; + q__1.r = temp.r + q__2.r, q__1.i = temp.i + q__2.i; + temp.r = q__1.r, temp.i = q__1.i; + ix += *incx; +/* L120: */ + } + } else { + i__2 = *m; + for (i__ = 1; i__ <= i__2; ++i__) { + r_cnjg(&q__3, &a[i__ + j * a_dim1]); + i__3 = ix; + q__2.r = q__3.r * x[i__3].r - q__3.i * x[i__3].i, + q__2.i = q__3.r * x[i__3].i + q__3.i * x[i__3] + .r; + q__1.r = temp.r + q__2.r, q__1.i = temp.i + q__2.i; + temp.r = q__1.r, temp.i = q__1.i; + ix += *incx; +/* L130: */ + } + } + i__2 = jy; + i__3 = jy; + q__2.r = alpha->r * temp.r - alpha->i * temp.i, q__2.i = + alpha->r * temp.i + alpha->i * temp.r; + q__1.r = y[i__3].r + q__2.r, q__1.i = y[i__3].i + q__2.i; + y[i__2].r = q__1.r, y[i__2].i = q__1.i; + jy += *incy; +/* L140: */ + } + } + } + + return 0; + +/* End of CGEMV . */ + +} /* cgemv_ */ + +/* Subroutine */ int cgerc_(integer *m, integer *n, complex *alpha, complex * + x, integer *incx, complex *y, integer *incy, complex *a, integer *lda) +{ + /* System generated locals */ + integer a_dim1, a_offset, i__1, i__2, i__3, i__4, i__5; + complex q__1, q__2; + + /* Builtin functions */ + void r_cnjg(complex *, complex *); + + /* Local variables */ + static integer i__, j, ix, jy, kx, info; + static complex temp; + extern /* Subroutine */ int xerbla_(char *, integer *); + + +/* + Purpose + ======= + + CGERC performs the rank 1 operation + + A := alpha*x*conjg( y' ) + A, + + where alpha is a scalar, x is an m element vector, y is an n element + vector and A is an m by n matrix. + + Parameters + ========== + + M - INTEGER. + On entry, M specifies the number of rows of the matrix A. + M must be at least zero. + Unchanged on exit. + + N - INTEGER. + On entry, N specifies the number of columns of the matrix A. + N must be at least zero. + Unchanged on exit. + + ALPHA - COMPLEX . + On entry, ALPHA specifies the scalar alpha. + Unchanged on exit. + + X - COMPLEX array of dimension at least + ( 1 + ( m - 1 )*abs( INCX ) ). + Before entry, the incremented array X must contain the m + element vector x. + Unchanged on exit. + + INCX - INTEGER. + On entry, INCX specifies the increment for the elements of + X. INCX must not be zero. + Unchanged on exit. + + Y - COMPLEX array of dimension at least + ( 1 + ( n - 1 )*abs( INCY ) ). + Before entry, the incremented array Y must contain the n + element vector y. + Unchanged on exit. + + INCY - INTEGER. + On entry, INCY specifies the increment for the elements of + Y. INCY must not be zero. + Unchanged on exit. + + A - COMPLEX array of DIMENSION ( LDA, n ). + Before entry, the leading m by n part of the array A must + contain the matrix of coefficients. On exit, A is + overwritten by the updated matrix. + + LDA - INTEGER. + On entry, LDA specifies the first dimension of A as declared + in the calling (sub) program. LDA must be at least + max( 1, m ). + Unchanged on exit. + + + Level 2 Blas routine. + + -- Written on 22-October-1986. + Jack Dongarra, Argonne National Lab. + Jeremy Du Croz, Nag Central Office. + Sven Hammarling, Nag Central Office. + Richard Hanson, Sandia National Labs. + + + Test the input parameters. +*/ + + /* Parameter adjustments */ + --x; + --y; + a_dim1 = *lda; + a_offset = 1 + a_dim1; + a -= a_offset; + + /* Function Body */ + info = 0; + if (*m < 0) { + info = 1; + } else if (*n < 0) { + info = 2; + } else if (*incx == 0) { + info = 5; + } else if (*incy == 0) { + info = 7; + } else if (*lda < max(1,*m)) { + info = 9; + } + if (info != 0) { + xerbla_("CGERC ", &info); + return 0; + } + +/* Quick return if possible. */ + + if (((*m == 0) || (*n == 0)) || (alpha->r == 0.f && alpha->i == 0.f)) { + return 0; + } + +/* + Start the operations. In this version the elements of A are + accessed sequentially with one pass through A. +*/ + + if (*incy > 0) { + jy = 1; + } else { + jy = 1 - (*n - 1) * *incy; + } + if (*incx == 1) { + i__1 = *n; + for (j = 1; j <= i__1; ++j) { + i__2 = jy; + if ((y[i__2].r != 0.f) || (y[i__2].i != 0.f)) { + r_cnjg(&q__2, &y[jy]); + q__1.r = alpha->r * q__2.r - alpha->i * q__2.i, q__1.i = + alpha->r * q__2.i + alpha->i * q__2.r; + temp.r = q__1.r, temp.i = q__1.i; + i__2 = *m; + for (i__ = 1; i__ <= i__2; ++i__) { + i__3 = i__ + j * a_dim1; + i__4 = i__ + j * a_dim1; + i__5 = i__; + q__2.r = x[i__5].r * temp.r - x[i__5].i * temp.i, q__2.i = + x[i__5].r * temp.i + x[i__5].i * temp.r; + q__1.r = a[i__4].r + q__2.r, q__1.i = a[i__4].i + q__2.i; + a[i__3].r = q__1.r, a[i__3].i = q__1.i; +/* L10: */ + } + } + jy += *incy; +/* L20: */ + } + } else { + if (*incx > 0) { + kx = 1; + } else { + kx = 1 - (*m - 1) * *incx; + } + i__1 = *n; + for (j = 1; j <= i__1; ++j) { + i__2 = jy; + if ((y[i__2].r != 0.f) || (y[i__2].i != 0.f)) { + r_cnjg(&q__2, &y[jy]); + q__1.r = alpha->r * q__2.r - alpha->i * q__2.i, q__1.i = + alpha->r * q__2.i + alpha->i * q__2.r; + temp.r = q__1.r, temp.i = q__1.i; + ix = kx; + i__2 = *m; + for (i__ = 1; i__ <= i__2; ++i__) { + i__3 = i__ + j * a_dim1; + i__4 = i__ + j * a_dim1; + i__5 = ix; + q__2.r = x[i__5].r * temp.r - x[i__5].i * temp.i, q__2.i = + x[i__5].r * temp.i + x[i__5].i * temp.r; + q__1.r = a[i__4].r + q__2.r, q__1.i = a[i__4].i + q__2.i; + a[i__3].r = q__1.r, a[i__3].i = q__1.i; + ix += *incx; +/* L30: */ + } + } + jy += *incy; +/* L40: */ + } + } + + return 0; + +/* End of CGERC . */ + +} /* cgerc_ */ + +/* Subroutine */ int cgeru_(integer *m, integer *n, complex *alpha, complex * + x, integer *incx, complex *y, integer *incy, complex *a, integer *lda) +{ + /* System generated locals */ + integer a_dim1, a_offset, i__1, i__2, i__3, i__4, i__5; + complex q__1, q__2; + + /* Local variables */ + static integer i__, j, ix, jy, kx, info; + static complex temp; + extern /* Subroutine */ int xerbla_(char *, integer *); + + +/* + Purpose + ======= + + CGERU performs the rank 1 operation + + A := alpha*x*y' + A, + + where alpha is a scalar, x is an m element vector, y is an n element + vector and A is an m by n matrix. + + Parameters + ========== + + M - INTEGER. + On entry, M specifies the number of rows of the matrix A. + M must be at least zero. + Unchanged on exit. + + N - INTEGER. + On entry, N specifies the number of columns of the matrix A. + N must be at least zero. + Unchanged on exit. + + ALPHA - COMPLEX . + On entry, ALPHA specifies the scalar alpha. + Unchanged on exit. + + X - COMPLEX array of dimension at least + ( 1 + ( m - 1 )*abs( INCX ) ). + Before entry, the incremented array X must contain the m + element vector x. + Unchanged on exit. + + INCX - INTEGER. + On entry, INCX specifies the increment for the elements of + X. INCX must not be zero. + Unchanged on exit. + + Y - COMPLEX array of dimension at least + ( 1 + ( n - 1 )*abs( INCY ) ). + Before entry, the incremented array Y must contain the n + element vector y. + Unchanged on exit. + + INCY - INTEGER. + On entry, INCY specifies the increment for the elements of + Y. INCY must not be zero. + Unchanged on exit. + + A - COMPLEX array of DIMENSION ( LDA, n ). + Before entry, the leading m by n part of the array A must + contain the matrix of coefficients. On exit, A is + overwritten by the updated matrix. + + LDA - INTEGER. + On entry, LDA specifies the first dimension of A as declared + in the calling (sub) program. LDA must be at least + max( 1, m ). + Unchanged on exit. + + + Level 2 Blas routine. + + -- Written on 22-October-1986. + Jack Dongarra, Argonne National Lab. + Jeremy Du Croz, Nag Central Office. + Sven Hammarling, Nag Central Office. + Richard Hanson, Sandia National Labs. + + + Test the input parameters. +*/ + + /* Parameter adjustments */ + --x; + --y; + a_dim1 = *lda; + a_offset = 1 + a_dim1; + a -= a_offset; + + /* Function Body */ + info = 0; + if (*m < 0) { + info = 1; + } else if (*n < 0) { + info = 2; + } else if (*incx == 0) { + info = 5; + } else if (*incy == 0) { + info = 7; + } else if (*lda < max(1,*m)) { + info = 9; + } + if (info != 0) { + xerbla_("CGERU ", &info); + return 0; + } + +/* Quick return if possible. */ + + if (((*m == 0) || (*n == 0)) || (alpha->r == 0.f && alpha->i == 0.f)) { + return 0; + } + +/* + Start the operations. In this version the elements of A are + accessed sequentially with one pass through A. +*/ + + if (*incy > 0) { + jy = 1; + } else { + jy = 1 - (*n - 1) * *incy; + } + if (*incx == 1) { + i__1 = *n; + for (j = 1; j <= i__1; ++j) { + i__2 = jy; + if ((y[i__2].r != 0.f) || (y[i__2].i != 0.f)) { + i__2 = jy; + q__1.r = alpha->r * y[i__2].r - alpha->i * y[i__2].i, q__1.i = + alpha->r * y[i__2].i + alpha->i * y[i__2].r; + temp.r = q__1.r, temp.i = q__1.i; + i__2 = *m; + for (i__ = 1; i__ <= i__2; ++i__) { + i__3 = i__ + j * a_dim1; + i__4 = i__ + j * a_dim1; + i__5 = i__; + q__2.r = x[i__5].r * temp.r - x[i__5].i * temp.i, q__2.i = + x[i__5].r * temp.i + x[i__5].i * temp.r; + q__1.r = a[i__4].r + q__2.r, q__1.i = a[i__4].i + q__2.i; + a[i__3].r = q__1.r, a[i__3].i = q__1.i; +/* L10: */ + } + } + jy += *incy; +/* L20: */ + } + } else { + if (*incx > 0) { + kx = 1; + } else { + kx = 1 - (*m - 1) * *incx; + } + i__1 = *n; + for (j = 1; j <= i__1; ++j) { + i__2 = jy; + if ((y[i__2].r != 0.f) || (y[i__2].i != 0.f)) { + i__2 = jy; + q__1.r = alpha->r * y[i__2].r - alpha->i * y[i__2].i, q__1.i = + alpha->r * y[i__2].i + alpha->i * y[i__2].r; + temp.r = q__1.r, temp.i = q__1.i; + ix = kx; + i__2 = *m; + for (i__ = 1; i__ <= i__2; ++i__) { + i__3 = i__ + j * a_dim1; + i__4 = i__ + j * a_dim1; + i__5 = ix; + q__2.r = x[i__5].r * temp.r - x[i__5].i * temp.i, q__2.i = + x[i__5].r * temp.i + x[i__5].i * temp.r; + q__1.r = a[i__4].r + q__2.r, q__1.i = a[i__4].i + q__2.i; + a[i__3].r = q__1.r, a[i__3].i = q__1.i; + ix += *incx; +/* L30: */ + } + } + jy += *incy; +/* L40: */ + } + } + + return 0; + +/* End of CGERU . */ + +} /* cgeru_ */ + +/* Subroutine */ int chemv_(char *uplo, integer *n, complex *alpha, complex * + a, integer *lda, complex *x, integer *incx, complex *beta, complex *y, + integer *incy) +{ + /* System generated locals */ + integer a_dim1, a_offset, i__1, i__2, i__3, i__4, i__5; + real r__1; + complex q__1, q__2, q__3, q__4; + + /* Builtin functions */ + void r_cnjg(complex *, complex *); + + /* Local variables */ + static integer i__, j, ix, iy, jx, jy, kx, ky, info; + static complex temp1, temp2; + extern logical lsame_(char *, char *); + extern /* Subroutine */ int xerbla_(char *, integer *); + + +/* + Purpose + ======= + + CHEMV performs the matrix-vector operation + + y := alpha*A*x + beta*y, + + where alpha and beta are scalars, x and y are n element vectors and + A is an n by n hermitian matrix. + + Parameters + ========== + + UPLO - CHARACTER*1. + On entry, UPLO specifies whether the upper or lower + triangular part of the array A is to be referenced as + follows: + + UPLO = 'U' or 'u' Only the upper triangular part of A + is to be referenced. + + UPLO = 'L' or 'l' Only the lower triangular part of A + is to be referenced. + + Unchanged on exit. + + N - INTEGER. + On entry, N specifies the order of the matrix A. + N must be at least zero. + Unchanged on exit. + + ALPHA - COMPLEX . + On entry, ALPHA specifies the scalar alpha. + Unchanged on exit. + + A - COMPLEX array of DIMENSION ( LDA, n ). + Before entry with UPLO = 'U' or 'u', the leading n by n + upper triangular part of the array A must contain the upper + triangular part of the hermitian matrix and the strictly + lower triangular part of A is not referenced. + Before entry with UPLO = 'L' or 'l', the leading n by n + lower triangular part of the array A must contain the lower + triangular part of the hermitian matrix and the strictly + upper triangular part of A is not referenced. + Note that the imaginary parts of the diagonal elements need + not be set and are assumed to be zero. + Unchanged on exit. + + LDA - INTEGER. + On entry, LDA specifies the first dimension of A as declared + in the calling (sub) program. LDA must be at least + max( 1, n ). + Unchanged on exit. + + X - COMPLEX array of dimension at least + ( 1 + ( n - 1 )*abs( INCX ) ). + Before entry, the incremented array X must contain the n + element vector x. + Unchanged on exit. + + INCX - INTEGER. + On entry, INCX specifies the increment for the elements of + X. INCX must not be zero. + Unchanged on exit. + + BETA - COMPLEX . + On entry, BETA specifies the scalar beta. When BETA is + supplied as zero then Y need not be set on input. + Unchanged on exit. + + Y - COMPLEX array of dimension at least + ( 1 + ( n - 1 )*abs( INCY ) ). + Before entry, the incremented array Y must contain the n + element vector y. On exit, Y is overwritten by the updated + vector y. + + INCY - INTEGER. + On entry, INCY specifies the increment for the elements of + Y. INCY must not be zero. + Unchanged on exit. + + + Level 2 Blas routine. + + -- Written on 22-October-1986. + Jack Dongarra, Argonne National Lab. + Jeremy Du Croz, Nag Central Office. + Sven Hammarling, Nag Central Office. + Richard Hanson, Sandia National Labs. + + + Test the input parameters. +*/ + + /* Parameter adjustments */ + a_dim1 = *lda; + a_offset = 1 + a_dim1; + a -= a_offset; + --x; + --y; + + /* Function Body */ + info = 0; + if (! lsame_(uplo, "U") && ! lsame_(uplo, "L")) { + info = 1; + } else if (*n < 0) { + info = 2; + } else if (*lda < max(1,*n)) { + info = 5; + } else if (*incx == 0) { + info = 7; + } else if (*incy == 0) { + info = 10; + } + if (info != 0) { + xerbla_("CHEMV ", &info); + return 0; + } + +/* Quick return if possible. */ + + if ((*n == 0) || (alpha->r == 0.f && alpha->i == 0.f && (beta->r == 1.f && + beta->i == 0.f))) { + return 0; + } + +/* Set up the start points in X and Y. */ + + if (*incx > 0) { + kx = 1; + } else { + kx = 1 - (*n - 1) * *incx; + } + if (*incy > 0) { + ky = 1; + } else { + ky = 1 - (*n - 1) * *incy; + } + +/* + Start the operations. In this version the elements of A are + accessed sequentially with one pass through the triangular part + of A. + + First form y := beta*y. +*/ + + if ((beta->r != 1.f) || (beta->i != 0.f)) { + if (*incy == 1) { + if (beta->r == 0.f && beta->i == 0.f) { + i__1 = *n; + for (i__ = 1; i__ <= i__1; ++i__) { + i__2 = i__; + y[i__2].r = 0.f, y[i__2].i = 0.f; +/* L10: */ + } + } else { + i__1 = *n; + for (i__ = 1; i__ <= i__1; ++i__) { + i__2 = i__; + i__3 = i__; + q__1.r = beta->r * y[i__3].r - beta->i * y[i__3].i, + q__1.i = beta->r * y[i__3].i + beta->i * y[i__3] + .r; + y[i__2].r = q__1.r, y[i__2].i = q__1.i; +/* L20: */ + } + } + } else { + iy = ky; + if (beta->r == 0.f && beta->i == 0.f) { + i__1 = *n; + for (i__ = 1; i__ <= i__1; ++i__) { + i__2 = iy; + y[i__2].r = 0.f, y[i__2].i = 0.f; + iy += *incy; +/* L30: */ + } + } else { + i__1 = *n; + for (i__ = 1; i__ <= i__1; ++i__) { + i__2 = iy; + i__3 = iy; + q__1.r = beta->r * y[i__3].r - beta->i * y[i__3].i, + q__1.i = beta->r * y[i__3].i + beta->i * y[i__3] + .r; + y[i__2].r = q__1.r, y[i__2].i = q__1.i; + iy += *incy; +/* L40: */ + } + } + } + } + if (alpha->r == 0.f && alpha->i == 0.f) { + return 0; + } + if (lsame_(uplo, "U")) { + +/* Form y when A is stored in upper triangle. */ + + if (*incx == 1 && *incy == 1) { + i__1 = *n; + for (j = 1; j <= i__1; ++j) { + i__2 = j; + q__1.r = alpha->r * x[i__2].r - alpha->i * x[i__2].i, q__1.i = + alpha->r * x[i__2].i + alpha->i * x[i__2].r; + temp1.r = q__1.r, temp1.i = q__1.i; + temp2.r = 0.f, temp2.i = 0.f; + i__2 = j - 1; + for (i__ = 1; i__ <= i__2; ++i__) { + i__3 = i__; + i__4 = i__; + i__5 = i__ + j * a_dim1; + q__2.r = temp1.r * a[i__5].r - temp1.i * a[i__5].i, + q__2.i = temp1.r * a[i__5].i + temp1.i * a[i__5] + .r; + q__1.r = y[i__4].r + q__2.r, q__1.i = y[i__4].i + q__2.i; + y[i__3].r = q__1.r, y[i__3].i = q__1.i; + r_cnjg(&q__3, &a[i__ + j * a_dim1]); + i__3 = i__; + q__2.r = q__3.r * x[i__3].r - q__3.i * x[i__3].i, q__2.i = + q__3.r * x[i__3].i + q__3.i * x[i__3].r; + q__1.r = temp2.r + q__2.r, q__1.i = temp2.i + q__2.i; + temp2.r = q__1.r, temp2.i = q__1.i; +/* L50: */ + } + i__2 = j; + i__3 = j; + i__4 = j + j * a_dim1; + r__1 = a[i__4].r; + q__3.r = r__1 * temp1.r, q__3.i = r__1 * temp1.i; + q__2.r = y[i__3].r + q__3.r, q__2.i = y[i__3].i + q__3.i; + q__4.r = alpha->r * temp2.r - alpha->i * temp2.i, q__4.i = + alpha->r * temp2.i + alpha->i * temp2.r; + q__1.r = q__2.r + q__4.r, q__1.i = q__2.i + q__4.i; + y[i__2].r = q__1.r, y[i__2].i = q__1.i; +/* L60: */ + } + } else { + jx = kx; + jy = ky; + i__1 = *n; + for (j = 1; j <= i__1; ++j) { + i__2 = jx; + q__1.r = alpha->r * x[i__2].r - alpha->i * x[i__2].i, q__1.i = + alpha->r * x[i__2].i + alpha->i * x[i__2].r; + temp1.r = q__1.r, temp1.i = q__1.i; + temp2.r = 0.f, temp2.i = 0.f; + ix = kx; + iy = ky; + i__2 = j - 1; + for (i__ = 1; i__ <= i__2; ++i__) { + i__3 = iy; + i__4 = iy; + i__5 = i__ + j * a_dim1; + q__2.r = temp1.r * a[i__5].r - temp1.i * a[i__5].i, + q__2.i = temp1.r * a[i__5].i + temp1.i * a[i__5] + .r; + q__1.r = y[i__4].r + q__2.r, q__1.i = y[i__4].i + q__2.i; + y[i__3].r = q__1.r, y[i__3].i = q__1.i; + r_cnjg(&q__3, &a[i__ + j * a_dim1]); + i__3 = ix; + q__2.r = q__3.r * x[i__3].r - q__3.i * x[i__3].i, q__2.i = + q__3.r * x[i__3].i + q__3.i * x[i__3].r; + q__1.r = temp2.r + q__2.r, q__1.i = temp2.i + q__2.i; + temp2.r = q__1.r, temp2.i = q__1.i; + ix += *incx; + iy += *incy; +/* L70: */ + } + i__2 = jy; + i__3 = jy; + i__4 = j + j * a_dim1; + r__1 = a[i__4].r; + q__3.r = r__1 * temp1.r, q__3.i = r__1 * temp1.i; + q__2.r = y[i__3].r + q__3.r, q__2.i = y[i__3].i + q__3.i; + q__4.r = alpha->r * temp2.r - alpha->i * temp2.i, q__4.i = + alpha->r * temp2.i + alpha->i * temp2.r; + q__1.r = q__2.r + q__4.r, q__1.i = q__2.i + q__4.i; + y[i__2].r = q__1.r, y[i__2].i = q__1.i; + jx += *incx; + jy += *incy; +/* L80: */ + } + } + } else { + +/* Form y when A is stored in lower triangle. */ + + if (*incx == 1 && *incy == 1) { + i__1 = *n; + for (j = 1; j <= i__1; ++j) { + i__2 = j; + q__1.r = alpha->r * x[i__2].r - alpha->i * x[i__2].i, q__1.i = + alpha->r * x[i__2].i + alpha->i * x[i__2].r; + temp1.r = q__1.r, temp1.i = q__1.i; + temp2.r = 0.f, temp2.i = 0.f; + i__2 = j; + i__3 = j; + i__4 = j + j * a_dim1; + r__1 = a[i__4].r; + q__2.r = r__1 * temp1.r, q__2.i = r__1 * temp1.i; + q__1.r = y[i__3].r + q__2.r, q__1.i = y[i__3].i + q__2.i; + y[i__2].r = q__1.r, y[i__2].i = q__1.i; + i__2 = *n; + for (i__ = j + 1; i__ <= i__2; ++i__) { + i__3 = i__; + i__4 = i__; + i__5 = i__ + j * a_dim1; + q__2.r = temp1.r * a[i__5].r - temp1.i * a[i__5].i, + q__2.i = temp1.r * a[i__5].i + temp1.i * a[i__5] + .r; + q__1.r = y[i__4].r + q__2.r, q__1.i = y[i__4].i + q__2.i; + y[i__3].r = q__1.r, y[i__3].i = q__1.i; + r_cnjg(&q__3, &a[i__ + j * a_dim1]); + i__3 = i__; + q__2.r = q__3.r * x[i__3].r - q__3.i * x[i__3].i, q__2.i = + q__3.r * x[i__3].i + q__3.i * x[i__3].r; + q__1.r = temp2.r + q__2.r, q__1.i = temp2.i + q__2.i; + temp2.r = q__1.r, temp2.i = q__1.i; +/* L90: */ + } + i__2 = j; + i__3 = j; + q__2.r = alpha->r * temp2.r - alpha->i * temp2.i, q__2.i = + alpha->r * temp2.i + alpha->i * temp2.r; + q__1.r = y[i__3].r + q__2.r, q__1.i = y[i__3].i + q__2.i; + y[i__2].r = q__1.r, y[i__2].i = q__1.i; +/* L100: */ + } + } else { + jx = kx; + jy = ky; + i__1 = *n; + for (j = 1; j <= i__1; ++j) { + i__2 = jx; + q__1.r = alpha->r * x[i__2].r - alpha->i * x[i__2].i, q__1.i = + alpha->r * x[i__2].i + alpha->i * x[i__2].r; + temp1.r = q__1.r, temp1.i = q__1.i; + temp2.r = 0.f, temp2.i = 0.f; + i__2 = jy; + i__3 = jy; + i__4 = j + j * a_dim1; + r__1 = a[i__4].r; + q__2.r = r__1 * temp1.r, q__2.i = r__1 * temp1.i; + q__1.r = y[i__3].r + q__2.r, q__1.i = y[i__3].i + q__2.i; + y[i__2].r = q__1.r, y[i__2].i = q__1.i; + ix = jx; + iy = jy; + i__2 = *n; + for (i__ = j + 1; i__ <= i__2; ++i__) { + ix += *incx; + iy += *incy; + i__3 = iy; + i__4 = iy; + i__5 = i__ + j * a_dim1; + q__2.r = temp1.r * a[i__5].r - temp1.i * a[i__5].i, + q__2.i = temp1.r * a[i__5].i + temp1.i * a[i__5] + .r; + q__1.r = y[i__4].r + q__2.r, q__1.i = y[i__4].i + q__2.i; + y[i__3].r = q__1.r, y[i__3].i = q__1.i; + r_cnjg(&q__3, &a[i__ + j * a_dim1]); + i__3 = ix; + q__2.r = q__3.r * x[i__3].r - q__3.i * x[i__3].i, q__2.i = + q__3.r * x[i__3].i + q__3.i * x[i__3].r; + q__1.r = temp2.r + q__2.r, q__1.i = temp2.i + q__2.i; + temp2.r = q__1.r, temp2.i = q__1.i; +/* L110: */ + } + i__2 = jy; + i__3 = jy; + q__2.r = alpha->r * temp2.r - alpha->i * temp2.i, q__2.i = + alpha->r * temp2.i + alpha->i * temp2.r; + q__1.r = y[i__3].r + q__2.r, q__1.i = y[i__3].i + q__2.i; + y[i__2].r = q__1.r, y[i__2].i = q__1.i; + jx += *incx; + jy += *incy; +/* L120: */ + } + } + } + + return 0; + +/* End of CHEMV . */ + +} /* chemv_ */ + +/* Subroutine */ int cher2_(char *uplo, integer *n, complex *alpha, complex * + x, integer *incx, complex *y, integer *incy, complex *a, integer *lda) +{ + /* System generated locals */ + integer a_dim1, a_offset, i__1, i__2, i__3, i__4, i__5, i__6; + real r__1; + complex q__1, q__2, q__3, q__4; + + /* Builtin functions */ + void r_cnjg(complex *, complex *); + + /* Local variables */ + static integer i__, j, ix, iy, jx, jy, kx, ky, info; + static complex temp1, temp2; + extern logical lsame_(char *, char *); + extern /* Subroutine */ int xerbla_(char *, integer *); + + +/* + Purpose + ======= + + CHER2 performs the hermitian rank 2 operation + + A := alpha*x*conjg( y' ) + conjg( alpha )*y*conjg( x' ) + A, + + where alpha is a scalar, x and y are n element vectors and A is an n + by n hermitian matrix. + + Parameters + ========== + + UPLO - CHARACTER*1. + On entry, UPLO specifies whether the upper or lower + triangular part of the array A is to be referenced as + follows: + + UPLO = 'U' or 'u' Only the upper triangular part of A + is to be referenced. + + UPLO = 'L' or 'l' Only the lower triangular part of A + is to be referenced. + + Unchanged on exit. + + N - INTEGER. + On entry, N specifies the order of the matrix A. + N must be at least zero. + Unchanged on exit. + + ALPHA - COMPLEX . + On entry, ALPHA specifies the scalar alpha. + Unchanged on exit. + + X - COMPLEX array of dimension at least + ( 1 + ( n - 1 )*abs( INCX ) ). + Before entry, the incremented array X must contain the n + element vector x. + Unchanged on exit. + + INCX - INTEGER. + On entry, INCX specifies the increment for the elements of + X. INCX must not be zero. + Unchanged on exit. + + Y - COMPLEX array of dimension at least + ( 1 + ( n - 1 )*abs( INCY ) ). + Before entry, the incremented array Y must contain the n + element vector y. + Unchanged on exit. + + INCY - INTEGER. + On entry, INCY specifies the increment for the elements of + Y. INCY must not be zero. + Unchanged on exit. + + A - COMPLEX array of DIMENSION ( LDA, n ). + Before entry with UPLO = 'U' or 'u', the leading n by n + upper triangular part of the array A must contain the upper + triangular part of the hermitian matrix and the strictly + lower triangular part of A is not referenced. On exit, the + upper triangular part of the array A is overwritten by the + upper triangular part of the updated matrix. + Before entry with UPLO = 'L' or 'l', the leading n by n + lower triangular part of the array A must contain the lower + triangular part of the hermitian matrix and the strictly + upper triangular part of A is not referenced. On exit, the + lower triangular part of the array A is overwritten by the + lower triangular part of the updated matrix. + Note that the imaginary parts of the diagonal elements need + not be set, they are assumed to be zero, and on exit they + are set to zero. + + LDA - INTEGER. + On entry, LDA specifies the first dimension of A as declared + in the calling (sub) program. LDA must be at least + max( 1, n ). + Unchanged on exit. + + + Level 2 Blas routine. + + -- Written on 22-October-1986. + Jack Dongarra, Argonne National Lab. + Jeremy Du Croz, Nag Central Office. + Sven Hammarling, Nag Central Office. + Richard Hanson, Sandia National Labs. + + + Test the input parameters. +*/ + + /* Parameter adjustments */ + --x; + --y; + a_dim1 = *lda; + a_offset = 1 + a_dim1; + a -= a_offset; + + /* Function Body */ + info = 0; + if (! lsame_(uplo, "U") && ! lsame_(uplo, "L")) { + info = 1; + } else if (*n < 0) { + info = 2; + } else if (*incx == 0) { + info = 5; + } else if (*incy == 0) { + info = 7; + } else if (*lda < max(1,*n)) { + info = 9; + } + if (info != 0) { + xerbla_("CHER2 ", &info); + return 0; + } + +/* Quick return if possible. */ + + if ((*n == 0) || (alpha->r == 0.f && alpha->i == 0.f)) { + return 0; + } + +/* + Set up the start points in X and Y if the increments are not both + unity. +*/ + + if ((*incx != 1) || (*incy != 1)) { + if (*incx > 0) { + kx = 1; + } else { + kx = 1 - (*n - 1) * *incx; + } + if (*incy > 0) { + ky = 1; + } else { + ky = 1 - (*n - 1) * *incy; + } + jx = kx; + jy = ky; + } + +/* + Start the operations. In this version the elements of A are + accessed sequentially with one pass through the triangular part + of A. +*/ + + if (lsame_(uplo, "U")) { + +/* Form A when A is stored in the upper triangle. */ + + if (*incx == 1 && *incy == 1) { + i__1 = *n; + for (j = 1; j <= i__1; ++j) { + i__2 = j; + i__3 = j; + if (((x[i__2].r != 0.f) || (x[i__2].i != 0.f)) || (((y[i__3] + .r != 0.f) || (y[i__3].i != 0.f)))) { + r_cnjg(&q__2, &y[j]); + q__1.r = alpha->r * q__2.r - alpha->i * q__2.i, q__1.i = + alpha->r * q__2.i + alpha->i * q__2.r; + temp1.r = q__1.r, temp1.i = q__1.i; + i__2 = j; + q__2.r = alpha->r * x[i__2].r - alpha->i * x[i__2].i, + q__2.i = alpha->r * x[i__2].i + alpha->i * x[i__2] + .r; + r_cnjg(&q__1, &q__2); + temp2.r = q__1.r, temp2.i = q__1.i; + i__2 = j - 1; + for (i__ = 1; i__ <= i__2; ++i__) { + i__3 = i__ + j * a_dim1; + i__4 = i__ + j * a_dim1; + i__5 = i__; + q__3.r = x[i__5].r * temp1.r - x[i__5].i * temp1.i, + q__3.i = x[i__5].r * temp1.i + x[i__5].i * + temp1.r; + q__2.r = a[i__4].r + q__3.r, q__2.i = a[i__4].i + + q__3.i; + i__6 = i__; + q__4.r = y[i__6].r * temp2.r - y[i__6].i * temp2.i, + q__4.i = y[i__6].r * temp2.i + y[i__6].i * + temp2.r; + q__1.r = q__2.r + q__4.r, q__1.i = q__2.i + q__4.i; + a[i__3].r = q__1.r, a[i__3].i = q__1.i; +/* L10: */ + } + i__2 = j + j * a_dim1; + i__3 = j + j * a_dim1; + i__4 = j; + q__2.r = x[i__4].r * temp1.r - x[i__4].i * temp1.i, + q__2.i = x[i__4].r * temp1.i + x[i__4].i * + temp1.r; + i__5 = j; + q__3.r = y[i__5].r * temp2.r - y[i__5].i * temp2.i, + q__3.i = y[i__5].r * temp2.i + y[i__5].i * + temp2.r; + q__1.r = q__2.r + q__3.r, q__1.i = q__2.i + q__3.i; + r__1 = a[i__3].r + q__1.r; + a[i__2].r = r__1, a[i__2].i = 0.f; + } else { + i__2 = j + j * a_dim1; + i__3 = j + j * a_dim1; + r__1 = a[i__3].r; + a[i__2].r = r__1, a[i__2].i = 0.f; + } +/* L20: */ + } + } else { + i__1 = *n; + for (j = 1; j <= i__1; ++j) { + i__2 = jx; + i__3 = jy; + if (((x[i__2].r != 0.f) || (x[i__2].i != 0.f)) || (((y[i__3] + .r != 0.f) || (y[i__3].i != 0.f)))) { + r_cnjg(&q__2, &y[jy]); + q__1.r = alpha->r * q__2.r - alpha->i * q__2.i, q__1.i = + alpha->r * q__2.i + alpha->i * q__2.r; + temp1.r = q__1.r, temp1.i = q__1.i; + i__2 = jx; + q__2.r = alpha->r * x[i__2].r - alpha->i * x[i__2].i, + q__2.i = alpha->r * x[i__2].i + alpha->i * x[i__2] + .r; + r_cnjg(&q__1, &q__2); + temp2.r = q__1.r, temp2.i = q__1.i; + ix = kx; + iy = ky; + i__2 = j - 1; + for (i__ = 1; i__ <= i__2; ++i__) { + i__3 = i__ + j * a_dim1; + i__4 = i__ + j * a_dim1; + i__5 = ix; + q__3.r = x[i__5].r * temp1.r - x[i__5].i * temp1.i, + q__3.i = x[i__5].r * temp1.i + x[i__5].i * + temp1.r; + q__2.r = a[i__4].r + q__3.r, q__2.i = a[i__4].i + + q__3.i; + i__6 = iy; + q__4.r = y[i__6].r * temp2.r - y[i__6].i * temp2.i, + q__4.i = y[i__6].r * temp2.i + y[i__6].i * + temp2.r; + q__1.r = q__2.r + q__4.r, q__1.i = q__2.i + q__4.i; + a[i__3].r = q__1.r, a[i__3].i = q__1.i; + ix += *incx; + iy += *incy; +/* L30: */ + } + i__2 = j + j * a_dim1; + i__3 = j + j * a_dim1; + i__4 = jx; + q__2.r = x[i__4].r * temp1.r - x[i__4].i * temp1.i, + q__2.i = x[i__4].r * temp1.i + x[i__4].i * + temp1.r; + i__5 = jy; + q__3.r = y[i__5].r * temp2.r - y[i__5].i * temp2.i, + q__3.i = y[i__5].r * temp2.i + y[i__5].i * + temp2.r; + q__1.r = q__2.r + q__3.r, q__1.i = q__2.i + q__3.i; + r__1 = a[i__3].r + q__1.r; + a[i__2].r = r__1, a[i__2].i = 0.f; + } else { + i__2 = j + j * a_dim1; + i__3 = j + j * a_dim1; + r__1 = a[i__3].r; + a[i__2].r = r__1, a[i__2].i = 0.f; + } + jx += *incx; + jy += *incy; +/* L40: */ + } + } + } else { + +/* Form A when A is stored in the lower triangle. */ + + if (*incx == 1 && *incy == 1) { + i__1 = *n; + for (j = 1; j <= i__1; ++j) { + i__2 = j; + i__3 = j; + if (((x[i__2].r != 0.f) || (x[i__2].i != 0.f)) || (((y[i__3] + .r != 0.f) || (y[i__3].i != 0.f)))) { + r_cnjg(&q__2, &y[j]); + q__1.r = alpha->r * q__2.r - alpha->i * q__2.i, q__1.i = + alpha->r * q__2.i + alpha->i * q__2.r; + temp1.r = q__1.r, temp1.i = q__1.i; + i__2 = j; + q__2.r = alpha->r * x[i__2].r - alpha->i * x[i__2].i, + q__2.i = alpha->r * x[i__2].i + alpha->i * x[i__2] + .r; + r_cnjg(&q__1, &q__2); + temp2.r = q__1.r, temp2.i = q__1.i; + i__2 = j + j * a_dim1; + i__3 = j + j * a_dim1; + i__4 = j; + q__2.r = x[i__4].r * temp1.r - x[i__4].i * temp1.i, + q__2.i = x[i__4].r * temp1.i + x[i__4].i * + temp1.r; + i__5 = j; + q__3.r = y[i__5].r * temp2.r - y[i__5].i * temp2.i, + q__3.i = y[i__5].r * temp2.i + y[i__5].i * + temp2.r; + q__1.r = q__2.r + q__3.r, q__1.i = q__2.i + q__3.i; + r__1 = a[i__3].r + q__1.r; + a[i__2].r = r__1, a[i__2].i = 0.f; + i__2 = *n; + for (i__ = j + 1; i__ <= i__2; ++i__) { + i__3 = i__ + j * a_dim1; + i__4 = i__ + j * a_dim1; + i__5 = i__; + q__3.r = x[i__5].r * temp1.r - x[i__5].i * temp1.i, + q__3.i = x[i__5].r * temp1.i + x[i__5].i * + temp1.r; + q__2.r = a[i__4].r + q__3.r, q__2.i = a[i__4].i + + q__3.i; + i__6 = i__; + q__4.r = y[i__6].r * temp2.r - y[i__6].i * temp2.i, + q__4.i = y[i__6].r * temp2.i + y[i__6].i * + temp2.r; + q__1.r = q__2.r + q__4.r, q__1.i = q__2.i + q__4.i; + a[i__3].r = q__1.r, a[i__3].i = q__1.i; +/* L50: */ + } + } else { + i__2 = j + j * a_dim1; + i__3 = j + j * a_dim1; + r__1 = a[i__3].r; + a[i__2].r = r__1, a[i__2].i = 0.f; + } +/* L60: */ + } + } else { + i__1 = *n; + for (j = 1; j <= i__1; ++j) { + i__2 = jx; + i__3 = jy; + if (((x[i__2].r != 0.f) || (x[i__2].i != 0.f)) || (((y[i__3] + .r != 0.f) || (y[i__3].i != 0.f)))) { + r_cnjg(&q__2, &y[jy]); + q__1.r = alpha->r * q__2.r - alpha->i * q__2.i, q__1.i = + alpha->r * q__2.i + alpha->i * q__2.r; + temp1.r = q__1.r, temp1.i = q__1.i; + i__2 = jx; + q__2.r = alpha->r * x[i__2].r - alpha->i * x[i__2].i, + q__2.i = alpha->r * x[i__2].i + alpha->i * x[i__2] + .r; + r_cnjg(&q__1, &q__2); + temp2.r = q__1.r, temp2.i = q__1.i; + i__2 = j + j * a_dim1; + i__3 = j + j * a_dim1; + i__4 = jx; + q__2.r = x[i__4].r * temp1.r - x[i__4].i * temp1.i, + q__2.i = x[i__4].r * temp1.i + x[i__4].i * + temp1.r; + i__5 = jy; + q__3.r = y[i__5].r * temp2.r - y[i__5].i * temp2.i, + q__3.i = y[i__5].r * temp2.i + y[i__5].i * + temp2.r; + q__1.r = q__2.r + q__3.r, q__1.i = q__2.i + q__3.i; + r__1 = a[i__3].r + q__1.r; + a[i__2].r = r__1, a[i__2].i = 0.f; + ix = jx; + iy = jy; + i__2 = *n; + for (i__ = j + 1; i__ <= i__2; ++i__) { + ix += *incx; + iy += *incy; + i__3 = i__ + j * a_dim1; + i__4 = i__ + j * a_dim1; + i__5 = ix; + q__3.r = x[i__5].r * temp1.r - x[i__5].i * temp1.i, + q__3.i = x[i__5].r * temp1.i + x[i__5].i * + temp1.r; + q__2.r = a[i__4].r + q__3.r, q__2.i = a[i__4].i + + q__3.i; + i__6 = iy; + q__4.r = y[i__6].r * temp2.r - y[i__6].i * temp2.i, + q__4.i = y[i__6].r * temp2.i + y[i__6].i * + temp2.r; + q__1.r = q__2.r + q__4.r, q__1.i = q__2.i + q__4.i; + a[i__3].r = q__1.r, a[i__3].i = q__1.i; +/* L70: */ + } + } else { + i__2 = j + j * a_dim1; + i__3 = j + j * a_dim1; + r__1 = a[i__3].r; + a[i__2].r = r__1, a[i__2].i = 0.f; + } + jx += *incx; + jy += *incy; +/* L80: */ + } + } + } + + return 0; + +/* End of CHER2 . */ + +} /* cher2_ */ + +/* Subroutine */ int cher2k_(char *uplo, char *trans, integer *n, integer *k, + complex *alpha, complex *a, integer *lda, complex *b, integer *ldb, + real *beta, complex *c__, integer *ldc) +{ + /* System generated locals */ + integer a_dim1, a_offset, b_dim1, b_offset, c_dim1, c_offset, i__1, i__2, + i__3, i__4, i__5, i__6, i__7; + real r__1; + complex q__1, q__2, q__3, q__4, q__5, q__6; + + /* Builtin functions */ + void r_cnjg(complex *, complex *); + + /* Local variables */ + static integer i__, j, l, info; + static complex temp1, temp2; + extern logical lsame_(char *, char *); + static integer nrowa; + static logical upper; + extern /* Subroutine */ int xerbla_(char *, integer *); + + +/* + Purpose + ======= + + CHER2K performs one of the hermitian rank 2k operations + + C := alpha*A*conjg( B' ) + conjg( alpha )*B*conjg( A' ) + beta*C, + + or + + C := alpha*conjg( A' )*B + conjg( alpha )*conjg( B' )*A + beta*C, + + where alpha and beta are scalars with beta real, C is an n by n + hermitian matrix and A and B are n by k matrices in the first case + and k by n matrices in the second case. + + Parameters + ========== + + UPLO - CHARACTER*1. + On entry, UPLO specifies whether the upper or lower + triangular part of the array C is to be referenced as + follows: + + UPLO = 'U' or 'u' Only the upper triangular part of C + is to be referenced. + + UPLO = 'L' or 'l' Only the lower triangular part of C + is to be referenced. + + Unchanged on exit. + + TRANS - CHARACTER*1. + On entry, TRANS specifies the operation to be performed as + follows: + + TRANS = 'N' or 'n' C := alpha*A*conjg( B' ) + + conjg( alpha )*B*conjg( A' ) + + beta*C. + + TRANS = 'C' or 'c' C := alpha*conjg( A' )*B + + conjg( alpha )*conjg( B' )*A + + beta*C. + + Unchanged on exit. + + N - INTEGER. + On entry, N specifies the order of the matrix C. N must be + at least zero. + Unchanged on exit. + + K - INTEGER. + On entry with TRANS = 'N' or 'n', K specifies the number + of columns of the matrices A and B, and on entry with + TRANS = 'C' or 'c', K specifies the number of rows of the + matrices A and B. K must be at least zero. + Unchanged on exit. + + ALPHA - COMPLEX . + On entry, ALPHA specifies the scalar alpha. + Unchanged on exit. + + A - COMPLEX array of DIMENSION ( LDA, ka ), where ka is + k when TRANS = 'N' or 'n', and is n otherwise. + Before entry with TRANS = 'N' or 'n', the leading n by k + part of the array A must contain the matrix A, otherwise + the leading k by n part of the array A must contain the + matrix A. + Unchanged on exit. + + LDA - INTEGER. + On entry, LDA specifies the first dimension of A as declared + in the calling (sub) program. When TRANS = 'N' or 'n' + then LDA must be at least max( 1, n ), otherwise LDA must + be at least max( 1, k ). + Unchanged on exit. + + B - COMPLEX array of DIMENSION ( LDB, kb ), where kb is + k when TRANS = 'N' or 'n', and is n otherwise. + Before entry with TRANS = 'N' or 'n', the leading n by k + part of the array B must contain the matrix B, otherwise + the leading k by n part of the array B must contain the + matrix B. + Unchanged on exit. + + LDB - INTEGER. + On entry, LDB specifies the first dimension of B as declared + in the calling (sub) program. When TRANS = 'N' or 'n' + then LDB must be at least max( 1, n ), otherwise LDB must + be at least max( 1, k ). + Unchanged on exit. + + BETA - REAL . + On entry, BETA specifies the scalar beta. + Unchanged on exit. + + C - COMPLEX array of DIMENSION ( LDC, n ). + Before entry with UPLO = 'U' or 'u', the leading n by n + upper triangular part of the array C must contain the upper + triangular part of the hermitian matrix and the strictly + lower triangular part of C is not referenced. On exit, the + upper triangular part of the array C is overwritten by the + upper triangular part of the updated matrix. + Before entry with UPLO = 'L' or 'l', the leading n by n + lower triangular part of the array C must contain the lower + triangular part of the hermitian matrix and the strictly + upper triangular part of C is not referenced. On exit, the + lower triangular part of the array C is overwritten by the + lower triangular part of the updated matrix. + Note that the imaginary parts of the diagonal elements need + not be set, they are assumed to be zero, and on exit they + are set to zero. + + LDC - INTEGER. + On entry, LDC specifies the first dimension of C as declared + in the calling (sub) program. LDC must be at least + max( 1, n ). + Unchanged on exit. + + + Level 3 Blas routine. + + -- Written on 8-February-1989. + Jack Dongarra, Argonne National Laboratory. + Iain Duff, AERE Harwell. + Jeremy Du Croz, Numerical Algorithms Group Ltd. + Sven Hammarling, Numerical Algorithms Group Ltd. + + -- Modified 8-Nov-93 to set C(J,J) to REAL( C(J,J) ) when BETA = 1. + Ed Anderson, Cray Research Inc. + + + Test the input parameters. +*/ + + /* Parameter adjustments */ + a_dim1 = *lda; + a_offset = 1 + a_dim1; + a -= a_offset; + b_dim1 = *ldb; + b_offset = 1 + b_dim1; + b -= b_offset; + c_dim1 = *ldc; + c_offset = 1 + c_dim1; + c__ -= c_offset; + + /* Function Body */ + if (lsame_(trans, "N")) { + nrowa = *n; + } else { + nrowa = *k; + } + upper = lsame_(uplo, "U"); + + info = 0; + if (! upper && ! lsame_(uplo, "L")) { + info = 1; + } else if (! lsame_(trans, "N") && ! lsame_(trans, + "C")) { + info = 2; + } else if (*n < 0) { + info = 3; + } else if (*k < 0) { + info = 4; + } else if (*lda < max(1,nrowa)) { + info = 7; + } else if (*ldb < max(1,nrowa)) { + info = 9; + } else if (*ldc < max(1,*n)) { + info = 12; + } + if (info != 0) { + xerbla_("CHER2K", &info); + return 0; + } + +/* Quick return if possible. */ + + if ((*n == 0) || (((alpha->r == 0.f && alpha->i == 0.f) || (*k == 0)) && * + beta == 1.f)) { + return 0; + } + +/* And when alpha.eq.zero. */ + + if (alpha->r == 0.f && alpha->i == 0.f) { + if (upper) { + if (*beta == 0.f) { + i__1 = *n; + for (j = 1; j <= i__1; ++j) { + i__2 = j; + for (i__ = 1; i__ <= i__2; ++i__) { + i__3 = i__ + j * c_dim1; + c__[i__3].r = 0.f, c__[i__3].i = 0.f; +/* L10: */ + } +/* L20: */ + } + } else { + i__1 = *n; + for (j = 1; j <= i__1; ++j) { + i__2 = j - 1; + for (i__ = 1; i__ <= i__2; ++i__) { + i__3 = i__ + j * c_dim1; + i__4 = i__ + j * c_dim1; + q__1.r = *beta * c__[i__4].r, q__1.i = *beta * c__[ + i__4].i; + c__[i__3].r = q__1.r, c__[i__3].i = q__1.i; +/* L30: */ + } + i__2 = j + j * c_dim1; + i__3 = j + j * c_dim1; + r__1 = *beta * c__[i__3].r; + c__[i__2].r = r__1, c__[i__2].i = 0.f; +/* L40: */ + } + } + } else { + if (*beta == 0.f) { + i__1 = *n; + for (j = 1; j <= i__1; ++j) { + i__2 = *n; + for (i__ = j; i__ <= i__2; ++i__) { + i__3 = i__ + j * c_dim1; + c__[i__3].r = 0.f, c__[i__3].i = 0.f; +/* L50: */ + } +/* L60: */ + } + } else { + i__1 = *n; + for (j = 1; j <= i__1; ++j) { + i__2 = j + j * c_dim1; + i__3 = j + j * c_dim1; + r__1 = *beta * c__[i__3].r; + c__[i__2].r = r__1, c__[i__2].i = 0.f; + i__2 = *n; + for (i__ = j + 1; i__ <= i__2; ++i__) { + i__3 = i__ + j * c_dim1; + i__4 = i__ + j * c_dim1; + q__1.r = *beta * c__[i__4].r, q__1.i = *beta * c__[ + i__4].i; + c__[i__3].r = q__1.r, c__[i__3].i = q__1.i; +/* L70: */ + } +/* L80: */ + } + } + } + return 0; + } + +/* Start the operations. */ + + if (lsame_(trans, "N")) { + +/* + Form C := alpha*A*conjg( B' ) + conjg( alpha )*B*conjg( A' ) + + C. +*/ + + if (upper) { + i__1 = *n; + for (j = 1; j <= i__1; ++j) { + if (*beta == 0.f) { + i__2 = j; + for (i__ = 1; i__ <= i__2; ++i__) { + i__3 = i__ + j * c_dim1; + c__[i__3].r = 0.f, c__[i__3].i = 0.f; +/* L90: */ + } + } else if (*beta != 1.f) { + i__2 = j - 1; + for (i__ = 1; i__ <= i__2; ++i__) { + i__3 = i__ + j * c_dim1; + i__4 = i__ + j * c_dim1; + q__1.r = *beta * c__[i__4].r, q__1.i = *beta * c__[ + i__4].i; + c__[i__3].r = q__1.r, c__[i__3].i = q__1.i; +/* L100: */ + } + i__2 = j + j * c_dim1; + i__3 = j + j * c_dim1; + r__1 = *beta * c__[i__3].r; + c__[i__2].r = r__1, c__[i__2].i = 0.f; + } else { + i__2 = j + j * c_dim1; + i__3 = j + j * c_dim1; + r__1 = c__[i__3].r; + c__[i__2].r = r__1, c__[i__2].i = 0.f; + } + i__2 = *k; + for (l = 1; l <= i__2; ++l) { + i__3 = j + l * a_dim1; + i__4 = j + l * b_dim1; + if (((a[i__3].r != 0.f) || (a[i__3].i != 0.f)) || (((b[ + i__4].r != 0.f) || (b[i__4].i != 0.f)))) { + r_cnjg(&q__2, &b[j + l * b_dim1]); + q__1.r = alpha->r * q__2.r - alpha->i * q__2.i, + q__1.i = alpha->r * q__2.i + alpha->i * + q__2.r; + temp1.r = q__1.r, temp1.i = q__1.i; + i__3 = j + l * a_dim1; + q__2.r = alpha->r * a[i__3].r - alpha->i * a[i__3].i, + q__2.i = alpha->r * a[i__3].i + alpha->i * a[ + i__3].r; + r_cnjg(&q__1, &q__2); + temp2.r = q__1.r, temp2.i = q__1.i; + i__3 = j - 1; + for (i__ = 1; i__ <= i__3; ++i__) { + i__4 = i__ + j * c_dim1; + i__5 = i__ + j * c_dim1; + i__6 = i__ + l * a_dim1; + q__3.r = a[i__6].r * temp1.r - a[i__6].i * + temp1.i, q__3.i = a[i__6].r * temp1.i + a[ + i__6].i * temp1.r; + q__2.r = c__[i__5].r + q__3.r, q__2.i = c__[i__5] + .i + q__3.i; + i__7 = i__ + l * b_dim1; + q__4.r = b[i__7].r * temp2.r - b[i__7].i * + temp2.i, q__4.i = b[i__7].r * temp2.i + b[ + i__7].i * temp2.r; + q__1.r = q__2.r + q__4.r, q__1.i = q__2.i + + q__4.i; + c__[i__4].r = q__1.r, c__[i__4].i = q__1.i; +/* L110: */ + } + i__3 = j + j * c_dim1; + i__4 = j + j * c_dim1; + i__5 = j + l * a_dim1; + q__2.r = a[i__5].r * temp1.r - a[i__5].i * temp1.i, + q__2.i = a[i__5].r * temp1.i + a[i__5].i * + temp1.r; + i__6 = j + l * b_dim1; + q__3.r = b[i__6].r * temp2.r - b[i__6].i * temp2.i, + q__3.i = b[i__6].r * temp2.i + b[i__6].i * + temp2.r; + q__1.r = q__2.r + q__3.r, q__1.i = q__2.i + q__3.i; + r__1 = c__[i__4].r + q__1.r; + c__[i__3].r = r__1, c__[i__3].i = 0.f; + } +/* L120: */ + } +/* L130: */ + } + } else { + i__1 = *n; + for (j = 1; j <= i__1; ++j) { + if (*beta == 0.f) { + i__2 = *n; + for (i__ = j; i__ <= i__2; ++i__) { + i__3 = i__ + j * c_dim1; + c__[i__3].r = 0.f, c__[i__3].i = 0.f; +/* L140: */ + } + } else if (*beta != 1.f) { + i__2 = *n; + for (i__ = j + 1; i__ <= i__2; ++i__) { + i__3 = i__ + j * c_dim1; + i__4 = i__ + j * c_dim1; + q__1.r = *beta * c__[i__4].r, q__1.i = *beta * c__[ + i__4].i; + c__[i__3].r = q__1.r, c__[i__3].i = q__1.i; +/* L150: */ + } + i__2 = j + j * c_dim1; + i__3 = j + j * c_dim1; + r__1 = *beta * c__[i__3].r; + c__[i__2].r = r__1, c__[i__2].i = 0.f; + } else { + i__2 = j + j * c_dim1; + i__3 = j + j * c_dim1; + r__1 = c__[i__3].r; + c__[i__2].r = r__1, c__[i__2].i = 0.f; + } + i__2 = *k; + for (l = 1; l <= i__2; ++l) { + i__3 = j + l * a_dim1; + i__4 = j + l * b_dim1; + if (((a[i__3].r != 0.f) || (a[i__3].i != 0.f)) || (((b[ + i__4].r != 0.f) || (b[i__4].i != 0.f)))) { + r_cnjg(&q__2, &b[j + l * b_dim1]); + q__1.r = alpha->r * q__2.r - alpha->i * q__2.i, + q__1.i = alpha->r * q__2.i + alpha->i * + q__2.r; + temp1.r = q__1.r, temp1.i = q__1.i; + i__3 = j + l * a_dim1; + q__2.r = alpha->r * a[i__3].r - alpha->i * a[i__3].i, + q__2.i = alpha->r * a[i__3].i + alpha->i * a[ + i__3].r; + r_cnjg(&q__1, &q__2); + temp2.r = q__1.r, temp2.i = q__1.i; + i__3 = *n; + for (i__ = j + 1; i__ <= i__3; ++i__) { + i__4 = i__ + j * c_dim1; + i__5 = i__ + j * c_dim1; + i__6 = i__ + l * a_dim1; + q__3.r = a[i__6].r * temp1.r - a[i__6].i * + temp1.i, q__3.i = a[i__6].r * temp1.i + a[ + i__6].i * temp1.r; + q__2.r = c__[i__5].r + q__3.r, q__2.i = c__[i__5] + .i + q__3.i; + i__7 = i__ + l * b_dim1; + q__4.r = b[i__7].r * temp2.r - b[i__7].i * + temp2.i, q__4.i = b[i__7].r * temp2.i + b[ + i__7].i * temp2.r; + q__1.r = q__2.r + q__4.r, q__1.i = q__2.i + + q__4.i; + c__[i__4].r = q__1.r, c__[i__4].i = q__1.i; +/* L160: */ + } + i__3 = j + j * c_dim1; + i__4 = j + j * c_dim1; + i__5 = j + l * a_dim1; + q__2.r = a[i__5].r * temp1.r - a[i__5].i * temp1.i, + q__2.i = a[i__5].r * temp1.i + a[i__5].i * + temp1.r; + i__6 = j + l * b_dim1; + q__3.r = b[i__6].r * temp2.r - b[i__6].i * temp2.i, + q__3.i = b[i__6].r * temp2.i + b[i__6].i * + temp2.r; + q__1.r = q__2.r + q__3.r, q__1.i = q__2.i + q__3.i; + r__1 = c__[i__4].r + q__1.r; + c__[i__3].r = r__1, c__[i__3].i = 0.f; + } +/* L170: */ + } +/* L180: */ + } + } + } else { + +/* + Form C := alpha*conjg( A' )*B + conjg( alpha )*conjg( B' )*A + + C. +*/ + + if (upper) { + i__1 = *n; + for (j = 1; j <= i__1; ++j) { + i__2 = j; + for (i__ = 1; i__ <= i__2; ++i__) { + temp1.r = 0.f, temp1.i = 0.f; + temp2.r = 0.f, temp2.i = 0.f; + i__3 = *k; + for (l = 1; l <= i__3; ++l) { + r_cnjg(&q__3, &a[l + i__ * a_dim1]); + i__4 = l + j * b_dim1; + q__2.r = q__3.r * b[i__4].r - q__3.i * b[i__4].i, + q__2.i = q__3.r * b[i__4].i + q__3.i * b[i__4] + .r; + q__1.r = temp1.r + q__2.r, q__1.i = temp1.i + q__2.i; + temp1.r = q__1.r, temp1.i = q__1.i; + r_cnjg(&q__3, &b[l + i__ * b_dim1]); + i__4 = l + j * a_dim1; + q__2.r = q__3.r * a[i__4].r - q__3.i * a[i__4].i, + q__2.i = q__3.r * a[i__4].i + q__3.i * a[i__4] + .r; + q__1.r = temp2.r + q__2.r, q__1.i = temp2.i + q__2.i; + temp2.r = q__1.r, temp2.i = q__1.i; +/* L190: */ + } + if (i__ == j) { + if (*beta == 0.f) { + i__3 = j + j * c_dim1; + q__2.r = alpha->r * temp1.r - alpha->i * temp1.i, + q__2.i = alpha->r * temp1.i + alpha->i * + temp1.r; + r_cnjg(&q__4, alpha); + q__3.r = q__4.r * temp2.r - q__4.i * temp2.i, + q__3.i = q__4.r * temp2.i + q__4.i * + temp2.r; + q__1.r = q__2.r + q__3.r, q__1.i = q__2.i + + q__3.i; + r__1 = q__1.r; + c__[i__3].r = r__1, c__[i__3].i = 0.f; + } else { + i__3 = j + j * c_dim1; + i__4 = j + j * c_dim1; + q__2.r = alpha->r * temp1.r - alpha->i * temp1.i, + q__2.i = alpha->r * temp1.i + alpha->i * + temp1.r; + r_cnjg(&q__4, alpha); + q__3.r = q__4.r * temp2.r - q__4.i * temp2.i, + q__3.i = q__4.r * temp2.i + q__4.i * + temp2.r; + q__1.r = q__2.r + q__3.r, q__1.i = q__2.i + + q__3.i; + r__1 = *beta * c__[i__4].r + q__1.r; + c__[i__3].r = r__1, c__[i__3].i = 0.f; + } + } else { + if (*beta == 0.f) { + i__3 = i__ + j * c_dim1; + q__2.r = alpha->r * temp1.r - alpha->i * temp1.i, + q__2.i = alpha->r * temp1.i + alpha->i * + temp1.r; + r_cnjg(&q__4, alpha); + q__3.r = q__4.r * temp2.r - q__4.i * temp2.i, + q__3.i = q__4.r * temp2.i + q__4.i * + temp2.r; + q__1.r = q__2.r + q__3.r, q__1.i = q__2.i + + q__3.i; + c__[i__3].r = q__1.r, c__[i__3].i = q__1.i; + } else { + i__3 = i__ + j * c_dim1; + i__4 = i__ + j * c_dim1; + q__3.r = *beta * c__[i__4].r, q__3.i = *beta * + c__[i__4].i; + q__4.r = alpha->r * temp1.r - alpha->i * temp1.i, + q__4.i = alpha->r * temp1.i + alpha->i * + temp1.r; + q__2.r = q__3.r + q__4.r, q__2.i = q__3.i + + q__4.i; + r_cnjg(&q__6, alpha); + q__5.r = q__6.r * temp2.r - q__6.i * temp2.i, + q__5.i = q__6.r * temp2.i + q__6.i * + temp2.r; + q__1.r = q__2.r + q__5.r, q__1.i = q__2.i + + q__5.i; + c__[i__3].r = q__1.r, c__[i__3].i = q__1.i; + } + } +/* L200: */ + } +/* L210: */ + } + } else { + i__1 = *n; + for (j = 1; j <= i__1; ++j) { + i__2 = *n; + for (i__ = j; i__ <= i__2; ++i__) { + temp1.r = 0.f, temp1.i = 0.f; + temp2.r = 0.f, temp2.i = 0.f; + i__3 = *k; + for (l = 1; l <= i__3; ++l) { + r_cnjg(&q__3, &a[l + i__ * a_dim1]); + i__4 = l + j * b_dim1; + q__2.r = q__3.r * b[i__4].r - q__3.i * b[i__4].i, + q__2.i = q__3.r * b[i__4].i + q__3.i * b[i__4] + .r; + q__1.r = temp1.r + q__2.r, q__1.i = temp1.i + q__2.i; + temp1.r = q__1.r, temp1.i = q__1.i; + r_cnjg(&q__3, &b[l + i__ * b_dim1]); + i__4 = l + j * a_dim1; + q__2.r = q__3.r * a[i__4].r - q__3.i * a[i__4].i, + q__2.i = q__3.r * a[i__4].i + q__3.i * a[i__4] + .r; + q__1.r = temp2.r + q__2.r, q__1.i = temp2.i + q__2.i; + temp2.r = q__1.r, temp2.i = q__1.i; +/* L220: */ + } + if (i__ == j) { + if (*beta == 0.f) { + i__3 = j + j * c_dim1; + q__2.r = alpha->r * temp1.r - alpha->i * temp1.i, + q__2.i = alpha->r * temp1.i + alpha->i * + temp1.r; + r_cnjg(&q__4, alpha); + q__3.r = q__4.r * temp2.r - q__4.i * temp2.i, + q__3.i = q__4.r * temp2.i + q__4.i * + temp2.r; + q__1.r = q__2.r + q__3.r, q__1.i = q__2.i + + q__3.i; + r__1 = q__1.r; + c__[i__3].r = r__1, c__[i__3].i = 0.f; + } else { + i__3 = j + j * c_dim1; + i__4 = j + j * c_dim1; + q__2.r = alpha->r * temp1.r - alpha->i * temp1.i, + q__2.i = alpha->r * temp1.i + alpha->i * + temp1.r; + r_cnjg(&q__4, alpha); + q__3.r = q__4.r * temp2.r - q__4.i * temp2.i, + q__3.i = q__4.r * temp2.i + q__4.i * + temp2.r; + q__1.r = q__2.r + q__3.r, q__1.i = q__2.i + + q__3.i; + r__1 = *beta * c__[i__4].r + q__1.r; + c__[i__3].r = r__1, c__[i__3].i = 0.f; + } + } else { + if (*beta == 0.f) { + i__3 = i__ + j * c_dim1; + q__2.r = alpha->r * temp1.r - alpha->i * temp1.i, + q__2.i = alpha->r * temp1.i + alpha->i * + temp1.r; + r_cnjg(&q__4, alpha); + q__3.r = q__4.r * temp2.r - q__4.i * temp2.i, + q__3.i = q__4.r * temp2.i + q__4.i * + temp2.r; + q__1.r = q__2.r + q__3.r, q__1.i = q__2.i + + q__3.i; + c__[i__3].r = q__1.r, c__[i__3].i = q__1.i; + } else { + i__3 = i__ + j * c_dim1; + i__4 = i__ + j * c_dim1; + q__3.r = *beta * c__[i__4].r, q__3.i = *beta * + c__[i__4].i; + q__4.r = alpha->r * temp1.r - alpha->i * temp1.i, + q__4.i = alpha->r * temp1.i + alpha->i * + temp1.r; + q__2.r = q__3.r + q__4.r, q__2.i = q__3.i + + q__4.i; + r_cnjg(&q__6, alpha); + q__5.r = q__6.r * temp2.r - q__6.i * temp2.i, + q__5.i = q__6.r * temp2.i + q__6.i * + temp2.r; + q__1.r = q__2.r + q__5.r, q__1.i = q__2.i + + q__5.i; + c__[i__3].r = q__1.r, c__[i__3].i = q__1.i; + } + } +/* L230: */ + } +/* L240: */ + } + } + } + + return 0; + +/* End of CHER2K. */ + +} /* cher2k_ */ + +/* Subroutine */ int cherk_(char *uplo, char *trans, integer *n, integer *k, + real *alpha, complex *a, integer *lda, real *beta, complex *c__, + integer *ldc) +{ + /* System generated locals */ + integer a_dim1, a_offset, c_dim1, c_offset, i__1, i__2, i__3, i__4, i__5, + i__6; + real r__1; + complex q__1, q__2, q__3; + + /* Builtin functions */ + void r_cnjg(complex *, complex *); + + /* Local variables */ + static integer i__, j, l, info; + static complex temp; + extern logical lsame_(char *, char *); + static integer nrowa; + static real rtemp; + static logical upper; + extern /* Subroutine */ int xerbla_(char *, integer *); + + +/* + Purpose + ======= + + CHERK performs one of the hermitian rank k operations + + C := alpha*A*conjg( A' ) + beta*C, + + or + + C := alpha*conjg( A' )*A + beta*C, + + where alpha and beta are real scalars, C is an n by n hermitian + matrix and A is an n by k matrix in the first case and a k by n + matrix in the second case. + + Parameters + ========== + + UPLO - CHARACTER*1. + On entry, UPLO specifies whether the upper or lower + triangular part of the array C is to be referenced as + follows: + + UPLO = 'U' or 'u' Only the upper triangular part of C + is to be referenced. + + UPLO = 'L' or 'l' Only the lower triangular part of C + is to be referenced. + + Unchanged on exit. + + TRANS - CHARACTER*1. + On entry, TRANS specifies the operation to be performed as + follows: + + TRANS = 'N' or 'n' C := alpha*A*conjg( A' ) + beta*C. + + TRANS = 'C' or 'c' C := alpha*conjg( A' )*A + beta*C. + + Unchanged on exit. + + N - INTEGER. + On entry, N specifies the order of the matrix C. N must be + at least zero. + Unchanged on exit. + + K - INTEGER. + On entry with TRANS = 'N' or 'n', K specifies the number + of columns of the matrix A, and on entry with + TRANS = 'C' or 'c', K specifies the number of rows of the + matrix A. K must be at least zero. + Unchanged on exit. + + ALPHA - REAL . + On entry, ALPHA specifies the scalar alpha. + Unchanged on exit. + + A - COMPLEX array of DIMENSION ( LDA, ka ), where ka is + k when TRANS = 'N' or 'n', and is n otherwise. + Before entry with TRANS = 'N' or 'n', the leading n by k + part of the array A must contain the matrix A, otherwise + the leading k by n part of the array A must contain the + matrix A. + Unchanged on exit. + + LDA - INTEGER. + On entry, LDA specifies the first dimension of A as declared + in the calling (sub) program. When TRANS = 'N' or 'n' + then LDA must be at least max( 1, n ), otherwise LDA must + be at least max( 1, k ). + Unchanged on exit. + + BETA - REAL . + On entry, BETA specifies the scalar beta. + Unchanged on exit. + + C - COMPLEX array of DIMENSION ( LDC, n ). + Before entry with UPLO = 'U' or 'u', the leading n by n + upper triangular part of the array C must contain the upper + triangular part of the hermitian matrix and the strictly + lower triangular part of C is not referenced. On exit, the + upper triangular part of the array C is overwritten by the + upper triangular part of the updated matrix. + Before entry with UPLO = 'L' or 'l', the leading n by n + lower triangular part of the array C must contain the lower + triangular part of the hermitian matrix and the strictly + upper triangular part of C is not referenced. On exit, the + lower triangular part of the array C is overwritten by the + lower triangular part of the updated matrix. + Note that the imaginary parts of the diagonal elements need + not be set, they are assumed to be zero, and on exit they + are set to zero. + + LDC - INTEGER. + On entry, LDC specifies the first dimension of C as declared + in the calling (sub) program. LDC must be at least + max( 1, n ). + Unchanged on exit. + + + Level 3 Blas routine. + + -- Written on 8-February-1989. + Jack Dongarra, Argonne National Laboratory. + Iain Duff, AERE Harwell. + Jeremy Du Croz, Numerical Algorithms Group Ltd. + Sven Hammarling, Numerical Algorithms Group Ltd. + + -- Modified 8-Nov-93 to set C(J,J) to REAL( C(J,J) ) when BETA = 1. + Ed Anderson, Cray Research Inc. + + + Test the input parameters. +*/ + + /* Parameter adjustments */ + a_dim1 = *lda; + a_offset = 1 + a_dim1; + a -= a_offset; + c_dim1 = *ldc; + c_offset = 1 + c_dim1; + c__ -= c_offset; + + /* Function Body */ + if (lsame_(trans, "N")) { + nrowa = *n; + } else { + nrowa = *k; + } + upper = lsame_(uplo, "U"); + + info = 0; + if (! upper && ! lsame_(uplo, "L")) { + info = 1; + } else if (! lsame_(trans, "N") && ! lsame_(trans, + "C")) { + info = 2; + } else if (*n < 0) { + info = 3; + } else if (*k < 0) { + info = 4; + } else if (*lda < max(1,nrowa)) { + info = 7; + } else if (*ldc < max(1,*n)) { + info = 10; + } + if (info != 0) { + xerbla_("CHERK ", &info); + return 0; + } + +/* Quick return if possible. */ + + if ((*n == 0) || (((*alpha == 0.f) || (*k == 0)) && *beta == 1.f)) { + return 0; + } + +/* And when alpha.eq.zero. */ + + if (*alpha == 0.f) { + if (upper) { + if (*beta == 0.f) { + i__1 = *n; + for (j = 1; j <= i__1; ++j) { + i__2 = j; + for (i__ = 1; i__ <= i__2; ++i__) { + i__3 = i__ + j * c_dim1; + c__[i__3].r = 0.f, c__[i__3].i = 0.f; +/* L10: */ + } +/* L20: */ + } + } else { + i__1 = *n; + for (j = 1; j <= i__1; ++j) { + i__2 = j - 1; + for (i__ = 1; i__ <= i__2; ++i__) { + i__3 = i__ + j * c_dim1; + i__4 = i__ + j * c_dim1; + q__1.r = *beta * c__[i__4].r, q__1.i = *beta * c__[ + i__4].i; + c__[i__3].r = q__1.r, c__[i__3].i = q__1.i; +/* L30: */ + } + i__2 = j + j * c_dim1; + i__3 = j + j * c_dim1; + r__1 = *beta * c__[i__3].r; + c__[i__2].r = r__1, c__[i__2].i = 0.f; +/* L40: */ + } + } + } else { + if (*beta == 0.f) { + i__1 = *n; + for (j = 1; j <= i__1; ++j) { + i__2 = *n; + for (i__ = j; i__ <= i__2; ++i__) { + i__3 = i__ + j * c_dim1; + c__[i__3].r = 0.f, c__[i__3].i = 0.f; +/* L50: */ + } +/* L60: */ + } + } else { + i__1 = *n; + for (j = 1; j <= i__1; ++j) { + i__2 = j + j * c_dim1; + i__3 = j + j * c_dim1; + r__1 = *beta * c__[i__3].r; + c__[i__2].r = r__1, c__[i__2].i = 0.f; + i__2 = *n; + for (i__ = j + 1; i__ <= i__2; ++i__) { + i__3 = i__ + j * c_dim1; + i__4 = i__ + j * c_dim1; + q__1.r = *beta * c__[i__4].r, q__1.i = *beta * c__[ + i__4].i; + c__[i__3].r = q__1.r, c__[i__3].i = q__1.i; +/* L70: */ + } +/* L80: */ + } + } + } + return 0; + } + +/* Start the operations. */ + + if (lsame_(trans, "N")) { + +/* Form C := alpha*A*conjg( A' ) + beta*C. */ + + if (upper) { + i__1 = *n; + for (j = 1; j <= i__1; ++j) { + if (*beta == 0.f) { + i__2 = j; + for (i__ = 1; i__ <= i__2; ++i__) { + i__3 = i__ + j * c_dim1; + c__[i__3].r = 0.f, c__[i__3].i = 0.f; +/* L90: */ + } + } else if (*beta != 1.f) { + i__2 = j - 1; + for (i__ = 1; i__ <= i__2; ++i__) { + i__3 = i__ + j * c_dim1; + i__4 = i__ + j * c_dim1; + q__1.r = *beta * c__[i__4].r, q__1.i = *beta * c__[ + i__4].i; + c__[i__3].r = q__1.r, c__[i__3].i = q__1.i; +/* L100: */ + } + i__2 = j + j * c_dim1; + i__3 = j + j * c_dim1; + r__1 = *beta * c__[i__3].r; + c__[i__2].r = r__1, c__[i__2].i = 0.f; + } else { + i__2 = j + j * c_dim1; + i__3 = j + j * c_dim1; + r__1 = c__[i__3].r; + c__[i__2].r = r__1, c__[i__2].i = 0.f; + } + i__2 = *k; + for (l = 1; l <= i__2; ++l) { + i__3 = j + l * a_dim1; + if ((a[i__3].r != 0.f) || (a[i__3].i != 0.f)) { + r_cnjg(&q__2, &a[j + l * a_dim1]); + q__1.r = *alpha * q__2.r, q__1.i = *alpha * q__2.i; + temp.r = q__1.r, temp.i = q__1.i; + i__3 = j - 1; + for (i__ = 1; i__ <= i__3; ++i__) { + i__4 = i__ + j * c_dim1; + i__5 = i__ + j * c_dim1; + i__6 = i__ + l * a_dim1; + q__2.r = temp.r * a[i__6].r - temp.i * a[i__6].i, + q__2.i = temp.r * a[i__6].i + temp.i * a[ + i__6].r; + q__1.r = c__[i__5].r + q__2.r, q__1.i = c__[i__5] + .i + q__2.i; + c__[i__4].r = q__1.r, c__[i__4].i = q__1.i; +/* L110: */ + } + i__3 = j + j * c_dim1; + i__4 = j + j * c_dim1; + i__5 = i__ + l * a_dim1; + q__1.r = temp.r * a[i__5].r - temp.i * a[i__5].i, + q__1.i = temp.r * a[i__5].i + temp.i * a[i__5] + .r; + r__1 = c__[i__4].r + q__1.r; + c__[i__3].r = r__1, c__[i__3].i = 0.f; + } +/* L120: */ + } +/* L130: */ + } + } else { + i__1 = *n; + for (j = 1; j <= i__1; ++j) { + if (*beta == 0.f) { + i__2 = *n; + for (i__ = j; i__ <= i__2; ++i__) { + i__3 = i__ + j * c_dim1; + c__[i__3].r = 0.f, c__[i__3].i = 0.f; +/* L140: */ + } + } else if (*beta != 1.f) { + i__2 = j + j * c_dim1; + i__3 = j + j * c_dim1; + r__1 = *beta * c__[i__3].r; + c__[i__2].r = r__1, c__[i__2].i = 0.f; + i__2 = *n; + for (i__ = j + 1; i__ <= i__2; ++i__) { + i__3 = i__ + j * c_dim1; + i__4 = i__ + j * c_dim1; + q__1.r = *beta * c__[i__4].r, q__1.i = *beta * c__[ + i__4].i; + c__[i__3].r = q__1.r, c__[i__3].i = q__1.i; +/* L150: */ + } + } else { + i__2 = j + j * c_dim1; + i__3 = j + j * c_dim1; + r__1 = c__[i__3].r; + c__[i__2].r = r__1, c__[i__2].i = 0.f; + } + i__2 = *k; + for (l = 1; l <= i__2; ++l) { + i__3 = j + l * a_dim1; + if ((a[i__3].r != 0.f) || (a[i__3].i != 0.f)) { + r_cnjg(&q__2, &a[j + l * a_dim1]); + q__1.r = *alpha * q__2.r, q__1.i = *alpha * q__2.i; + temp.r = q__1.r, temp.i = q__1.i; + i__3 = j + j * c_dim1; + i__4 = j + j * c_dim1; + i__5 = j + l * a_dim1; + q__1.r = temp.r * a[i__5].r - temp.i * a[i__5].i, + q__1.i = temp.r * a[i__5].i + temp.i * a[i__5] + .r; + r__1 = c__[i__4].r + q__1.r; + c__[i__3].r = r__1, c__[i__3].i = 0.f; + i__3 = *n; + for (i__ = j + 1; i__ <= i__3; ++i__) { + i__4 = i__ + j * c_dim1; + i__5 = i__ + j * c_dim1; + i__6 = i__ + l * a_dim1; + q__2.r = temp.r * a[i__6].r - temp.i * a[i__6].i, + q__2.i = temp.r * a[i__6].i + temp.i * a[ + i__6].r; + q__1.r = c__[i__5].r + q__2.r, q__1.i = c__[i__5] + .i + q__2.i; + c__[i__4].r = q__1.r, c__[i__4].i = q__1.i; +/* L160: */ + } + } +/* L170: */ + } +/* L180: */ + } + } + } else { + +/* Form C := alpha*conjg( A' )*A + beta*C. */ + + if (upper) { + i__1 = *n; + for (j = 1; j <= i__1; ++j) { + i__2 = j - 1; + for (i__ = 1; i__ <= i__2; ++i__) { + temp.r = 0.f, temp.i = 0.f; + i__3 = *k; + for (l = 1; l <= i__3; ++l) { + r_cnjg(&q__3, &a[l + i__ * a_dim1]); + i__4 = l + j * a_dim1; + q__2.r = q__3.r * a[i__4].r - q__3.i * a[i__4].i, + q__2.i = q__3.r * a[i__4].i + q__3.i * a[i__4] + .r; + q__1.r = temp.r + q__2.r, q__1.i = temp.i + q__2.i; + temp.r = q__1.r, temp.i = q__1.i; +/* L190: */ + } + if (*beta == 0.f) { + i__3 = i__ + j * c_dim1; + q__1.r = *alpha * temp.r, q__1.i = *alpha * temp.i; + c__[i__3].r = q__1.r, c__[i__3].i = q__1.i; + } else { + i__3 = i__ + j * c_dim1; + q__2.r = *alpha * temp.r, q__2.i = *alpha * temp.i; + i__4 = i__ + j * c_dim1; + q__3.r = *beta * c__[i__4].r, q__3.i = *beta * c__[ + i__4].i; + q__1.r = q__2.r + q__3.r, q__1.i = q__2.i + q__3.i; + c__[i__3].r = q__1.r, c__[i__3].i = q__1.i; + } +/* L200: */ + } + rtemp = 0.f; + i__2 = *k; + for (l = 1; l <= i__2; ++l) { + r_cnjg(&q__3, &a[l + j * a_dim1]); + i__3 = l + j * a_dim1; + q__2.r = q__3.r * a[i__3].r - q__3.i * a[i__3].i, q__2.i = + q__3.r * a[i__3].i + q__3.i * a[i__3].r; + q__1.r = rtemp + q__2.r, q__1.i = q__2.i; + rtemp = q__1.r; +/* L210: */ + } + if (*beta == 0.f) { + i__2 = j + j * c_dim1; + r__1 = *alpha * rtemp; + c__[i__2].r = r__1, c__[i__2].i = 0.f; + } else { + i__2 = j + j * c_dim1; + i__3 = j + j * c_dim1; + r__1 = *alpha * rtemp + *beta * c__[i__3].r; + c__[i__2].r = r__1, c__[i__2].i = 0.f; + } +/* L220: */ + } + } else { + i__1 = *n; + for (j = 1; j <= i__1; ++j) { + rtemp = 0.f; + i__2 = *k; + for (l = 1; l <= i__2; ++l) { + r_cnjg(&q__3, &a[l + j * a_dim1]); + i__3 = l + j * a_dim1; + q__2.r = q__3.r * a[i__3].r - q__3.i * a[i__3].i, q__2.i = + q__3.r * a[i__3].i + q__3.i * a[i__3].r; + q__1.r = rtemp + q__2.r, q__1.i = q__2.i; + rtemp = q__1.r; +/* L230: */ + } + if (*beta == 0.f) { + i__2 = j + j * c_dim1; + r__1 = *alpha * rtemp; + c__[i__2].r = r__1, c__[i__2].i = 0.f; + } else { + i__2 = j + j * c_dim1; + i__3 = j + j * c_dim1; + r__1 = *alpha * rtemp + *beta * c__[i__3].r; + c__[i__2].r = r__1, c__[i__2].i = 0.f; + } + i__2 = *n; + for (i__ = j + 1; i__ <= i__2; ++i__) { + temp.r = 0.f, temp.i = 0.f; + i__3 = *k; + for (l = 1; l <= i__3; ++l) { + r_cnjg(&q__3, &a[l + i__ * a_dim1]); + i__4 = l + j * a_dim1; + q__2.r = q__3.r * a[i__4].r - q__3.i * a[i__4].i, + q__2.i = q__3.r * a[i__4].i + q__3.i * a[i__4] + .r; + q__1.r = temp.r + q__2.r, q__1.i = temp.i + q__2.i; + temp.r = q__1.r, temp.i = q__1.i; +/* L240: */ + } + if (*beta == 0.f) { + i__3 = i__ + j * c_dim1; + q__1.r = *alpha * temp.r, q__1.i = *alpha * temp.i; + c__[i__3].r = q__1.r, c__[i__3].i = q__1.i; + } else { + i__3 = i__ + j * c_dim1; + q__2.r = *alpha * temp.r, q__2.i = *alpha * temp.i; + i__4 = i__ + j * c_dim1; + q__3.r = *beta * c__[i__4].r, q__3.i = *beta * c__[ + i__4].i; + q__1.r = q__2.r + q__3.r, q__1.i = q__2.i + q__3.i; + c__[i__3].r = q__1.r, c__[i__3].i = q__1.i; + } +/* L250: */ + } +/* L260: */ + } + } + } + + return 0; + +/* End of CHERK . */ + +} /* cherk_ */ + +/* Subroutine */ int cscal_(integer *n, complex *ca, complex *cx, integer * + incx) +{ + /* System generated locals */ + integer i__1, i__2, i__3, i__4; + complex q__1; + + /* Local variables */ + static integer i__, nincx; + + +/* + scales a vector by a constant. + jack dongarra, linpack, 3/11/78. + modified 3/93 to return if incx .le. 0. + modified 12/3/93, array(1) declarations changed to array(*) +*/ + + + /* Parameter adjustments */ + --cx; + + /* Function Body */ + if ((*n <= 0) || (*incx <= 0)) { + return 0; + } + if (*incx == 1) { + goto L20; + } + +/* code for increment not equal to 1 */ + + nincx = *n * *incx; + i__1 = nincx; + i__2 = *incx; + for (i__ = 1; i__2 < 0 ? i__ >= i__1 : i__ <= i__1; i__ += i__2) { + i__3 = i__; + i__4 = i__; + q__1.r = ca->r * cx[i__4].r - ca->i * cx[i__4].i, q__1.i = ca->r * cx[ + i__4].i + ca->i * cx[i__4].r; + cx[i__3].r = q__1.r, cx[i__3].i = q__1.i; +/* L10: */ + } + return 0; + +/* code for increment equal to 1 */ + +L20: + i__2 = *n; + for (i__ = 1; i__ <= i__2; ++i__) { + i__1 = i__; + i__3 = i__; + q__1.r = ca->r * cx[i__3].r - ca->i * cx[i__3].i, q__1.i = ca->r * cx[ + i__3].i + ca->i * cx[i__3].r; + cx[i__1].r = q__1.r, cx[i__1].i = q__1.i; +/* L30: */ + } + return 0; +} /* cscal_ */ + +/* Subroutine */ int csscal_(integer *n, real *sa, complex *cx, integer *incx) +{ + /* System generated locals */ + integer i__1, i__2, i__3, i__4; + real r__1, r__2; + complex q__1; + + /* Builtin functions */ + double r_imag(complex *); + + /* Local variables */ + static integer i__, nincx; + + +/* + scales a complex vector by a real constant. + jack dongarra, linpack, 3/11/78. + modified 3/93 to return if incx .le. 0. + modified 12/3/93, array(1) declarations changed to array(*) +*/ + + + /* Parameter adjustments */ + --cx; + + /* Function Body */ + if ((*n <= 0) || (*incx <= 0)) { + return 0; + } + if (*incx == 1) { + goto L20; + } + +/* code for increment not equal to 1 */ + + nincx = *n * *incx; + i__1 = nincx; + i__2 = *incx; + for (i__ = 1; i__2 < 0 ? i__ >= i__1 : i__ <= i__1; i__ += i__2) { + i__3 = i__; + i__4 = i__; + r__1 = *sa * cx[i__4].r; + r__2 = *sa * r_imag(&cx[i__]); + q__1.r = r__1, q__1.i = r__2; + cx[i__3].r = q__1.r, cx[i__3].i = q__1.i; +/* L10: */ + } + return 0; + +/* code for increment equal to 1 */ + +L20: + i__2 = *n; + for (i__ = 1; i__ <= i__2; ++i__) { + i__1 = i__; + i__3 = i__; + r__1 = *sa * cx[i__3].r; + r__2 = *sa * r_imag(&cx[i__]); + q__1.r = r__1, q__1.i = r__2; + cx[i__1].r = q__1.r, cx[i__1].i = q__1.i; +/* L30: */ + } + return 0; +} /* csscal_ */ + +/* Subroutine */ int cswap_(integer *n, complex *cx, integer *incx, complex * + cy, integer *incy) +{ + /* System generated locals */ + integer i__1, i__2, i__3; + + /* Local variables */ + static integer i__, ix, iy; + static complex ctemp; + + +/* + interchanges two vectors. + jack dongarra, linpack, 3/11/78. + modified 12/3/93, array(1) declarations changed to array(*) +*/ + + + /* Parameter adjustments */ + --cy; + --cx; + + /* Function Body */ + if (*n <= 0) { + return 0; + } + if (*incx == 1 && *incy == 1) { + goto L20; + } + +/* + code for unequal increments or equal increments not equal + to 1 +*/ + + ix = 1; + iy = 1; + if (*incx < 0) { + ix = (-(*n) + 1) * *incx + 1; + } + if (*incy < 0) { + iy = (-(*n) + 1) * *incy + 1; + } + i__1 = *n; + for (i__ = 1; i__ <= i__1; ++i__) { + i__2 = ix; + ctemp.r = cx[i__2].r, ctemp.i = cx[i__2].i; + i__2 = ix; + i__3 = iy; + cx[i__2].r = cy[i__3].r, cx[i__2].i = cy[i__3].i; + i__2 = iy; + cy[i__2].r = ctemp.r, cy[i__2].i = ctemp.i; + ix += *incx; + iy += *incy; +/* L10: */ + } + return 0; + +/* code for both increments equal to 1 */ +L20: + i__1 = *n; + for (i__ = 1; i__ <= i__1; ++i__) { + i__2 = i__; + ctemp.r = cx[i__2].r, ctemp.i = cx[i__2].i; + i__2 = i__; + i__3 = i__; + cx[i__2].r = cy[i__3].r, cx[i__2].i = cy[i__3].i; + i__2 = i__; + cy[i__2].r = ctemp.r, cy[i__2].i = ctemp.i; +/* L30: */ + } + return 0; +} /* cswap_ */ + +/* Subroutine */ int ctrmm_(char *side, char *uplo, char *transa, char *diag, + integer *m, integer *n, complex *alpha, complex *a, integer *lda, + complex *b, integer *ldb) +{ + /* System generated locals */ + integer a_dim1, a_offset, b_dim1, b_offset, i__1, i__2, i__3, i__4, i__5, + i__6; + complex q__1, q__2, q__3; + + /* Builtin functions */ + void r_cnjg(complex *, complex *); + + /* Local variables */ + static integer i__, j, k, info; + static complex temp; + extern logical lsame_(char *, char *); + static logical lside; + static integer nrowa; + static logical upper; + extern /* Subroutine */ int xerbla_(char *, integer *); + static logical noconj, nounit; + + +/* + Purpose + ======= + + CTRMM performs one of the matrix-matrix operations + + B := alpha*op( A )*B, or B := alpha*B*op( A ) + + where alpha is a scalar, B is an m by n matrix, A is a unit, or + non-unit, upper or lower triangular matrix and op( A ) is one of + + op( A ) = A or op( A ) = A' or op( A ) = conjg( A' ). + + Parameters + ========== + + SIDE - CHARACTER*1. + On entry, SIDE specifies whether op( A ) multiplies B from + the left or right as follows: + + SIDE = 'L' or 'l' B := alpha*op( A )*B. + + SIDE = 'R' or 'r' B := alpha*B*op( A ). + + Unchanged on exit. + + UPLO - CHARACTER*1. + On entry, UPLO specifies whether the matrix A is an upper or + lower triangular matrix as follows: + + UPLO = 'U' or 'u' A is an upper triangular matrix. + + UPLO = 'L' or 'l' A is a lower triangular matrix. + + Unchanged on exit. + + TRANSA - CHARACTER*1. + On entry, TRANSA specifies the form of op( A ) to be used in + the matrix multiplication as follows: + + TRANSA = 'N' or 'n' op( A ) = A. + + TRANSA = 'T' or 't' op( A ) = A'. + + TRANSA = 'C' or 'c' op( A ) = conjg( A' ). + + Unchanged on exit. + + DIAG - CHARACTER*1. + On entry, DIAG specifies whether or not A is unit triangular + as follows: + + DIAG = 'U' or 'u' A is assumed to be unit triangular. + + DIAG = 'N' or 'n' A is not assumed to be unit + triangular. + + Unchanged on exit. + + M - INTEGER. + On entry, M specifies the number of rows of B. M must be at + least zero. + Unchanged on exit. + + N - INTEGER. + On entry, N specifies the number of columns of B. N must be + at least zero. + Unchanged on exit. + + ALPHA - COMPLEX . + On entry, ALPHA specifies the scalar alpha. When alpha is + zero then A is not referenced and B need not be set before + entry. + Unchanged on exit. + + A - COMPLEX array of DIMENSION ( LDA, k ), where k is m + when SIDE = 'L' or 'l' and is n when SIDE = 'R' or 'r'. + Before entry with UPLO = 'U' or 'u', the leading k by k + upper triangular part of the array A must contain the upper + triangular matrix and the strictly lower triangular part of + A is not referenced. + Before entry with UPLO = 'L' or 'l', the leading k by k + lower triangular part of the array A must contain the lower + triangular matrix and the strictly upper triangular part of + A is not referenced. + Note that when DIAG = 'U' or 'u', the diagonal elements of + A are not referenced either, but are assumed to be unity. + Unchanged on exit. + + LDA - INTEGER. + On entry, LDA specifies the first dimension of A as declared + in the calling (sub) program. When SIDE = 'L' or 'l' then + LDA must be at least max( 1, m ), when SIDE = 'R' or 'r' + then LDA must be at least max( 1, n ). + Unchanged on exit. + + B - COMPLEX array of DIMENSION ( LDB, n ). + Before entry, the leading m by n part of the array B must + contain the matrix B, and on exit is overwritten by the + transformed matrix. + + LDB - INTEGER. + On entry, LDB specifies the first dimension of B as declared + in the calling (sub) program. LDB must be at least + max( 1, m ). + Unchanged on exit. + + + Level 3 Blas routine. + + -- Written on 8-February-1989. + Jack Dongarra, Argonne National Laboratory. + Iain Duff, AERE Harwell. + Jeremy Du Croz, Numerical Algorithms Group Ltd. + Sven Hammarling, Numerical Algorithms Group Ltd. + + + Test the input parameters. +*/ + + /* Parameter adjustments */ + a_dim1 = *lda; + a_offset = 1 + a_dim1; + a -= a_offset; + b_dim1 = *ldb; + b_offset = 1 + b_dim1; + b -= b_offset; + + /* Function Body */ + lside = lsame_(side, "L"); + if (lside) { + nrowa = *m; + } else { + nrowa = *n; + } + noconj = lsame_(transa, "T"); + nounit = lsame_(diag, "N"); + upper = lsame_(uplo, "U"); + + info = 0; + if (! lside && ! lsame_(side, "R")) { + info = 1; + } else if (! upper && ! lsame_(uplo, "L")) { + info = 2; + } else if (! lsame_(transa, "N") && ! lsame_(transa, + "T") && ! lsame_(transa, "C")) { + info = 3; + } else if (! lsame_(diag, "U") && ! lsame_(diag, + "N")) { + info = 4; + } else if (*m < 0) { + info = 5; + } else if (*n < 0) { + info = 6; + } else if (*lda < max(1,nrowa)) { + info = 9; + } else if (*ldb < max(1,*m)) { + info = 11; + } + if (info != 0) { + xerbla_("CTRMM ", &info); + return 0; + } + +/* Quick return if possible. */ + + if (*n == 0) { + return 0; + } + +/* And when alpha.eq.zero. */ + + if (alpha->r == 0.f && alpha->i == 0.f) { + i__1 = *n; + for (j = 1; j <= i__1; ++j) { + i__2 = *m; + for (i__ = 1; i__ <= i__2; ++i__) { + i__3 = i__ + j * b_dim1; + b[i__3].r = 0.f, b[i__3].i = 0.f; +/* L10: */ + } +/* L20: */ + } + return 0; + } + +/* Start the operations. */ + + if (lside) { + if (lsame_(transa, "N")) { + +/* Form B := alpha*A*B. */ + + if (upper) { + i__1 = *n; + for (j = 1; j <= i__1; ++j) { + i__2 = *m; + for (k = 1; k <= i__2; ++k) { + i__3 = k + j * b_dim1; + if ((b[i__3].r != 0.f) || (b[i__3].i != 0.f)) { + i__3 = k + j * b_dim1; + q__1.r = alpha->r * b[i__3].r - alpha->i * b[i__3] + .i, q__1.i = alpha->r * b[i__3].i + + alpha->i * b[i__3].r; + temp.r = q__1.r, temp.i = q__1.i; + i__3 = k - 1; + for (i__ = 1; i__ <= i__3; ++i__) { + i__4 = i__ + j * b_dim1; + i__5 = i__ + j * b_dim1; + i__6 = i__ + k * a_dim1; + q__2.r = temp.r * a[i__6].r - temp.i * a[i__6] + .i, q__2.i = temp.r * a[i__6].i + + temp.i * a[i__6].r; + q__1.r = b[i__5].r + q__2.r, q__1.i = b[i__5] + .i + q__2.i; + b[i__4].r = q__1.r, b[i__4].i = q__1.i; +/* L30: */ + } + if (nounit) { + i__3 = k + k * a_dim1; + q__1.r = temp.r * a[i__3].r - temp.i * a[i__3] + .i, q__1.i = temp.r * a[i__3].i + + temp.i * a[i__3].r; + temp.r = q__1.r, temp.i = q__1.i; + } + i__3 = k + j * b_dim1; + b[i__3].r = temp.r, b[i__3].i = temp.i; + } +/* L40: */ + } +/* L50: */ + } + } else { + i__1 = *n; + for (j = 1; j <= i__1; ++j) { + for (k = *m; k >= 1; --k) { + i__2 = k + j * b_dim1; + if ((b[i__2].r != 0.f) || (b[i__2].i != 0.f)) { + i__2 = k + j * b_dim1; + q__1.r = alpha->r * b[i__2].r - alpha->i * b[i__2] + .i, q__1.i = alpha->r * b[i__2].i + + alpha->i * b[i__2].r; + temp.r = q__1.r, temp.i = q__1.i; + i__2 = k + j * b_dim1; + b[i__2].r = temp.r, b[i__2].i = temp.i; + if (nounit) { + i__2 = k + j * b_dim1; + i__3 = k + j * b_dim1; + i__4 = k + k * a_dim1; + q__1.r = b[i__3].r * a[i__4].r - b[i__3].i * + a[i__4].i, q__1.i = b[i__3].r * a[ + i__4].i + b[i__3].i * a[i__4].r; + b[i__2].r = q__1.r, b[i__2].i = q__1.i; + } + i__2 = *m; + for (i__ = k + 1; i__ <= i__2; ++i__) { + i__3 = i__ + j * b_dim1; + i__4 = i__ + j * b_dim1; + i__5 = i__ + k * a_dim1; + q__2.r = temp.r * a[i__5].r - temp.i * a[i__5] + .i, q__2.i = temp.r * a[i__5].i + + temp.i * a[i__5].r; + q__1.r = b[i__4].r + q__2.r, q__1.i = b[i__4] + .i + q__2.i; + b[i__3].r = q__1.r, b[i__3].i = q__1.i; +/* L60: */ + } + } +/* L70: */ + } +/* L80: */ + } + } + } else { + +/* Form B := alpha*A'*B or B := alpha*conjg( A' )*B. */ + + if (upper) { + i__1 = *n; + for (j = 1; j <= i__1; ++j) { + for (i__ = *m; i__ >= 1; --i__) { + i__2 = i__ + j * b_dim1; + temp.r = b[i__2].r, temp.i = b[i__2].i; + if (noconj) { + if (nounit) { + i__2 = i__ + i__ * a_dim1; + q__1.r = temp.r * a[i__2].r - temp.i * a[i__2] + .i, q__1.i = temp.r * a[i__2].i + + temp.i * a[i__2].r; + temp.r = q__1.r, temp.i = q__1.i; + } + i__2 = i__ - 1; + for (k = 1; k <= i__2; ++k) { + i__3 = k + i__ * a_dim1; + i__4 = k + j * b_dim1; + q__2.r = a[i__3].r * b[i__4].r - a[i__3].i * + b[i__4].i, q__2.i = a[i__3].r * b[ + i__4].i + a[i__3].i * b[i__4].r; + q__1.r = temp.r + q__2.r, q__1.i = temp.i + + q__2.i; + temp.r = q__1.r, temp.i = q__1.i; +/* L90: */ + } + } else { + if (nounit) { + r_cnjg(&q__2, &a[i__ + i__ * a_dim1]); + q__1.r = temp.r * q__2.r - temp.i * q__2.i, + q__1.i = temp.r * q__2.i + temp.i * + q__2.r; + temp.r = q__1.r, temp.i = q__1.i; + } + i__2 = i__ - 1; + for (k = 1; k <= i__2; ++k) { + r_cnjg(&q__3, &a[k + i__ * a_dim1]); + i__3 = k + j * b_dim1; + q__2.r = q__3.r * b[i__3].r - q__3.i * b[i__3] + .i, q__2.i = q__3.r * b[i__3].i + + q__3.i * b[i__3].r; + q__1.r = temp.r + q__2.r, q__1.i = temp.i + + q__2.i; + temp.r = q__1.r, temp.i = q__1.i; +/* L100: */ + } + } + i__2 = i__ + j * b_dim1; + q__1.r = alpha->r * temp.r - alpha->i * temp.i, + q__1.i = alpha->r * temp.i + alpha->i * + temp.r; + b[i__2].r = q__1.r, b[i__2].i = q__1.i; +/* L110: */ + } +/* L120: */ + } + } else { + i__1 = *n; + for (j = 1; j <= i__1; ++j) { + i__2 = *m; + for (i__ = 1; i__ <= i__2; ++i__) { + i__3 = i__ + j * b_dim1; + temp.r = b[i__3].r, temp.i = b[i__3].i; + if (noconj) { + if (nounit) { + i__3 = i__ + i__ * a_dim1; + q__1.r = temp.r * a[i__3].r - temp.i * a[i__3] + .i, q__1.i = temp.r * a[i__3].i + + temp.i * a[i__3].r; + temp.r = q__1.r, temp.i = q__1.i; + } + i__3 = *m; + for (k = i__ + 1; k <= i__3; ++k) { + i__4 = k + i__ * a_dim1; + i__5 = k + j * b_dim1; + q__2.r = a[i__4].r * b[i__5].r - a[i__4].i * + b[i__5].i, q__2.i = a[i__4].r * b[ + i__5].i + a[i__4].i * b[i__5].r; + q__1.r = temp.r + q__2.r, q__1.i = temp.i + + q__2.i; + temp.r = q__1.r, temp.i = q__1.i; +/* L130: */ + } + } else { + if (nounit) { + r_cnjg(&q__2, &a[i__ + i__ * a_dim1]); + q__1.r = temp.r * q__2.r - temp.i * q__2.i, + q__1.i = temp.r * q__2.i + temp.i * + q__2.r; + temp.r = q__1.r, temp.i = q__1.i; + } + i__3 = *m; + for (k = i__ + 1; k <= i__3; ++k) { + r_cnjg(&q__3, &a[k + i__ * a_dim1]); + i__4 = k + j * b_dim1; + q__2.r = q__3.r * b[i__4].r - q__3.i * b[i__4] + .i, q__2.i = q__3.r * b[i__4].i + + q__3.i * b[i__4].r; + q__1.r = temp.r + q__2.r, q__1.i = temp.i + + q__2.i; + temp.r = q__1.r, temp.i = q__1.i; +/* L140: */ + } + } + i__3 = i__ + j * b_dim1; + q__1.r = alpha->r * temp.r - alpha->i * temp.i, + q__1.i = alpha->r * temp.i + alpha->i * + temp.r; + b[i__3].r = q__1.r, b[i__3].i = q__1.i; +/* L150: */ + } +/* L160: */ + } + } + } + } else { + if (lsame_(transa, "N")) { + +/* Form B := alpha*B*A. */ + + if (upper) { + for (j = *n; j >= 1; --j) { + temp.r = alpha->r, temp.i = alpha->i; + if (nounit) { + i__1 = j + j * a_dim1; + q__1.r = temp.r * a[i__1].r - temp.i * a[i__1].i, + q__1.i = temp.r * a[i__1].i + temp.i * a[i__1] + .r; + temp.r = q__1.r, temp.i = q__1.i; + } + i__1 = *m; + for (i__ = 1; i__ <= i__1; ++i__) { + i__2 = i__ + j * b_dim1; + i__3 = i__ + j * b_dim1; + q__1.r = temp.r * b[i__3].r - temp.i * b[i__3].i, + q__1.i = temp.r * b[i__3].i + temp.i * b[i__3] + .r; + b[i__2].r = q__1.r, b[i__2].i = q__1.i; +/* L170: */ + } + i__1 = j - 1; + for (k = 1; k <= i__1; ++k) { + i__2 = k + j * a_dim1; + if ((a[i__2].r != 0.f) || (a[i__2].i != 0.f)) { + i__2 = k + j * a_dim1; + q__1.r = alpha->r * a[i__2].r - alpha->i * a[i__2] + .i, q__1.i = alpha->r * a[i__2].i + + alpha->i * a[i__2].r; + temp.r = q__1.r, temp.i = q__1.i; + i__2 = *m; + for (i__ = 1; i__ <= i__2; ++i__) { + i__3 = i__ + j * b_dim1; + i__4 = i__ + j * b_dim1; + i__5 = i__ + k * b_dim1; + q__2.r = temp.r * b[i__5].r - temp.i * b[i__5] + .i, q__2.i = temp.r * b[i__5].i + + temp.i * b[i__5].r; + q__1.r = b[i__4].r + q__2.r, q__1.i = b[i__4] + .i + q__2.i; + b[i__3].r = q__1.r, b[i__3].i = q__1.i; +/* L180: */ + } + } +/* L190: */ + } +/* L200: */ + } + } else { + i__1 = *n; + for (j = 1; j <= i__1; ++j) { + temp.r = alpha->r, temp.i = alpha->i; + if (nounit) { + i__2 = j + j * a_dim1; + q__1.r = temp.r * a[i__2].r - temp.i * a[i__2].i, + q__1.i = temp.r * a[i__2].i + temp.i * a[i__2] + .r; + temp.r = q__1.r, temp.i = q__1.i; + } + i__2 = *m; + for (i__ = 1; i__ <= i__2; ++i__) { + i__3 = i__ + j * b_dim1; + i__4 = i__ + j * b_dim1; + q__1.r = temp.r * b[i__4].r - temp.i * b[i__4].i, + q__1.i = temp.r * b[i__4].i + temp.i * b[i__4] + .r; + b[i__3].r = q__1.r, b[i__3].i = q__1.i; +/* L210: */ + } + i__2 = *n; + for (k = j + 1; k <= i__2; ++k) { + i__3 = k + j * a_dim1; + if ((a[i__3].r != 0.f) || (a[i__3].i != 0.f)) { + i__3 = k + j * a_dim1; + q__1.r = alpha->r * a[i__3].r - alpha->i * a[i__3] + .i, q__1.i = alpha->r * a[i__3].i + + alpha->i * a[i__3].r; + temp.r = q__1.r, temp.i = q__1.i; + i__3 = *m; + for (i__ = 1; i__ <= i__3; ++i__) { + i__4 = i__ + j * b_dim1; + i__5 = i__ + j * b_dim1; + i__6 = i__ + k * b_dim1; + q__2.r = temp.r * b[i__6].r - temp.i * b[i__6] + .i, q__2.i = temp.r * b[i__6].i + + temp.i * b[i__6].r; + q__1.r = b[i__5].r + q__2.r, q__1.i = b[i__5] + .i + q__2.i; + b[i__4].r = q__1.r, b[i__4].i = q__1.i; +/* L220: */ + } + } +/* L230: */ + } +/* L240: */ + } + } + } else { + +/* Form B := alpha*B*A' or B := alpha*B*conjg( A' ). */ + + if (upper) { + i__1 = *n; + for (k = 1; k <= i__1; ++k) { + i__2 = k - 1; + for (j = 1; j <= i__2; ++j) { + i__3 = j + k * a_dim1; + if ((a[i__3].r != 0.f) || (a[i__3].i != 0.f)) { + if (noconj) { + i__3 = j + k * a_dim1; + q__1.r = alpha->r * a[i__3].r - alpha->i * a[ + i__3].i, q__1.i = alpha->r * a[i__3] + .i + alpha->i * a[i__3].r; + temp.r = q__1.r, temp.i = q__1.i; + } else { + r_cnjg(&q__2, &a[j + k * a_dim1]); + q__1.r = alpha->r * q__2.r - alpha->i * + q__2.i, q__1.i = alpha->r * q__2.i + + alpha->i * q__2.r; + temp.r = q__1.r, temp.i = q__1.i; + } + i__3 = *m; + for (i__ = 1; i__ <= i__3; ++i__) { + i__4 = i__ + j * b_dim1; + i__5 = i__ + j * b_dim1; + i__6 = i__ + k * b_dim1; + q__2.r = temp.r * b[i__6].r - temp.i * b[i__6] + .i, q__2.i = temp.r * b[i__6].i + + temp.i * b[i__6].r; + q__1.r = b[i__5].r + q__2.r, q__1.i = b[i__5] + .i + q__2.i; + b[i__4].r = q__1.r, b[i__4].i = q__1.i; +/* L250: */ + } + } +/* L260: */ + } + temp.r = alpha->r, temp.i = alpha->i; + if (nounit) { + if (noconj) { + i__2 = k + k * a_dim1; + q__1.r = temp.r * a[i__2].r - temp.i * a[i__2].i, + q__1.i = temp.r * a[i__2].i + temp.i * a[ + i__2].r; + temp.r = q__1.r, temp.i = q__1.i; + } else { + r_cnjg(&q__2, &a[k + k * a_dim1]); + q__1.r = temp.r * q__2.r - temp.i * q__2.i, + q__1.i = temp.r * q__2.i + temp.i * + q__2.r; + temp.r = q__1.r, temp.i = q__1.i; + } + } + if ((temp.r != 1.f) || (temp.i != 0.f)) { + i__2 = *m; + for (i__ = 1; i__ <= i__2; ++i__) { + i__3 = i__ + k * b_dim1; + i__4 = i__ + k * b_dim1; + q__1.r = temp.r * b[i__4].r - temp.i * b[i__4].i, + q__1.i = temp.r * b[i__4].i + temp.i * b[ + i__4].r; + b[i__3].r = q__1.r, b[i__3].i = q__1.i; +/* L270: */ + } + } +/* L280: */ + } + } else { + for (k = *n; k >= 1; --k) { + i__1 = *n; + for (j = k + 1; j <= i__1; ++j) { + i__2 = j + k * a_dim1; + if ((a[i__2].r != 0.f) || (a[i__2].i != 0.f)) { + if (noconj) { + i__2 = j + k * a_dim1; + q__1.r = alpha->r * a[i__2].r - alpha->i * a[ + i__2].i, q__1.i = alpha->r * a[i__2] + .i + alpha->i * a[i__2].r; + temp.r = q__1.r, temp.i = q__1.i; + } else { + r_cnjg(&q__2, &a[j + k * a_dim1]); + q__1.r = alpha->r * q__2.r - alpha->i * + q__2.i, q__1.i = alpha->r * q__2.i + + alpha->i * q__2.r; + temp.r = q__1.r, temp.i = q__1.i; + } + i__2 = *m; + for (i__ = 1; i__ <= i__2; ++i__) { + i__3 = i__ + j * b_dim1; + i__4 = i__ + j * b_dim1; + i__5 = i__ + k * b_dim1; + q__2.r = temp.r * b[i__5].r - temp.i * b[i__5] + .i, q__2.i = temp.r * b[i__5].i + + temp.i * b[i__5].r; + q__1.r = b[i__4].r + q__2.r, q__1.i = b[i__4] + .i + q__2.i; + b[i__3].r = q__1.r, b[i__3].i = q__1.i; +/* L290: */ + } + } +/* L300: */ + } + temp.r = alpha->r, temp.i = alpha->i; + if (nounit) { + if (noconj) { + i__1 = k + k * a_dim1; + q__1.r = temp.r * a[i__1].r - temp.i * a[i__1].i, + q__1.i = temp.r * a[i__1].i + temp.i * a[ + i__1].r; + temp.r = q__1.r, temp.i = q__1.i; + } else { + r_cnjg(&q__2, &a[k + k * a_dim1]); + q__1.r = temp.r * q__2.r - temp.i * q__2.i, + q__1.i = temp.r * q__2.i + temp.i * + q__2.r; + temp.r = q__1.r, temp.i = q__1.i; + } + } + if ((temp.r != 1.f) || (temp.i != 0.f)) { + i__1 = *m; + for (i__ = 1; i__ <= i__1; ++i__) { + i__2 = i__ + k * b_dim1; + i__3 = i__ + k * b_dim1; + q__1.r = temp.r * b[i__3].r - temp.i * b[i__3].i, + q__1.i = temp.r * b[i__3].i + temp.i * b[ + i__3].r; + b[i__2].r = q__1.r, b[i__2].i = q__1.i; +/* L310: */ + } + } +/* L320: */ + } + } + } + } + + return 0; + +/* End of CTRMM . */ + +} /* ctrmm_ */ + +/* Subroutine */ int ctrmv_(char *uplo, char *trans, char *diag, integer *n, + complex *a, integer *lda, complex *x, integer *incx) +{ + /* System generated locals */ + integer a_dim1, a_offset, i__1, i__2, i__3, i__4, i__5; + complex q__1, q__2, q__3; + + /* Builtin functions */ + void r_cnjg(complex *, complex *); + + /* Local variables */ + static integer i__, j, ix, jx, kx, info; + static complex temp; + extern logical lsame_(char *, char *); + extern /* Subroutine */ int xerbla_(char *, integer *); + static logical noconj, nounit; + + +/* + Purpose + ======= + + CTRMV performs one of the matrix-vector operations + + x := A*x, or x := A'*x, or x := conjg( A' )*x, + + where x is an n element vector and A is an n by n unit, or non-unit, + upper or lower triangular matrix. + + Parameters + ========== + + UPLO - CHARACTER*1. + On entry, UPLO specifies whether the matrix is an upper or + lower triangular matrix as follows: + + UPLO = 'U' or 'u' A is an upper triangular matrix. + + UPLO = 'L' or 'l' A is a lower triangular matrix. + + Unchanged on exit. + + TRANS - CHARACTER*1. + On entry, TRANS specifies the operation to be performed as + follows: + + TRANS = 'N' or 'n' x := A*x. + + TRANS = 'T' or 't' x := A'*x. + + TRANS = 'C' or 'c' x := conjg( A' )*x. + + Unchanged on exit. + + DIAG - CHARACTER*1. + On entry, DIAG specifies whether or not A is unit + triangular as follows: + + DIAG = 'U' or 'u' A is assumed to be unit triangular. + + DIAG = 'N' or 'n' A is not assumed to be unit + triangular. + + Unchanged on exit. + + N - INTEGER. + On entry, N specifies the order of the matrix A. + N must be at least zero. + Unchanged on exit. + + A - COMPLEX array of DIMENSION ( LDA, n ). + Before entry with UPLO = 'U' or 'u', the leading n by n + upper triangular part of the array A must contain the upper + triangular matrix and the strictly lower triangular part of + A is not referenced. + Before entry with UPLO = 'L' or 'l', the leading n by n + lower triangular part of the array A must contain the lower + triangular matrix and the strictly upper triangular part of + A is not referenced. + Note that when DIAG = 'U' or 'u', the diagonal elements of + A are not referenced either, but are assumed to be unity. + Unchanged on exit. + + LDA - INTEGER. + On entry, LDA specifies the first dimension of A as declared + in the calling (sub) program. LDA must be at least + max( 1, n ). + Unchanged on exit. + + X - COMPLEX array of dimension at least + ( 1 + ( n - 1 )*abs( INCX ) ). + Before entry, the incremented array X must contain the n + element vector x. On exit, X is overwritten with the + tranformed vector x. + + INCX - INTEGER. + On entry, INCX specifies the increment for the elements of + X. INCX must not be zero. + Unchanged on exit. + + + Level 2 Blas routine. + + -- Written on 22-October-1986. + Jack Dongarra, Argonne National Lab. + Jeremy Du Croz, Nag Central Office. + Sven Hammarling, Nag Central Office. + Richard Hanson, Sandia National Labs. + + + Test the input parameters. +*/ + + /* Parameter adjustments */ + a_dim1 = *lda; + a_offset = 1 + a_dim1; + a -= a_offset; + --x; + + /* Function Body */ + info = 0; + if (! lsame_(uplo, "U") && ! lsame_(uplo, "L")) { + info = 1; + } else if (! lsame_(trans, "N") && ! lsame_(trans, + "T") && ! lsame_(trans, "C")) { + info = 2; + } else if (! lsame_(diag, "U") && ! lsame_(diag, + "N")) { + info = 3; + } else if (*n < 0) { + info = 4; + } else if (*lda < max(1,*n)) { + info = 6; + } else if (*incx == 0) { + info = 8; + } + if (info != 0) { + xerbla_("CTRMV ", &info); + return 0; + } + +/* Quick return if possible. */ + + if (*n == 0) { + return 0; + } + + noconj = lsame_(trans, "T"); + nounit = lsame_(diag, "N"); + +/* + Set up the start point in X if the increment is not unity. This + will be ( N - 1 )*INCX too small for descending loops. +*/ + + if (*incx <= 0) { + kx = 1 - (*n - 1) * *incx; + } else if (*incx != 1) { + kx = 1; + } + +/* + Start the operations. In this version the elements of A are + accessed sequentially with one pass through A. +*/ + + if (lsame_(trans, "N")) { + +/* Form x := A*x. */ + + if (lsame_(uplo, "U")) { + if (*incx == 1) { + i__1 = *n; + for (j = 1; j <= i__1; ++j) { + i__2 = j; + if ((x[i__2].r != 0.f) || (x[i__2].i != 0.f)) { + i__2 = j; + temp.r = x[i__2].r, temp.i = x[i__2].i; + i__2 = j - 1; + for (i__ = 1; i__ <= i__2; ++i__) { + i__3 = i__; + i__4 = i__; + i__5 = i__ + j * a_dim1; + q__2.r = temp.r * a[i__5].r - temp.i * a[i__5].i, + q__2.i = temp.r * a[i__5].i + temp.i * a[ + i__5].r; + q__1.r = x[i__4].r + q__2.r, q__1.i = x[i__4].i + + q__2.i; + x[i__3].r = q__1.r, x[i__3].i = q__1.i; +/* L10: */ + } + if (nounit) { + i__2 = j; + i__3 = j; + i__4 = j + j * a_dim1; + q__1.r = x[i__3].r * a[i__4].r - x[i__3].i * a[ + i__4].i, q__1.i = x[i__3].r * a[i__4].i + + x[i__3].i * a[i__4].r; + x[i__2].r = q__1.r, x[i__2].i = q__1.i; + } + } +/* L20: */ + } + } else { + jx = kx; + i__1 = *n; + for (j = 1; j <= i__1; ++j) { + i__2 = jx; + if ((x[i__2].r != 0.f) || (x[i__2].i != 0.f)) { + i__2 = jx; + temp.r = x[i__2].r, temp.i = x[i__2].i; + ix = kx; + i__2 = j - 1; + for (i__ = 1; i__ <= i__2; ++i__) { + i__3 = ix; + i__4 = ix; + i__5 = i__ + j * a_dim1; + q__2.r = temp.r * a[i__5].r - temp.i * a[i__5].i, + q__2.i = temp.r * a[i__5].i + temp.i * a[ + i__5].r; + q__1.r = x[i__4].r + q__2.r, q__1.i = x[i__4].i + + q__2.i; + x[i__3].r = q__1.r, x[i__3].i = q__1.i; + ix += *incx; +/* L30: */ + } + if (nounit) { + i__2 = jx; + i__3 = jx; + i__4 = j + j * a_dim1; + q__1.r = x[i__3].r * a[i__4].r - x[i__3].i * a[ + i__4].i, q__1.i = x[i__3].r * a[i__4].i + + x[i__3].i * a[i__4].r; + x[i__2].r = q__1.r, x[i__2].i = q__1.i; + } + } + jx += *incx; +/* L40: */ + } + } + } else { + if (*incx == 1) { + for (j = *n; j >= 1; --j) { + i__1 = j; + if ((x[i__1].r != 0.f) || (x[i__1].i != 0.f)) { + i__1 = j; + temp.r = x[i__1].r, temp.i = x[i__1].i; + i__1 = j + 1; + for (i__ = *n; i__ >= i__1; --i__) { + i__2 = i__; + i__3 = i__; + i__4 = i__ + j * a_dim1; + q__2.r = temp.r * a[i__4].r - temp.i * a[i__4].i, + q__2.i = temp.r * a[i__4].i + temp.i * a[ + i__4].r; + q__1.r = x[i__3].r + q__2.r, q__1.i = x[i__3].i + + q__2.i; + x[i__2].r = q__1.r, x[i__2].i = q__1.i; +/* L50: */ + } + if (nounit) { + i__1 = j; + i__2 = j; + i__3 = j + j * a_dim1; + q__1.r = x[i__2].r * a[i__3].r - x[i__2].i * a[ + i__3].i, q__1.i = x[i__2].r * a[i__3].i + + x[i__2].i * a[i__3].r; + x[i__1].r = q__1.r, x[i__1].i = q__1.i; + } + } +/* L60: */ + } + } else { + kx += (*n - 1) * *incx; + jx = kx; + for (j = *n; j >= 1; --j) { + i__1 = jx; + if ((x[i__1].r != 0.f) || (x[i__1].i != 0.f)) { + i__1 = jx; + temp.r = x[i__1].r, temp.i = x[i__1].i; + ix = kx; + i__1 = j + 1; + for (i__ = *n; i__ >= i__1; --i__) { + i__2 = ix; + i__3 = ix; + i__4 = i__ + j * a_dim1; + q__2.r = temp.r * a[i__4].r - temp.i * a[i__4].i, + q__2.i = temp.r * a[i__4].i + temp.i * a[ + i__4].r; + q__1.r = x[i__3].r + q__2.r, q__1.i = x[i__3].i + + q__2.i; + x[i__2].r = q__1.r, x[i__2].i = q__1.i; + ix -= *incx; +/* L70: */ + } + if (nounit) { + i__1 = jx; + i__2 = jx; + i__3 = j + j * a_dim1; + q__1.r = x[i__2].r * a[i__3].r - x[i__2].i * a[ + i__3].i, q__1.i = x[i__2].r * a[i__3].i + + x[i__2].i * a[i__3].r; + x[i__1].r = q__1.r, x[i__1].i = q__1.i; + } + } + jx -= *incx; +/* L80: */ + } + } + } + } else { + +/* Form x := A'*x or x := conjg( A' )*x. */ + + if (lsame_(uplo, "U")) { + if (*incx == 1) { + for (j = *n; j >= 1; --j) { + i__1 = j; + temp.r = x[i__1].r, temp.i = x[i__1].i; + if (noconj) { + if (nounit) { + i__1 = j + j * a_dim1; + q__1.r = temp.r * a[i__1].r - temp.i * a[i__1].i, + q__1.i = temp.r * a[i__1].i + temp.i * a[ + i__1].r; + temp.r = q__1.r, temp.i = q__1.i; + } + for (i__ = j - 1; i__ >= 1; --i__) { + i__1 = i__ + j * a_dim1; + i__2 = i__; + q__2.r = a[i__1].r * x[i__2].r - a[i__1].i * x[ + i__2].i, q__2.i = a[i__1].r * x[i__2].i + + a[i__1].i * x[i__2].r; + q__1.r = temp.r + q__2.r, q__1.i = temp.i + + q__2.i; + temp.r = q__1.r, temp.i = q__1.i; +/* L90: */ + } + } else { + if (nounit) { + r_cnjg(&q__2, &a[j + j * a_dim1]); + q__1.r = temp.r * q__2.r - temp.i * q__2.i, + q__1.i = temp.r * q__2.i + temp.i * + q__2.r; + temp.r = q__1.r, temp.i = q__1.i; + } + for (i__ = j - 1; i__ >= 1; --i__) { + r_cnjg(&q__3, &a[i__ + j * a_dim1]); + i__1 = i__; + q__2.r = q__3.r * x[i__1].r - q__3.i * x[i__1].i, + q__2.i = q__3.r * x[i__1].i + q__3.i * x[ + i__1].r; + q__1.r = temp.r + q__2.r, q__1.i = temp.i + + q__2.i; + temp.r = q__1.r, temp.i = q__1.i; +/* L100: */ + } + } + i__1 = j; + x[i__1].r = temp.r, x[i__1].i = temp.i; +/* L110: */ + } + } else { + jx = kx + (*n - 1) * *incx; + for (j = *n; j >= 1; --j) { + i__1 = jx; + temp.r = x[i__1].r, temp.i = x[i__1].i; + ix = jx; + if (noconj) { + if (nounit) { + i__1 = j + j * a_dim1; + q__1.r = temp.r * a[i__1].r - temp.i * a[i__1].i, + q__1.i = temp.r * a[i__1].i + temp.i * a[ + i__1].r; + temp.r = q__1.r, temp.i = q__1.i; + } + for (i__ = j - 1; i__ >= 1; --i__) { + ix -= *incx; + i__1 = i__ + j * a_dim1; + i__2 = ix; + q__2.r = a[i__1].r * x[i__2].r - a[i__1].i * x[ + i__2].i, q__2.i = a[i__1].r * x[i__2].i + + a[i__1].i * x[i__2].r; + q__1.r = temp.r + q__2.r, q__1.i = temp.i + + q__2.i; + temp.r = q__1.r, temp.i = q__1.i; +/* L120: */ + } + } else { + if (nounit) { + r_cnjg(&q__2, &a[j + j * a_dim1]); + q__1.r = temp.r * q__2.r - temp.i * q__2.i, + q__1.i = temp.r * q__2.i + temp.i * + q__2.r; + temp.r = q__1.r, temp.i = q__1.i; + } + for (i__ = j - 1; i__ >= 1; --i__) { + ix -= *incx; + r_cnjg(&q__3, &a[i__ + j * a_dim1]); + i__1 = ix; + q__2.r = q__3.r * x[i__1].r - q__3.i * x[i__1].i, + q__2.i = q__3.r * x[i__1].i + q__3.i * x[ + i__1].r; + q__1.r = temp.r + q__2.r, q__1.i = temp.i + + q__2.i; + temp.r = q__1.r, temp.i = q__1.i; +/* L130: */ + } + } + i__1 = jx; + x[i__1].r = temp.r, x[i__1].i = temp.i; + jx -= *incx; +/* L140: */ + } + } + } else { + if (*incx == 1) { + i__1 = *n; + for (j = 1; j <= i__1; ++j) { + i__2 = j; + temp.r = x[i__2].r, temp.i = x[i__2].i; + if (noconj) { + if (nounit) { + i__2 = j + j * a_dim1; + q__1.r = temp.r * a[i__2].r - temp.i * a[i__2].i, + q__1.i = temp.r * a[i__2].i + temp.i * a[ + i__2].r; + temp.r = q__1.r, temp.i = q__1.i; + } + i__2 = *n; + for (i__ = j + 1; i__ <= i__2; ++i__) { + i__3 = i__ + j * a_dim1; + i__4 = i__; + q__2.r = a[i__3].r * x[i__4].r - a[i__3].i * x[ + i__4].i, q__2.i = a[i__3].r * x[i__4].i + + a[i__3].i * x[i__4].r; + q__1.r = temp.r + q__2.r, q__1.i = temp.i + + q__2.i; + temp.r = q__1.r, temp.i = q__1.i; +/* L150: */ + } + } else { + if (nounit) { + r_cnjg(&q__2, &a[j + j * a_dim1]); + q__1.r = temp.r * q__2.r - temp.i * q__2.i, + q__1.i = temp.r * q__2.i + temp.i * + q__2.r; + temp.r = q__1.r, temp.i = q__1.i; + } + i__2 = *n; + for (i__ = j + 1; i__ <= i__2; ++i__) { + r_cnjg(&q__3, &a[i__ + j * a_dim1]); + i__3 = i__; + q__2.r = q__3.r * x[i__3].r - q__3.i * x[i__3].i, + q__2.i = q__3.r * x[i__3].i + q__3.i * x[ + i__3].r; + q__1.r = temp.r + q__2.r, q__1.i = temp.i + + q__2.i; + temp.r = q__1.r, temp.i = q__1.i; +/* L160: */ + } + } + i__2 = j; + x[i__2].r = temp.r, x[i__2].i = temp.i; +/* L170: */ + } + } else { + jx = kx; + i__1 = *n; + for (j = 1; j <= i__1; ++j) { + i__2 = jx; + temp.r = x[i__2].r, temp.i = x[i__2].i; + ix = jx; + if (noconj) { + if (nounit) { + i__2 = j + j * a_dim1; + q__1.r = temp.r * a[i__2].r - temp.i * a[i__2].i, + q__1.i = temp.r * a[i__2].i + temp.i * a[ + i__2].r; + temp.r = q__1.r, temp.i = q__1.i; + } + i__2 = *n; + for (i__ = j + 1; i__ <= i__2; ++i__) { + ix += *incx; + i__3 = i__ + j * a_dim1; + i__4 = ix; + q__2.r = a[i__3].r * x[i__4].r - a[i__3].i * x[ + i__4].i, q__2.i = a[i__3].r * x[i__4].i + + a[i__3].i * x[i__4].r; + q__1.r = temp.r + q__2.r, q__1.i = temp.i + + q__2.i; + temp.r = q__1.r, temp.i = q__1.i; +/* L180: */ + } + } else { + if (nounit) { + r_cnjg(&q__2, &a[j + j * a_dim1]); + q__1.r = temp.r * q__2.r - temp.i * q__2.i, + q__1.i = temp.r * q__2.i + temp.i * + q__2.r; + temp.r = q__1.r, temp.i = q__1.i; + } + i__2 = *n; + for (i__ = j + 1; i__ <= i__2; ++i__) { + ix += *incx; + r_cnjg(&q__3, &a[i__ + j * a_dim1]); + i__3 = ix; + q__2.r = q__3.r * x[i__3].r - q__3.i * x[i__3].i, + q__2.i = q__3.r * x[i__3].i + q__3.i * x[ + i__3].r; + q__1.r = temp.r + q__2.r, q__1.i = temp.i + + q__2.i; + temp.r = q__1.r, temp.i = q__1.i; +/* L190: */ + } + } + i__2 = jx; + x[i__2].r = temp.r, x[i__2].i = temp.i; + jx += *incx; +/* L200: */ + } + } + } + } + + return 0; + +/* End of CTRMV . */ + +} /* ctrmv_ */ + +/* Subroutine */ int ctrsm_(char *side, char *uplo, char *transa, char *diag, + integer *m, integer *n, complex *alpha, complex *a, integer *lda, + complex *b, integer *ldb) +{ + /* System generated locals */ + integer a_dim1, a_offset, b_dim1, b_offset, i__1, i__2, i__3, i__4, i__5, + i__6, i__7; + complex q__1, q__2, q__3; + + /* Builtin functions */ + void c_div(complex *, complex *, complex *), r_cnjg(complex *, complex *); + + /* Local variables */ + static integer i__, j, k, info; + static complex temp; + extern logical lsame_(char *, char *); + static logical lside; + static integer nrowa; + static logical upper; + extern /* Subroutine */ int xerbla_(char *, integer *); + static logical noconj, nounit; + + +/* + Purpose + ======= + + CTRSM solves one of the matrix equations + + op( A )*X = alpha*B, or X*op( A ) = alpha*B, + + where alpha is a scalar, X and B are m by n matrices, A is a unit, or + non-unit, upper or lower triangular matrix and op( A ) is one of + + op( A ) = A or op( A ) = A' or op( A ) = conjg( A' ). + + The matrix X is overwritten on B. + + Parameters + ========== + + SIDE - CHARACTER*1. + On entry, SIDE specifies whether op( A ) appears on the left + or right of X as follows: + + SIDE = 'L' or 'l' op( A )*X = alpha*B. + + SIDE = 'R' or 'r' X*op( A ) = alpha*B. + + Unchanged on exit. + + UPLO - CHARACTER*1. + On entry, UPLO specifies whether the matrix A is an upper or + lower triangular matrix as follows: + + UPLO = 'U' or 'u' A is an upper triangular matrix. + + UPLO = 'L' or 'l' A is a lower triangular matrix. + + Unchanged on exit. + + TRANSA - CHARACTER*1. + On entry, TRANSA specifies the form of op( A ) to be used in + the matrix multiplication as follows: + + TRANSA = 'N' or 'n' op( A ) = A. + + TRANSA = 'T' or 't' op( A ) = A'. + + TRANSA = 'C' or 'c' op( A ) = conjg( A' ). + + Unchanged on exit. + + DIAG - CHARACTER*1. + On entry, DIAG specifies whether or not A is unit triangular + as follows: + + DIAG = 'U' or 'u' A is assumed to be unit triangular. + + DIAG = 'N' or 'n' A is not assumed to be unit + triangular. + + Unchanged on exit. + + M - INTEGER. + On entry, M specifies the number of rows of B. M must be at + least zero. + Unchanged on exit. + + N - INTEGER. + On entry, N specifies the number of columns of B. N must be + at least zero. + Unchanged on exit. + + ALPHA - COMPLEX . + On entry, ALPHA specifies the scalar alpha. When alpha is + zero then A is not referenced and B need not be set before + entry. + Unchanged on exit. + + A - COMPLEX array of DIMENSION ( LDA, k ), where k is m + when SIDE = 'L' or 'l' and is n when SIDE = 'R' or 'r'. + Before entry with UPLO = 'U' or 'u', the leading k by k + upper triangular part of the array A must contain the upper + triangular matrix and the strictly lower triangular part of + A is not referenced. + Before entry with UPLO = 'L' or 'l', the leading k by k + lower triangular part of the array A must contain the lower + triangular matrix and the strictly upper triangular part of + A is not referenced. + Note that when DIAG = 'U' or 'u', the diagonal elements of + A are not referenced either, but are assumed to be unity. + Unchanged on exit. + + LDA - INTEGER. + On entry, LDA specifies the first dimension of A as declared + in the calling (sub) program. When SIDE = 'L' or 'l' then + LDA must be at least max( 1, m ), when SIDE = 'R' or 'r' + then LDA must be at least max( 1, n ). + Unchanged on exit. + + B - COMPLEX array of DIMENSION ( LDB, n ). + Before entry, the leading m by n part of the array B must + contain the right-hand side matrix B, and on exit is + overwritten by the solution matrix X. + + LDB - INTEGER. + On entry, LDB specifies the first dimension of B as declared + in the calling (sub) program. LDB must be at least + max( 1, m ). + Unchanged on exit. + + + Level 3 Blas routine. + + -- Written on 8-February-1989. + Jack Dongarra, Argonne National Laboratory. + Iain Duff, AERE Harwell. + Jeremy Du Croz, Numerical Algorithms Group Ltd. + Sven Hammarling, Numerical Algorithms Group Ltd. + + + Test the input parameters. +*/ + + /* Parameter adjustments */ + a_dim1 = *lda; + a_offset = 1 + a_dim1; + a -= a_offset; + b_dim1 = *ldb; + b_offset = 1 + b_dim1; + b -= b_offset; + + /* Function Body */ + lside = lsame_(side, "L"); + if (lside) { + nrowa = *m; + } else { + nrowa = *n; + } + noconj = lsame_(transa, "T"); + nounit = lsame_(diag, "N"); + upper = lsame_(uplo, "U"); + + info = 0; + if (! lside && ! lsame_(side, "R")) { + info = 1; + } else if (! upper && ! lsame_(uplo, "L")) { + info = 2; + } else if (! lsame_(transa, "N") && ! lsame_(transa, + "T") && ! lsame_(transa, "C")) { + info = 3; + } else if (! lsame_(diag, "U") && ! lsame_(diag, + "N")) { + info = 4; + } else if (*m < 0) { + info = 5; + } else if (*n < 0) { + info = 6; + } else if (*lda < max(1,nrowa)) { + info = 9; + } else if (*ldb < max(1,*m)) { + info = 11; + } + if (info != 0) { + xerbla_("CTRSM ", &info); + return 0; + } + +/* Quick return if possible. */ + + if (*n == 0) { + return 0; + } + +/* And when alpha.eq.zero. */ + + if (alpha->r == 0.f && alpha->i == 0.f) { + i__1 = *n; + for (j = 1; j <= i__1; ++j) { + i__2 = *m; + for (i__ = 1; i__ <= i__2; ++i__) { + i__3 = i__ + j * b_dim1; + b[i__3].r = 0.f, b[i__3].i = 0.f; +/* L10: */ + } +/* L20: */ + } + return 0; + } + +/* Start the operations. */ + + if (lside) { + if (lsame_(transa, "N")) { + +/* Form B := alpha*inv( A )*B. */ + + if (upper) { + i__1 = *n; + for (j = 1; j <= i__1; ++j) { + if ((alpha->r != 1.f) || (alpha->i != 0.f)) { + i__2 = *m; + for (i__ = 1; i__ <= i__2; ++i__) { + i__3 = i__ + j * b_dim1; + i__4 = i__ + j * b_dim1; + q__1.r = alpha->r * b[i__4].r - alpha->i * b[i__4] + .i, q__1.i = alpha->r * b[i__4].i + + alpha->i * b[i__4].r; + b[i__3].r = q__1.r, b[i__3].i = q__1.i; +/* L30: */ + } + } + for (k = *m; k >= 1; --k) { + i__2 = k + j * b_dim1; + if ((b[i__2].r != 0.f) || (b[i__2].i != 0.f)) { + if (nounit) { + i__2 = k + j * b_dim1; + c_div(&q__1, &b[k + j * b_dim1], &a[k + k * + a_dim1]); + b[i__2].r = q__1.r, b[i__2].i = q__1.i; + } + i__2 = k - 1; + for (i__ = 1; i__ <= i__2; ++i__) { + i__3 = i__ + j * b_dim1; + i__4 = i__ + j * b_dim1; + i__5 = k + j * b_dim1; + i__6 = i__ + k * a_dim1; + q__2.r = b[i__5].r * a[i__6].r - b[i__5].i * + a[i__6].i, q__2.i = b[i__5].r * a[ + i__6].i + b[i__5].i * a[i__6].r; + q__1.r = b[i__4].r - q__2.r, q__1.i = b[i__4] + .i - q__2.i; + b[i__3].r = q__1.r, b[i__3].i = q__1.i; +/* L40: */ + } + } +/* L50: */ + } +/* L60: */ + } + } else { + i__1 = *n; + for (j = 1; j <= i__1; ++j) { + if ((alpha->r != 1.f) || (alpha->i != 0.f)) { + i__2 = *m; + for (i__ = 1; i__ <= i__2; ++i__) { + i__3 = i__ + j * b_dim1; + i__4 = i__ + j * b_dim1; + q__1.r = alpha->r * b[i__4].r - alpha->i * b[i__4] + .i, q__1.i = alpha->r * b[i__4].i + + alpha->i * b[i__4].r; + b[i__3].r = q__1.r, b[i__3].i = q__1.i; +/* L70: */ + } + } + i__2 = *m; + for (k = 1; k <= i__2; ++k) { + i__3 = k + j * b_dim1; + if ((b[i__3].r != 0.f) || (b[i__3].i != 0.f)) { + if (nounit) { + i__3 = k + j * b_dim1; + c_div(&q__1, &b[k + j * b_dim1], &a[k + k * + a_dim1]); + b[i__3].r = q__1.r, b[i__3].i = q__1.i; + } + i__3 = *m; + for (i__ = k + 1; i__ <= i__3; ++i__) { + i__4 = i__ + j * b_dim1; + i__5 = i__ + j * b_dim1; + i__6 = k + j * b_dim1; + i__7 = i__ + k * a_dim1; + q__2.r = b[i__6].r * a[i__7].r - b[i__6].i * + a[i__7].i, q__2.i = b[i__6].r * a[ + i__7].i + b[i__6].i * a[i__7].r; + q__1.r = b[i__5].r - q__2.r, q__1.i = b[i__5] + .i - q__2.i; + b[i__4].r = q__1.r, b[i__4].i = q__1.i; +/* L80: */ + } + } +/* L90: */ + } +/* L100: */ + } + } + } else { + +/* + Form B := alpha*inv( A' )*B + or B := alpha*inv( conjg( A' ) )*B. +*/ + + if (upper) { + i__1 = *n; + for (j = 1; j <= i__1; ++j) { + i__2 = *m; + for (i__ = 1; i__ <= i__2; ++i__) { + i__3 = i__ + j * b_dim1; + q__1.r = alpha->r * b[i__3].r - alpha->i * b[i__3].i, + q__1.i = alpha->r * b[i__3].i + alpha->i * b[ + i__3].r; + temp.r = q__1.r, temp.i = q__1.i; + if (noconj) { + i__3 = i__ - 1; + for (k = 1; k <= i__3; ++k) { + i__4 = k + i__ * a_dim1; + i__5 = k + j * b_dim1; + q__2.r = a[i__4].r * b[i__5].r - a[i__4].i * + b[i__5].i, q__2.i = a[i__4].r * b[ + i__5].i + a[i__4].i * b[i__5].r; + q__1.r = temp.r - q__2.r, q__1.i = temp.i - + q__2.i; + temp.r = q__1.r, temp.i = q__1.i; +/* L110: */ + } + if (nounit) { + c_div(&q__1, &temp, &a[i__ + i__ * a_dim1]); + temp.r = q__1.r, temp.i = q__1.i; + } + } else { + i__3 = i__ - 1; + for (k = 1; k <= i__3; ++k) { + r_cnjg(&q__3, &a[k + i__ * a_dim1]); + i__4 = k + j * b_dim1; + q__2.r = q__3.r * b[i__4].r - q__3.i * b[i__4] + .i, q__2.i = q__3.r * b[i__4].i + + q__3.i * b[i__4].r; + q__1.r = temp.r - q__2.r, q__1.i = temp.i - + q__2.i; + temp.r = q__1.r, temp.i = q__1.i; +/* L120: */ + } + if (nounit) { + r_cnjg(&q__2, &a[i__ + i__ * a_dim1]); + c_div(&q__1, &temp, &q__2); + temp.r = q__1.r, temp.i = q__1.i; + } + } + i__3 = i__ + j * b_dim1; + b[i__3].r = temp.r, b[i__3].i = temp.i; +/* L130: */ + } +/* L140: */ + } + } else { + i__1 = *n; + for (j = 1; j <= i__1; ++j) { + for (i__ = *m; i__ >= 1; --i__) { + i__2 = i__ + j * b_dim1; + q__1.r = alpha->r * b[i__2].r - alpha->i * b[i__2].i, + q__1.i = alpha->r * b[i__2].i + alpha->i * b[ + i__2].r; + temp.r = q__1.r, temp.i = q__1.i; + if (noconj) { + i__2 = *m; + for (k = i__ + 1; k <= i__2; ++k) { + i__3 = k + i__ * a_dim1; + i__4 = k + j * b_dim1; + q__2.r = a[i__3].r * b[i__4].r - a[i__3].i * + b[i__4].i, q__2.i = a[i__3].r * b[ + i__4].i + a[i__3].i * b[i__4].r; + q__1.r = temp.r - q__2.r, q__1.i = temp.i - + q__2.i; + temp.r = q__1.r, temp.i = q__1.i; +/* L150: */ + } + if (nounit) { + c_div(&q__1, &temp, &a[i__ + i__ * a_dim1]); + temp.r = q__1.r, temp.i = q__1.i; + } + } else { + i__2 = *m; + for (k = i__ + 1; k <= i__2; ++k) { + r_cnjg(&q__3, &a[k + i__ * a_dim1]); + i__3 = k + j * b_dim1; + q__2.r = q__3.r * b[i__3].r - q__3.i * b[i__3] + .i, q__2.i = q__3.r * b[i__3].i + + q__3.i * b[i__3].r; + q__1.r = temp.r - q__2.r, q__1.i = temp.i - + q__2.i; + temp.r = q__1.r, temp.i = q__1.i; +/* L160: */ + } + if (nounit) { + r_cnjg(&q__2, &a[i__ + i__ * a_dim1]); + c_div(&q__1, &temp, &q__2); + temp.r = q__1.r, temp.i = q__1.i; + } + } + i__2 = i__ + j * b_dim1; + b[i__2].r = temp.r, b[i__2].i = temp.i; +/* L170: */ + } +/* L180: */ + } + } + } + } else { + if (lsame_(transa, "N")) { + +/* Form B := alpha*B*inv( A ). */ + + if (upper) { + i__1 = *n; + for (j = 1; j <= i__1; ++j) { + if ((alpha->r != 1.f) || (alpha->i != 0.f)) { + i__2 = *m; + for (i__ = 1; i__ <= i__2; ++i__) { + i__3 = i__ + j * b_dim1; + i__4 = i__ + j * b_dim1; + q__1.r = alpha->r * b[i__4].r - alpha->i * b[i__4] + .i, q__1.i = alpha->r * b[i__4].i + + alpha->i * b[i__4].r; + b[i__3].r = q__1.r, b[i__3].i = q__1.i; +/* L190: */ + } + } + i__2 = j - 1; + for (k = 1; k <= i__2; ++k) { + i__3 = k + j * a_dim1; + if ((a[i__3].r != 0.f) || (a[i__3].i != 0.f)) { + i__3 = *m; + for (i__ = 1; i__ <= i__3; ++i__) { + i__4 = i__ + j * b_dim1; + i__5 = i__ + j * b_dim1; + i__6 = k + j * a_dim1; + i__7 = i__ + k * b_dim1; + q__2.r = a[i__6].r * b[i__7].r - a[i__6].i * + b[i__7].i, q__2.i = a[i__6].r * b[ + i__7].i + a[i__6].i * b[i__7].r; + q__1.r = b[i__5].r - q__2.r, q__1.i = b[i__5] + .i - q__2.i; + b[i__4].r = q__1.r, b[i__4].i = q__1.i; +/* L200: */ + } + } +/* L210: */ + } + if (nounit) { + c_div(&q__1, &c_b21, &a[j + j * a_dim1]); + temp.r = q__1.r, temp.i = q__1.i; + i__2 = *m; + for (i__ = 1; i__ <= i__2; ++i__) { + i__3 = i__ + j * b_dim1; + i__4 = i__ + j * b_dim1; + q__1.r = temp.r * b[i__4].r - temp.i * b[i__4].i, + q__1.i = temp.r * b[i__4].i + temp.i * b[ + i__4].r; + b[i__3].r = q__1.r, b[i__3].i = q__1.i; +/* L220: */ + } + } +/* L230: */ + } + } else { + for (j = *n; j >= 1; --j) { + if ((alpha->r != 1.f) || (alpha->i != 0.f)) { + i__1 = *m; + for (i__ = 1; i__ <= i__1; ++i__) { + i__2 = i__ + j * b_dim1; + i__3 = i__ + j * b_dim1; + q__1.r = alpha->r * b[i__3].r - alpha->i * b[i__3] + .i, q__1.i = alpha->r * b[i__3].i + + alpha->i * b[i__3].r; + b[i__2].r = q__1.r, b[i__2].i = q__1.i; +/* L240: */ + } + } + i__1 = *n; + for (k = j + 1; k <= i__1; ++k) { + i__2 = k + j * a_dim1; + if ((a[i__2].r != 0.f) || (a[i__2].i != 0.f)) { + i__2 = *m; + for (i__ = 1; i__ <= i__2; ++i__) { + i__3 = i__ + j * b_dim1; + i__4 = i__ + j * b_dim1; + i__5 = k + j * a_dim1; + i__6 = i__ + k * b_dim1; + q__2.r = a[i__5].r * b[i__6].r - a[i__5].i * + b[i__6].i, q__2.i = a[i__5].r * b[ + i__6].i + a[i__5].i * b[i__6].r; + q__1.r = b[i__4].r - q__2.r, q__1.i = b[i__4] + .i - q__2.i; + b[i__3].r = q__1.r, b[i__3].i = q__1.i; +/* L250: */ + } + } +/* L260: */ + } + if (nounit) { + c_div(&q__1, &c_b21, &a[j + j * a_dim1]); + temp.r = q__1.r, temp.i = q__1.i; + i__1 = *m; + for (i__ = 1; i__ <= i__1; ++i__) { + i__2 = i__ + j * b_dim1; + i__3 = i__ + j * b_dim1; + q__1.r = temp.r * b[i__3].r - temp.i * b[i__3].i, + q__1.i = temp.r * b[i__3].i + temp.i * b[ + i__3].r; + b[i__2].r = q__1.r, b[i__2].i = q__1.i; +/* L270: */ + } + } +/* L280: */ + } + } + } else { + +/* + Form B := alpha*B*inv( A' ) + or B := alpha*B*inv( conjg( A' ) ). +*/ + + if (upper) { + for (k = *n; k >= 1; --k) { + if (nounit) { + if (noconj) { + c_div(&q__1, &c_b21, &a[k + k * a_dim1]); + temp.r = q__1.r, temp.i = q__1.i; + } else { + r_cnjg(&q__2, &a[k + k * a_dim1]); + c_div(&q__1, &c_b21, &q__2); + temp.r = q__1.r, temp.i = q__1.i; + } + i__1 = *m; + for (i__ = 1; i__ <= i__1; ++i__) { + i__2 = i__ + k * b_dim1; + i__3 = i__ + k * b_dim1; + q__1.r = temp.r * b[i__3].r - temp.i * b[i__3].i, + q__1.i = temp.r * b[i__3].i + temp.i * b[ + i__3].r; + b[i__2].r = q__1.r, b[i__2].i = q__1.i; +/* L290: */ + } + } + i__1 = k - 1; + for (j = 1; j <= i__1; ++j) { + i__2 = j + k * a_dim1; + if ((a[i__2].r != 0.f) || (a[i__2].i != 0.f)) { + if (noconj) { + i__2 = j + k * a_dim1; + temp.r = a[i__2].r, temp.i = a[i__2].i; + } else { + r_cnjg(&q__1, &a[j + k * a_dim1]); + temp.r = q__1.r, temp.i = q__1.i; + } + i__2 = *m; + for (i__ = 1; i__ <= i__2; ++i__) { + i__3 = i__ + j * b_dim1; + i__4 = i__ + j * b_dim1; + i__5 = i__ + k * b_dim1; + q__2.r = temp.r * b[i__5].r - temp.i * b[i__5] + .i, q__2.i = temp.r * b[i__5].i + + temp.i * b[i__5].r; + q__1.r = b[i__4].r - q__2.r, q__1.i = b[i__4] + .i - q__2.i; + b[i__3].r = q__1.r, b[i__3].i = q__1.i; +/* L300: */ + } + } +/* L310: */ + } + if ((alpha->r != 1.f) || (alpha->i != 0.f)) { + i__1 = *m; + for (i__ = 1; i__ <= i__1; ++i__) { + i__2 = i__ + k * b_dim1; + i__3 = i__ + k * b_dim1; + q__1.r = alpha->r * b[i__3].r - alpha->i * b[i__3] + .i, q__1.i = alpha->r * b[i__3].i + + alpha->i * b[i__3].r; + b[i__2].r = q__1.r, b[i__2].i = q__1.i; +/* L320: */ + } + } +/* L330: */ + } + } else { + i__1 = *n; + for (k = 1; k <= i__1; ++k) { + if (nounit) { + if (noconj) { + c_div(&q__1, &c_b21, &a[k + k * a_dim1]); + temp.r = q__1.r, temp.i = q__1.i; + } else { + r_cnjg(&q__2, &a[k + k * a_dim1]); + c_div(&q__1, &c_b21, &q__2); + temp.r = q__1.r, temp.i = q__1.i; + } + i__2 = *m; + for (i__ = 1; i__ <= i__2; ++i__) { + i__3 = i__ + k * b_dim1; + i__4 = i__ + k * b_dim1; + q__1.r = temp.r * b[i__4].r - temp.i * b[i__4].i, + q__1.i = temp.r * b[i__4].i + temp.i * b[ + i__4].r; + b[i__3].r = q__1.r, b[i__3].i = q__1.i; +/* L340: */ + } + } + i__2 = *n; + for (j = k + 1; j <= i__2; ++j) { + i__3 = j + k * a_dim1; + if ((a[i__3].r != 0.f) || (a[i__3].i != 0.f)) { + if (noconj) { + i__3 = j + k * a_dim1; + temp.r = a[i__3].r, temp.i = a[i__3].i; + } else { + r_cnjg(&q__1, &a[j + k * a_dim1]); + temp.r = q__1.r, temp.i = q__1.i; + } + i__3 = *m; + for (i__ = 1; i__ <= i__3; ++i__) { + i__4 = i__ + j * b_dim1; + i__5 = i__ + j * b_dim1; + i__6 = i__ + k * b_dim1; + q__2.r = temp.r * b[i__6].r - temp.i * b[i__6] + .i, q__2.i = temp.r * b[i__6].i + + temp.i * b[i__6].r; + q__1.r = b[i__5].r - q__2.r, q__1.i = b[i__5] + .i - q__2.i; + b[i__4].r = q__1.r, b[i__4].i = q__1.i; +/* L350: */ + } + } +/* L360: */ + } + if ((alpha->r != 1.f) || (alpha->i != 0.f)) { + i__2 = *m; + for (i__ = 1; i__ <= i__2; ++i__) { + i__3 = i__ + k * b_dim1; + i__4 = i__ + k * b_dim1; + q__1.r = alpha->r * b[i__4].r - alpha->i * b[i__4] + .i, q__1.i = alpha->r * b[i__4].i + + alpha->i * b[i__4].r; + b[i__3].r = q__1.r, b[i__3].i = q__1.i; +/* L370: */ + } + } +/* L380: */ + } + } + } + } + + return 0; + +/* End of CTRSM . */ + +} /* ctrsm_ */ + +/* Subroutine */ int ctrsv_(char *uplo, char *trans, char *diag, integer *n, + complex *a, integer *lda, complex *x, integer *incx) +{ + /* System generated locals */ + integer a_dim1, a_offset, i__1, i__2, i__3, i__4, i__5; + complex q__1, q__2, q__3; + + /* Builtin functions */ + void c_div(complex *, complex *, complex *), r_cnjg(complex *, complex *); + + /* Local variables */ + static integer i__, j, ix, jx, kx, info; + static complex temp; + extern logical lsame_(char *, char *); + extern /* Subroutine */ int xerbla_(char *, integer *); + static logical noconj, nounit; + + +/* + Purpose + ======= + + CTRSV solves one of the systems of equations + + A*x = b, or A'*x = b, or conjg( A' )*x = b, + + where b and x are n element vectors and A is an n by n unit, or + non-unit, upper or lower triangular matrix. + + No test for singularity or near-singularity is included in this + routine. Such tests must be performed before calling this routine. + + Parameters + ========== + + UPLO - CHARACTER*1. + On entry, UPLO specifies whether the matrix is an upper or + lower triangular matrix as follows: + + UPLO = 'U' or 'u' A is an upper triangular matrix. + + UPLO = 'L' or 'l' A is a lower triangular matrix. + + Unchanged on exit. + + TRANS - CHARACTER*1. + On entry, TRANS specifies the equations to be solved as + follows: + + TRANS = 'N' or 'n' A*x = b. + + TRANS = 'T' or 't' A'*x = b. + + TRANS = 'C' or 'c' conjg( A' )*x = b. + + Unchanged on exit. + + DIAG - CHARACTER*1. + On entry, DIAG specifies whether or not A is unit + triangular as follows: + + DIAG = 'U' or 'u' A is assumed to be unit triangular. + + DIAG = 'N' or 'n' A is not assumed to be unit + triangular. + + Unchanged on exit. + + N - INTEGER. + On entry, N specifies the order of the matrix A. + N must be at least zero. + Unchanged on exit. + + A - COMPLEX array of DIMENSION ( LDA, n ). + Before entry with UPLO = 'U' or 'u', the leading n by n + upper triangular part of the array A must contain the upper + triangular matrix and the strictly lower triangular part of + A is not referenced. + Before entry with UPLO = 'L' or 'l', the leading n by n + lower triangular part of the array A must contain the lower + triangular matrix and the strictly upper triangular part of + A is not referenced. + Note that when DIAG = 'U' or 'u', the diagonal elements of + A are not referenced either, but are assumed to be unity. + Unchanged on exit. + + LDA - INTEGER. + On entry, LDA specifies the first dimension of A as declared + in the calling (sub) program. LDA must be at least + max( 1, n ). + Unchanged on exit. + + X - COMPLEX array of dimension at least + ( 1 + ( n - 1 )*abs( INCX ) ). + Before entry, the incremented array X must contain the n + element right-hand side vector b. On exit, X is overwritten + with the solution vector x. + + INCX - INTEGER. + On entry, INCX specifies the increment for the elements of + X. INCX must not be zero. + Unchanged on exit. + + + Level 2 Blas routine. + + -- Written on 22-October-1986. + Jack Dongarra, Argonne National Lab. + Jeremy Du Croz, Nag Central Office. + Sven Hammarling, Nag Central Office. + Richard Hanson, Sandia National Labs. + + + Test the input parameters. +*/ + + /* Parameter adjustments */ + a_dim1 = *lda; + a_offset = 1 + a_dim1; + a -= a_offset; + --x; + + /* Function Body */ + info = 0; + if (! lsame_(uplo, "U") && ! lsame_(uplo, "L")) { + info = 1; + } else if (! lsame_(trans, "N") && ! lsame_(trans, + "T") && ! lsame_(trans, "C")) { + info = 2; + } else if (! lsame_(diag, "U") && ! lsame_(diag, + "N")) { + info = 3; + } else if (*n < 0) { + info = 4; + } else if (*lda < max(1,*n)) { + info = 6; + } else if (*incx == 0) { + info = 8; + } + if (info != 0) { + xerbla_("CTRSV ", &info); + return 0; + } + +/* Quick return if possible. */ + + if (*n == 0) { + return 0; + } + + noconj = lsame_(trans, "T"); + nounit = lsame_(diag, "N"); + +/* + Set up the start point in X if the increment is not unity. This + will be ( N - 1 )*INCX too small for descending loops. +*/ + + if (*incx <= 0) { + kx = 1 - (*n - 1) * *incx; + } else if (*incx != 1) { + kx = 1; + } + +/* + Start the operations. In this version the elements of A are + accessed sequentially with one pass through A. +*/ + + if (lsame_(trans, "N")) { + +/* Form x := inv( A )*x. */ + + if (lsame_(uplo, "U")) { + if (*incx == 1) { + for (j = *n; j >= 1; --j) { + i__1 = j; + if ((x[i__1].r != 0.f) || (x[i__1].i != 0.f)) { + if (nounit) { + i__1 = j; + c_div(&q__1, &x[j], &a[j + j * a_dim1]); + x[i__1].r = q__1.r, x[i__1].i = q__1.i; + } + i__1 = j; + temp.r = x[i__1].r, temp.i = x[i__1].i; + for (i__ = j - 1; i__ >= 1; --i__) { + i__1 = i__; + i__2 = i__; + i__3 = i__ + j * a_dim1; + q__2.r = temp.r * a[i__3].r - temp.i * a[i__3].i, + q__2.i = temp.r * a[i__3].i + temp.i * a[ + i__3].r; + q__1.r = x[i__2].r - q__2.r, q__1.i = x[i__2].i - + q__2.i; + x[i__1].r = q__1.r, x[i__1].i = q__1.i; +/* L10: */ + } + } +/* L20: */ + } + } else { + jx = kx + (*n - 1) * *incx; + for (j = *n; j >= 1; --j) { + i__1 = jx; + if ((x[i__1].r != 0.f) || (x[i__1].i != 0.f)) { + if (nounit) { + i__1 = jx; + c_div(&q__1, &x[jx], &a[j + j * a_dim1]); + x[i__1].r = q__1.r, x[i__1].i = q__1.i; + } + i__1 = jx; + temp.r = x[i__1].r, temp.i = x[i__1].i; + ix = jx; + for (i__ = j - 1; i__ >= 1; --i__) { + ix -= *incx; + i__1 = ix; + i__2 = ix; + i__3 = i__ + j * a_dim1; + q__2.r = temp.r * a[i__3].r - temp.i * a[i__3].i, + q__2.i = temp.r * a[i__3].i + temp.i * a[ + i__3].r; + q__1.r = x[i__2].r - q__2.r, q__1.i = x[i__2].i - + q__2.i; + x[i__1].r = q__1.r, x[i__1].i = q__1.i; +/* L30: */ + } + } + jx -= *incx; +/* L40: */ + } + } + } else { + if (*incx == 1) { + i__1 = *n; + for (j = 1; j <= i__1; ++j) { + i__2 = j; + if ((x[i__2].r != 0.f) || (x[i__2].i != 0.f)) { + if (nounit) { + i__2 = j; + c_div(&q__1, &x[j], &a[j + j * a_dim1]); + x[i__2].r = q__1.r, x[i__2].i = q__1.i; + } + i__2 = j; + temp.r = x[i__2].r, temp.i = x[i__2].i; + i__2 = *n; + for (i__ = j + 1; i__ <= i__2; ++i__) { + i__3 = i__; + i__4 = i__; + i__5 = i__ + j * a_dim1; + q__2.r = temp.r * a[i__5].r - temp.i * a[i__5].i, + q__2.i = temp.r * a[i__5].i + temp.i * a[ + i__5].r; + q__1.r = x[i__4].r - q__2.r, q__1.i = x[i__4].i - + q__2.i; + x[i__3].r = q__1.r, x[i__3].i = q__1.i; +/* L50: */ + } + } +/* L60: */ + } + } else { + jx = kx; + i__1 = *n; + for (j = 1; j <= i__1; ++j) { + i__2 = jx; + if ((x[i__2].r != 0.f) || (x[i__2].i != 0.f)) { + if (nounit) { + i__2 = jx; + c_div(&q__1, &x[jx], &a[j + j * a_dim1]); + x[i__2].r = q__1.r, x[i__2].i = q__1.i; + } + i__2 = jx; + temp.r = x[i__2].r, temp.i = x[i__2].i; + ix = jx; + i__2 = *n; + for (i__ = j + 1; i__ <= i__2; ++i__) { + ix += *incx; + i__3 = ix; + i__4 = ix; + i__5 = i__ + j * a_dim1; + q__2.r = temp.r * a[i__5].r - temp.i * a[i__5].i, + q__2.i = temp.r * a[i__5].i + temp.i * a[ + i__5].r; + q__1.r = x[i__4].r - q__2.r, q__1.i = x[i__4].i - + q__2.i; + x[i__3].r = q__1.r, x[i__3].i = q__1.i; +/* L70: */ + } + } + jx += *incx; +/* L80: */ + } + } + } + } else { + +/* Form x := inv( A' )*x or x := inv( conjg( A' ) )*x. */ + + if (lsame_(uplo, "U")) { + if (*incx == 1) { + i__1 = *n; + for (j = 1; j <= i__1; ++j) { + i__2 = j; + temp.r = x[i__2].r, temp.i = x[i__2].i; + if (noconj) { + i__2 = j - 1; + for (i__ = 1; i__ <= i__2; ++i__) { + i__3 = i__ + j * a_dim1; + i__4 = i__; + q__2.r = a[i__3].r * x[i__4].r - a[i__3].i * x[ + i__4].i, q__2.i = a[i__3].r * x[i__4].i + + a[i__3].i * x[i__4].r; + q__1.r = temp.r - q__2.r, q__1.i = temp.i - + q__2.i; + temp.r = q__1.r, temp.i = q__1.i; +/* L90: */ + } + if (nounit) { + c_div(&q__1, &temp, &a[j + j * a_dim1]); + temp.r = q__1.r, temp.i = q__1.i; + } + } else { + i__2 = j - 1; + for (i__ = 1; i__ <= i__2; ++i__) { + r_cnjg(&q__3, &a[i__ + j * a_dim1]); + i__3 = i__; + q__2.r = q__3.r * x[i__3].r - q__3.i * x[i__3].i, + q__2.i = q__3.r * x[i__3].i + q__3.i * x[ + i__3].r; + q__1.r = temp.r - q__2.r, q__1.i = temp.i - + q__2.i; + temp.r = q__1.r, temp.i = q__1.i; +/* L100: */ + } + if (nounit) { + r_cnjg(&q__2, &a[j + j * a_dim1]); + c_div(&q__1, &temp, &q__2); + temp.r = q__1.r, temp.i = q__1.i; + } + } + i__2 = j; + x[i__2].r = temp.r, x[i__2].i = temp.i; +/* L110: */ + } + } else { + jx = kx; + i__1 = *n; + for (j = 1; j <= i__1; ++j) { + ix = kx; + i__2 = jx; + temp.r = x[i__2].r, temp.i = x[i__2].i; + if (noconj) { + i__2 = j - 1; + for (i__ = 1; i__ <= i__2; ++i__) { + i__3 = i__ + j * a_dim1; + i__4 = ix; + q__2.r = a[i__3].r * x[i__4].r - a[i__3].i * x[ + i__4].i, q__2.i = a[i__3].r * x[i__4].i + + a[i__3].i * x[i__4].r; + q__1.r = temp.r - q__2.r, q__1.i = temp.i - + q__2.i; + temp.r = q__1.r, temp.i = q__1.i; + ix += *incx; +/* L120: */ + } + if (nounit) { + c_div(&q__1, &temp, &a[j + j * a_dim1]); + temp.r = q__1.r, temp.i = q__1.i; + } + } else { + i__2 = j - 1; + for (i__ = 1; i__ <= i__2; ++i__) { + r_cnjg(&q__3, &a[i__ + j * a_dim1]); + i__3 = ix; + q__2.r = q__3.r * x[i__3].r - q__3.i * x[i__3].i, + q__2.i = q__3.r * x[i__3].i + q__3.i * x[ + i__3].r; + q__1.r = temp.r - q__2.r, q__1.i = temp.i - + q__2.i; + temp.r = q__1.r, temp.i = q__1.i; + ix += *incx; +/* L130: */ + } + if (nounit) { + r_cnjg(&q__2, &a[j + j * a_dim1]); + c_div(&q__1, &temp, &q__2); + temp.r = q__1.r, temp.i = q__1.i; + } + } + i__2 = jx; + x[i__2].r = temp.r, x[i__2].i = temp.i; + jx += *incx; +/* L140: */ + } + } + } else { + if (*incx == 1) { + for (j = *n; j >= 1; --j) { + i__1 = j; + temp.r = x[i__1].r, temp.i = x[i__1].i; + if (noconj) { + i__1 = j + 1; + for (i__ = *n; i__ >= i__1; --i__) { + i__2 = i__ + j * a_dim1; + i__3 = i__; + q__2.r = a[i__2].r * x[i__3].r - a[i__2].i * x[ + i__3].i, q__2.i = a[i__2].r * x[i__3].i + + a[i__2].i * x[i__3].r; + q__1.r = temp.r - q__2.r, q__1.i = temp.i - + q__2.i; + temp.r = q__1.r, temp.i = q__1.i; +/* L150: */ + } + if (nounit) { + c_div(&q__1, &temp, &a[j + j * a_dim1]); + temp.r = q__1.r, temp.i = q__1.i; + } + } else { + i__1 = j + 1; + for (i__ = *n; i__ >= i__1; --i__) { + r_cnjg(&q__3, &a[i__ + j * a_dim1]); + i__2 = i__; + q__2.r = q__3.r * x[i__2].r - q__3.i * x[i__2].i, + q__2.i = q__3.r * x[i__2].i + q__3.i * x[ + i__2].r; + q__1.r = temp.r - q__2.r, q__1.i = temp.i - + q__2.i; + temp.r = q__1.r, temp.i = q__1.i; +/* L160: */ + } + if (nounit) { + r_cnjg(&q__2, &a[j + j * a_dim1]); + c_div(&q__1, &temp, &q__2); + temp.r = q__1.r, temp.i = q__1.i; + } + } + i__1 = j; + x[i__1].r = temp.r, x[i__1].i = temp.i; +/* L170: */ + } + } else { + kx += (*n - 1) * *incx; + jx = kx; + for (j = *n; j >= 1; --j) { + ix = kx; + i__1 = jx; + temp.r = x[i__1].r, temp.i = x[i__1].i; + if (noconj) { + i__1 = j + 1; + for (i__ = *n; i__ >= i__1; --i__) { + i__2 = i__ + j * a_dim1; + i__3 = ix; + q__2.r = a[i__2].r * x[i__3].r - a[i__2].i * x[ + i__3].i, q__2.i = a[i__2].r * x[i__3].i + + a[i__2].i * x[i__3].r; + q__1.r = temp.r - q__2.r, q__1.i = temp.i - + q__2.i; + temp.r = q__1.r, temp.i = q__1.i; + ix -= *incx; +/* L180: */ + } + if (nounit) { + c_div(&q__1, &temp, &a[j + j * a_dim1]); + temp.r = q__1.r, temp.i = q__1.i; + } + } else { + i__1 = j + 1; + for (i__ = *n; i__ >= i__1; --i__) { + r_cnjg(&q__3, &a[i__ + j * a_dim1]); + i__2 = ix; + q__2.r = q__3.r * x[i__2].r - q__3.i * x[i__2].i, + q__2.i = q__3.r * x[i__2].i + q__3.i * x[ + i__2].r; + q__1.r = temp.r - q__2.r, q__1.i = temp.i - + q__2.i; + temp.r = q__1.r, temp.i = q__1.i; + ix -= *incx; +/* L190: */ + } + if (nounit) { + r_cnjg(&q__2, &a[j + j * a_dim1]); + c_div(&q__1, &temp, &q__2); + temp.r = q__1.r, temp.i = q__1.i; + } + } + i__1 = jx; + x[i__1].r = temp.r, x[i__1].i = temp.i; + jx -= *incx; +/* L200: */ + } + } + } + } + + return 0; + +/* End of CTRSV . */ + +} /* ctrsv_ */ + +/* Subroutine */ int daxpy_(integer *n, doublereal *da, doublereal *dx, + integer *incx, doublereal *dy, integer *incy) +{ + /* System generated locals */ + integer i__1; + + /* Local variables */ + static integer i__, m, ix, iy, mp1; + + +/* + constant times a vector plus a vector. + uses unrolled loops for increments equal to one. + jack dongarra, linpack, 3/11/78. + modified 12/3/93, array(1) declarations changed to array(*) +*/ + + + /* Parameter adjustments */ + --dy; + --dx; + + /* Function Body */ + if (*n <= 0) { + return 0; + } + if (*da == 0.) { + return 0; + } + if (*incx == 1 && *incy == 1) { + goto L20; + } + +/* + code for unequal increments or equal increments + not equal to 1 +*/ + + ix = 1; + iy = 1; + if (*incx < 0) { + ix = (-(*n) + 1) * *incx + 1; + } + if (*incy < 0) { + iy = (-(*n) + 1) * *incy + 1; + } + i__1 = *n; + for (i__ = 1; i__ <= i__1; ++i__) { + dy[iy] += *da * dx[ix]; + ix += *incx; + iy += *incy; +/* L10: */ + } + return 0; + +/* + code for both increments equal to 1 + + + clean-up loop +*/ + +L20: + m = *n % 4; + if (m == 0) { + goto L40; + } + i__1 = m; + for (i__ = 1; i__ <= i__1; ++i__) { + dy[i__] += *da * dx[i__]; +/* L30: */ + } + if (*n < 4) { + return 0; + } +L40: + mp1 = m + 1; + i__1 = *n; + for (i__ = mp1; i__ <= i__1; i__ += 4) { + dy[i__] += *da * dx[i__]; + dy[i__ + 1] += *da * dx[i__ + 1]; + dy[i__ + 2] += *da * dx[i__ + 2]; + dy[i__ + 3] += *da * dx[i__ + 3]; +/* L50: */ + } + return 0; +} /* daxpy_ */ + +doublereal dcabs1_(doublecomplex *z__) +{ + /* System generated locals */ + doublereal ret_val; + static doublecomplex equiv_0[1]; + + /* Local variables */ +#define t ((doublereal *)equiv_0) +#define zz (equiv_0) + + zz->r = z__->r, zz->i = z__->i; + ret_val = abs(t[0]) + abs(t[1]); + return ret_val; +} /* dcabs1_ */ + +#undef zz +#undef t + + +/* Subroutine */ int dcopy_(integer *n, doublereal *dx, integer *incx, + doublereal *dy, integer *incy) +{ + /* System generated locals */ + integer i__1; + + /* Local variables */ + static integer i__, m, ix, iy, mp1; + + +/* + copies a vector, x, to a vector, y. + uses unrolled loops for increments equal to one. + jack dongarra, linpack, 3/11/78. + modified 12/3/93, array(1) declarations changed to array(*) +*/ + + + /* Parameter adjustments */ + --dy; + --dx; + + /* Function Body */ + if (*n <= 0) { + return 0; + } + if (*incx == 1 && *incy == 1) { + goto L20; + } + +/* + code for unequal increments or equal increments + not equal to 1 +*/ + + ix = 1; + iy = 1; + if (*incx < 0) { + ix = (-(*n) + 1) * *incx + 1; + } + if (*incy < 0) { + iy = (-(*n) + 1) * *incy + 1; + } + i__1 = *n; + for (i__ = 1; i__ <= i__1; ++i__) { + dy[iy] = dx[ix]; + ix += *incx; + iy += *incy; +/* L10: */ + } + return 0; + +/* + code for both increments equal to 1 + + + clean-up loop +*/ + +L20: + m = *n % 7; + if (m == 0) { + goto L40; + } + i__1 = m; + for (i__ = 1; i__ <= i__1; ++i__) { + dy[i__] = dx[i__]; +/* L30: */ + } + if (*n < 7) { + return 0; + } +L40: + mp1 = m + 1; + i__1 = *n; + for (i__ = mp1; i__ <= i__1; i__ += 7) { + dy[i__] = dx[i__]; + dy[i__ + 1] = dx[i__ + 1]; + dy[i__ + 2] = dx[i__ + 2]; + dy[i__ + 3] = dx[i__ + 3]; + dy[i__ + 4] = dx[i__ + 4]; + dy[i__ + 5] = dx[i__ + 5]; + dy[i__ + 6] = dx[i__ + 6]; +/* L50: */ + } + return 0; +} /* dcopy_ */ + +doublereal ddot_(integer *n, doublereal *dx, integer *incx, doublereal *dy, + integer *incy) +{ + /* System generated locals */ + integer i__1; + doublereal ret_val; + + /* Local variables */ + static integer i__, m, ix, iy, mp1; + static doublereal dtemp; + + +/* + forms the dot product of two vectors. + uses unrolled loops for increments equal to one. + jack dongarra, linpack, 3/11/78. + modified 12/3/93, array(1) declarations changed to array(*) +*/ + + + /* Parameter adjustments */ + --dy; + --dx; + + /* Function Body */ + ret_val = 0.; + dtemp = 0.; + if (*n <= 0) { + return ret_val; + } + if (*incx == 1 && *incy == 1) { + goto L20; + } + +/* + code for unequal increments or equal increments + not equal to 1 +*/ + + ix = 1; + iy = 1; + if (*incx < 0) { + ix = (-(*n) + 1) * *incx + 1; + } + if (*incy < 0) { + iy = (-(*n) + 1) * *incy + 1; + } + i__1 = *n; + for (i__ = 1; i__ <= i__1; ++i__) { + dtemp += dx[ix] * dy[iy]; + ix += *incx; + iy += *incy; +/* L10: */ + } + ret_val = dtemp; + return ret_val; + +/* + code for both increments equal to 1 + + + clean-up loop +*/ + +L20: + m = *n % 5; + if (m == 0) { + goto L40; + } + i__1 = m; + for (i__ = 1; i__ <= i__1; ++i__) { + dtemp += dx[i__] * dy[i__]; +/* L30: */ + } + if (*n < 5) { + goto L60; + } +L40: + mp1 = m + 1; + i__1 = *n; + for (i__ = mp1; i__ <= i__1; i__ += 5) { + dtemp = dtemp + dx[i__] * dy[i__] + dx[i__ + 1] * dy[i__ + 1] + dx[ + i__ + 2] * dy[i__ + 2] + dx[i__ + 3] * dy[i__ + 3] + dx[i__ + + 4] * dy[i__ + 4]; +/* L50: */ + } +L60: + ret_val = dtemp; + return ret_val; +} /* ddot_ */ + +/* Subroutine */ int dgemm_(char *transa, char *transb, integer *m, integer * + n, integer *k, doublereal *alpha, doublereal *a, integer *lda, + doublereal *b, integer *ldb, doublereal *beta, doublereal *c__, + integer *ldc) +{ + /* System generated locals */ + integer a_dim1, a_offset, b_dim1, b_offset, c_dim1, c_offset, i__1, i__2, + i__3; + + /* Local variables */ + static integer i__, j, l, info; + static logical nota, notb; + static doublereal temp; + static integer ncola; + extern logical lsame_(char *, char *); + static integer nrowa, nrowb; + extern /* Subroutine */ int xerbla_(char *, integer *); + + +/* + Purpose + ======= + + DGEMM performs one of the matrix-matrix operations + + C := alpha*op( A )*op( B ) + beta*C, + + where op( X ) is one of + + op( X ) = X or op( X ) = X', + + alpha and beta are scalars, and A, B and C are matrices, with op( A ) + an m by k matrix, op( B ) a k by n matrix and C an m by n matrix. + + Parameters + ========== + + TRANSA - CHARACTER*1. + On entry, TRANSA specifies the form of op( A ) to be used in + the matrix multiplication as follows: + + TRANSA = 'N' or 'n', op( A ) = A. + + TRANSA = 'T' or 't', op( A ) = A'. + + TRANSA = 'C' or 'c', op( A ) = A'. + + Unchanged on exit. + + TRANSB - CHARACTER*1. + On entry, TRANSB specifies the form of op( B ) to be used in + the matrix multiplication as follows: + + TRANSB = 'N' or 'n', op( B ) = B. + + TRANSB = 'T' or 't', op( B ) = B'. + + TRANSB = 'C' or 'c', op( B ) = B'. + + Unchanged on exit. + + M - INTEGER. + On entry, M specifies the number of rows of the matrix + op( A ) and of the matrix C. M must be at least zero. + Unchanged on exit. + + N - INTEGER. + On entry, N specifies the number of columns of the matrix + op( B ) and the number of columns of the matrix C. N must be + at least zero. + Unchanged on exit. + + K - INTEGER. + On entry, K specifies the number of columns of the matrix + op( A ) and the number of rows of the matrix op( B ). K must + be at least zero. + Unchanged on exit. + + ALPHA - DOUBLE PRECISION. + On entry, ALPHA specifies the scalar alpha. + Unchanged on exit. + + A - DOUBLE PRECISION array of DIMENSION ( LDA, ka ), where ka is + k when TRANSA = 'N' or 'n', and is m otherwise. + Before entry with TRANSA = 'N' or 'n', the leading m by k + part of the array A must contain the matrix A, otherwise + the leading k by m part of the array A must contain the + matrix A. + Unchanged on exit. + + LDA - INTEGER. + On entry, LDA specifies the first dimension of A as declared + in the calling (sub) program. When TRANSA = 'N' or 'n' then + LDA must be at least max( 1, m ), otherwise LDA must be at + least max( 1, k ). + Unchanged on exit. + + B - DOUBLE PRECISION array of DIMENSION ( LDB, kb ), where kb is + n when TRANSB = 'N' or 'n', and is k otherwise. + Before entry with TRANSB = 'N' or 'n', the leading k by n + part of the array B must contain the matrix B, otherwise + the leading n by k part of the array B must contain the + matrix B. + Unchanged on exit. + + LDB - INTEGER. + On entry, LDB specifies the first dimension of B as declared + in the calling (sub) program. When TRANSB = 'N' or 'n' then + LDB must be at least max( 1, k ), otherwise LDB must be at + least max( 1, n ). + Unchanged on exit. + + BETA - DOUBLE PRECISION. + On entry, BETA specifies the scalar beta. When BETA is + supplied as zero then C need not be set on input. + Unchanged on exit. + + C - DOUBLE PRECISION array of DIMENSION ( LDC, n ). + Before entry, the leading m by n part of the array C must + contain the matrix C, except when beta is zero, in which + case C need not be set on entry. + On exit, the array C is overwritten by the m by n matrix + ( alpha*op( A )*op( B ) + beta*C ). + + LDC - INTEGER. + On entry, LDC specifies the first dimension of C as declared + in the calling (sub) program. LDC must be at least + max( 1, m ). + Unchanged on exit. + + + Level 3 Blas routine. + + -- Written on 8-February-1989. + Jack Dongarra, Argonne National Laboratory. + Iain Duff, AERE Harwell. + Jeremy Du Croz, Numerical Algorithms Group Ltd. + Sven Hammarling, Numerical Algorithms Group Ltd. + + + Set NOTA and NOTB as true if A and B respectively are not + transposed and set NROWA, NCOLA and NROWB as the number of rows + and columns of A and the number of rows of B respectively. +*/ + + /* Parameter adjustments */ + a_dim1 = *lda; + a_offset = 1 + a_dim1; + a -= a_offset; + b_dim1 = *ldb; + b_offset = 1 + b_dim1; + b -= b_offset; + c_dim1 = *ldc; + c_offset = 1 + c_dim1; + c__ -= c_offset; + + /* Function Body */ + nota = lsame_(transa, "N"); + notb = lsame_(transb, "N"); + if (nota) { + nrowa = *m; + ncola = *k; + } else { + nrowa = *k; + ncola = *m; + } + if (notb) { + nrowb = *k; + } else { + nrowb = *n; + } + +/* Test the input parameters. */ + + info = 0; + if (! nota && ! lsame_(transa, "C") && ! lsame_( + transa, "T")) { + info = 1; + } else if (! notb && ! lsame_(transb, "C") && ! + lsame_(transb, "T")) { + info = 2; + } else if (*m < 0) { + info = 3; + } else if (*n < 0) { + info = 4; + } else if (*k < 0) { + info = 5; + } else if (*lda < max(1,nrowa)) { + info = 8; + } else if (*ldb < max(1,nrowb)) { + info = 10; + } else if (*ldc < max(1,*m)) { + info = 13; + } + if (info != 0) { + xerbla_("DGEMM ", &info); + return 0; + } + +/* Quick return if possible. */ + + if (((*m == 0) || (*n == 0)) || (((*alpha == 0.) || (*k == 0)) && *beta == + 1.)) { + return 0; + } + +/* And if alpha.eq.zero. */ + + if (*alpha == 0.) { + if (*beta == 0.) { + i__1 = *n; + for (j = 1; j <= i__1; ++j) { + i__2 = *m; + for (i__ = 1; i__ <= i__2; ++i__) { + c__[i__ + j * c_dim1] = 0.; +/* L10: */ + } +/* L20: */ + } + } else { + i__1 = *n; + for (j = 1; j <= i__1; ++j) { + i__2 = *m; + for (i__ = 1; i__ <= i__2; ++i__) { + c__[i__ + j * c_dim1] = *beta * c__[i__ + j * c_dim1]; +/* L30: */ + } +/* L40: */ + } + } + return 0; + } + +/* Start the operations. */ + + if (notb) { + if (nota) { + +/* Form C := alpha*A*B + beta*C. */ + + i__1 = *n; + for (j = 1; j <= i__1; ++j) { + if (*beta == 0.) { + i__2 = *m; + for (i__ = 1; i__ <= i__2; ++i__) { + c__[i__ + j * c_dim1] = 0.; +/* L50: */ + } + } else if (*beta != 1.) { + i__2 = *m; + for (i__ = 1; i__ <= i__2; ++i__) { + c__[i__ + j * c_dim1] = *beta * c__[i__ + j * c_dim1]; +/* L60: */ + } + } + i__2 = *k; + for (l = 1; l <= i__2; ++l) { + if (b[l + j * b_dim1] != 0.) { + temp = *alpha * b[l + j * b_dim1]; + i__3 = *m; + for (i__ = 1; i__ <= i__3; ++i__) { + c__[i__ + j * c_dim1] += temp * a[i__ + l * + a_dim1]; +/* L70: */ + } + } +/* L80: */ + } +/* L90: */ + } + } else { + +/* Form C := alpha*A'*B + beta*C */ + + i__1 = *n; + for (j = 1; j <= i__1; ++j) { + i__2 = *m; + for (i__ = 1; i__ <= i__2; ++i__) { + temp = 0.; + i__3 = *k; + for (l = 1; l <= i__3; ++l) { + temp += a[l + i__ * a_dim1] * b[l + j * b_dim1]; +/* L100: */ + } + if (*beta == 0.) { + c__[i__ + j * c_dim1] = *alpha * temp; + } else { + c__[i__ + j * c_dim1] = *alpha * temp + *beta * c__[ + i__ + j * c_dim1]; + } +/* L110: */ + } +/* L120: */ + } + } + } else { + if (nota) { + +/* Form C := alpha*A*B' + beta*C */ + + i__1 = *n; + for (j = 1; j <= i__1; ++j) { + if (*beta == 0.) { + i__2 = *m; + for (i__ = 1; i__ <= i__2; ++i__) { + c__[i__ + j * c_dim1] = 0.; +/* L130: */ + } + } else if (*beta != 1.) { + i__2 = *m; + for (i__ = 1; i__ <= i__2; ++i__) { + c__[i__ + j * c_dim1] = *beta * c__[i__ + j * c_dim1]; +/* L140: */ + } + } + i__2 = *k; + for (l = 1; l <= i__2; ++l) { + if (b[j + l * b_dim1] != 0.) { + temp = *alpha * b[j + l * b_dim1]; + i__3 = *m; + for (i__ = 1; i__ <= i__3; ++i__) { + c__[i__ + j * c_dim1] += temp * a[i__ + l * + a_dim1]; +/* L150: */ + } + } +/* L160: */ + } +/* L170: */ + } + } else { + +/* Form C := alpha*A'*B' + beta*C */ + + i__1 = *n; + for (j = 1; j <= i__1; ++j) { + i__2 = *m; + for (i__ = 1; i__ <= i__2; ++i__) { + temp = 0.; + i__3 = *k; + for (l = 1; l <= i__3; ++l) { + temp += a[l + i__ * a_dim1] * b[j + l * b_dim1]; +/* L180: */ + } + if (*beta == 0.) { + c__[i__ + j * c_dim1] = *alpha * temp; + } else { + c__[i__ + j * c_dim1] = *alpha * temp + *beta * c__[ + i__ + j * c_dim1]; + } +/* L190: */ + } +/* L200: */ + } + } + } + + return 0; + +/* End of DGEMM . */ + +} /* dgemm_ */ + +/* Subroutine */ int dgemv_(char *trans, integer *m, integer *n, doublereal * + alpha, doublereal *a, integer *lda, doublereal *x, integer *incx, + doublereal *beta, doublereal *y, integer *incy) +{ + /* System generated locals */ + integer a_dim1, a_offset, i__1, i__2; + + /* Local variables */ + static integer i__, j, ix, iy, jx, jy, kx, ky, info; + static doublereal temp; + static integer lenx, leny; + extern logical lsame_(char *, char *); + extern /* Subroutine */ int xerbla_(char *, integer *); + + +/* + Purpose + ======= + + DGEMV performs one of the matrix-vector operations + + y := alpha*A*x + beta*y, or y := alpha*A'*x + beta*y, + + where alpha and beta are scalars, x and y are vectors and A is an + m by n matrix. + + Parameters + ========== + + TRANS - CHARACTER*1. + On entry, TRANS specifies the operation to be performed as + follows: + + TRANS = 'N' or 'n' y := alpha*A*x + beta*y. + + TRANS = 'T' or 't' y := alpha*A'*x + beta*y. + + TRANS = 'C' or 'c' y := alpha*A'*x + beta*y. + + Unchanged on exit. + + M - INTEGER. + On entry, M specifies the number of rows of the matrix A. + M must be at least zero. + Unchanged on exit. + + N - INTEGER. + On entry, N specifies the number of columns of the matrix A. + N must be at least zero. + Unchanged on exit. + + ALPHA - DOUBLE PRECISION. + On entry, ALPHA specifies the scalar alpha. + Unchanged on exit. + + A - DOUBLE PRECISION array of DIMENSION ( LDA, n ). + Before entry, the leading m by n part of the array A must + contain the matrix of coefficients. + Unchanged on exit. + + LDA - INTEGER. + On entry, LDA specifies the first dimension of A as declared + in the calling (sub) program. LDA must be at least + max( 1, m ). + Unchanged on exit. + + X - DOUBLE PRECISION array of DIMENSION at least + ( 1 + ( n - 1 )*abs( INCX ) ) when TRANS = 'N' or 'n' + and at least + ( 1 + ( m - 1 )*abs( INCX ) ) otherwise. + Before entry, the incremented array X must contain the + vector x. + Unchanged on exit. + + INCX - INTEGER. + On entry, INCX specifies the increment for the elements of + X. INCX must not be zero. + Unchanged on exit. + + BETA - DOUBLE PRECISION. + On entry, BETA specifies the scalar beta. When BETA is + supplied as zero then Y need not be set on input. + Unchanged on exit. + + Y - DOUBLE PRECISION array of DIMENSION at least + ( 1 + ( m - 1 )*abs( INCY ) ) when TRANS = 'N' or 'n' + and at least + ( 1 + ( n - 1 )*abs( INCY ) ) otherwise. + Before entry with BETA non-zero, the incremented array Y + must contain the vector y. On exit, Y is overwritten by the + updated vector y. + + INCY - INTEGER. + On entry, INCY specifies the increment for the elements of + Y. INCY must not be zero. + Unchanged on exit. + + + Level 2 Blas routine. + + -- Written on 22-October-1986. + Jack Dongarra, Argonne National Lab. + Jeremy Du Croz, Nag Central Office. + Sven Hammarling, Nag Central Office. + Richard Hanson, Sandia National Labs. + + + Test the input parameters. +*/ + + /* Parameter adjustments */ + a_dim1 = *lda; + a_offset = 1 + a_dim1; + a -= a_offset; + --x; + --y; + + /* Function Body */ + info = 0; + if (! lsame_(trans, "N") && ! lsame_(trans, "T") && ! lsame_(trans, "C") + ) { + info = 1; + } else if (*m < 0) { + info = 2; + } else if (*n < 0) { + info = 3; + } else if (*lda < max(1,*m)) { + info = 6; + } else if (*incx == 0) { + info = 8; + } else if (*incy == 0) { + info = 11; + } + if (info != 0) { + xerbla_("DGEMV ", &info); + return 0; + } + +/* Quick return if possible. */ + + if (((*m == 0) || (*n == 0)) || (*alpha == 0. && *beta == 1.)) { + return 0; + } + +/* + Set LENX and LENY, the lengths of the vectors x and y, and set + up the start points in X and Y. +*/ + + if (lsame_(trans, "N")) { + lenx = *n; + leny = *m; + } else { + lenx = *m; + leny = *n; + } + if (*incx > 0) { + kx = 1; + } else { + kx = 1 - (lenx - 1) * *incx; + } + if (*incy > 0) { + ky = 1; + } else { + ky = 1 - (leny - 1) * *incy; + } + +/* + Start the operations. In this version the elements of A are + accessed sequentially with one pass through A. + + First form y := beta*y. +*/ + + if (*beta != 1.) { + if (*incy == 1) { + if (*beta == 0.) { + i__1 = leny; + for (i__ = 1; i__ <= i__1; ++i__) { + y[i__] = 0.; +/* L10: */ + } + } else { + i__1 = leny; + for (i__ = 1; i__ <= i__1; ++i__) { + y[i__] = *beta * y[i__]; +/* L20: */ + } + } + } else { + iy = ky; + if (*beta == 0.) { + i__1 = leny; + for (i__ = 1; i__ <= i__1; ++i__) { + y[iy] = 0.; + iy += *incy; +/* L30: */ + } + } else { + i__1 = leny; + for (i__ = 1; i__ <= i__1; ++i__) { + y[iy] = *beta * y[iy]; + iy += *incy; +/* L40: */ + } + } + } + } + if (*alpha == 0.) { + return 0; + } + if (lsame_(trans, "N")) { + +/* Form y := alpha*A*x + y. */ + + jx = kx; + if (*incy == 1) { + i__1 = *n; + for (j = 1; j <= i__1; ++j) { + if (x[jx] != 0.) { + temp = *alpha * x[jx]; + i__2 = *m; + for (i__ = 1; i__ <= i__2; ++i__) { + y[i__] += temp * a[i__ + j * a_dim1]; +/* L50: */ + } + } + jx += *incx; +/* L60: */ + } + } else { + i__1 = *n; + for (j = 1; j <= i__1; ++j) { + if (x[jx] != 0.) { + temp = *alpha * x[jx]; + iy = ky; + i__2 = *m; + for (i__ = 1; i__ <= i__2; ++i__) { + y[iy] += temp * a[i__ + j * a_dim1]; + iy += *incy; +/* L70: */ + } + } + jx += *incx; +/* L80: */ + } + } + } else { + +/* Form y := alpha*A'*x + y. */ + + jy = ky; + if (*incx == 1) { + i__1 = *n; + for (j = 1; j <= i__1; ++j) { + temp = 0.; + i__2 = *m; + for (i__ = 1; i__ <= i__2; ++i__) { + temp += a[i__ + j * a_dim1] * x[i__]; +/* L90: */ + } + y[jy] += *alpha * temp; + jy += *incy; +/* L100: */ + } + } else { + i__1 = *n; + for (j = 1; j <= i__1; ++j) { + temp = 0.; + ix = kx; + i__2 = *m; + for (i__ = 1; i__ <= i__2; ++i__) { + temp += a[i__ + j * a_dim1] * x[ix]; + ix += *incx; +/* L110: */ + } + y[jy] += *alpha * temp; + jy += *incy; +/* L120: */ + } + } + } + + return 0; + +/* End of DGEMV . */ + +} /* dgemv_ */ + +/* Subroutine */ int dger_(integer *m, integer *n, doublereal *alpha, + doublereal *x, integer *incx, doublereal *y, integer *incy, + doublereal *a, integer *lda) +{ + /* System generated locals */ + integer a_dim1, a_offset, i__1, i__2; + + /* Local variables */ + static integer i__, j, ix, jy, kx, info; + static doublereal temp; + extern /* Subroutine */ int xerbla_(char *, integer *); + + +/* + Purpose + ======= + + DGER performs the rank 1 operation + + A := alpha*x*y' + A, + + where alpha is a scalar, x is an m element vector, y is an n element + vector and A is an m by n matrix. + + Parameters + ========== + + M - INTEGER. + On entry, M specifies the number of rows of the matrix A. + M must be at least zero. + Unchanged on exit. + + N - INTEGER. + On entry, N specifies the number of columns of the matrix A. + N must be at least zero. + Unchanged on exit. + + ALPHA - DOUBLE PRECISION. + On entry, ALPHA specifies the scalar alpha. + Unchanged on exit. + + X - DOUBLE PRECISION array of dimension at least + ( 1 + ( m - 1 )*abs( INCX ) ). + Before entry, the incremented array X must contain the m + element vector x. + Unchanged on exit. + + INCX - INTEGER. + On entry, INCX specifies the increment for the elements of + X. INCX must not be zero. + Unchanged on exit. + + Y - DOUBLE PRECISION array of dimension at least + ( 1 + ( n - 1 )*abs( INCY ) ). + Before entry, the incremented array Y must contain the n + element vector y. + Unchanged on exit. + + INCY - INTEGER. + On entry, INCY specifies the increment for the elements of + Y. INCY must not be zero. + Unchanged on exit. + + A - DOUBLE PRECISION array of DIMENSION ( LDA, n ). + Before entry, the leading m by n part of the array A must + contain the matrix of coefficients. On exit, A is + overwritten by the updated matrix. + + LDA - INTEGER. + On entry, LDA specifies the first dimension of A as declared + in the calling (sub) program. LDA must be at least + max( 1, m ). + Unchanged on exit. + + + Level 2 Blas routine. + + -- Written on 22-October-1986. + Jack Dongarra, Argonne National Lab. + Jeremy Du Croz, Nag Central Office. + Sven Hammarling, Nag Central Office. + Richard Hanson, Sandia National Labs. + + + Test the input parameters. +*/ + + /* Parameter adjustments */ + --x; + --y; + a_dim1 = *lda; + a_offset = 1 + a_dim1; + a -= a_offset; + + /* Function Body */ + info = 0; + if (*m < 0) { + info = 1; + } else if (*n < 0) { + info = 2; + } else if (*incx == 0) { + info = 5; + } else if (*incy == 0) { + info = 7; + } else if (*lda < max(1,*m)) { + info = 9; + } + if (info != 0) { + xerbla_("DGER ", &info); + return 0; + } + +/* Quick return if possible. */ + + if (((*m == 0) || (*n == 0)) || (*alpha == 0.)) { + return 0; + } + +/* + Start the operations. In this version the elements of A are + accessed sequentially with one pass through A. +*/ + + if (*incy > 0) { + jy = 1; + } else { + jy = 1 - (*n - 1) * *incy; + } + if (*incx == 1) { + i__1 = *n; + for (j = 1; j <= i__1; ++j) { + if (y[jy] != 0.) { + temp = *alpha * y[jy]; + i__2 = *m; + for (i__ = 1; i__ <= i__2; ++i__) { + a[i__ + j * a_dim1] += x[i__] * temp; +/* L10: */ + } + } + jy += *incy; +/* L20: */ + } + } else { + if (*incx > 0) { + kx = 1; + } else { + kx = 1 - (*m - 1) * *incx; + } + i__1 = *n; + for (j = 1; j <= i__1; ++j) { + if (y[jy] != 0.) { + temp = *alpha * y[jy]; + ix = kx; + i__2 = *m; + for (i__ = 1; i__ <= i__2; ++i__) { + a[i__ + j * a_dim1] += x[ix] * temp; + ix += *incx; +/* L30: */ + } + } + jy += *incy; +/* L40: */ + } + } + + return 0; + +/* End of DGER . */ + +} /* dger_ */ + +doublereal dnrm2_(integer *n, doublereal *x, integer *incx) +{ + /* System generated locals */ + integer i__1, i__2; + doublereal ret_val, d__1; + + /* Builtin functions */ + double sqrt(doublereal); + + /* Local variables */ + static integer ix; + static doublereal ssq, norm, scale, absxi; + + +/* + DNRM2 returns the euclidean norm of a vector via the function + name, so that + + DNRM2 := sqrt( x'*x ) + + + -- This version written on 25-October-1982. + Modified on 14-October-1993 to inline the call to DLASSQ. + Sven Hammarling, Nag Ltd. +*/ + + + /* Parameter adjustments */ + --x; + + /* Function Body */ + if ((*n < 1) || (*incx < 1)) { + norm = 0.; + } else if (*n == 1) { + norm = abs(x[1]); + } else { + scale = 0.; + ssq = 1.; +/* + The following loop is equivalent to this call to the LAPACK + auxiliary routine: + CALL DLASSQ( N, X, INCX, SCALE, SSQ ) +*/ + + i__1 = (*n - 1) * *incx + 1; + i__2 = *incx; + for (ix = 1; i__2 < 0 ? ix >= i__1 : ix <= i__1; ix += i__2) { + if (x[ix] != 0.) { + absxi = (d__1 = x[ix], abs(d__1)); + if (scale < absxi) { +/* Computing 2nd power */ + d__1 = scale / absxi; + ssq = ssq * (d__1 * d__1) + 1.; + scale = absxi; + } else { +/* Computing 2nd power */ + d__1 = absxi / scale; + ssq += d__1 * d__1; + } + } +/* L10: */ + } + norm = scale * sqrt(ssq); + } + + ret_val = norm; + return ret_val; + +/* End of DNRM2. */ + +} /* dnrm2_ */ + +/* Subroutine */ int drot_(integer *n, doublereal *dx, integer *incx, + doublereal *dy, integer *incy, doublereal *c__, doublereal *s) +{ + /* System generated locals */ + integer i__1; + + /* Local variables */ + static integer i__, ix, iy; + static doublereal dtemp; + + +/* + applies a plane rotation. + jack dongarra, linpack, 3/11/78. + modified 12/3/93, array(1) declarations changed to array(*) +*/ + + + /* Parameter adjustments */ + --dy; + --dx; + + /* Function Body */ + if (*n <= 0) { + return 0; + } + if (*incx == 1 && *incy == 1) { + goto L20; + } + +/* + code for unequal increments or equal increments not equal + to 1 +*/ + + ix = 1; + iy = 1; + if (*incx < 0) { + ix = (-(*n) + 1) * *incx + 1; + } + if (*incy < 0) { + iy = (-(*n) + 1) * *incy + 1; + } + i__1 = *n; + for (i__ = 1; i__ <= i__1; ++i__) { + dtemp = *c__ * dx[ix] + *s * dy[iy]; + dy[iy] = *c__ * dy[iy] - *s * dx[ix]; + dx[ix] = dtemp; + ix += *incx; + iy += *incy; +/* L10: */ + } + return 0; + +/* code for both increments equal to 1 */ + +L20: + i__1 = *n; + for (i__ = 1; i__ <= i__1; ++i__) { + dtemp = *c__ * dx[i__] + *s * dy[i__]; + dy[i__] = *c__ * dy[i__] - *s * dx[i__]; + dx[i__] = dtemp; +/* L30: */ + } + return 0; +} /* drot_ */ + +/* Subroutine */ int dscal_(integer *n, doublereal *da, doublereal *dx, + integer *incx) +{ + /* System generated locals */ + integer i__1, i__2; + + /* Local variables */ + static integer i__, m, mp1, nincx; + + +/* + scales a vector by a constant. + uses unrolled loops for increment equal to one. + jack dongarra, linpack, 3/11/78. + modified 3/93 to return if incx .le. 0. + modified 12/3/93, array(1) declarations changed to array(*) +*/ + + + /* Parameter adjustments */ + --dx; + + /* Function Body */ + if ((*n <= 0) || (*incx <= 0)) { + return 0; + } + if (*incx == 1) { + goto L20; + } + +/* code for increment not equal to 1 */ + + nincx = *n * *incx; + i__1 = nincx; + i__2 = *incx; + for (i__ = 1; i__2 < 0 ? i__ >= i__1 : i__ <= i__1; i__ += i__2) { + dx[i__] = *da * dx[i__]; +/* L10: */ + } + return 0; + +/* + code for increment equal to 1 + + + clean-up loop +*/ + +L20: + m = *n % 5; + if (m == 0) { + goto L40; + } + i__2 = m; + for (i__ = 1; i__ <= i__2; ++i__) { + dx[i__] = *da * dx[i__]; +/* L30: */ + } + if (*n < 5) { + return 0; + } +L40: + mp1 = m + 1; + i__2 = *n; + for (i__ = mp1; i__ <= i__2; i__ += 5) { + dx[i__] = *da * dx[i__]; + dx[i__ + 1] = *da * dx[i__ + 1]; + dx[i__ + 2] = *da * dx[i__ + 2]; + dx[i__ + 3] = *da * dx[i__ + 3]; + dx[i__ + 4] = *da * dx[i__ + 4]; +/* L50: */ + } + return 0; +} /* dscal_ */ + +/* Subroutine */ int dswap_(integer *n, doublereal *dx, integer *incx, + doublereal *dy, integer *incy) +{ + /* System generated locals */ + integer i__1; + + /* Local variables */ + static integer i__, m, ix, iy, mp1; + static doublereal dtemp; + + +/* + interchanges two vectors. + uses unrolled loops for increments equal one. + jack dongarra, linpack, 3/11/78. + modified 12/3/93, array(1) declarations changed to array(*) +*/ + + + /* Parameter adjustments */ + --dy; + --dx; + + /* Function Body */ + if (*n <= 0) { + return 0; + } + if (*incx == 1 && *incy == 1) { + goto L20; + } + +/* + code for unequal increments or equal increments not equal + to 1 +*/ + + ix = 1; + iy = 1; + if (*incx < 0) { + ix = (-(*n) + 1) * *incx + 1; + } + if (*incy < 0) { + iy = (-(*n) + 1) * *incy + 1; + } + i__1 = *n; + for (i__ = 1; i__ <= i__1; ++i__) { + dtemp = dx[ix]; + dx[ix] = dy[iy]; + dy[iy] = dtemp; + ix += *incx; + iy += *incy; +/* L10: */ + } + return 0; + +/* + code for both increments equal to 1 + + + clean-up loop +*/ + +L20: + m = *n % 3; + if (m == 0) { + goto L40; + } + i__1 = m; + for (i__ = 1; i__ <= i__1; ++i__) { + dtemp = dx[i__]; + dx[i__] = dy[i__]; + dy[i__] = dtemp; +/* L30: */ + } + if (*n < 3) { + return 0; + } +L40: + mp1 = m + 1; + i__1 = *n; + for (i__ = mp1; i__ <= i__1; i__ += 3) { + dtemp = dx[i__]; + dx[i__] = dy[i__]; + dy[i__] = dtemp; + dtemp = dx[i__ + 1]; + dx[i__ + 1] = dy[i__ + 1]; + dy[i__ + 1] = dtemp; + dtemp = dx[i__ + 2]; + dx[i__ + 2] = dy[i__ + 2]; + dy[i__ + 2] = dtemp; +/* L50: */ + } + return 0; +} /* dswap_ */ + +/* Subroutine */ int dsymv_(char *uplo, integer *n, doublereal *alpha, + doublereal *a, integer *lda, doublereal *x, integer *incx, doublereal + *beta, doublereal *y, integer *incy) +{ + /* System generated locals */ + integer a_dim1, a_offset, i__1, i__2; + + /* Local variables */ + static integer i__, j, ix, iy, jx, jy, kx, ky, info; + static doublereal temp1, temp2; + extern logical lsame_(char *, char *); + extern /* Subroutine */ int xerbla_(char *, integer *); + + +/* + Purpose + ======= + + DSYMV performs the matrix-vector operation + + y := alpha*A*x + beta*y, + + where alpha and beta are scalars, x and y are n element vectors and + A is an n by n symmetric matrix. + + Parameters + ========== + + UPLO - CHARACTER*1. + On entry, UPLO specifies whether the upper or lower + triangular part of the array A is to be referenced as + follows: + + UPLO = 'U' or 'u' Only the upper triangular part of A + is to be referenced. + + UPLO = 'L' or 'l' Only the lower triangular part of A + is to be referenced. + + Unchanged on exit. + + N - INTEGER. + On entry, N specifies the order of the matrix A. + N must be at least zero. + Unchanged on exit. + + ALPHA - DOUBLE PRECISION. + On entry, ALPHA specifies the scalar alpha. + Unchanged on exit. + + A - DOUBLE PRECISION array of DIMENSION ( LDA, n ). + Before entry with UPLO = 'U' or 'u', the leading n by n + upper triangular part of the array A must contain the upper + triangular part of the symmetric matrix and the strictly + lower triangular part of A is not referenced. + Before entry with UPLO = 'L' or 'l', the leading n by n + lower triangular part of the array A must contain the lower + triangular part of the symmetric matrix and the strictly + upper triangular part of A is not referenced. + Unchanged on exit. + + LDA - INTEGER. + On entry, LDA specifies the first dimension of A as declared + in the calling (sub) program. LDA must be at least + max( 1, n ). + Unchanged on exit. + + X - DOUBLE PRECISION array of dimension at least + ( 1 + ( n - 1 )*abs( INCX ) ). + Before entry, the incremented array X must contain the n + element vector x. + Unchanged on exit. + + INCX - INTEGER. + On entry, INCX specifies the increment for the elements of + X. INCX must not be zero. + Unchanged on exit. + + BETA - DOUBLE PRECISION. + On entry, BETA specifies the scalar beta. When BETA is + supplied as zero then Y need not be set on input. + Unchanged on exit. + + Y - DOUBLE PRECISION array of dimension at least + ( 1 + ( n - 1 )*abs( INCY ) ). + Before entry, the incremented array Y must contain the n + element vector y. On exit, Y is overwritten by the updated + vector y. + + INCY - INTEGER. + On entry, INCY specifies the increment for the elements of + Y. INCY must not be zero. + Unchanged on exit. + + + Level 2 Blas routine. + + -- Written on 22-October-1986. + Jack Dongarra, Argonne National Lab. + Jeremy Du Croz, Nag Central Office. + Sven Hammarling, Nag Central Office. + Richard Hanson, Sandia National Labs. + + + Test the input parameters. +*/ + + /* Parameter adjustments */ + a_dim1 = *lda; + a_offset = 1 + a_dim1; + a -= a_offset; + --x; + --y; + + /* Function Body */ + info = 0; + if (! lsame_(uplo, "U") && ! lsame_(uplo, "L")) { + info = 1; + } else if (*n < 0) { + info = 2; + } else if (*lda < max(1,*n)) { + info = 5; + } else if (*incx == 0) { + info = 7; + } else if (*incy == 0) { + info = 10; + } + if (info != 0) { + xerbla_("DSYMV ", &info); + return 0; + } + +/* Quick return if possible. */ + + if ((*n == 0) || (*alpha == 0. && *beta == 1.)) { + return 0; + } + +/* Set up the start points in X and Y. */ + + if (*incx > 0) { + kx = 1; + } else { + kx = 1 - (*n - 1) * *incx; + } + if (*incy > 0) { + ky = 1; + } else { + ky = 1 - (*n - 1) * *incy; + } + +/* + Start the operations. In this version the elements of A are + accessed sequentially with one pass through the triangular part + of A. + + First form y := beta*y. +*/ + + if (*beta != 1.) { + if (*incy == 1) { + if (*beta == 0.) { + i__1 = *n; + for (i__ = 1; i__ <= i__1; ++i__) { + y[i__] = 0.; +/* L10: */ + } + } else { + i__1 = *n; + for (i__ = 1; i__ <= i__1; ++i__) { + y[i__] = *beta * y[i__]; +/* L20: */ + } + } + } else { + iy = ky; + if (*beta == 0.) { + i__1 = *n; + for (i__ = 1; i__ <= i__1; ++i__) { + y[iy] = 0.; + iy += *incy; +/* L30: */ + } + } else { + i__1 = *n; + for (i__ = 1; i__ <= i__1; ++i__) { + y[iy] = *beta * y[iy]; + iy += *incy; +/* L40: */ + } + } + } + } + if (*alpha == 0.) { + return 0; + } + if (lsame_(uplo, "U")) { + +/* Form y when A is stored in upper triangle. */ + + if (*incx == 1 && *incy == 1) { + i__1 = *n; + for (j = 1; j <= i__1; ++j) { + temp1 = *alpha * x[j]; + temp2 = 0.; + i__2 = j - 1; + for (i__ = 1; i__ <= i__2; ++i__) { + y[i__] += temp1 * a[i__ + j * a_dim1]; + temp2 += a[i__ + j * a_dim1] * x[i__]; +/* L50: */ + } + y[j] = y[j] + temp1 * a[j + j * a_dim1] + *alpha * temp2; +/* L60: */ + } + } else { + jx = kx; + jy = ky; + i__1 = *n; + for (j = 1; j <= i__1; ++j) { + temp1 = *alpha * x[jx]; + temp2 = 0.; + ix = kx; + iy = ky; + i__2 = j - 1; + for (i__ = 1; i__ <= i__2; ++i__) { + y[iy] += temp1 * a[i__ + j * a_dim1]; + temp2 += a[i__ + j * a_dim1] * x[ix]; + ix += *incx; + iy += *incy; +/* L70: */ + } + y[jy] = y[jy] + temp1 * a[j + j * a_dim1] + *alpha * temp2; + jx += *incx; + jy += *incy; +/* L80: */ + } + } + } else { + +/* Form y when A is stored in lower triangle. */ + + if (*incx == 1 && *incy == 1) { + i__1 = *n; + for (j = 1; j <= i__1; ++j) { + temp1 = *alpha * x[j]; + temp2 = 0.; + y[j] += temp1 * a[j + j * a_dim1]; + i__2 = *n; + for (i__ = j + 1; i__ <= i__2; ++i__) { + y[i__] += temp1 * a[i__ + j * a_dim1]; + temp2 += a[i__ + j * a_dim1] * x[i__]; +/* L90: */ + } + y[j] += *alpha * temp2; +/* L100: */ + } + } else { + jx = kx; + jy = ky; + i__1 = *n; + for (j = 1; j <= i__1; ++j) { + temp1 = *alpha * x[jx]; + temp2 = 0.; + y[jy] += temp1 * a[j + j * a_dim1]; + ix = jx; + iy = jy; + i__2 = *n; + for (i__ = j + 1; i__ <= i__2; ++i__) { + ix += *incx; + iy += *incy; + y[iy] += temp1 * a[i__ + j * a_dim1]; + temp2 += a[i__ + j * a_dim1] * x[ix]; +/* L110: */ + } + y[jy] += *alpha * temp2; + jx += *incx; + jy += *incy; +/* L120: */ + } + } + } + + return 0; + +/* End of DSYMV . */ + +} /* dsymv_ */ + +/* Subroutine */ int dsyr2_(char *uplo, integer *n, doublereal *alpha, + doublereal *x, integer *incx, doublereal *y, integer *incy, + doublereal *a, integer *lda) +{ + /* System generated locals */ + integer a_dim1, a_offset, i__1, i__2; + + /* Local variables */ + static integer i__, j, ix, iy, jx, jy, kx, ky, info; + static doublereal temp1, temp2; + extern logical lsame_(char *, char *); + extern /* Subroutine */ int xerbla_(char *, integer *); + + +/* + Purpose + ======= + + DSYR2 performs the symmetric rank 2 operation + + A := alpha*x*y' + alpha*y*x' + A, + + where alpha is a scalar, x and y are n element vectors and A is an n + by n symmetric matrix. + + Parameters + ========== + + UPLO - CHARACTER*1. + On entry, UPLO specifies whether the upper or lower + triangular part of the array A is to be referenced as + follows: + + UPLO = 'U' or 'u' Only the upper triangular part of A + is to be referenced. + + UPLO = 'L' or 'l' Only the lower triangular part of A + is to be referenced. + + Unchanged on exit. + + N - INTEGER. + On entry, N specifies the order of the matrix A. + N must be at least zero. + Unchanged on exit. + + ALPHA - DOUBLE PRECISION. + On entry, ALPHA specifies the scalar alpha. + Unchanged on exit. + + X - DOUBLE PRECISION array of dimension at least + ( 1 + ( n - 1 )*abs( INCX ) ). + Before entry, the incremented array X must contain the n + element vector x. + Unchanged on exit. + + INCX - INTEGER. + On entry, INCX specifies the increment for the elements of + X. INCX must not be zero. + Unchanged on exit. + + Y - DOUBLE PRECISION array of dimension at least + ( 1 + ( n - 1 )*abs( INCY ) ). + Before entry, the incremented array Y must contain the n + element vector y. + Unchanged on exit. + + INCY - INTEGER. + On entry, INCY specifies the increment for the elements of + Y. INCY must not be zero. + Unchanged on exit. + + A - DOUBLE PRECISION array of DIMENSION ( LDA, n ). + Before entry with UPLO = 'U' or 'u', the leading n by n + upper triangular part of the array A must contain the upper + triangular part of the symmetric matrix and the strictly + lower triangular part of A is not referenced. On exit, the + upper triangular part of the array A is overwritten by the + upper triangular part of the updated matrix. + Before entry with UPLO = 'L' or 'l', the leading n by n + lower triangular part of the array A must contain the lower + triangular part of the symmetric matrix and the strictly + upper triangular part of A is not referenced. On exit, the + lower triangular part of the array A is overwritten by the + lower triangular part of the updated matrix. + + LDA - INTEGER. + On entry, LDA specifies the first dimension of A as declared + in the calling (sub) program. LDA must be at least + max( 1, n ). + Unchanged on exit. + + + Level 2 Blas routine. + + -- Written on 22-October-1986. + Jack Dongarra, Argonne National Lab. + Jeremy Du Croz, Nag Central Office. + Sven Hammarling, Nag Central Office. + Richard Hanson, Sandia National Labs. + + + Test the input parameters. +*/ + + /* Parameter adjustments */ + --x; + --y; + a_dim1 = *lda; + a_offset = 1 + a_dim1; + a -= a_offset; + + /* Function Body */ + info = 0; + if (! lsame_(uplo, "U") && ! lsame_(uplo, "L")) { + info = 1; + } else if (*n < 0) { + info = 2; + } else if (*incx == 0) { + info = 5; + } else if (*incy == 0) { + info = 7; + } else if (*lda < max(1,*n)) { + info = 9; + } + if (info != 0) { + xerbla_("DSYR2 ", &info); + return 0; + } + +/* Quick return if possible. */ + + if ((*n == 0) || (*alpha == 0.)) { + return 0; + } + +/* + Set up the start points in X and Y if the increments are not both + unity. +*/ + + if ((*incx != 1) || (*incy != 1)) { + if (*incx > 0) { + kx = 1; + } else { + kx = 1 - (*n - 1) * *incx; + } + if (*incy > 0) { + ky = 1; + } else { + ky = 1 - (*n - 1) * *incy; + } + jx = kx; + jy = ky; + } + +/* + Start the operations. In this version the elements of A are + accessed sequentially with one pass through the triangular part + of A. +*/ + + if (lsame_(uplo, "U")) { + +/* Form A when A is stored in the upper triangle. */ + + if (*incx == 1 && *incy == 1) { + i__1 = *n; + for (j = 1; j <= i__1; ++j) { + if ((x[j] != 0.) || (y[j] != 0.)) { + temp1 = *alpha * y[j]; + temp2 = *alpha * x[j]; + i__2 = j; + for (i__ = 1; i__ <= i__2; ++i__) { + a[i__ + j * a_dim1] = a[i__ + j * a_dim1] + x[i__] * + temp1 + y[i__] * temp2; +/* L10: */ + } + } +/* L20: */ + } + } else { + i__1 = *n; + for (j = 1; j <= i__1; ++j) { + if ((x[jx] != 0.) || (y[jy] != 0.)) { + temp1 = *alpha * y[jy]; + temp2 = *alpha * x[jx]; + ix = kx; + iy = ky; + i__2 = j; + for (i__ = 1; i__ <= i__2; ++i__) { + a[i__ + j * a_dim1] = a[i__ + j * a_dim1] + x[ix] * + temp1 + y[iy] * temp2; + ix += *incx; + iy += *incy; +/* L30: */ + } + } + jx += *incx; + jy += *incy; +/* L40: */ + } + } + } else { + +/* Form A when A is stored in the lower triangle. */ + + if (*incx == 1 && *incy == 1) { + i__1 = *n; + for (j = 1; j <= i__1; ++j) { + if ((x[j] != 0.) || (y[j] != 0.)) { + temp1 = *alpha * y[j]; + temp2 = *alpha * x[j]; + i__2 = *n; + for (i__ = j; i__ <= i__2; ++i__) { + a[i__ + j * a_dim1] = a[i__ + j * a_dim1] + x[i__] * + temp1 + y[i__] * temp2; +/* L50: */ + } + } +/* L60: */ + } + } else { + i__1 = *n; + for (j = 1; j <= i__1; ++j) { + if ((x[jx] != 0.) || (y[jy] != 0.)) { + temp1 = *alpha * y[jy]; + temp2 = *alpha * x[jx]; + ix = jx; + iy = jy; + i__2 = *n; + for (i__ = j; i__ <= i__2; ++i__) { + a[i__ + j * a_dim1] = a[i__ + j * a_dim1] + x[ix] * + temp1 + y[iy] * temp2; + ix += *incx; + iy += *incy; +/* L70: */ + } + } + jx += *incx; + jy += *incy; +/* L80: */ + } + } + } + + return 0; + +/* End of DSYR2 . */ + +} /* dsyr2_ */ + +/* Subroutine */ int dsyr2k_(char *uplo, char *trans, integer *n, integer *k, + doublereal *alpha, doublereal *a, integer *lda, doublereal *b, + integer *ldb, doublereal *beta, doublereal *c__, integer *ldc) +{ + /* System generated locals */ + integer a_dim1, a_offset, b_dim1, b_offset, c_dim1, c_offset, i__1, i__2, + i__3; + + /* Local variables */ + static integer i__, j, l, info; + static doublereal temp1, temp2; + extern logical lsame_(char *, char *); + static integer nrowa; + static logical upper; + extern /* Subroutine */ int xerbla_(char *, integer *); + + +/* + Purpose + ======= + + DSYR2K performs one of the symmetric rank 2k operations + + C := alpha*A*B' + alpha*B*A' + beta*C, + + or + + C := alpha*A'*B + alpha*B'*A + beta*C, + + where alpha and beta are scalars, C is an n by n symmetric matrix + and A and B are n by k matrices in the first case and k by n + matrices in the second case. + + Parameters + ========== + + UPLO - CHARACTER*1. + On entry, UPLO specifies whether the upper or lower + triangular part of the array C is to be referenced as + follows: + + UPLO = 'U' or 'u' Only the upper triangular part of C + is to be referenced. + + UPLO = 'L' or 'l' Only the lower triangular part of C + is to be referenced. + + Unchanged on exit. + + TRANS - CHARACTER*1. + On entry, TRANS specifies the operation to be performed as + follows: + + TRANS = 'N' or 'n' C := alpha*A*B' + alpha*B*A' + + beta*C. + + TRANS = 'T' or 't' C := alpha*A'*B + alpha*B'*A + + beta*C. + + TRANS = 'C' or 'c' C := alpha*A'*B + alpha*B'*A + + beta*C. + + Unchanged on exit. + + N - INTEGER. + On entry, N specifies the order of the matrix C. N must be + at least zero. + Unchanged on exit. + + K - INTEGER. + On entry with TRANS = 'N' or 'n', K specifies the number + of columns of the matrices A and B, and on entry with + TRANS = 'T' or 't' or 'C' or 'c', K specifies the number + of rows of the matrices A and B. K must be at least zero. + Unchanged on exit. + + ALPHA - DOUBLE PRECISION. + On entry, ALPHA specifies the scalar alpha. + Unchanged on exit. + + A - DOUBLE PRECISION array of DIMENSION ( LDA, ka ), where ka is + k when TRANS = 'N' or 'n', and is n otherwise. + Before entry with TRANS = 'N' or 'n', the leading n by k + part of the array A must contain the matrix A, otherwise + the leading k by n part of the array A must contain the + matrix A. + Unchanged on exit. + + LDA - INTEGER. + On entry, LDA specifies the first dimension of A as declared + in the calling (sub) program. When TRANS = 'N' or 'n' + then LDA must be at least max( 1, n ), otherwise LDA must + be at least max( 1, k ). + Unchanged on exit. + + B - DOUBLE PRECISION array of DIMENSION ( LDB, kb ), where kb is + k when TRANS = 'N' or 'n', and is n otherwise. + Before entry with TRANS = 'N' or 'n', the leading n by k + part of the array B must contain the matrix B, otherwise + the leading k by n part of the array B must contain the + matrix B. + Unchanged on exit. + + LDB - INTEGER. + On entry, LDB specifies the first dimension of B as declared + in the calling (sub) program. When TRANS = 'N' or 'n' + then LDB must be at least max( 1, n ), otherwise LDB must + be at least max( 1, k ). + Unchanged on exit. + + BETA - DOUBLE PRECISION. + On entry, BETA specifies the scalar beta. + Unchanged on exit. + + C - DOUBLE PRECISION array of DIMENSION ( LDC, n ). + Before entry with UPLO = 'U' or 'u', the leading n by n + upper triangular part of the array C must contain the upper + triangular part of the symmetric matrix and the strictly + lower triangular part of C is not referenced. On exit, the + upper triangular part of the array C is overwritten by the + upper triangular part of the updated matrix. + Before entry with UPLO = 'L' or 'l', the leading n by n + lower triangular part of the array C must contain the lower + triangular part of the symmetric matrix and the strictly + upper triangular part of C is not referenced. On exit, the + lower triangular part of the array C is overwritten by the + lower triangular part of the updated matrix. + + LDC - INTEGER. + On entry, LDC specifies the first dimension of C as declared + in the calling (sub) program. LDC must be at least + max( 1, n ). + Unchanged on exit. + + + Level 3 Blas routine. + + + -- Written on 8-February-1989. + Jack Dongarra, Argonne National Laboratory. + Iain Duff, AERE Harwell. + Jeremy Du Croz, Numerical Algorithms Group Ltd. + Sven Hammarling, Numerical Algorithms Group Ltd. + + + Test the input parameters. +*/ + + /* Parameter adjustments */ + a_dim1 = *lda; + a_offset = 1 + a_dim1; + a -= a_offset; + b_dim1 = *ldb; + b_offset = 1 + b_dim1; + b -= b_offset; + c_dim1 = *ldc; + c_offset = 1 + c_dim1; + c__ -= c_offset; + + /* Function Body */ + if (lsame_(trans, "N")) { + nrowa = *n; + } else { + nrowa = *k; + } + upper = lsame_(uplo, "U"); + + info = 0; + if (! upper && ! lsame_(uplo, "L")) { + info = 1; + } else if (! lsame_(trans, "N") && ! lsame_(trans, + "T") && ! lsame_(trans, "C")) { + info = 2; + } else if (*n < 0) { + info = 3; + } else if (*k < 0) { + info = 4; + } else if (*lda < max(1,nrowa)) { + info = 7; + } else if (*ldb < max(1,nrowa)) { + info = 9; + } else if (*ldc < max(1,*n)) { + info = 12; + } + if (info != 0) { + xerbla_("DSYR2K", &info); + return 0; + } + +/* Quick return if possible. */ + + if ((*n == 0) || (((*alpha == 0.) || (*k == 0)) && *beta == 1.)) { + return 0; + } + +/* And when alpha.eq.zero. */ + + if (*alpha == 0.) { + if (upper) { + if (*beta == 0.) { + i__1 = *n; + for (j = 1; j <= i__1; ++j) { + i__2 = j; + for (i__ = 1; i__ <= i__2; ++i__) { + c__[i__ + j * c_dim1] = 0.; +/* L10: */ + } +/* L20: */ + } + } else { + i__1 = *n; + for (j = 1; j <= i__1; ++j) { + i__2 = j; + for (i__ = 1; i__ <= i__2; ++i__) { + c__[i__ + j * c_dim1] = *beta * c__[i__ + j * c_dim1]; +/* L30: */ + } +/* L40: */ + } + } + } else { + if (*beta == 0.) { + i__1 = *n; + for (j = 1; j <= i__1; ++j) { + i__2 = *n; + for (i__ = j; i__ <= i__2; ++i__) { + c__[i__ + j * c_dim1] = 0.; +/* L50: */ + } +/* L60: */ + } + } else { + i__1 = *n; + for (j = 1; j <= i__1; ++j) { + i__2 = *n; + for (i__ = j; i__ <= i__2; ++i__) { + c__[i__ + j * c_dim1] = *beta * c__[i__ + j * c_dim1]; +/* L70: */ + } +/* L80: */ + } + } + } + return 0; + } + +/* Start the operations. */ + + if (lsame_(trans, "N")) { + +/* Form C := alpha*A*B' + alpha*B*A' + C. */ + + if (upper) { + i__1 = *n; + for (j = 1; j <= i__1; ++j) { + if (*beta == 0.) { + i__2 = j; + for (i__ = 1; i__ <= i__2; ++i__) { + c__[i__ + j * c_dim1] = 0.; +/* L90: */ + } + } else if (*beta != 1.) { + i__2 = j; + for (i__ = 1; i__ <= i__2; ++i__) { + c__[i__ + j * c_dim1] = *beta * c__[i__ + j * c_dim1]; +/* L100: */ + } + } + i__2 = *k; + for (l = 1; l <= i__2; ++l) { + if ((a[j + l * a_dim1] != 0.) || (b[j + l * b_dim1] != 0.) + ) { + temp1 = *alpha * b[j + l * b_dim1]; + temp2 = *alpha * a[j + l * a_dim1]; + i__3 = j; + for (i__ = 1; i__ <= i__3; ++i__) { + c__[i__ + j * c_dim1] = c__[i__ + j * c_dim1] + a[ + i__ + l * a_dim1] * temp1 + b[i__ + l * + b_dim1] * temp2; +/* L110: */ + } + } +/* L120: */ + } +/* L130: */ + } + } else { + i__1 = *n; + for (j = 1; j <= i__1; ++j) { + if (*beta == 0.) { + i__2 = *n; + for (i__ = j; i__ <= i__2; ++i__) { + c__[i__ + j * c_dim1] = 0.; +/* L140: */ + } + } else if (*beta != 1.) { + i__2 = *n; + for (i__ = j; i__ <= i__2; ++i__) { + c__[i__ + j * c_dim1] = *beta * c__[i__ + j * c_dim1]; +/* L150: */ + } + } + i__2 = *k; + for (l = 1; l <= i__2; ++l) { + if ((a[j + l * a_dim1] != 0.) || (b[j + l * b_dim1] != 0.) + ) { + temp1 = *alpha * b[j + l * b_dim1]; + temp2 = *alpha * a[j + l * a_dim1]; + i__3 = *n; + for (i__ = j; i__ <= i__3; ++i__) { + c__[i__ + j * c_dim1] = c__[i__ + j * c_dim1] + a[ + i__ + l * a_dim1] * temp1 + b[i__ + l * + b_dim1] * temp2; +/* L160: */ + } + } +/* L170: */ + } +/* L180: */ + } + } + } else { + +/* Form C := alpha*A'*B + alpha*B'*A + C. */ + + if (upper) { + i__1 = *n; + for (j = 1; j <= i__1; ++j) { + i__2 = j; + for (i__ = 1; i__ <= i__2; ++i__) { + temp1 = 0.; + temp2 = 0.; + i__3 = *k; + for (l = 1; l <= i__3; ++l) { + temp1 += a[l + i__ * a_dim1] * b[l + j * b_dim1]; + temp2 += b[l + i__ * b_dim1] * a[l + j * a_dim1]; +/* L190: */ + } + if (*beta == 0.) { + c__[i__ + j * c_dim1] = *alpha * temp1 + *alpha * + temp2; + } else { + c__[i__ + j * c_dim1] = *beta * c__[i__ + j * c_dim1] + + *alpha * temp1 + *alpha * temp2; + } +/* L200: */ + } +/* L210: */ + } + } else { + i__1 = *n; + for (j = 1; j <= i__1; ++j) { + i__2 = *n; + for (i__ = j; i__ <= i__2; ++i__) { + temp1 = 0.; + temp2 = 0.; + i__3 = *k; + for (l = 1; l <= i__3; ++l) { + temp1 += a[l + i__ * a_dim1] * b[l + j * b_dim1]; + temp2 += b[l + i__ * b_dim1] * a[l + j * a_dim1]; +/* L220: */ + } + if (*beta == 0.) { + c__[i__ + j * c_dim1] = *alpha * temp1 + *alpha * + temp2; + } else { + c__[i__ + j * c_dim1] = *beta * c__[i__ + j * c_dim1] + + *alpha * temp1 + *alpha * temp2; + } +/* L230: */ + } +/* L240: */ + } + } + } + + return 0; + +/* End of DSYR2K. */ + +} /* dsyr2k_ */ + +/* Subroutine */ int dsyrk_(char *uplo, char *trans, integer *n, integer *k, + doublereal *alpha, doublereal *a, integer *lda, doublereal *beta, + doublereal *c__, integer *ldc) +{ + /* System generated locals */ + integer a_dim1, a_offset, c_dim1, c_offset, i__1, i__2, i__3; + + /* Local variables */ + static integer i__, j, l, info; + static doublereal temp; + extern logical lsame_(char *, char *); + static integer nrowa; + static logical upper; + extern /* Subroutine */ int xerbla_(char *, integer *); + + +/* + Purpose + ======= + + DSYRK performs one of the symmetric rank k operations + + C := alpha*A*A' + beta*C, + + or + + C := alpha*A'*A + beta*C, + + where alpha and beta are scalars, C is an n by n symmetric matrix + and A is an n by k matrix in the first case and a k by n matrix + in the second case. + + Parameters + ========== + + UPLO - CHARACTER*1. + On entry, UPLO specifies whether the upper or lower + triangular part of the array C is to be referenced as + follows: + + UPLO = 'U' or 'u' Only the upper triangular part of C + is to be referenced. + + UPLO = 'L' or 'l' Only the lower triangular part of C + is to be referenced. + + Unchanged on exit. + + TRANS - CHARACTER*1. + On entry, TRANS specifies the operation to be performed as + follows: + + TRANS = 'N' or 'n' C := alpha*A*A' + beta*C. + + TRANS = 'T' or 't' C := alpha*A'*A + beta*C. + + TRANS = 'C' or 'c' C := alpha*A'*A + beta*C. + + Unchanged on exit. + + N - INTEGER. + On entry, N specifies the order of the matrix C. N must be + at least zero. + Unchanged on exit. + + K - INTEGER. + On entry with TRANS = 'N' or 'n', K specifies the number + of columns of the matrix A, and on entry with + TRANS = 'T' or 't' or 'C' or 'c', K specifies the number + of rows of the matrix A. K must be at least zero. + Unchanged on exit. + + ALPHA - DOUBLE PRECISION. + On entry, ALPHA specifies the scalar alpha. + Unchanged on exit. + + A - DOUBLE PRECISION array of DIMENSION ( LDA, ka ), where ka is + k when TRANS = 'N' or 'n', and is n otherwise. + Before entry with TRANS = 'N' or 'n', the leading n by k + part of the array A must contain the matrix A, otherwise + the leading k by n part of the array A must contain the + matrix A. + Unchanged on exit. + + LDA - INTEGER. + On entry, LDA specifies the first dimension of A as declared + in the calling (sub) program. When TRANS = 'N' or 'n' + then LDA must be at least max( 1, n ), otherwise LDA must + be at least max( 1, k ). + Unchanged on exit. + + BETA - DOUBLE PRECISION. + On entry, BETA specifies the scalar beta. + Unchanged on exit. + + C - DOUBLE PRECISION array of DIMENSION ( LDC, n ). + Before entry with UPLO = 'U' or 'u', the leading n by n + upper triangular part of the array C must contain the upper + triangular part of the symmetric matrix and the strictly + lower triangular part of C is not referenced. On exit, the + upper triangular part of the array C is overwritten by the + upper triangular part of the updated matrix. + Before entry with UPLO = 'L' or 'l', the leading n by n + lower triangular part of the array C must contain the lower + triangular part of the symmetric matrix and the strictly + upper triangular part of C is not referenced. On exit, the + lower triangular part of the array C is overwritten by the + lower triangular part of the updated matrix. + + LDC - INTEGER. + On entry, LDC specifies the first dimension of C as declared + in the calling (sub) program. LDC must be at least + max( 1, n ). + Unchanged on exit. + + + Level 3 Blas routine. + + -- Written on 8-February-1989. + Jack Dongarra, Argonne National Laboratory. + Iain Duff, AERE Harwell. + Jeremy Du Croz, Numerical Algorithms Group Ltd. + Sven Hammarling, Numerical Algorithms Group Ltd. + + + Test the input parameters. +*/ + + /* Parameter adjustments */ + a_dim1 = *lda; + a_offset = 1 + a_dim1; + a -= a_offset; + c_dim1 = *ldc; + c_offset = 1 + c_dim1; + c__ -= c_offset; + + /* Function Body */ + if (lsame_(trans, "N")) { + nrowa = *n; + } else { + nrowa = *k; + } + upper = lsame_(uplo, "U"); + + info = 0; + if (! upper && ! lsame_(uplo, "L")) { + info = 1; + } else if (! lsame_(trans, "N") && ! lsame_(trans, + "T") && ! lsame_(trans, "C")) { + info = 2; + } else if (*n < 0) { + info = 3; + } else if (*k < 0) { + info = 4; + } else if (*lda < max(1,nrowa)) { + info = 7; + } else if (*ldc < max(1,*n)) { + info = 10; + } + if (info != 0) { + xerbla_("DSYRK ", &info); + return 0; + } + +/* Quick return if possible. */ + + if ((*n == 0) || (((*alpha == 0.) || (*k == 0)) && *beta == 1.)) { + return 0; + } + +/* And when alpha.eq.zero. */ + + if (*alpha == 0.) { + if (upper) { + if (*beta == 0.) { + i__1 = *n; + for (j = 1; j <= i__1; ++j) { + i__2 = j; + for (i__ = 1; i__ <= i__2; ++i__) { + c__[i__ + j * c_dim1] = 0.; +/* L10: */ + } +/* L20: */ + } + } else { + i__1 = *n; + for (j = 1; j <= i__1; ++j) { + i__2 = j; + for (i__ = 1; i__ <= i__2; ++i__) { + c__[i__ + j * c_dim1] = *beta * c__[i__ + j * c_dim1]; +/* L30: */ + } +/* L40: */ + } + } + } else { + if (*beta == 0.) { + i__1 = *n; + for (j = 1; j <= i__1; ++j) { + i__2 = *n; + for (i__ = j; i__ <= i__2; ++i__) { + c__[i__ + j * c_dim1] = 0.; +/* L50: */ + } +/* L60: */ + } + } else { + i__1 = *n; + for (j = 1; j <= i__1; ++j) { + i__2 = *n; + for (i__ = j; i__ <= i__2; ++i__) { + c__[i__ + j * c_dim1] = *beta * c__[i__ + j * c_dim1]; +/* L70: */ + } +/* L80: */ + } + } + } + return 0; + } + +/* Start the operations. */ + + if (lsame_(trans, "N")) { + +/* Form C := alpha*A*A' + beta*C. */ + + if (upper) { + i__1 = *n; + for (j = 1; j <= i__1; ++j) { + if (*beta == 0.) { + i__2 = j; + for (i__ = 1; i__ <= i__2; ++i__) { + c__[i__ + j * c_dim1] = 0.; +/* L90: */ + } + } else if (*beta != 1.) { + i__2 = j; + for (i__ = 1; i__ <= i__2; ++i__) { + c__[i__ + j * c_dim1] = *beta * c__[i__ + j * c_dim1]; +/* L100: */ + } + } + i__2 = *k; + for (l = 1; l <= i__2; ++l) { + if (a[j + l * a_dim1] != 0.) { + temp = *alpha * a[j + l * a_dim1]; + i__3 = j; + for (i__ = 1; i__ <= i__3; ++i__) { + c__[i__ + j * c_dim1] += temp * a[i__ + l * + a_dim1]; +/* L110: */ + } + } +/* L120: */ + } +/* L130: */ + } + } else { + i__1 = *n; + for (j = 1; j <= i__1; ++j) { + if (*beta == 0.) { + i__2 = *n; + for (i__ = j; i__ <= i__2; ++i__) { + c__[i__ + j * c_dim1] = 0.; +/* L140: */ + } + } else if (*beta != 1.) { + i__2 = *n; + for (i__ = j; i__ <= i__2; ++i__) { + c__[i__ + j * c_dim1] = *beta * c__[i__ + j * c_dim1]; +/* L150: */ + } + } + i__2 = *k; + for (l = 1; l <= i__2; ++l) { + if (a[j + l * a_dim1] != 0.) { + temp = *alpha * a[j + l * a_dim1]; + i__3 = *n; + for (i__ = j; i__ <= i__3; ++i__) { + c__[i__ + j * c_dim1] += temp * a[i__ + l * + a_dim1]; +/* L160: */ + } + } +/* L170: */ + } +/* L180: */ + } + } + } else { + +/* Form C := alpha*A'*A + beta*C. */ + + if (upper) { + i__1 = *n; + for (j = 1; j <= i__1; ++j) { + i__2 = j; + for (i__ = 1; i__ <= i__2; ++i__) { + temp = 0.; + i__3 = *k; + for (l = 1; l <= i__3; ++l) { + temp += a[l + i__ * a_dim1] * a[l + j * a_dim1]; +/* L190: */ + } + if (*beta == 0.) { + c__[i__ + j * c_dim1] = *alpha * temp; + } else { + c__[i__ + j * c_dim1] = *alpha * temp + *beta * c__[ + i__ + j * c_dim1]; + } +/* L200: */ + } +/* L210: */ + } + } else { + i__1 = *n; + for (j = 1; j <= i__1; ++j) { + i__2 = *n; + for (i__ = j; i__ <= i__2; ++i__) { + temp = 0.; + i__3 = *k; + for (l = 1; l <= i__3; ++l) { + temp += a[l + i__ * a_dim1] * a[l + j * a_dim1]; +/* L220: */ + } + if (*beta == 0.) { + c__[i__ + j * c_dim1] = *alpha * temp; + } else { + c__[i__ + j * c_dim1] = *alpha * temp + *beta * c__[ + i__ + j * c_dim1]; + } +/* L230: */ + } +/* L240: */ + } + } + } + + return 0; + +/* End of DSYRK . */ + +} /* dsyrk_ */ + +/* Subroutine */ int dtrmm_(char *side, char *uplo, char *transa, char *diag, + integer *m, integer *n, doublereal *alpha, doublereal *a, integer * + lda, doublereal *b, integer *ldb) +{ + /* System generated locals */ + integer a_dim1, a_offset, b_dim1, b_offset, i__1, i__2, i__3; + + /* Local variables */ + static integer i__, j, k, info; + static doublereal temp; + static logical lside; + extern logical lsame_(char *, char *); + static integer nrowa; + static logical upper; + extern /* Subroutine */ int xerbla_(char *, integer *); + static logical nounit; + + +/* + Purpose + ======= + + DTRMM performs one of the matrix-matrix operations + + B := alpha*op( A )*B, or B := alpha*B*op( A ), + + where alpha is a scalar, B is an m by n matrix, A is a unit, or + non-unit, upper or lower triangular matrix and op( A ) is one of + + op( A ) = A or op( A ) = A'. + + Parameters + ========== + + SIDE - CHARACTER*1. + On entry, SIDE specifies whether op( A ) multiplies B from + the left or right as follows: + + SIDE = 'L' or 'l' B := alpha*op( A )*B. + + SIDE = 'R' or 'r' B := alpha*B*op( A ). + + Unchanged on exit. + + UPLO - CHARACTER*1. + On entry, UPLO specifies whether the matrix A is an upper or + lower triangular matrix as follows: + + UPLO = 'U' or 'u' A is an upper triangular matrix. + + UPLO = 'L' or 'l' A is a lower triangular matrix. + + Unchanged on exit. + + TRANSA - CHARACTER*1. + On entry, TRANSA specifies the form of op( A ) to be used in + the matrix multiplication as follows: + + TRANSA = 'N' or 'n' op( A ) = A. + + TRANSA = 'T' or 't' op( A ) = A'. + + TRANSA = 'C' or 'c' op( A ) = A'. + + Unchanged on exit. + + DIAG - CHARACTER*1. + On entry, DIAG specifies whether or not A is unit triangular + as follows: + + DIAG = 'U' or 'u' A is assumed to be unit triangular. + + DIAG = 'N' or 'n' A is not assumed to be unit + triangular. + + Unchanged on exit. + + M - INTEGER. + On entry, M specifies the number of rows of B. M must be at + least zero. + Unchanged on exit. + + N - INTEGER. + On entry, N specifies the number of columns of B. N must be + at least zero. + Unchanged on exit. + + ALPHA - DOUBLE PRECISION. + On entry, ALPHA specifies the scalar alpha. When alpha is + zero then A is not referenced and B need not be set before + entry. + Unchanged on exit. + + A - DOUBLE PRECISION array of DIMENSION ( LDA, k ), where k is m + when SIDE = 'L' or 'l' and is n when SIDE = 'R' or 'r'. + Before entry with UPLO = 'U' or 'u', the leading k by k + upper triangular part of the array A must contain the upper + triangular matrix and the strictly lower triangular part of + A is not referenced. + Before entry with UPLO = 'L' or 'l', the leading k by k + lower triangular part of the array A must contain the lower + triangular matrix and the strictly upper triangular part of + A is not referenced. + Note that when DIAG = 'U' or 'u', the diagonal elements of + A are not referenced either, but are assumed to be unity. + Unchanged on exit. + + LDA - INTEGER. + On entry, LDA specifies the first dimension of A as declared + in the calling (sub) program. When SIDE = 'L' or 'l' then + LDA must be at least max( 1, m ), when SIDE = 'R' or 'r' + then LDA must be at least max( 1, n ). + Unchanged on exit. + + B - DOUBLE PRECISION array of DIMENSION ( LDB, n ). + Before entry, the leading m by n part of the array B must + contain the matrix B, and on exit is overwritten by the + transformed matrix. + + LDB - INTEGER. + On entry, LDB specifies the first dimension of B as declared + in the calling (sub) program. LDB must be at least + max( 1, m ). + Unchanged on exit. + + + Level 3 Blas routine. + + -- Written on 8-February-1989. + Jack Dongarra, Argonne National Laboratory. + Iain Duff, AERE Harwell. + Jeremy Du Croz, Numerical Algorithms Group Ltd. + Sven Hammarling, Numerical Algorithms Group Ltd. + + + Test the input parameters. +*/ + + /* Parameter adjustments */ + a_dim1 = *lda; + a_offset = 1 + a_dim1; + a -= a_offset; + b_dim1 = *ldb; + b_offset = 1 + b_dim1; + b -= b_offset; + + /* Function Body */ + lside = lsame_(side, "L"); + if (lside) { + nrowa = *m; + } else { + nrowa = *n; + } + nounit = lsame_(diag, "N"); + upper = lsame_(uplo, "U"); + + info = 0; + if (! lside && ! lsame_(side, "R")) { + info = 1; + } else if (! upper && ! lsame_(uplo, "L")) { + info = 2; + } else if (! lsame_(transa, "N") && ! lsame_(transa, + "T") && ! lsame_(transa, "C")) { + info = 3; + } else if (! lsame_(diag, "U") && ! lsame_(diag, + "N")) { + info = 4; + } else if (*m < 0) { + info = 5; + } else if (*n < 0) { + info = 6; + } else if (*lda < max(1,nrowa)) { + info = 9; + } else if (*ldb < max(1,*m)) { + info = 11; + } + if (info != 0) { + xerbla_("DTRMM ", &info); + return 0; + } + +/* Quick return if possible. */ + + if (*n == 0) { + return 0; + } + +/* And when alpha.eq.zero. */ + + if (*alpha == 0.) { + i__1 = *n; + for (j = 1; j <= i__1; ++j) { + i__2 = *m; + for (i__ = 1; i__ <= i__2; ++i__) { + b[i__ + j * b_dim1] = 0.; +/* L10: */ + } +/* L20: */ + } + return 0; + } + +/* Start the operations. */ + + if (lside) { + if (lsame_(transa, "N")) { + +/* Form B := alpha*A*B. */ + + if (upper) { + i__1 = *n; + for (j = 1; j <= i__1; ++j) { + i__2 = *m; + for (k = 1; k <= i__2; ++k) { + if (b[k + j * b_dim1] != 0.) { + temp = *alpha * b[k + j * b_dim1]; + i__3 = k - 1; + for (i__ = 1; i__ <= i__3; ++i__) { + b[i__ + j * b_dim1] += temp * a[i__ + k * + a_dim1]; +/* L30: */ + } + if (nounit) { + temp *= a[k + k * a_dim1]; + } + b[k + j * b_dim1] = temp; + } +/* L40: */ + } +/* L50: */ + } + } else { + i__1 = *n; + for (j = 1; j <= i__1; ++j) { + for (k = *m; k >= 1; --k) { + if (b[k + j * b_dim1] != 0.) { + temp = *alpha * b[k + j * b_dim1]; + b[k + j * b_dim1] = temp; + if (nounit) { + b[k + j * b_dim1] *= a[k + k * a_dim1]; + } + i__2 = *m; + for (i__ = k + 1; i__ <= i__2; ++i__) { + b[i__ + j * b_dim1] += temp * a[i__ + k * + a_dim1]; +/* L60: */ + } + } +/* L70: */ + } +/* L80: */ + } + } + } else { + +/* Form B := alpha*A'*B. */ + + if (upper) { + i__1 = *n; + for (j = 1; j <= i__1; ++j) { + for (i__ = *m; i__ >= 1; --i__) { + temp = b[i__ + j * b_dim1]; + if (nounit) { + temp *= a[i__ + i__ * a_dim1]; + } + i__2 = i__ - 1; + for (k = 1; k <= i__2; ++k) { + temp += a[k + i__ * a_dim1] * b[k + j * b_dim1]; +/* L90: */ + } + b[i__ + j * b_dim1] = *alpha * temp; +/* L100: */ + } +/* L110: */ + } + } else { + i__1 = *n; + for (j = 1; j <= i__1; ++j) { + i__2 = *m; + for (i__ = 1; i__ <= i__2; ++i__) { + temp = b[i__ + j * b_dim1]; + if (nounit) { + temp *= a[i__ + i__ * a_dim1]; + } + i__3 = *m; + for (k = i__ + 1; k <= i__3; ++k) { + temp += a[k + i__ * a_dim1] * b[k + j * b_dim1]; +/* L120: */ + } + b[i__ + j * b_dim1] = *alpha * temp; +/* L130: */ + } +/* L140: */ + } + } + } + } else { + if (lsame_(transa, "N")) { + +/* Form B := alpha*B*A. */ + + if (upper) { + for (j = *n; j >= 1; --j) { + temp = *alpha; + if (nounit) { + temp *= a[j + j * a_dim1]; + } + i__1 = *m; + for (i__ = 1; i__ <= i__1; ++i__) { + b[i__ + j * b_dim1] = temp * b[i__ + j * b_dim1]; +/* L150: */ + } + i__1 = j - 1; + for (k = 1; k <= i__1; ++k) { + if (a[k + j * a_dim1] != 0.) { + temp = *alpha * a[k + j * a_dim1]; + i__2 = *m; + for (i__ = 1; i__ <= i__2; ++i__) { + b[i__ + j * b_dim1] += temp * b[i__ + k * + b_dim1]; +/* L160: */ + } + } +/* L170: */ + } +/* L180: */ + } + } else { + i__1 = *n; + for (j = 1; j <= i__1; ++j) { + temp = *alpha; + if (nounit) { + temp *= a[j + j * a_dim1]; + } + i__2 = *m; + for (i__ = 1; i__ <= i__2; ++i__) { + b[i__ + j * b_dim1] = temp * b[i__ + j * b_dim1]; +/* L190: */ + } + i__2 = *n; + for (k = j + 1; k <= i__2; ++k) { + if (a[k + j * a_dim1] != 0.) { + temp = *alpha * a[k + j * a_dim1]; + i__3 = *m; + for (i__ = 1; i__ <= i__3; ++i__) { + b[i__ + j * b_dim1] += temp * b[i__ + k * + b_dim1]; +/* L200: */ + } + } +/* L210: */ + } +/* L220: */ + } + } + } else { + +/* Form B := alpha*B*A'. */ + + if (upper) { + i__1 = *n; + for (k = 1; k <= i__1; ++k) { + i__2 = k - 1; + for (j = 1; j <= i__2; ++j) { + if (a[j + k * a_dim1] != 0.) { + temp = *alpha * a[j + k * a_dim1]; + i__3 = *m; + for (i__ = 1; i__ <= i__3; ++i__) { + b[i__ + j * b_dim1] += temp * b[i__ + k * + b_dim1]; +/* L230: */ + } + } +/* L240: */ + } + temp = *alpha; + if (nounit) { + temp *= a[k + k * a_dim1]; + } + if (temp != 1.) { + i__2 = *m; + for (i__ = 1; i__ <= i__2; ++i__) { + b[i__ + k * b_dim1] = temp * b[i__ + k * b_dim1]; +/* L250: */ + } + } +/* L260: */ + } + } else { + for (k = *n; k >= 1; --k) { + i__1 = *n; + for (j = k + 1; j <= i__1; ++j) { + if (a[j + k * a_dim1] != 0.) { + temp = *alpha * a[j + k * a_dim1]; + i__2 = *m; + for (i__ = 1; i__ <= i__2; ++i__) { + b[i__ + j * b_dim1] += temp * b[i__ + k * + b_dim1]; +/* L270: */ + } + } +/* L280: */ + } + temp = *alpha; + if (nounit) { + temp *= a[k + k * a_dim1]; + } + if (temp != 1.) { + i__1 = *m; + for (i__ = 1; i__ <= i__1; ++i__) { + b[i__ + k * b_dim1] = temp * b[i__ + k * b_dim1]; +/* L290: */ + } + } +/* L300: */ + } + } + } + } + + return 0; + +/* End of DTRMM . */ + +} /* dtrmm_ */ + +/* Subroutine */ int dtrmv_(char *uplo, char *trans, char *diag, integer *n, + doublereal *a, integer *lda, doublereal *x, integer *incx) +{ + /* System generated locals */ + integer a_dim1, a_offset, i__1, i__2; + + /* Local variables */ + static integer i__, j, ix, jx, kx, info; + static doublereal temp; + extern logical lsame_(char *, char *); + extern /* Subroutine */ int xerbla_(char *, integer *); + static logical nounit; + + +/* + Purpose + ======= + + DTRMV performs one of the matrix-vector operations + + x := A*x, or x := A'*x, + + where x is an n element vector and A is an n by n unit, or non-unit, + upper or lower triangular matrix. + + Parameters + ========== + + UPLO - CHARACTER*1. + On entry, UPLO specifies whether the matrix is an upper or + lower triangular matrix as follows: + + UPLO = 'U' or 'u' A is an upper triangular matrix. + + UPLO = 'L' or 'l' A is a lower triangular matrix. + + Unchanged on exit. + + TRANS - CHARACTER*1. + On entry, TRANS specifies the operation to be performed as + follows: + + TRANS = 'N' or 'n' x := A*x. + + TRANS = 'T' or 't' x := A'*x. + + TRANS = 'C' or 'c' x := A'*x. + + Unchanged on exit. + + DIAG - CHARACTER*1. + On entry, DIAG specifies whether or not A is unit + triangular as follows: + + DIAG = 'U' or 'u' A is assumed to be unit triangular. + + DIAG = 'N' or 'n' A is not assumed to be unit + triangular. + + Unchanged on exit. + + N - INTEGER. + On entry, N specifies the order of the matrix A. + N must be at least zero. + Unchanged on exit. + + A - DOUBLE PRECISION array of DIMENSION ( LDA, n ). + Before entry with UPLO = 'U' or 'u', the leading n by n + upper triangular part of the array A must contain the upper + triangular matrix and the strictly lower triangular part of + A is not referenced. + Before entry with UPLO = 'L' or 'l', the leading n by n + lower triangular part of the array A must contain the lower + triangular matrix and the strictly upper triangular part of + A is not referenced. + Note that when DIAG = 'U' or 'u', the diagonal elements of + A are not referenced either, but are assumed to be unity. + Unchanged on exit. + + LDA - INTEGER. + On entry, LDA specifies the first dimension of A as declared + in the calling (sub) program. LDA must be at least + max( 1, n ). + Unchanged on exit. + + X - DOUBLE PRECISION array of dimension at least + ( 1 + ( n - 1 )*abs( INCX ) ). + Before entry, the incremented array X must contain the n + element vector x. On exit, X is overwritten with the + tranformed vector x. + + INCX - INTEGER. + On entry, INCX specifies the increment for the elements of + X. INCX must not be zero. + Unchanged on exit. + + + Level 2 Blas routine. + + -- Written on 22-October-1986. + Jack Dongarra, Argonne National Lab. + Jeremy Du Croz, Nag Central Office. + Sven Hammarling, Nag Central Office. + Richard Hanson, Sandia National Labs. + + + Test the input parameters. +*/ + + /* Parameter adjustments */ + a_dim1 = *lda; + a_offset = 1 + a_dim1; + a -= a_offset; + --x; + + /* Function Body */ + info = 0; + if (! lsame_(uplo, "U") && ! lsame_(uplo, "L")) { + info = 1; + } else if (! lsame_(trans, "N") && ! lsame_(trans, + "T") && ! lsame_(trans, "C")) { + info = 2; + } else if (! lsame_(diag, "U") && ! lsame_(diag, + "N")) { + info = 3; + } else if (*n < 0) { + info = 4; + } else if (*lda < max(1,*n)) { + info = 6; + } else if (*incx == 0) { + info = 8; + } + if (info != 0) { + xerbla_("DTRMV ", &info); + return 0; + } + +/* Quick return if possible. */ + + if (*n == 0) { + return 0; + } + + nounit = lsame_(diag, "N"); + +/* + Set up the start point in X if the increment is not unity. This + will be ( N - 1 )*INCX too small for descending loops. +*/ + + if (*incx <= 0) { + kx = 1 - (*n - 1) * *incx; + } else if (*incx != 1) { + kx = 1; + } + +/* + Start the operations. In this version the elements of A are + accessed sequentially with one pass through A. +*/ + + if (lsame_(trans, "N")) { + +/* Form x := A*x. */ + + if (lsame_(uplo, "U")) { + if (*incx == 1) { + i__1 = *n; + for (j = 1; j <= i__1; ++j) { + if (x[j] != 0.) { + temp = x[j]; + i__2 = j - 1; + for (i__ = 1; i__ <= i__2; ++i__) { + x[i__] += temp * a[i__ + j * a_dim1]; +/* L10: */ + } + if (nounit) { + x[j] *= a[j + j * a_dim1]; + } + } +/* L20: */ + } + } else { + jx = kx; + i__1 = *n; + for (j = 1; j <= i__1; ++j) { + if (x[jx] != 0.) { + temp = x[jx]; + ix = kx; + i__2 = j - 1; + for (i__ = 1; i__ <= i__2; ++i__) { + x[ix] += temp * a[i__ + j * a_dim1]; + ix += *incx; +/* L30: */ + } + if (nounit) { + x[jx] *= a[j + j * a_dim1]; + } + } + jx += *incx; +/* L40: */ + } + } + } else { + if (*incx == 1) { + for (j = *n; j >= 1; --j) { + if (x[j] != 0.) { + temp = x[j]; + i__1 = j + 1; + for (i__ = *n; i__ >= i__1; --i__) { + x[i__] += temp * a[i__ + j * a_dim1]; +/* L50: */ + } + if (nounit) { + x[j] *= a[j + j * a_dim1]; + } + } +/* L60: */ + } + } else { + kx += (*n - 1) * *incx; + jx = kx; + for (j = *n; j >= 1; --j) { + if (x[jx] != 0.) { + temp = x[jx]; + ix = kx; + i__1 = j + 1; + for (i__ = *n; i__ >= i__1; --i__) { + x[ix] += temp * a[i__ + j * a_dim1]; + ix -= *incx; +/* L70: */ + } + if (nounit) { + x[jx] *= a[j + j * a_dim1]; + } + } + jx -= *incx; +/* L80: */ + } + } + } + } else { + +/* Form x := A'*x. */ + + if (lsame_(uplo, "U")) { + if (*incx == 1) { + for (j = *n; j >= 1; --j) { + temp = x[j]; + if (nounit) { + temp *= a[j + j * a_dim1]; + } + for (i__ = j - 1; i__ >= 1; --i__) { + temp += a[i__ + j * a_dim1] * x[i__]; +/* L90: */ + } + x[j] = temp; +/* L100: */ + } + } else { + jx = kx + (*n - 1) * *incx; + for (j = *n; j >= 1; --j) { + temp = x[jx]; + ix = jx; + if (nounit) { + temp *= a[j + j * a_dim1]; + } + for (i__ = j - 1; i__ >= 1; --i__) { + ix -= *incx; + temp += a[i__ + j * a_dim1] * x[ix]; +/* L110: */ + } + x[jx] = temp; + jx -= *incx; +/* L120: */ + } + } + } else { + if (*incx == 1) { + i__1 = *n; + for (j = 1; j <= i__1; ++j) { + temp = x[j]; + if (nounit) { + temp *= a[j + j * a_dim1]; + } + i__2 = *n; + for (i__ = j + 1; i__ <= i__2; ++i__) { + temp += a[i__ + j * a_dim1] * x[i__]; +/* L130: */ + } + x[j] = temp; +/* L140: */ + } + } else { + jx = kx; + i__1 = *n; + for (j = 1; j <= i__1; ++j) { + temp = x[jx]; + ix = jx; + if (nounit) { + temp *= a[j + j * a_dim1]; + } + i__2 = *n; + for (i__ = j + 1; i__ <= i__2; ++i__) { + ix += *incx; + temp += a[i__ + j * a_dim1] * x[ix]; +/* L150: */ + } + x[jx] = temp; + jx += *incx; +/* L160: */ + } + } + } + } + + return 0; + +/* End of DTRMV . */ + +} /* dtrmv_ */ + +/* Subroutine */ int dtrsm_(char *side, char *uplo, char *transa, char *diag, + integer *m, integer *n, doublereal *alpha, doublereal *a, integer * + lda, doublereal *b, integer *ldb) +{ + /* System generated locals */ + integer a_dim1, a_offset, b_dim1, b_offset, i__1, i__2, i__3; + + /* Local variables */ + static integer i__, j, k, info; + static doublereal temp; + static logical lside; + extern logical lsame_(char *, char *); + static integer nrowa; + static logical upper; + extern /* Subroutine */ int xerbla_(char *, integer *); + static logical nounit; + + +/* + Purpose + ======= + + DTRSM solves one of the matrix equations + + op( A )*X = alpha*B, or X*op( A ) = alpha*B, + + where alpha is a scalar, X and B are m by n matrices, A is a unit, or + non-unit, upper or lower triangular matrix and op( A ) is one of + + op( A ) = A or op( A ) = A'. + + The matrix X is overwritten on B. + + Parameters + ========== + + SIDE - CHARACTER*1. + On entry, SIDE specifies whether op( A ) appears on the left + or right of X as follows: + + SIDE = 'L' or 'l' op( A )*X = alpha*B. + + SIDE = 'R' or 'r' X*op( A ) = alpha*B. + + Unchanged on exit. + + UPLO - CHARACTER*1. + On entry, UPLO specifies whether the matrix A is an upper or + lower triangular matrix as follows: + + UPLO = 'U' or 'u' A is an upper triangular matrix. + + UPLO = 'L' or 'l' A is a lower triangular matrix. + + Unchanged on exit. + + TRANSA - CHARACTER*1. + On entry, TRANSA specifies the form of op( A ) to be used in + the matrix multiplication as follows: + + TRANSA = 'N' or 'n' op( A ) = A. + + TRANSA = 'T' or 't' op( A ) = A'. + + TRANSA = 'C' or 'c' op( A ) = A'. + + Unchanged on exit. + + DIAG - CHARACTER*1. + On entry, DIAG specifies whether or not A is unit triangular + as follows: + + DIAG = 'U' or 'u' A is assumed to be unit triangular. + + DIAG = 'N' or 'n' A is not assumed to be unit + triangular. + + Unchanged on exit. + + M - INTEGER. + On entry, M specifies the number of rows of B. M must be at + least zero. + Unchanged on exit. + + N - INTEGER. + On entry, N specifies the number of columns of B. N must be + at least zero. + Unchanged on exit. + + ALPHA - DOUBLE PRECISION. + On entry, ALPHA specifies the scalar alpha. When alpha is + zero then A is not referenced and B need not be set before + entry. + Unchanged on exit. + + A - DOUBLE PRECISION array of DIMENSION ( LDA, k ), where k is m + when SIDE = 'L' or 'l' and is n when SIDE = 'R' or 'r'. + Before entry with UPLO = 'U' or 'u', the leading k by k + upper triangular part of the array A must contain the upper + triangular matrix and the strictly lower triangular part of + A is not referenced. + Before entry with UPLO = 'L' or 'l', the leading k by k + lower triangular part of the array A must contain the lower + triangular matrix and the strictly upper triangular part of + A is not referenced. + Note that when DIAG = 'U' or 'u', the diagonal elements of + A are not referenced either, but are assumed to be unity. + Unchanged on exit. + + LDA - INTEGER. + On entry, LDA specifies the first dimension of A as declared + in the calling (sub) program. When SIDE = 'L' or 'l' then + LDA must be at least max( 1, m ), when SIDE = 'R' or 'r' + then LDA must be at least max( 1, n ). + Unchanged on exit. + + B - DOUBLE PRECISION array of DIMENSION ( LDB, n ). + Before entry, the leading m by n part of the array B must + contain the right-hand side matrix B, and on exit is + overwritten by the solution matrix X. + + LDB - INTEGER. + On entry, LDB specifies the first dimension of B as declared + in the calling (sub) program. LDB must be at least + max( 1, m ). + Unchanged on exit. + + + Level 3 Blas routine. + + + -- Written on 8-February-1989. + Jack Dongarra, Argonne National Laboratory. + Iain Duff, AERE Harwell. + Jeremy Du Croz, Numerical Algorithms Group Ltd. + Sven Hammarling, Numerical Algorithms Group Ltd. + + + Test the input parameters. +*/ + + /* Parameter adjustments */ + a_dim1 = *lda; + a_offset = 1 + a_dim1; + a -= a_offset; + b_dim1 = *ldb; + b_offset = 1 + b_dim1; + b -= b_offset; + + /* Function Body */ + lside = lsame_(side, "L"); + if (lside) { + nrowa = *m; + } else { + nrowa = *n; + } + nounit = lsame_(diag, "N"); + upper = lsame_(uplo, "U"); + + info = 0; + if (! lside && ! lsame_(side, "R")) { + info = 1; + } else if (! upper && ! lsame_(uplo, "L")) { + info = 2; + } else if (! lsame_(transa, "N") && ! lsame_(transa, + "T") && ! lsame_(transa, "C")) { + info = 3; + } else if (! lsame_(diag, "U") && ! lsame_(diag, + "N")) { + info = 4; + } else if (*m < 0) { + info = 5; + } else if (*n < 0) { + info = 6; + } else if (*lda < max(1,nrowa)) { + info = 9; + } else if (*ldb < max(1,*m)) { + info = 11; + } + if (info != 0) { + xerbla_("DTRSM ", &info); + return 0; + } + +/* Quick return if possible. */ + + if (*n == 0) { + return 0; + } + +/* And when alpha.eq.zero. */ + + if (*alpha == 0.) { + i__1 = *n; + for (j = 1; j <= i__1; ++j) { + i__2 = *m; + for (i__ = 1; i__ <= i__2; ++i__) { + b[i__ + j * b_dim1] = 0.; +/* L10: */ + } +/* L20: */ + } + return 0; + } + +/* Start the operations. */ + + if (lside) { + if (lsame_(transa, "N")) { + +/* Form B := alpha*inv( A )*B. */ + + if (upper) { + i__1 = *n; + for (j = 1; j <= i__1; ++j) { + if (*alpha != 1.) { + i__2 = *m; + for (i__ = 1; i__ <= i__2; ++i__) { + b[i__ + j * b_dim1] = *alpha * b[i__ + j * b_dim1] + ; +/* L30: */ + } + } + for (k = *m; k >= 1; --k) { + if (b[k + j * b_dim1] != 0.) { + if (nounit) { + b[k + j * b_dim1] /= a[k + k * a_dim1]; + } + i__2 = k - 1; + for (i__ = 1; i__ <= i__2; ++i__) { + b[i__ + j * b_dim1] -= b[k + j * b_dim1] * a[ + i__ + k * a_dim1]; +/* L40: */ + } + } +/* L50: */ + } +/* L60: */ + } + } else { + i__1 = *n; + for (j = 1; j <= i__1; ++j) { + if (*alpha != 1.) { + i__2 = *m; + for (i__ = 1; i__ <= i__2; ++i__) { + b[i__ + j * b_dim1] = *alpha * b[i__ + j * b_dim1] + ; +/* L70: */ + } + } + i__2 = *m; + for (k = 1; k <= i__2; ++k) { + if (b[k + j * b_dim1] != 0.) { + if (nounit) { + b[k + j * b_dim1] /= a[k + k * a_dim1]; + } + i__3 = *m; + for (i__ = k + 1; i__ <= i__3; ++i__) { + b[i__ + j * b_dim1] -= b[k + j * b_dim1] * a[ + i__ + k * a_dim1]; +/* L80: */ + } + } +/* L90: */ + } +/* L100: */ + } + } + } else { + +/* Form B := alpha*inv( A' )*B. */ + + if (upper) { + i__1 = *n; + for (j = 1; j <= i__1; ++j) { + i__2 = *m; + for (i__ = 1; i__ <= i__2; ++i__) { + temp = *alpha * b[i__ + j * b_dim1]; + i__3 = i__ - 1; + for (k = 1; k <= i__3; ++k) { + temp -= a[k + i__ * a_dim1] * b[k + j * b_dim1]; +/* L110: */ + } + if (nounit) { + temp /= a[i__ + i__ * a_dim1]; + } + b[i__ + j * b_dim1] = temp; +/* L120: */ + } +/* L130: */ + } + } else { + i__1 = *n; + for (j = 1; j <= i__1; ++j) { + for (i__ = *m; i__ >= 1; --i__) { + temp = *alpha * b[i__ + j * b_dim1]; + i__2 = *m; + for (k = i__ + 1; k <= i__2; ++k) { + temp -= a[k + i__ * a_dim1] * b[k + j * b_dim1]; +/* L140: */ + } + if (nounit) { + temp /= a[i__ + i__ * a_dim1]; + } + b[i__ + j * b_dim1] = temp; +/* L150: */ + } +/* L160: */ + } + } + } + } else { + if (lsame_(transa, "N")) { + +/* Form B := alpha*B*inv( A ). */ + + if (upper) { + i__1 = *n; + for (j = 1; j <= i__1; ++j) { + if (*alpha != 1.) { + i__2 = *m; + for (i__ = 1; i__ <= i__2; ++i__) { + b[i__ + j * b_dim1] = *alpha * b[i__ + j * b_dim1] + ; +/* L170: */ + } + } + i__2 = j - 1; + for (k = 1; k <= i__2; ++k) { + if (a[k + j * a_dim1] != 0.) { + i__3 = *m; + for (i__ = 1; i__ <= i__3; ++i__) { + b[i__ + j * b_dim1] -= a[k + j * a_dim1] * b[ + i__ + k * b_dim1]; +/* L180: */ + } + } +/* L190: */ + } + if (nounit) { + temp = 1. / a[j + j * a_dim1]; + i__2 = *m; + for (i__ = 1; i__ <= i__2; ++i__) { + b[i__ + j * b_dim1] = temp * b[i__ + j * b_dim1]; +/* L200: */ + } + } +/* L210: */ + } + } else { + for (j = *n; j >= 1; --j) { + if (*alpha != 1.) { + i__1 = *m; + for (i__ = 1; i__ <= i__1; ++i__) { + b[i__ + j * b_dim1] = *alpha * b[i__ + j * b_dim1] + ; +/* L220: */ + } + } + i__1 = *n; + for (k = j + 1; k <= i__1; ++k) { + if (a[k + j * a_dim1] != 0.) { + i__2 = *m; + for (i__ = 1; i__ <= i__2; ++i__) { + b[i__ + j * b_dim1] -= a[k + j * a_dim1] * b[ + i__ + k * b_dim1]; +/* L230: */ + } + } +/* L240: */ + } + if (nounit) { + temp = 1. / a[j + j * a_dim1]; + i__1 = *m; + for (i__ = 1; i__ <= i__1; ++i__) { + b[i__ + j * b_dim1] = temp * b[i__ + j * b_dim1]; +/* L250: */ + } + } +/* L260: */ + } + } + } else { + +/* Form B := alpha*B*inv( A' ). */ + + if (upper) { + for (k = *n; k >= 1; --k) { + if (nounit) { + temp = 1. / a[k + k * a_dim1]; + i__1 = *m; + for (i__ = 1; i__ <= i__1; ++i__) { + b[i__ + k * b_dim1] = temp * b[i__ + k * b_dim1]; +/* L270: */ + } + } + i__1 = k - 1; + for (j = 1; j <= i__1; ++j) { + if (a[j + k * a_dim1] != 0.) { + temp = a[j + k * a_dim1]; + i__2 = *m; + for (i__ = 1; i__ <= i__2; ++i__) { + b[i__ + j * b_dim1] -= temp * b[i__ + k * + b_dim1]; +/* L280: */ + } + } +/* L290: */ + } + if (*alpha != 1.) { + i__1 = *m; + for (i__ = 1; i__ <= i__1; ++i__) { + b[i__ + k * b_dim1] = *alpha * b[i__ + k * b_dim1] + ; +/* L300: */ + } + } +/* L310: */ + } + } else { + i__1 = *n; + for (k = 1; k <= i__1; ++k) { + if (nounit) { + temp = 1. / a[k + k * a_dim1]; + i__2 = *m; + for (i__ = 1; i__ <= i__2; ++i__) { + b[i__ + k * b_dim1] = temp * b[i__ + k * b_dim1]; +/* L320: */ + } + } + i__2 = *n; + for (j = k + 1; j <= i__2; ++j) { + if (a[j + k * a_dim1] != 0.) { + temp = a[j + k * a_dim1]; + i__3 = *m; + for (i__ = 1; i__ <= i__3; ++i__) { + b[i__ + j * b_dim1] -= temp * b[i__ + k * + b_dim1]; +/* L330: */ + } + } +/* L340: */ + } + if (*alpha != 1.) { + i__2 = *m; + for (i__ = 1; i__ <= i__2; ++i__) { + b[i__ + k * b_dim1] = *alpha * b[i__ + k * b_dim1] + ; +/* L350: */ + } + } +/* L360: */ + } + } + } + } + + return 0; + +/* End of DTRSM . */ + +} /* dtrsm_ */ + +doublereal dzasum_(integer *n, doublecomplex *zx, integer *incx) +{ + /* System generated locals */ + integer i__1; + doublereal ret_val; + + /* Local variables */ + static integer i__, ix; + static doublereal stemp; + extern doublereal dcabs1_(doublecomplex *); + + +/* + takes the sum of the absolute values. + jack dongarra, 3/11/78. + modified 3/93 to return if incx .le. 0. + modified 12/3/93, array(1) declarations changed to array(*) +*/ + + + /* Parameter adjustments */ + --zx; + + /* Function Body */ + ret_val = 0.; + stemp = 0.; + if ((*n <= 0) || (*incx <= 0)) { + return ret_val; + } + if (*incx == 1) { + goto L20; + } + +/* code for increment not equal to 1 */ + + ix = 1; + i__1 = *n; + for (i__ = 1; i__ <= i__1; ++i__) { + stemp += dcabs1_(&zx[ix]); + ix += *incx; +/* L10: */ + } + ret_val = stemp; + return ret_val; + +/* code for increment equal to 1 */ + +L20: + i__1 = *n; + for (i__ = 1; i__ <= i__1; ++i__) { + stemp += dcabs1_(&zx[i__]); +/* L30: */ + } + ret_val = stemp; + return ret_val; +} /* dzasum_ */ + +doublereal dznrm2_(integer *n, doublecomplex *x, integer *incx) +{ + /* System generated locals */ + integer i__1, i__2, i__3; + doublereal ret_val, d__1; + + /* Builtin functions */ + double d_imag(doublecomplex *), sqrt(doublereal); + + /* Local variables */ + static integer ix; + static doublereal ssq, temp, norm, scale; + + +/* + DZNRM2 returns the euclidean norm of a vector via the function + name, so that + + DZNRM2 := sqrt( conjg( x' )*x ) + + + -- This version written on 25-October-1982. + Modified on 14-October-1993 to inline the call to ZLASSQ. + Sven Hammarling, Nag Ltd. +*/ + + + /* Parameter adjustments */ + --x; + + /* Function Body */ + if ((*n < 1) || (*incx < 1)) { + norm = 0.; + } else { + scale = 0.; + ssq = 1.; +/* + The following loop is equivalent to this call to the LAPACK + auxiliary routine: + CALL ZLASSQ( N, X, INCX, SCALE, SSQ ) +*/ + + i__1 = (*n - 1) * *incx + 1; + i__2 = *incx; + for (ix = 1; i__2 < 0 ? ix >= i__1 : ix <= i__1; ix += i__2) { + i__3 = ix; + if (x[i__3].r != 0.) { + i__3 = ix; + temp = (d__1 = x[i__3].r, abs(d__1)); + if (scale < temp) { +/* Computing 2nd power */ + d__1 = scale / temp; + ssq = ssq * (d__1 * d__1) + 1.; + scale = temp; + } else { +/* Computing 2nd power */ + d__1 = temp / scale; + ssq += d__1 * d__1; + } + } + if (d_imag(&x[ix]) != 0.) { + temp = (d__1 = d_imag(&x[ix]), abs(d__1)); + if (scale < temp) { +/* Computing 2nd power */ + d__1 = scale / temp; + ssq = ssq * (d__1 * d__1) + 1.; + scale = temp; + } else { +/* Computing 2nd power */ + d__1 = temp / scale; + ssq += d__1 * d__1; + } + } +/* L10: */ + } + norm = scale * sqrt(ssq); + } + + ret_val = norm; + return ret_val; + +/* End of DZNRM2. */ + +} /* dznrm2_ */ + +integer icamax_(integer *n, complex *cx, integer *incx) +{ + /* System generated locals */ + integer ret_val, i__1, i__2; + real r__1, r__2; + + /* Builtin functions */ + double r_imag(complex *); + + /* Local variables */ + static integer i__, ix; + static real smax; + + +/* + finds the index of element having max. absolute value. + jack dongarra, linpack, 3/11/78. + modified 3/93 to return if incx .le. 0. + modified 12/3/93, array(1) declarations changed to array(*) +*/ + + + /* Parameter adjustments */ + --cx; + + /* Function Body */ + ret_val = 0; + if ((*n < 1) || (*incx <= 0)) { + return ret_val; + } + ret_val = 1; + if (*n == 1) { + return ret_val; + } + if (*incx == 1) { + goto L20; + } + +/* code for increment not equal to 1 */ + + ix = 1; + smax = (r__1 = cx[1].r, dabs(r__1)) + (r__2 = r_imag(&cx[1]), dabs(r__2)); + ix += *incx; + i__1 = *n; + for (i__ = 2; i__ <= i__1; ++i__) { + i__2 = ix; + if ((r__1 = cx[i__2].r, dabs(r__1)) + (r__2 = r_imag(&cx[ix]), dabs( + r__2)) <= smax) { + goto L5; + } + ret_val = i__; + i__2 = ix; + smax = (r__1 = cx[i__2].r, dabs(r__1)) + (r__2 = r_imag(&cx[ix]), + dabs(r__2)); +L5: + ix += *incx; +/* L10: */ + } + return ret_val; + +/* code for increment equal to 1 */ + +L20: + smax = (r__1 = cx[1].r, dabs(r__1)) + (r__2 = r_imag(&cx[1]), dabs(r__2)); + i__1 = *n; + for (i__ = 2; i__ <= i__1; ++i__) { + i__2 = i__; + if ((r__1 = cx[i__2].r, dabs(r__1)) + (r__2 = r_imag(&cx[i__]), dabs( + r__2)) <= smax) { + goto L30; + } + ret_val = i__; + i__2 = i__; + smax = (r__1 = cx[i__2].r, dabs(r__1)) + (r__2 = r_imag(&cx[i__]), + dabs(r__2)); +L30: + ; + } + return ret_val; +} /* icamax_ */ + +integer idamax_(integer *n, doublereal *dx, integer *incx) +{ + /* System generated locals */ + integer ret_val, i__1; + doublereal d__1; + + /* Local variables */ + static integer i__, ix; + static doublereal dmax__; + + +/* + finds the index of element having max. absolute value. + jack dongarra, linpack, 3/11/78. + modified 3/93 to return if incx .le. 0. + modified 12/3/93, array(1) declarations changed to array(*) +*/ + + + /* Parameter adjustments */ + --dx; + + /* Function Body */ + ret_val = 0; + if ((*n < 1) || (*incx <= 0)) { + return ret_val; + } + ret_val = 1; + if (*n == 1) { + return ret_val; + } + if (*incx == 1) { + goto L20; + } + +/* code for increment not equal to 1 */ + + ix = 1; + dmax__ = abs(dx[1]); + ix += *incx; + i__1 = *n; + for (i__ = 2; i__ <= i__1; ++i__) { + if ((d__1 = dx[ix], abs(d__1)) <= dmax__) { + goto L5; + } + ret_val = i__; + dmax__ = (d__1 = dx[ix], abs(d__1)); +L5: + ix += *incx; +/* L10: */ + } + return ret_val; + +/* code for increment equal to 1 */ + +L20: + dmax__ = abs(dx[1]); + i__1 = *n; + for (i__ = 2; i__ <= i__1; ++i__) { + if ((d__1 = dx[i__], abs(d__1)) <= dmax__) { + goto L30; + } + ret_val = i__; + dmax__ = (d__1 = dx[i__], abs(d__1)); +L30: + ; + } + return ret_val; +} /* idamax_ */ + +integer isamax_(integer *n, real *sx, integer *incx) +{ + /* System generated locals */ + integer ret_val, i__1; + real r__1; + + /* Local variables */ + static integer i__, ix; + static real smax; + + +/* + finds the index of element having max. absolute value. + jack dongarra, linpack, 3/11/78. + modified 3/93 to return if incx .le. 0. + modified 12/3/93, array(1) declarations changed to array(*) +*/ + + + /* Parameter adjustments */ + --sx; + + /* Function Body */ + ret_val = 0; + if ((*n < 1) || (*incx <= 0)) { + return ret_val; + } + ret_val = 1; + if (*n == 1) { + return ret_val; + } + if (*incx == 1) { + goto L20; + } + +/* code for increment not equal to 1 */ + + ix = 1; + smax = dabs(sx[1]); + ix += *incx; + i__1 = *n; + for (i__ = 2; i__ <= i__1; ++i__) { + if ((r__1 = sx[ix], dabs(r__1)) <= smax) { + goto L5; + } + ret_val = i__; + smax = (r__1 = sx[ix], dabs(r__1)); +L5: + ix += *incx; +/* L10: */ + } + return ret_val; + +/* code for increment equal to 1 */ + +L20: + smax = dabs(sx[1]); + i__1 = *n; + for (i__ = 2; i__ <= i__1; ++i__) { + if ((r__1 = sx[i__], dabs(r__1)) <= smax) { + goto L30; + } + ret_val = i__; + smax = (r__1 = sx[i__], dabs(r__1)); +L30: + ; + } + return ret_val; +} /* isamax_ */ + +integer izamax_(integer *n, doublecomplex *zx, integer *incx) +{ + /* System generated locals */ + integer ret_val, i__1; + + /* Local variables */ + static integer i__, ix; + static doublereal smax; + extern doublereal dcabs1_(doublecomplex *); + + +/* + finds the index of element having max. absolute value. + jack dongarra, 1/15/85. + modified 3/93 to return if incx .le. 0. + modified 12/3/93, array(1) declarations changed to array(*) +*/ + + + /* Parameter adjustments */ + --zx; + + /* Function Body */ + ret_val = 0; + if ((*n < 1) || (*incx <= 0)) { + return ret_val; + } + ret_val = 1; + if (*n == 1) { + return ret_val; + } + if (*incx == 1) { + goto L20; + } + +/* code for increment not equal to 1 */ + + ix = 1; + smax = dcabs1_(&zx[1]); + ix += *incx; + i__1 = *n; + for (i__ = 2; i__ <= i__1; ++i__) { + if (dcabs1_(&zx[ix]) <= smax) { + goto L5; + } + ret_val = i__; + smax = dcabs1_(&zx[ix]); +L5: + ix += *incx; +/* L10: */ + } + return ret_val; + +/* code for increment equal to 1 */ + +L20: + smax = dcabs1_(&zx[1]); + i__1 = *n; + for (i__ = 2; i__ <= i__1; ++i__) { + if (dcabs1_(&zx[i__]) <= smax) { + goto L30; + } + ret_val = i__; + smax = dcabs1_(&zx[i__]); +L30: + ; + } + return ret_val; +} /* izamax_ */ + +logical lsame_(char *ca, char *cb) +{ + /* System generated locals */ + logical ret_val; + + /* Local variables */ + static integer inta, intb, zcode; + + +/* + -- LAPACK auxiliary routine (version 3.0) -- + Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd., + Courant Institute, Argonne National Lab, and Rice University + September 30, 1994 + + + Purpose + ======= + + LSAME returns .TRUE. if CA is the same letter as CB regardless of + case. + + Arguments + ========= + + CA (input) CHARACTER*1 + CB (input) CHARACTER*1 + CA and CB specify the single characters to be compared. + + ===================================================================== + + + Test if the characters are equal +*/ + + ret_val = *(unsigned char *)ca == *(unsigned char *)cb; + if (ret_val) { + return ret_val; + } + +/* Now test for equivalence if both characters are alphabetic. */ + + zcode = 'Z'; + +/* + Use 'Z' rather than 'A' so that ASCII can be detected on Prime + machines, on which ICHAR returns a value with bit 8 set. + ICHAR('A') on Prime machines returns 193 which is the same as + ICHAR('A') on an EBCDIC machine. +*/ + + inta = *(unsigned char *)ca; + intb = *(unsigned char *)cb; + + if ((zcode == 90) || (zcode == 122)) { + +/* + ASCII is assumed - ZCODE is the ASCII code of either lower or + upper case 'Z'. +*/ + + if (inta >= 97 && inta <= 122) { + inta += -32; + } + if (intb >= 97 && intb <= 122) { + intb += -32; + } + + } else if ((zcode == 233) || (zcode == 169)) { + +/* + EBCDIC is assumed - ZCODE is the EBCDIC code of either lower or + upper case 'Z'. +*/ + + if (((inta >= 129 && inta <= 137) || (inta >= 145 && inta <= 153)) || + (inta >= 162 && inta <= 169)) { + inta += 64; + } + if (((intb >= 129 && intb <= 137) || (intb >= 145 && intb <= 153)) || + (intb >= 162 && intb <= 169)) { + intb += 64; + } + + } else if ((zcode == 218) || (zcode == 250)) { + +/* + ASCII is assumed, on Prime machines - ZCODE is the ASCII code + plus 128 of either lower or upper case 'Z'. +*/ + + if (inta >= 225 && inta <= 250) { + inta += -32; + } + if (intb >= 225 && intb <= 250) { + intb += -32; + } + } + ret_val = inta == intb; + +/* + RETURN + + End of LSAME +*/ + + return ret_val; +} /* lsame_ */ + +/* Subroutine */ int saxpy_(integer *n, real *sa, real *sx, integer *incx, + real *sy, integer *incy) +{ + /* System generated locals */ + integer i__1; + + /* Local variables */ + static integer i__, m, ix, iy, mp1; + + +/* + constant times a vector plus a vector. + uses unrolled loop for increments equal to one. + jack dongarra, linpack, 3/11/78. + modified 12/3/93, array(1) declarations changed to array(*) +*/ + + + /* Parameter adjustments */ + --sy; + --sx; + + /* Function Body */ + if (*n <= 0) { + return 0; + } + if (*sa == 0.f) { + return 0; + } + if (*incx == 1 && *incy == 1) { + goto L20; + } + +/* + code for unequal increments or equal increments + not equal to 1 +*/ + + ix = 1; + iy = 1; + if (*incx < 0) { + ix = (-(*n) + 1) * *incx + 1; + } + if (*incy < 0) { + iy = (-(*n) + 1) * *incy + 1; + } + i__1 = *n; + for (i__ = 1; i__ <= i__1; ++i__) { + sy[iy] += *sa * sx[ix]; + ix += *incx; + iy += *incy; +/* L10: */ + } + return 0; + +/* + code for both increments equal to 1 + + + clean-up loop +*/ + +L20: + m = *n % 4; + if (m == 0) { + goto L40; + } + i__1 = m; + for (i__ = 1; i__ <= i__1; ++i__) { + sy[i__] += *sa * sx[i__]; +/* L30: */ + } + if (*n < 4) { + return 0; + } +L40: + mp1 = m + 1; + i__1 = *n; + for (i__ = mp1; i__ <= i__1; i__ += 4) { + sy[i__] += *sa * sx[i__]; + sy[i__ + 1] += *sa * sx[i__ + 1]; + sy[i__ + 2] += *sa * sx[i__ + 2]; + sy[i__ + 3] += *sa * sx[i__ + 3]; +/* L50: */ + } + return 0; +} /* saxpy_ */ + +doublereal scasum_(integer *n, complex *cx, integer *incx) +{ + /* System generated locals */ + integer i__1, i__2, i__3; + real ret_val, r__1, r__2; + + /* Builtin functions */ + double r_imag(complex *); + + /* Local variables */ + static integer i__, nincx; + static real stemp; + + +/* + takes the sum of the absolute values of a complex vector and + returns a single precision result. + jack dongarra, linpack, 3/11/78. + modified 3/93 to return if incx .le. 0. + modified 12/3/93, array(1) declarations changed to array(*) +*/ + + + /* Parameter adjustments */ + --cx; + + /* Function Body */ + ret_val = 0.f; + stemp = 0.f; + if ((*n <= 0) || (*incx <= 0)) { + return ret_val; + } + if (*incx == 1) { + goto L20; + } + +/* code for increment not equal to 1 */ + + nincx = *n * *incx; + i__1 = nincx; + i__2 = *incx; + for (i__ = 1; i__2 < 0 ? i__ >= i__1 : i__ <= i__1; i__ += i__2) { + i__3 = i__; + stemp = stemp + (r__1 = cx[i__3].r, dabs(r__1)) + (r__2 = r_imag(&cx[ + i__]), dabs(r__2)); +/* L10: */ + } + ret_val = stemp; + return ret_val; + +/* code for increment equal to 1 */ + +L20: + i__2 = *n; + for (i__ = 1; i__ <= i__2; ++i__) { + i__1 = i__; + stemp = stemp + (r__1 = cx[i__1].r, dabs(r__1)) + (r__2 = r_imag(&cx[ + i__]), dabs(r__2)); +/* L30: */ + } + ret_val = stemp; + return ret_val; +} /* scasum_ */ + +doublereal scnrm2_(integer *n, complex *x, integer *incx) +{ + /* System generated locals */ + integer i__1, i__2, i__3; + real ret_val, r__1; + + /* Builtin functions */ + double r_imag(complex *), sqrt(doublereal); + + /* Local variables */ + static integer ix; + static real ssq, temp, norm, scale; + + +/* + SCNRM2 returns the euclidean norm of a vector via the function + name, so that + + SCNRM2 := sqrt( conjg( x' )*x ) + + + -- This version written on 25-October-1982. + Modified on 14-October-1993 to inline the call to CLASSQ. + Sven Hammarling, Nag Ltd. +*/ + + + /* Parameter adjustments */ + --x; + + /* Function Body */ + if ((*n < 1) || (*incx < 1)) { + norm = 0.f; + } else { + scale = 0.f; + ssq = 1.f; +/* + The following loop is equivalent to this call to the LAPACK + auxiliary routine: + CALL CLASSQ( N, X, INCX, SCALE, SSQ ) +*/ + + i__1 = (*n - 1) * *incx + 1; + i__2 = *incx; + for (ix = 1; i__2 < 0 ? ix >= i__1 : ix <= i__1; ix += i__2) { + i__3 = ix; + if (x[i__3].r != 0.f) { + i__3 = ix; + temp = (r__1 = x[i__3].r, dabs(r__1)); + if (scale < temp) { +/* Computing 2nd power */ + r__1 = scale / temp; + ssq = ssq * (r__1 * r__1) + 1.f; + scale = temp; + } else { +/* Computing 2nd power */ + r__1 = temp / scale; + ssq += r__1 * r__1; + } + } + if (r_imag(&x[ix]) != 0.f) { + temp = (r__1 = r_imag(&x[ix]), dabs(r__1)); + if (scale < temp) { +/* Computing 2nd power */ + r__1 = scale / temp; + ssq = ssq * (r__1 * r__1) + 1.f; + scale = temp; + } else { +/* Computing 2nd power */ + r__1 = temp / scale; + ssq += r__1 * r__1; + } + } +/* L10: */ + } + norm = scale * sqrt(ssq); + } + + ret_val = norm; + return ret_val; + +/* End of SCNRM2. */ + +} /* scnrm2_ */ + +/* Subroutine */ int scopy_(integer *n, real *sx, integer *incx, real *sy, + integer *incy) +{ + /* System generated locals */ + integer i__1; + + /* Local variables */ + static integer i__, m, ix, iy, mp1; + + +/* + copies a vector, x, to a vector, y. + uses unrolled loops for increments equal to 1. + jack dongarra, linpack, 3/11/78. + modified 12/3/93, array(1) declarations changed to array(*) +*/ + + + /* Parameter adjustments */ + --sy; + --sx; + + /* Function Body */ + if (*n <= 0) { + return 0; + } + if (*incx == 1 && *incy == 1) { + goto L20; + } + +/* + code for unequal increments or equal increments + not equal to 1 +*/ + + ix = 1; + iy = 1; + if (*incx < 0) { + ix = (-(*n) + 1) * *incx + 1; + } + if (*incy < 0) { + iy = (-(*n) + 1) * *incy + 1; + } + i__1 = *n; + for (i__ = 1; i__ <= i__1; ++i__) { + sy[iy] = sx[ix]; + ix += *incx; + iy += *incy; +/* L10: */ + } + return 0; + +/* + code for both increments equal to 1 + + + clean-up loop +*/ + +L20: + m = *n % 7; + if (m == 0) { + goto L40; + } + i__1 = m; + for (i__ = 1; i__ <= i__1; ++i__) { + sy[i__] = sx[i__]; +/* L30: */ + } + if (*n < 7) { + return 0; + } +L40: + mp1 = m + 1; + i__1 = *n; + for (i__ = mp1; i__ <= i__1; i__ += 7) { + sy[i__] = sx[i__]; + sy[i__ + 1] = sx[i__ + 1]; + sy[i__ + 2] = sx[i__ + 2]; + sy[i__ + 3] = sx[i__ + 3]; + sy[i__ + 4] = sx[i__ + 4]; + sy[i__ + 5] = sx[i__ + 5]; + sy[i__ + 6] = sx[i__ + 6]; +/* L50: */ + } + return 0; +} /* scopy_ */ + +doublereal sdot_(integer *n, real *sx, integer *incx, real *sy, integer *incy) +{ + /* System generated locals */ + integer i__1; + real ret_val; + + /* Local variables */ + static integer i__, m, ix, iy, mp1; + static real stemp; + + +/* + forms the dot product of two vectors. + uses unrolled loops for increments equal to one. + jack dongarra, linpack, 3/11/78. + modified 12/3/93, array(1) declarations changed to array(*) +*/ + + + /* Parameter adjustments */ + --sy; + --sx; + + /* Function Body */ + stemp = 0.f; + ret_val = 0.f; + if (*n <= 0) { + return ret_val; + } + if (*incx == 1 && *incy == 1) { + goto L20; + } + +/* + code for unequal increments or equal increments + not equal to 1 +*/ + + ix = 1; + iy = 1; + if (*incx < 0) { + ix = (-(*n) + 1) * *incx + 1; + } + if (*incy < 0) { + iy = (-(*n) + 1) * *incy + 1; + } + i__1 = *n; + for (i__ = 1; i__ <= i__1; ++i__) { + stemp += sx[ix] * sy[iy]; + ix += *incx; + iy += *incy; +/* L10: */ + } + ret_val = stemp; + return ret_val; + +/* + code for both increments equal to 1 + + + clean-up loop +*/ + +L20: + m = *n % 5; + if (m == 0) { + goto L40; + } + i__1 = m; + for (i__ = 1; i__ <= i__1; ++i__) { + stemp += sx[i__] * sy[i__]; +/* L30: */ + } + if (*n < 5) { + goto L60; + } +L40: + mp1 = m + 1; + i__1 = *n; + for (i__ = mp1; i__ <= i__1; i__ += 5) { + stemp = stemp + sx[i__] * sy[i__] + sx[i__ + 1] * sy[i__ + 1] + sx[ + i__ + 2] * sy[i__ + 2] + sx[i__ + 3] * sy[i__ + 3] + sx[i__ + + 4] * sy[i__ + 4]; +/* L50: */ + } +L60: + ret_val = stemp; + return ret_val; +} /* sdot_ */ + +/* Subroutine */ int sgemm_(char *transa, char *transb, integer *m, integer * + n, integer *k, real *alpha, real *a, integer *lda, real *b, integer * + ldb, real *beta, real *c__, integer *ldc) +{ + /* System generated locals */ + integer a_dim1, a_offset, b_dim1, b_offset, c_dim1, c_offset, i__1, i__2, + i__3; + + /* Local variables */ + static integer i__, j, l, info; + static logical nota, notb; + static real temp; + static integer ncola; + extern logical lsame_(char *, char *); + static integer nrowa, nrowb; + extern /* Subroutine */ int xerbla_(char *, integer *); + + +/* + Purpose + ======= + + SGEMM performs one of the matrix-matrix operations + + C := alpha*op( A )*op( B ) + beta*C, + + where op( X ) is one of + + op( X ) = X or op( X ) = X', + + alpha and beta are scalars, and A, B and C are matrices, with op( A ) + an m by k matrix, op( B ) a k by n matrix and C an m by n matrix. + + Parameters + ========== + + TRANSA - CHARACTER*1. + On entry, TRANSA specifies the form of op( A ) to be used in + the matrix multiplication as follows: + + TRANSA = 'N' or 'n', op( A ) = A. + + TRANSA = 'T' or 't', op( A ) = A'. + + TRANSA = 'C' or 'c', op( A ) = A'. + + Unchanged on exit. + + TRANSB - CHARACTER*1. + On entry, TRANSB specifies the form of op( B ) to be used in + the matrix multiplication as follows: + + TRANSB = 'N' or 'n', op( B ) = B. + + TRANSB = 'T' or 't', op( B ) = B'. + + TRANSB = 'C' or 'c', op( B ) = B'. + + Unchanged on exit. + + M - INTEGER. + On entry, M specifies the number of rows of the matrix + op( A ) and of the matrix C. M must be at least zero. + Unchanged on exit. + + N - INTEGER. + On entry, N specifies the number of columns of the matrix + op( B ) and the number of columns of the matrix C. N must be + at least zero. + Unchanged on exit. + + K - INTEGER. + On entry, K specifies the number of columns of the matrix + op( A ) and the number of rows of the matrix op( B ). K must + be at least zero. + Unchanged on exit. + + ALPHA - REAL . + On entry, ALPHA specifies the scalar alpha. + Unchanged on exit. + + A - REAL array of DIMENSION ( LDA, ka ), where ka is + k when TRANSA = 'N' or 'n', and is m otherwise. + Before entry with TRANSA = 'N' or 'n', the leading m by k + part of the array A must contain the matrix A, otherwise + the leading k by m part of the array A must contain the + matrix A. + Unchanged on exit. + + LDA - INTEGER. + On entry, LDA specifies the first dimension of A as declared + in the calling (sub) program. When TRANSA = 'N' or 'n' then + LDA must be at least max( 1, m ), otherwise LDA must be at + least max( 1, k ). + Unchanged on exit. + + B - REAL array of DIMENSION ( LDB, kb ), where kb is + n when TRANSB = 'N' or 'n', and is k otherwise. + Before entry with TRANSB = 'N' or 'n', the leading k by n + part of the array B must contain the matrix B, otherwise + the leading n by k part of the array B must contain the + matrix B. + Unchanged on exit. + + LDB - INTEGER. + On entry, LDB specifies the first dimension of B as declared + in the calling (sub) program. When TRANSB = 'N' or 'n' then + LDB must be at least max( 1, k ), otherwise LDB must be at + least max( 1, n ). + Unchanged on exit. + + BETA - REAL . + On entry, BETA specifies the scalar beta. When BETA is + supplied as zero then C need not be set on input. + Unchanged on exit. + + C - REAL array of DIMENSION ( LDC, n ). + Before entry, the leading m by n part of the array C must + contain the matrix C, except when beta is zero, in which + case C need not be set on entry. + On exit, the array C is overwritten by the m by n matrix + ( alpha*op( A )*op( B ) + beta*C ). + + LDC - INTEGER. + On entry, LDC specifies the first dimension of C as declared + in the calling (sub) program. LDC must be at least + max( 1, m ). + Unchanged on exit. + + + Level 3 Blas routine. + + -- Written on 8-February-1989. + Jack Dongarra, Argonne National Laboratory. + Iain Duff, AERE Harwell. + Jeremy Du Croz, Numerical Algorithms Group Ltd. + Sven Hammarling, Numerical Algorithms Group Ltd. + + + Set NOTA and NOTB as true if A and B respectively are not + transposed and set NROWA, NCOLA and NROWB as the number of rows + and columns of A and the number of rows of B respectively. +*/ + + /* Parameter adjustments */ + a_dim1 = *lda; + a_offset = 1 + a_dim1; + a -= a_offset; + b_dim1 = *ldb; + b_offset = 1 + b_dim1; + b -= b_offset; + c_dim1 = *ldc; + c_offset = 1 + c_dim1; + c__ -= c_offset; + + /* Function Body */ + nota = lsame_(transa, "N"); + notb = lsame_(transb, "N"); + if (nota) { + nrowa = *m; + ncola = *k; + } else { + nrowa = *k; + ncola = *m; + } + if (notb) { + nrowb = *k; + } else { + nrowb = *n; + } + +/* Test the input parameters. */ + + info = 0; + if (! nota && ! lsame_(transa, "C") && ! lsame_( + transa, "T")) { + info = 1; + } else if (! notb && ! lsame_(transb, "C") && ! + lsame_(transb, "T")) { + info = 2; + } else if (*m < 0) { + info = 3; + } else if (*n < 0) { + info = 4; + } else if (*k < 0) { + info = 5; + } else if (*lda < max(1,nrowa)) { + info = 8; + } else if (*ldb < max(1,nrowb)) { + info = 10; + } else if (*ldc < max(1,*m)) { + info = 13; + } + if (info != 0) { + xerbla_("SGEMM ", &info); + return 0; + } + +/* Quick return if possible. */ + + if (((*m == 0) || (*n == 0)) || (((*alpha == 0.f) || (*k == 0)) && *beta + == 1.f)) { + return 0; + } + +/* And if alpha.eq.zero. */ + + if (*alpha == 0.f) { + if (*beta == 0.f) { + i__1 = *n; + for (j = 1; j <= i__1; ++j) { + i__2 = *m; + for (i__ = 1; i__ <= i__2; ++i__) { + c__[i__ + j * c_dim1] = 0.f; +/* L10: */ + } +/* L20: */ + } + } else { + i__1 = *n; + for (j = 1; j <= i__1; ++j) { + i__2 = *m; + for (i__ = 1; i__ <= i__2; ++i__) { + c__[i__ + j * c_dim1] = *beta * c__[i__ + j * c_dim1]; +/* L30: */ + } +/* L40: */ + } + } + return 0; + } + +/* Start the operations. */ + + if (notb) { + if (nota) { + +/* Form C := alpha*A*B + beta*C. */ + + i__1 = *n; + for (j = 1; j <= i__1; ++j) { + if (*beta == 0.f) { + i__2 = *m; + for (i__ = 1; i__ <= i__2; ++i__) { + c__[i__ + j * c_dim1] = 0.f; +/* L50: */ + } + } else if (*beta != 1.f) { + i__2 = *m; + for (i__ = 1; i__ <= i__2; ++i__) { + c__[i__ + j * c_dim1] = *beta * c__[i__ + j * c_dim1]; +/* L60: */ + } + } + i__2 = *k; + for (l = 1; l <= i__2; ++l) { + if (b[l + j * b_dim1] != 0.f) { + temp = *alpha * b[l + j * b_dim1]; + i__3 = *m; + for (i__ = 1; i__ <= i__3; ++i__) { + c__[i__ + j * c_dim1] += temp * a[i__ + l * + a_dim1]; +/* L70: */ + } + } +/* L80: */ + } +/* L90: */ + } + } else { + +/* Form C := alpha*A'*B + beta*C */ + + i__1 = *n; + for (j = 1; j <= i__1; ++j) { + i__2 = *m; + for (i__ = 1; i__ <= i__2; ++i__) { + temp = 0.f; + i__3 = *k; + for (l = 1; l <= i__3; ++l) { + temp += a[l + i__ * a_dim1] * b[l + j * b_dim1]; +/* L100: */ + } + if (*beta == 0.f) { + c__[i__ + j * c_dim1] = *alpha * temp; + } else { + c__[i__ + j * c_dim1] = *alpha * temp + *beta * c__[ + i__ + j * c_dim1]; + } +/* L110: */ + } +/* L120: */ + } + } + } else { + if (nota) { + +/* Form C := alpha*A*B' + beta*C */ + + i__1 = *n; + for (j = 1; j <= i__1; ++j) { + if (*beta == 0.f) { + i__2 = *m; + for (i__ = 1; i__ <= i__2; ++i__) { + c__[i__ + j * c_dim1] = 0.f; +/* L130: */ + } + } else if (*beta != 1.f) { + i__2 = *m; + for (i__ = 1; i__ <= i__2; ++i__) { + c__[i__ + j * c_dim1] = *beta * c__[i__ + j * c_dim1]; +/* L140: */ + } + } + i__2 = *k; + for (l = 1; l <= i__2; ++l) { + if (b[j + l * b_dim1] != 0.f) { + temp = *alpha * b[j + l * b_dim1]; + i__3 = *m; + for (i__ = 1; i__ <= i__3; ++i__) { + c__[i__ + j * c_dim1] += temp * a[i__ + l * + a_dim1]; +/* L150: */ + } + } +/* L160: */ + } +/* L170: */ + } + } else { + +/* Form C := alpha*A'*B' + beta*C */ + + i__1 = *n; + for (j = 1; j <= i__1; ++j) { + i__2 = *m; + for (i__ = 1; i__ <= i__2; ++i__) { + temp = 0.f; + i__3 = *k; + for (l = 1; l <= i__3; ++l) { + temp += a[l + i__ * a_dim1] * b[j + l * b_dim1]; +/* L180: */ + } + if (*beta == 0.f) { + c__[i__ + j * c_dim1] = *alpha * temp; + } else { + c__[i__ + j * c_dim1] = *alpha * temp + *beta * c__[ + i__ + j * c_dim1]; + } +/* L190: */ + } +/* L200: */ + } + } + } + + return 0; + +/* End of SGEMM . */ + +} /* sgemm_ */ + +/* Subroutine */ int sgemv_(char *trans, integer *m, integer *n, real *alpha, + real *a, integer *lda, real *x, integer *incx, real *beta, real *y, + integer *incy) +{ + /* System generated locals */ + integer a_dim1, a_offset, i__1, i__2; + + /* Local variables */ + static integer i__, j, ix, iy, jx, jy, kx, ky, info; + static real temp; + static integer lenx, leny; + extern logical lsame_(char *, char *); + extern /* Subroutine */ int xerbla_(char *, integer *); + + +/* + Purpose + ======= + + SGEMV performs one of the matrix-vector operations + + y := alpha*A*x + beta*y, or y := alpha*A'*x + beta*y, + + where alpha and beta are scalars, x and y are vectors and A is an + m by n matrix. + + Parameters + ========== + + TRANS - CHARACTER*1. + On entry, TRANS specifies the operation to be performed as + follows: + + TRANS = 'N' or 'n' y := alpha*A*x + beta*y. + + TRANS = 'T' or 't' y := alpha*A'*x + beta*y. + + TRANS = 'C' or 'c' y := alpha*A'*x + beta*y. + + Unchanged on exit. + + M - INTEGER. + On entry, M specifies the number of rows of the matrix A. + M must be at least zero. + Unchanged on exit. + + N - INTEGER. + On entry, N specifies the number of columns of the matrix A. + N must be at least zero. + Unchanged on exit. + + ALPHA - REAL . + On entry, ALPHA specifies the scalar alpha. + Unchanged on exit. + + A - REAL array of DIMENSION ( LDA, n ). + Before entry, the leading m by n part of the array A must + contain the matrix of coefficients. + Unchanged on exit. + + LDA - INTEGER. + On entry, LDA specifies the first dimension of A as declared + in the calling (sub) program. LDA must be at least + max( 1, m ). + Unchanged on exit. + + X - REAL array of DIMENSION at least + ( 1 + ( n - 1 )*abs( INCX ) ) when TRANS = 'N' or 'n' + and at least + ( 1 + ( m - 1 )*abs( INCX ) ) otherwise. + Before entry, the incremented array X must contain the + vector x. + Unchanged on exit. + + INCX - INTEGER. + On entry, INCX specifies the increment for the elements of + X. INCX must not be zero. + Unchanged on exit. + + BETA - REAL . + On entry, BETA specifies the scalar beta. When BETA is + supplied as zero then Y need not be set on input. + Unchanged on exit. + + Y - REAL array of DIMENSION at least + ( 1 + ( m - 1 )*abs( INCY ) ) when TRANS = 'N' or 'n' + and at least + ( 1 + ( n - 1 )*abs( INCY ) ) otherwise. + Before entry with BETA non-zero, the incremented array Y + must contain the vector y. On exit, Y is overwritten by the + updated vector y. + + INCY - INTEGER. + On entry, INCY specifies the increment for the elements of + Y. INCY must not be zero. + Unchanged on exit. + + + Level 2 Blas routine. + + -- Written on 22-October-1986. + Jack Dongarra, Argonne National Lab. + Jeremy Du Croz, Nag Central Office. + Sven Hammarling, Nag Central Office. + Richard Hanson, Sandia National Labs. + + + Test the input parameters. +*/ + + /* Parameter adjustments */ + a_dim1 = *lda; + a_offset = 1 + a_dim1; + a -= a_offset; + --x; + --y; + + /* Function Body */ + info = 0; + if (! lsame_(trans, "N") && ! lsame_(trans, "T") && ! lsame_(trans, "C") + ) { + info = 1; + } else if (*m < 0) { + info = 2; + } else if (*n < 0) { + info = 3; + } else if (*lda < max(1,*m)) { + info = 6; + } else if (*incx == 0) { + info = 8; + } else if (*incy == 0) { + info = 11; + } + if (info != 0) { + xerbla_("SGEMV ", &info); + return 0; + } + +/* Quick return if possible. */ + + if (((*m == 0) || (*n == 0)) || (*alpha == 0.f && *beta == 1.f)) { + return 0; + } + +/* + Set LENX and LENY, the lengths of the vectors x and y, and set + up the start points in X and Y. +*/ + + if (lsame_(trans, "N")) { + lenx = *n; + leny = *m; + } else { + lenx = *m; + leny = *n; + } + if (*incx > 0) { + kx = 1; + } else { + kx = 1 - (lenx - 1) * *incx; + } + if (*incy > 0) { + ky = 1; + } else { + ky = 1 - (leny - 1) * *incy; + } + +/* + Start the operations. In this version the elements of A are + accessed sequentially with one pass through A. + + First form y := beta*y. +*/ + + if (*beta != 1.f) { + if (*incy == 1) { + if (*beta == 0.f) { + i__1 = leny; + for (i__ = 1; i__ <= i__1; ++i__) { + y[i__] = 0.f; +/* L10: */ + } + } else { + i__1 = leny; + for (i__ = 1; i__ <= i__1; ++i__) { + y[i__] = *beta * y[i__]; +/* L20: */ + } + } + } else { + iy = ky; + if (*beta == 0.f) { + i__1 = leny; + for (i__ = 1; i__ <= i__1; ++i__) { + y[iy] = 0.f; + iy += *incy; +/* L30: */ + } + } else { + i__1 = leny; + for (i__ = 1; i__ <= i__1; ++i__) { + y[iy] = *beta * y[iy]; + iy += *incy; +/* L40: */ + } + } + } + } + if (*alpha == 0.f) { + return 0; + } + if (lsame_(trans, "N")) { + +/* Form y := alpha*A*x + y. */ + + jx = kx; + if (*incy == 1) { + i__1 = *n; + for (j = 1; j <= i__1; ++j) { + if (x[jx] != 0.f) { + temp = *alpha * x[jx]; + i__2 = *m; + for (i__ = 1; i__ <= i__2; ++i__) { + y[i__] += temp * a[i__ + j * a_dim1]; +/* L50: */ + } + } + jx += *incx; +/* L60: */ + } + } else { + i__1 = *n; + for (j = 1; j <= i__1; ++j) { + if (x[jx] != 0.f) { + temp = *alpha * x[jx]; + iy = ky; + i__2 = *m; + for (i__ = 1; i__ <= i__2; ++i__) { + y[iy] += temp * a[i__ + j * a_dim1]; + iy += *incy; +/* L70: */ + } + } + jx += *incx; +/* L80: */ + } + } + } else { + +/* Form y := alpha*A'*x + y. */ + + jy = ky; + if (*incx == 1) { + i__1 = *n; + for (j = 1; j <= i__1; ++j) { + temp = 0.f; + i__2 = *m; + for (i__ = 1; i__ <= i__2; ++i__) { + temp += a[i__ + j * a_dim1] * x[i__]; +/* L90: */ + } + y[jy] += *alpha * temp; + jy += *incy; +/* L100: */ + } + } else { + i__1 = *n; + for (j = 1; j <= i__1; ++j) { + temp = 0.f; + ix = kx; + i__2 = *m; + for (i__ = 1; i__ <= i__2; ++i__) { + temp += a[i__ + j * a_dim1] * x[ix]; + ix += *incx; +/* L110: */ + } + y[jy] += *alpha * temp; + jy += *incy; +/* L120: */ + } + } + } + + return 0; + +/* End of SGEMV . */ + +} /* sgemv_ */ + +/* Subroutine */ int sger_(integer *m, integer *n, real *alpha, real *x, + integer *incx, real *y, integer *incy, real *a, integer *lda) +{ + /* System generated locals */ + integer a_dim1, a_offset, i__1, i__2; + + /* Local variables */ + static integer i__, j, ix, jy, kx, info; + static real temp; + extern /* Subroutine */ int xerbla_(char *, integer *); + + +/* + Purpose + ======= + + SGER performs the rank 1 operation + + A := alpha*x*y' + A, + + where alpha is a scalar, x is an m element vector, y is an n element + vector and A is an m by n matrix. + + Parameters + ========== + + M - INTEGER. + On entry, M specifies the number of rows of the matrix A. + M must be at least zero. + Unchanged on exit. + + N - INTEGER. + On entry, N specifies the number of columns of the matrix A. + N must be at least zero. + Unchanged on exit. + + ALPHA - REAL . + On entry, ALPHA specifies the scalar alpha. + Unchanged on exit. + + X - REAL array of dimension at least + ( 1 + ( m - 1 )*abs( INCX ) ). + Before entry, the incremented array X must contain the m + element vector x. + Unchanged on exit. + + INCX - INTEGER. + On entry, INCX specifies the increment for the elements of + X. INCX must not be zero. + Unchanged on exit. + + Y - REAL array of dimension at least + ( 1 + ( n - 1 )*abs( INCY ) ). + Before entry, the incremented array Y must contain the n + element vector y. + Unchanged on exit. + + INCY - INTEGER. + On entry, INCY specifies the increment for the elements of + Y. INCY must not be zero. + Unchanged on exit. + + A - REAL array of DIMENSION ( LDA, n ). + Before entry, the leading m by n part of the array A must + contain the matrix of coefficients. On exit, A is + overwritten by the updated matrix. + + LDA - INTEGER. + On entry, LDA specifies the first dimension of A as declared + in the calling (sub) program. LDA must be at least + max( 1, m ). + Unchanged on exit. + + + Level 2 Blas routine. + + -- Written on 22-October-1986. + Jack Dongarra, Argonne National Lab. + Jeremy Du Croz, Nag Central Office. + Sven Hammarling, Nag Central Office. + Richard Hanson, Sandia National Labs. + + + Test the input parameters. +*/ + + /* Parameter adjustments */ + --x; + --y; + a_dim1 = *lda; + a_offset = 1 + a_dim1; + a -= a_offset; + + /* Function Body */ + info = 0; + if (*m < 0) { + info = 1; + } else if (*n < 0) { + info = 2; + } else if (*incx == 0) { + info = 5; + } else if (*incy == 0) { + info = 7; + } else if (*lda < max(1,*m)) { + info = 9; + } + if (info != 0) { + xerbla_("SGER ", &info); + return 0; + } + +/* Quick return if possible. */ + + if (((*m == 0) || (*n == 0)) || (*alpha == 0.f)) { + return 0; + } + +/* + Start the operations. In this version the elements of A are + accessed sequentially with one pass through A. +*/ + + if (*incy > 0) { + jy = 1; + } else { + jy = 1 - (*n - 1) * *incy; + } + if (*incx == 1) { + i__1 = *n; + for (j = 1; j <= i__1; ++j) { + if (y[jy] != 0.f) { + temp = *alpha * y[jy]; + i__2 = *m; + for (i__ = 1; i__ <= i__2; ++i__) { + a[i__ + j * a_dim1] += x[i__] * temp; +/* L10: */ + } + } + jy += *incy; +/* L20: */ + } + } else { + if (*incx > 0) { + kx = 1; + } else { + kx = 1 - (*m - 1) * *incx; + } + i__1 = *n; + for (j = 1; j <= i__1; ++j) { + if (y[jy] != 0.f) { + temp = *alpha * y[jy]; + ix = kx; + i__2 = *m; + for (i__ = 1; i__ <= i__2; ++i__) { + a[i__ + j * a_dim1] += x[ix] * temp; + ix += *incx; +/* L30: */ + } + } + jy += *incy; +/* L40: */ + } + } + + return 0; + +/* End of SGER . */ + +} /* sger_ */ + +doublereal snrm2_(integer *n, real *x, integer *incx) +{ + /* System generated locals */ + integer i__1, i__2; + real ret_val, r__1; + + /* Builtin functions */ + double sqrt(doublereal); + + /* Local variables */ + static integer ix; + static real ssq, norm, scale, absxi; + + +/* + SNRM2 returns the euclidean norm of a vector via the function + name, so that + + SNRM2 := sqrt( x'*x ) + + + -- This version written on 25-October-1982. + Modified on 14-October-1993 to inline the call to SLASSQ. + Sven Hammarling, Nag Ltd. +*/ + + + /* Parameter adjustments */ + --x; + + /* Function Body */ + if ((*n < 1) || (*incx < 1)) { + norm = 0.f; + } else if (*n == 1) { + norm = dabs(x[1]); + } else { + scale = 0.f; + ssq = 1.f; +/* + The following loop is equivalent to this call to the LAPACK + auxiliary routine: + CALL SLASSQ( N, X, INCX, SCALE, SSQ ) +*/ + + i__1 = (*n - 1) * *incx + 1; + i__2 = *incx; + for (ix = 1; i__2 < 0 ? ix >= i__1 : ix <= i__1; ix += i__2) { + if (x[ix] != 0.f) { + absxi = (r__1 = x[ix], dabs(r__1)); + if (scale < absxi) { +/* Computing 2nd power */ + r__1 = scale / absxi; + ssq = ssq * (r__1 * r__1) + 1.f; + scale = absxi; + } else { +/* Computing 2nd power */ + r__1 = absxi / scale; + ssq += r__1 * r__1; + } + } +/* L10: */ + } + norm = scale * sqrt(ssq); + } + + ret_val = norm; + return ret_val; + +/* End of SNRM2. */ + +} /* snrm2_ */ + +/* Subroutine */ int srot_(integer *n, real *sx, integer *incx, real *sy, + integer *incy, real *c__, real *s) +{ + /* System generated locals */ + integer i__1; + + /* Local variables */ + static integer i__, ix, iy; + static real stemp; + + +/* + applies a plane rotation. + jack dongarra, linpack, 3/11/78. + modified 12/3/93, array(1) declarations changed to array(*) +*/ + + + /* Parameter adjustments */ + --sy; + --sx; + + /* Function Body */ + if (*n <= 0) { + return 0; + } + if (*incx == 1 && *incy == 1) { + goto L20; + } + +/* + code for unequal increments or equal increments not equal + to 1 +*/ + + ix = 1; + iy = 1; + if (*incx < 0) { + ix = (-(*n) + 1) * *incx + 1; + } + if (*incy < 0) { + iy = (-(*n) + 1) * *incy + 1; + } + i__1 = *n; + for (i__ = 1; i__ <= i__1; ++i__) { + stemp = *c__ * sx[ix] + *s * sy[iy]; + sy[iy] = *c__ * sy[iy] - *s * sx[ix]; + sx[ix] = stemp; + ix += *incx; + iy += *incy; +/* L10: */ + } + return 0; + +/* code for both increments equal to 1 */ + +L20: + i__1 = *n; + for (i__ = 1; i__ <= i__1; ++i__) { + stemp = *c__ * sx[i__] + *s * sy[i__]; + sy[i__] = *c__ * sy[i__] - *s * sx[i__]; + sx[i__] = stemp; +/* L30: */ + } + return 0; +} /* srot_ */ + +/* Subroutine */ int sscal_(integer *n, real *sa, real *sx, integer *incx) +{ + /* System generated locals */ + integer i__1, i__2; + + /* Local variables */ + static integer i__, m, mp1, nincx; + + +/* + scales a vector by a constant. + uses unrolled loops for increment equal to 1. + jack dongarra, linpack, 3/11/78. + modified 3/93 to return if incx .le. 0. + modified 12/3/93, array(1) declarations changed to array(*) +*/ + + + /* Parameter adjustments */ + --sx; + + /* Function Body */ + if ((*n <= 0) || (*incx <= 0)) { + return 0; + } + if (*incx == 1) { + goto L20; + } + +/* code for increment not equal to 1 */ + + nincx = *n * *incx; + i__1 = nincx; + i__2 = *incx; + for (i__ = 1; i__2 < 0 ? i__ >= i__1 : i__ <= i__1; i__ += i__2) { + sx[i__] = *sa * sx[i__]; +/* L10: */ + } + return 0; + +/* + code for increment equal to 1 + + + clean-up loop +*/ + +L20: + m = *n % 5; + if (m == 0) { + goto L40; + } + i__2 = m; + for (i__ = 1; i__ <= i__2; ++i__) { + sx[i__] = *sa * sx[i__]; +/* L30: */ + } + if (*n < 5) { + return 0; + } +L40: + mp1 = m + 1; + i__2 = *n; + for (i__ = mp1; i__ <= i__2; i__ += 5) { + sx[i__] = *sa * sx[i__]; + sx[i__ + 1] = *sa * sx[i__ + 1]; + sx[i__ + 2] = *sa * sx[i__ + 2]; + sx[i__ + 3] = *sa * sx[i__ + 3]; + sx[i__ + 4] = *sa * sx[i__ + 4]; +/* L50: */ + } + return 0; +} /* sscal_ */ + +/* Subroutine */ int sswap_(integer *n, real *sx, integer *incx, real *sy, + integer *incy) +{ + /* System generated locals */ + integer i__1; + + /* Local variables */ + static integer i__, m, ix, iy, mp1; + static real stemp; + + +/* + interchanges two vectors. + uses unrolled loops for increments equal to 1. + jack dongarra, linpack, 3/11/78. + modified 12/3/93, array(1) declarations changed to array(*) +*/ + + + /* Parameter adjustments */ + --sy; + --sx; + + /* Function Body */ + if (*n <= 0) { + return 0; + } + if (*incx == 1 && *incy == 1) { + goto L20; + } + +/* + code for unequal increments or equal increments not equal + to 1 +*/ + + ix = 1; + iy = 1; + if (*incx < 0) { + ix = (-(*n) + 1) * *incx + 1; + } + if (*incy < 0) { + iy = (-(*n) + 1) * *incy + 1; + } + i__1 = *n; + for (i__ = 1; i__ <= i__1; ++i__) { + stemp = sx[ix]; + sx[ix] = sy[iy]; + sy[iy] = stemp; + ix += *incx; + iy += *incy; +/* L10: */ + } + return 0; + +/* + code for both increments equal to 1 + + + clean-up loop +*/ + +L20: + m = *n % 3; + if (m == 0) { + goto L40; + } + i__1 = m; + for (i__ = 1; i__ <= i__1; ++i__) { + stemp = sx[i__]; + sx[i__] = sy[i__]; + sy[i__] = stemp; +/* L30: */ + } + if (*n < 3) { + return 0; + } +L40: + mp1 = m + 1; + i__1 = *n; + for (i__ = mp1; i__ <= i__1; i__ += 3) { + stemp = sx[i__]; + sx[i__] = sy[i__]; + sy[i__] = stemp; + stemp = sx[i__ + 1]; + sx[i__ + 1] = sy[i__ + 1]; + sy[i__ + 1] = stemp; + stemp = sx[i__ + 2]; + sx[i__ + 2] = sy[i__ + 2]; + sy[i__ + 2] = stemp; +/* L50: */ + } + return 0; +} /* sswap_ */ + +/* Subroutine */ int ssymv_(char *uplo, integer *n, real *alpha, real *a, + integer *lda, real *x, integer *incx, real *beta, real *y, integer * + incy) +{ + /* System generated locals */ + integer a_dim1, a_offset, i__1, i__2; + + /* Local variables */ + static integer i__, j, ix, iy, jx, jy, kx, ky, info; + static real temp1, temp2; + extern logical lsame_(char *, char *); + extern /* Subroutine */ int xerbla_(char *, integer *); + + +/* + Purpose + ======= + + SSYMV performs the matrix-vector operation + + y := alpha*A*x + beta*y, + + where alpha and beta are scalars, x and y are n element vectors and + A is an n by n symmetric matrix. + + Parameters + ========== + + UPLO - CHARACTER*1. + On entry, UPLO specifies whether the upper or lower + triangular part of the array A is to be referenced as + follows: + + UPLO = 'U' or 'u' Only the upper triangular part of A + is to be referenced. + + UPLO = 'L' or 'l' Only the lower triangular part of A + is to be referenced. + + Unchanged on exit. + + N - INTEGER. + On entry, N specifies the order of the matrix A. + N must be at least zero. + Unchanged on exit. + + ALPHA - REAL . + On entry, ALPHA specifies the scalar alpha. + Unchanged on exit. + + A - REAL array of DIMENSION ( LDA, n ). + Before entry with UPLO = 'U' or 'u', the leading n by n + upper triangular part of the array A must contain the upper + triangular part of the symmetric matrix and the strictly + lower triangular part of A is not referenced. + Before entry with UPLO = 'L' or 'l', the leading n by n + lower triangular part of the array A must contain the lower + triangular part of the symmetric matrix and the strictly + upper triangular part of A is not referenced. + Unchanged on exit. + + LDA - INTEGER. + On entry, LDA specifies the first dimension of A as declared + in the calling (sub) program. LDA must be at least + max( 1, n ). + Unchanged on exit. + + X - REAL array of dimension at least + ( 1 + ( n - 1 )*abs( INCX ) ). + Before entry, the incremented array X must contain the n + element vector x. + Unchanged on exit. + + INCX - INTEGER. + On entry, INCX specifies the increment for the elements of + X. INCX must not be zero. + Unchanged on exit. + + BETA - REAL . + On entry, BETA specifies the scalar beta. When BETA is + supplied as zero then Y need not be set on input. + Unchanged on exit. + + Y - REAL array of dimension at least + ( 1 + ( n - 1 )*abs( INCY ) ). + Before entry, the incremented array Y must contain the n + element vector y. On exit, Y is overwritten by the updated + vector y. + + INCY - INTEGER. + On entry, INCY specifies the increment for the elements of + Y. INCY must not be zero. + Unchanged on exit. + + + Level 2 Blas routine. + + -- Written on 22-October-1986. + Jack Dongarra, Argonne National Lab. + Jeremy Du Croz, Nag Central Office. + Sven Hammarling, Nag Central Office. + Richard Hanson, Sandia National Labs. + + + Test the input parameters. +*/ + + /* Parameter adjustments */ + a_dim1 = *lda; + a_offset = 1 + a_dim1; + a -= a_offset; + --x; + --y; + + /* Function Body */ + info = 0; + if (! lsame_(uplo, "U") && ! lsame_(uplo, "L")) { + info = 1; + } else if (*n < 0) { + info = 2; + } else if (*lda < max(1,*n)) { + info = 5; + } else if (*incx == 0) { + info = 7; + } else if (*incy == 0) { + info = 10; + } + if (info != 0) { + xerbla_("SSYMV ", &info); + return 0; + } + +/* Quick return if possible. */ + + if ((*n == 0) || (*alpha == 0.f && *beta == 1.f)) { + return 0; + } + +/* Set up the start points in X and Y. */ + + if (*incx > 0) { + kx = 1; + } else { + kx = 1 - (*n - 1) * *incx; + } + if (*incy > 0) { + ky = 1; + } else { + ky = 1 - (*n - 1) * *incy; + } + +/* + Start the operations. In this version the elements of A are + accessed sequentially with one pass through the triangular part + of A. + + First form y := beta*y. +*/ + + if (*beta != 1.f) { + if (*incy == 1) { + if (*beta == 0.f) { + i__1 = *n; + for (i__ = 1; i__ <= i__1; ++i__) { + y[i__] = 0.f; +/* L10: */ + } + } else { + i__1 = *n; + for (i__ = 1; i__ <= i__1; ++i__) { + y[i__] = *beta * y[i__]; +/* L20: */ + } + } + } else { + iy = ky; + if (*beta == 0.f) { + i__1 = *n; + for (i__ = 1; i__ <= i__1; ++i__) { + y[iy] = 0.f; + iy += *incy; +/* L30: */ + } + } else { + i__1 = *n; + for (i__ = 1; i__ <= i__1; ++i__) { + y[iy] = *beta * y[iy]; + iy += *incy; +/* L40: */ + } + } + } + } + if (*alpha == 0.f) { + return 0; + } + if (lsame_(uplo, "U")) { + +/* Form y when A is stored in upper triangle. */ + + if (*incx == 1 && *incy == 1) { + i__1 = *n; + for (j = 1; j <= i__1; ++j) { + temp1 = *alpha * x[j]; + temp2 = 0.f; + i__2 = j - 1; + for (i__ = 1; i__ <= i__2; ++i__) { + y[i__] += temp1 * a[i__ + j * a_dim1]; + temp2 += a[i__ + j * a_dim1] * x[i__]; +/* L50: */ + } + y[j] = y[j] + temp1 * a[j + j * a_dim1] + *alpha * temp2; +/* L60: */ + } + } else { + jx = kx; + jy = ky; + i__1 = *n; + for (j = 1; j <= i__1; ++j) { + temp1 = *alpha * x[jx]; + temp2 = 0.f; + ix = kx; + iy = ky; + i__2 = j - 1; + for (i__ = 1; i__ <= i__2; ++i__) { + y[iy] += temp1 * a[i__ + j * a_dim1]; + temp2 += a[i__ + j * a_dim1] * x[ix]; + ix += *incx; + iy += *incy; +/* L70: */ + } + y[jy] = y[jy] + temp1 * a[j + j * a_dim1] + *alpha * temp2; + jx += *incx; + jy += *incy; +/* L80: */ + } + } + } else { + +/* Form y when A is stored in lower triangle. */ + + if (*incx == 1 && *incy == 1) { + i__1 = *n; + for (j = 1; j <= i__1; ++j) { + temp1 = *alpha * x[j]; + temp2 = 0.f; + y[j] += temp1 * a[j + j * a_dim1]; + i__2 = *n; + for (i__ = j + 1; i__ <= i__2; ++i__) { + y[i__] += temp1 * a[i__ + j * a_dim1]; + temp2 += a[i__ + j * a_dim1] * x[i__]; +/* L90: */ + } + y[j] += *alpha * temp2; +/* L100: */ + } + } else { + jx = kx; + jy = ky; + i__1 = *n; + for (j = 1; j <= i__1; ++j) { + temp1 = *alpha * x[jx]; + temp2 = 0.f; + y[jy] += temp1 * a[j + j * a_dim1]; + ix = jx; + iy = jy; + i__2 = *n; + for (i__ = j + 1; i__ <= i__2; ++i__) { + ix += *incx; + iy += *incy; + y[iy] += temp1 * a[i__ + j * a_dim1]; + temp2 += a[i__ + j * a_dim1] * x[ix]; +/* L110: */ + } + y[jy] += *alpha * temp2; + jx += *incx; + jy += *incy; +/* L120: */ + } + } + } + + return 0; + +/* End of SSYMV . */ + +} /* ssymv_ */ + +/* Subroutine */ int ssyr2_(char *uplo, integer *n, real *alpha, real *x, + integer *incx, real *y, integer *incy, real *a, integer *lda) +{ + /* System generated locals */ + integer a_dim1, a_offset, i__1, i__2; + + /* Local variables */ + static integer i__, j, ix, iy, jx, jy, kx, ky, info; + static real temp1, temp2; + extern logical lsame_(char *, char *); + extern /* Subroutine */ int xerbla_(char *, integer *); + + +/* + Purpose + ======= + + SSYR2 performs the symmetric rank 2 operation + + A := alpha*x*y' + alpha*y*x' + A, + + where alpha is a scalar, x and y are n element vectors and A is an n + by n symmetric matrix. + + Parameters + ========== + + UPLO - CHARACTER*1. + On entry, UPLO specifies whether the upper or lower + triangular part of the array A is to be referenced as + follows: + + UPLO = 'U' or 'u' Only the upper triangular part of A + is to be referenced. + + UPLO = 'L' or 'l' Only the lower triangular part of A + is to be referenced. + + Unchanged on exit. + + N - INTEGER. + On entry, N specifies the order of the matrix A. + N must be at least zero. + Unchanged on exit. + + ALPHA - REAL . + On entry, ALPHA specifies the scalar alpha. + Unchanged on exit. + + X - REAL array of dimension at least + ( 1 + ( n - 1 )*abs( INCX ) ). + Before entry, the incremented array X must contain the n + element vector x. + Unchanged on exit. + + INCX - INTEGER. + On entry, INCX specifies the increment for the elements of + X. INCX must not be zero. + Unchanged on exit. + + Y - REAL array of dimension at least + ( 1 + ( n - 1 )*abs( INCY ) ). + Before entry, the incremented array Y must contain the n + element vector y. + Unchanged on exit. + + INCY - INTEGER. + On entry, INCY specifies the increment for the elements of + Y. INCY must not be zero. + Unchanged on exit. + + A - REAL array of DIMENSION ( LDA, n ). + Before entry with UPLO = 'U' or 'u', the leading n by n + upper triangular part of the array A must contain the upper + triangular part of the symmetric matrix and the strictly + lower triangular part of A is not referenced. On exit, the + upper triangular part of the array A is overwritten by the + upper triangular part of the updated matrix. + Before entry with UPLO = 'L' or 'l', the leading n by n + lower triangular part of the array A must contain the lower + triangular part of the symmetric matrix and the strictly + upper triangular part of A is not referenced. On exit, the + lower triangular part of the array A is overwritten by the + lower triangular part of the updated matrix. + + LDA - INTEGER. + On entry, LDA specifies the first dimension of A as declared + in the calling (sub) program. LDA must be at least + max( 1, n ). + Unchanged on exit. + + + Level 2 Blas routine. + + -- Written on 22-October-1986. + Jack Dongarra, Argonne National Lab. + Jeremy Du Croz, Nag Central Office. + Sven Hammarling, Nag Central Office. + Richard Hanson, Sandia National Labs. + + + Test the input parameters. +*/ + + /* Parameter adjustments */ + --x; + --y; + a_dim1 = *lda; + a_offset = 1 + a_dim1; + a -= a_offset; + + /* Function Body */ + info = 0; + if (! lsame_(uplo, "U") && ! lsame_(uplo, "L")) { + info = 1; + } else if (*n < 0) { + info = 2; + } else if (*incx == 0) { + info = 5; + } else if (*incy == 0) { + info = 7; + } else if (*lda < max(1,*n)) { + info = 9; + } + if (info != 0) { + xerbla_("SSYR2 ", &info); + return 0; + } + +/* Quick return if possible. */ + + if ((*n == 0) || (*alpha == 0.f)) { + return 0; + } + +/* + Set up the start points in X and Y if the increments are not both + unity. +*/ + + if ((*incx != 1) || (*incy != 1)) { + if (*incx > 0) { + kx = 1; + } else { + kx = 1 - (*n - 1) * *incx; + } + if (*incy > 0) { + ky = 1; + } else { + ky = 1 - (*n - 1) * *incy; + } + jx = kx; + jy = ky; + } + +/* + Start the operations. In this version the elements of A are + accessed sequentially with one pass through the triangular part + of A. +*/ + + if (lsame_(uplo, "U")) { + +/* Form A when A is stored in the upper triangle. */ + + if (*incx == 1 && *incy == 1) { + i__1 = *n; + for (j = 1; j <= i__1; ++j) { + if ((x[j] != 0.f) || (y[j] != 0.f)) { + temp1 = *alpha * y[j]; + temp2 = *alpha * x[j]; + i__2 = j; + for (i__ = 1; i__ <= i__2; ++i__) { + a[i__ + j * a_dim1] = a[i__ + j * a_dim1] + x[i__] * + temp1 + y[i__] * temp2; +/* L10: */ + } + } +/* L20: */ + } + } else { + i__1 = *n; + for (j = 1; j <= i__1; ++j) { + if ((x[jx] != 0.f) || (y[jy] != 0.f)) { + temp1 = *alpha * y[jy]; + temp2 = *alpha * x[jx]; + ix = kx; + iy = ky; + i__2 = j; + for (i__ = 1; i__ <= i__2; ++i__) { + a[i__ + j * a_dim1] = a[i__ + j * a_dim1] + x[ix] * + temp1 + y[iy] * temp2; + ix += *incx; + iy += *incy; +/* L30: */ + } + } + jx += *incx; + jy += *incy; +/* L40: */ + } + } + } else { + +/* Form A when A is stored in the lower triangle. */ + + if (*incx == 1 && *incy == 1) { + i__1 = *n; + for (j = 1; j <= i__1; ++j) { + if ((x[j] != 0.f) || (y[j] != 0.f)) { + temp1 = *alpha * y[j]; + temp2 = *alpha * x[j]; + i__2 = *n; + for (i__ = j; i__ <= i__2; ++i__) { + a[i__ + j * a_dim1] = a[i__ + j * a_dim1] + x[i__] * + temp1 + y[i__] * temp2; +/* L50: */ + } + } +/* L60: */ + } + } else { + i__1 = *n; + for (j = 1; j <= i__1; ++j) { + if ((x[jx] != 0.f) || (y[jy] != 0.f)) { + temp1 = *alpha * y[jy]; + temp2 = *alpha * x[jx]; + ix = jx; + iy = jy; + i__2 = *n; + for (i__ = j; i__ <= i__2; ++i__) { + a[i__ + j * a_dim1] = a[i__ + j * a_dim1] + x[ix] * + temp1 + y[iy] * temp2; + ix += *incx; + iy += *incy; +/* L70: */ + } + } + jx += *incx; + jy += *incy; +/* L80: */ + } + } + } + + return 0; + +/* End of SSYR2 . */ + +} /* ssyr2_ */ + +/* Subroutine */ int ssyr2k_(char *uplo, char *trans, integer *n, integer *k, + real *alpha, real *a, integer *lda, real *b, integer *ldb, real *beta, + real *c__, integer *ldc) +{ + /* System generated locals */ + integer a_dim1, a_offset, b_dim1, b_offset, c_dim1, c_offset, i__1, i__2, + i__3; + + /* Local variables */ + static integer i__, j, l, info; + static real temp1, temp2; + extern logical lsame_(char *, char *); + static integer nrowa; + static logical upper; + extern /* Subroutine */ int xerbla_(char *, integer *); + + +/* + Purpose + ======= + + SSYR2K performs one of the symmetric rank 2k operations + + C := alpha*A*B' + alpha*B*A' + beta*C, + + or + + C := alpha*A'*B + alpha*B'*A + beta*C, + + where alpha and beta are scalars, C is an n by n symmetric matrix + and A and B are n by k matrices in the first case and k by n + matrices in the second case. + + Parameters + ========== + + UPLO - CHARACTER*1. + On entry, UPLO specifies whether the upper or lower + triangular part of the array C is to be referenced as + follows: + + UPLO = 'U' or 'u' Only the upper triangular part of C + is to be referenced. + + UPLO = 'L' or 'l' Only the lower triangular part of C + is to be referenced. + + Unchanged on exit. + + TRANS - CHARACTER*1. + On entry, TRANS specifies the operation to be performed as + follows: + + TRANS = 'N' or 'n' C := alpha*A*B' + alpha*B*A' + + beta*C. + + TRANS = 'T' or 't' C := alpha*A'*B + alpha*B'*A + + beta*C. + + TRANS = 'C' or 'c' C := alpha*A'*B + alpha*B'*A + + beta*C. + + Unchanged on exit. + + N - INTEGER. + On entry, N specifies the order of the matrix C. N must be + at least zero. + Unchanged on exit. + + K - INTEGER. + On entry with TRANS = 'N' or 'n', K specifies the number + of columns of the matrices A and B, and on entry with + TRANS = 'T' or 't' or 'C' or 'c', K specifies the number + of rows of the matrices A and B. K must be at least zero. + Unchanged on exit. + + ALPHA - REAL . + On entry, ALPHA specifies the scalar alpha. + Unchanged on exit. + + A - REAL array of DIMENSION ( LDA, ka ), where ka is + k when TRANS = 'N' or 'n', and is n otherwise. + Before entry with TRANS = 'N' or 'n', the leading n by k + part of the array A must contain the matrix A, otherwise + the leading k by n part of the array A must contain the + matrix A. + Unchanged on exit. + + LDA - INTEGER. + On entry, LDA specifies the first dimension of A as declared + in the calling (sub) program. When TRANS = 'N' or 'n' + then LDA must be at least max( 1, n ), otherwise LDA must + be at least max( 1, k ). + Unchanged on exit. + + B - REAL array of DIMENSION ( LDB, kb ), where kb is + k when TRANS = 'N' or 'n', and is n otherwise. + Before entry with TRANS = 'N' or 'n', the leading n by k + part of the array B must contain the matrix B, otherwise + the leading k by n part of the array B must contain the + matrix B. + Unchanged on exit. + + LDB - INTEGER. + On entry, LDB specifies the first dimension of B as declared + in the calling (sub) program. When TRANS = 'N' or 'n' + then LDB must be at least max( 1, n ), otherwise LDB must + be at least max( 1, k ). + Unchanged on exit. + + BETA - REAL . + On entry, BETA specifies the scalar beta. + Unchanged on exit. + + C - REAL array of DIMENSION ( LDC, n ). + Before entry with UPLO = 'U' or 'u', the leading n by n + upper triangular part of the array C must contain the upper + triangular part of the symmetric matrix and the strictly + lower triangular part of C is not referenced. On exit, the + upper triangular part of the array C is overwritten by the + upper triangular part of the updated matrix. + Before entry with UPLO = 'L' or 'l', the leading n by n + lower triangular part of the array C must contain the lower + triangular part of the symmetric matrix and the strictly + upper triangular part of C is not referenced. On exit, the + lower triangular part of the array C is overwritten by the + lower triangular part of the updated matrix. + + LDC - INTEGER. + On entry, LDC specifies the first dimension of C as declared + in the calling (sub) program. LDC must be at least + max( 1, n ). + Unchanged on exit. + + + Level 3 Blas routine. + + + -- Written on 8-February-1989. + Jack Dongarra, Argonne National Laboratory. + Iain Duff, AERE Harwell. + Jeremy Du Croz, Numerical Algorithms Group Ltd. + Sven Hammarling, Numerical Algorithms Group Ltd. + + + Test the input parameters. +*/ + + /* Parameter adjustments */ + a_dim1 = *lda; + a_offset = 1 + a_dim1; + a -= a_offset; + b_dim1 = *ldb; + b_offset = 1 + b_dim1; + b -= b_offset; + c_dim1 = *ldc; + c_offset = 1 + c_dim1; + c__ -= c_offset; + + /* Function Body */ + if (lsame_(trans, "N")) { + nrowa = *n; + } else { + nrowa = *k; + } + upper = lsame_(uplo, "U"); + + info = 0; + if (! upper && ! lsame_(uplo, "L")) { + info = 1; + } else if (! lsame_(trans, "N") && ! lsame_(trans, + "T") && ! lsame_(trans, "C")) { + info = 2; + } else if (*n < 0) { + info = 3; + } else if (*k < 0) { + info = 4; + } else if (*lda < max(1,nrowa)) { + info = 7; + } else if (*ldb < max(1,nrowa)) { + info = 9; + } else if (*ldc < max(1,*n)) { + info = 12; + } + if (info != 0) { + xerbla_("SSYR2K", &info); + return 0; + } + +/* Quick return if possible. */ + + if ((*n == 0) || (((*alpha == 0.f) || (*k == 0)) && *beta == 1.f)) { + return 0; + } + +/* And when alpha.eq.zero. */ + + if (*alpha == 0.f) { + if (upper) { + if (*beta == 0.f) { + i__1 = *n; + for (j = 1; j <= i__1; ++j) { + i__2 = j; + for (i__ = 1; i__ <= i__2; ++i__) { + c__[i__ + j * c_dim1] = 0.f; +/* L10: */ + } +/* L20: */ + } + } else { + i__1 = *n; + for (j = 1; j <= i__1; ++j) { + i__2 = j; + for (i__ = 1; i__ <= i__2; ++i__) { + c__[i__ + j * c_dim1] = *beta * c__[i__ + j * c_dim1]; +/* L30: */ + } +/* L40: */ + } + } + } else { + if (*beta == 0.f) { + i__1 = *n; + for (j = 1; j <= i__1; ++j) { + i__2 = *n; + for (i__ = j; i__ <= i__2; ++i__) { + c__[i__ + j * c_dim1] = 0.f; +/* L50: */ + } +/* L60: */ + } + } else { + i__1 = *n; + for (j = 1; j <= i__1; ++j) { + i__2 = *n; + for (i__ = j; i__ <= i__2; ++i__) { + c__[i__ + j * c_dim1] = *beta * c__[i__ + j * c_dim1]; +/* L70: */ + } +/* L80: */ + } + } + } + return 0; + } + +/* Start the operations. */ + + if (lsame_(trans, "N")) { + +/* Form C := alpha*A*B' + alpha*B*A' + C. */ + + if (upper) { + i__1 = *n; + for (j = 1; j <= i__1; ++j) { + if (*beta == 0.f) { + i__2 = j; + for (i__ = 1; i__ <= i__2; ++i__) { + c__[i__ + j * c_dim1] = 0.f; +/* L90: */ + } + } else if (*beta != 1.f) { + i__2 = j; + for (i__ = 1; i__ <= i__2; ++i__) { + c__[i__ + j * c_dim1] = *beta * c__[i__ + j * c_dim1]; +/* L100: */ + } + } + i__2 = *k; + for (l = 1; l <= i__2; ++l) { + if ((a[j + l * a_dim1] != 0.f) || (b[j + l * b_dim1] != + 0.f)) { + temp1 = *alpha * b[j + l * b_dim1]; + temp2 = *alpha * a[j + l * a_dim1]; + i__3 = j; + for (i__ = 1; i__ <= i__3; ++i__) { + c__[i__ + j * c_dim1] = c__[i__ + j * c_dim1] + a[ + i__ + l * a_dim1] * temp1 + b[i__ + l * + b_dim1] * temp2; +/* L110: */ + } + } +/* L120: */ + } +/* L130: */ + } + } else { + i__1 = *n; + for (j = 1; j <= i__1; ++j) { + if (*beta == 0.f) { + i__2 = *n; + for (i__ = j; i__ <= i__2; ++i__) { + c__[i__ + j * c_dim1] = 0.f; +/* L140: */ + } + } else if (*beta != 1.f) { + i__2 = *n; + for (i__ = j; i__ <= i__2; ++i__) { + c__[i__ + j * c_dim1] = *beta * c__[i__ + j * c_dim1]; +/* L150: */ + } + } + i__2 = *k; + for (l = 1; l <= i__2; ++l) { + if ((a[j + l * a_dim1] != 0.f) || (b[j + l * b_dim1] != + 0.f)) { + temp1 = *alpha * b[j + l * b_dim1]; + temp2 = *alpha * a[j + l * a_dim1]; + i__3 = *n; + for (i__ = j; i__ <= i__3; ++i__) { + c__[i__ + j * c_dim1] = c__[i__ + j * c_dim1] + a[ + i__ + l * a_dim1] * temp1 + b[i__ + l * + b_dim1] * temp2; +/* L160: */ + } + } +/* L170: */ + } +/* L180: */ + } + } + } else { + +/* Form C := alpha*A'*B + alpha*B'*A + C. */ + + if (upper) { + i__1 = *n; + for (j = 1; j <= i__1; ++j) { + i__2 = j; + for (i__ = 1; i__ <= i__2; ++i__) { + temp1 = 0.f; + temp2 = 0.f; + i__3 = *k; + for (l = 1; l <= i__3; ++l) { + temp1 += a[l + i__ * a_dim1] * b[l + j * b_dim1]; + temp2 += b[l + i__ * b_dim1] * a[l + j * a_dim1]; +/* L190: */ + } + if (*beta == 0.f) { + c__[i__ + j * c_dim1] = *alpha * temp1 + *alpha * + temp2; + } else { + c__[i__ + j * c_dim1] = *beta * c__[i__ + j * c_dim1] + + *alpha * temp1 + *alpha * temp2; + } +/* L200: */ + } +/* L210: */ + } + } else { + i__1 = *n; + for (j = 1; j <= i__1; ++j) { + i__2 = *n; + for (i__ = j; i__ <= i__2; ++i__) { + temp1 = 0.f; + temp2 = 0.f; + i__3 = *k; + for (l = 1; l <= i__3; ++l) { + temp1 += a[l + i__ * a_dim1] * b[l + j * b_dim1]; + temp2 += b[l + i__ * b_dim1] * a[l + j * a_dim1]; +/* L220: */ + } + if (*beta == 0.f) { + c__[i__ + j * c_dim1] = *alpha * temp1 + *alpha * + temp2; + } else { + c__[i__ + j * c_dim1] = *beta * c__[i__ + j * c_dim1] + + *alpha * temp1 + *alpha * temp2; + } +/* L230: */ + } +/* L240: */ + } + } + } + + return 0; + +/* End of SSYR2K. */ + +} /* ssyr2k_ */ + +/* Subroutine */ int ssyrk_(char *uplo, char *trans, integer *n, integer *k, + real *alpha, real *a, integer *lda, real *beta, real *c__, integer * + ldc) +{ + /* System generated locals */ + integer a_dim1, a_offset, c_dim1, c_offset, i__1, i__2, i__3; + + /* Local variables */ + static integer i__, j, l, info; + static real temp; + extern logical lsame_(char *, char *); + static integer nrowa; + static logical upper; + extern /* Subroutine */ int xerbla_(char *, integer *); + + +/* + Purpose + ======= + + SSYRK performs one of the symmetric rank k operations + + C := alpha*A*A' + beta*C, + + or + + C := alpha*A'*A + beta*C, + + where alpha and beta are scalars, C is an n by n symmetric matrix + and A is an n by k matrix in the first case and a k by n matrix + in the second case. + + Parameters + ========== + + UPLO - CHARACTER*1. + On entry, UPLO specifies whether the upper or lower + triangular part of the array C is to be referenced as + follows: + + UPLO = 'U' or 'u' Only the upper triangular part of C + is to be referenced. + + UPLO = 'L' or 'l' Only the lower triangular part of C + is to be referenced. + + Unchanged on exit. + + TRANS - CHARACTER*1. + On entry, TRANS specifies the operation to be performed as + follows: + + TRANS = 'N' or 'n' C := alpha*A*A' + beta*C. + + TRANS = 'T' or 't' C := alpha*A'*A + beta*C. + + TRANS = 'C' or 'c' C := alpha*A'*A + beta*C. + + Unchanged on exit. + + N - INTEGER. + On entry, N specifies the order of the matrix C. N must be + at least zero. + Unchanged on exit. + + K - INTEGER. + On entry with TRANS = 'N' or 'n', K specifies the number + of columns of the matrix A, and on entry with + TRANS = 'T' or 't' or 'C' or 'c', K specifies the number + of rows of the matrix A. K must be at least zero. + Unchanged on exit. + + ALPHA - REAL . + On entry, ALPHA specifies the scalar alpha. + Unchanged on exit. + + A - REAL array of DIMENSION ( LDA, ka ), where ka is + k when TRANS = 'N' or 'n', and is n otherwise. + Before entry with TRANS = 'N' or 'n', the leading n by k + part of the array A must contain the matrix A, otherwise + the leading k by n part of the array A must contain the + matrix A. + Unchanged on exit. + + LDA - INTEGER. + On entry, LDA specifies the first dimension of A as declared + in the calling (sub) program. When TRANS = 'N' or 'n' + then LDA must be at least max( 1, n ), otherwise LDA must + be at least max( 1, k ). + Unchanged on exit. + + BETA - REAL . + On entry, BETA specifies the scalar beta. + Unchanged on exit. + + C - REAL array of DIMENSION ( LDC, n ). + Before entry with UPLO = 'U' or 'u', the leading n by n + upper triangular part of the array C must contain the upper + triangular part of the symmetric matrix and the strictly + lower triangular part of C is not referenced. On exit, the + upper triangular part of the array C is overwritten by the + upper triangular part of the updated matrix. + Before entry with UPLO = 'L' or 'l', the leading n by n + lower triangular part of the array C must contain the lower + triangular part of the symmetric matrix and the strictly + upper triangular part of C is not referenced. On exit, the + lower triangular part of the array C is overwritten by the + lower triangular part of the updated matrix. + + LDC - INTEGER. + On entry, LDC specifies the first dimension of C as declared + in the calling (sub) program. LDC must be at least + max( 1, n ). + Unchanged on exit. + + + Level 3 Blas routine. + + -- Written on 8-February-1989. + Jack Dongarra, Argonne National Laboratory. + Iain Duff, AERE Harwell. + Jeremy Du Croz, Numerical Algorithms Group Ltd. + Sven Hammarling, Numerical Algorithms Group Ltd. + + + Test the input parameters. +*/ + + /* Parameter adjustments */ + a_dim1 = *lda; + a_offset = 1 + a_dim1; + a -= a_offset; + c_dim1 = *ldc; + c_offset = 1 + c_dim1; + c__ -= c_offset; + + /* Function Body */ + if (lsame_(trans, "N")) { + nrowa = *n; + } else { + nrowa = *k; + } + upper = lsame_(uplo, "U"); + + info = 0; + if (! upper && ! lsame_(uplo, "L")) { + info = 1; + } else if (! lsame_(trans, "N") && ! lsame_(trans, + "T") && ! lsame_(trans, "C")) { + info = 2; + } else if (*n < 0) { + info = 3; + } else if (*k < 0) { + info = 4; + } else if (*lda < max(1,nrowa)) { + info = 7; + } else if (*ldc < max(1,*n)) { + info = 10; + } + if (info != 0) { + xerbla_("SSYRK ", &info); + return 0; + } + +/* Quick return if possible. */ + + if ((*n == 0) || (((*alpha == 0.f) || (*k == 0)) && *beta == 1.f)) { + return 0; + } + +/* And when alpha.eq.zero. */ + + if (*alpha == 0.f) { + if (upper) { + if (*beta == 0.f) { + i__1 = *n; + for (j = 1; j <= i__1; ++j) { + i__2 = j; + for (i__ = 1; i__ <= i__2; ++i__) { + c__[i__ + j * c_dim1] = 0.f; +/* L10: */ + } +/* L20: */ + } + } else { + i__1 = *n; + for (j = 1; j <= i__1; ++j) { + i__2 = j; + for (i__ = 1; i__ <= i__2; ++i__) { + c__[i__ + j * c_dim1] = *beta * c__[i__ + j * c_dim1]; +/* L30: */ + } +/* L40: */ + } + } + } else { + if (*beta == 0.f) { + i__1 = *n; + for (j = 1; j <= i__1; ++j) { + i__2 = *n; + for (i__ = j; i__ <= i__2; ++i__) { + c__[i__ + j * c_dim1] = 0.f; +/* L50: */ + } +/* L60: */ + } + } else { + i__1 = *n; + for (j = 1; j <= i__1; ++j) { + i__2 = *n; + for (i__ = j; i__ <= i__2; ++i__) { + c__[i__ + j * c_dim1] = *beta * c__[i__ + j * c_dim1]; +/* L70: */ + } +/* L80: */ + } + } + } + return 0; + } + +/* Start the operations. */ + + if (lsame_(trans, "N")) { + +/* Form C := alpha*A*A' + beta*C. */ + + if (upper) { + i__1 = *n; + for (j = 1; j <= i__1; ++j) { + if (*beta == 0.f) { + i__2 = j; + for (i__ = 1; i__ <= i__2; ++i__) { + c__[i__ + j * c_dim1] = 0.f; +/* L90: */ + } + } else if (*beta != 1.f) { + i__2 = j; + for (i__ = 1; i__ <= i__2; ++i__) { + c__[i__ + j * c_dim1] = *beta * c__[i__ + j * c_dim1]; +/* L100: */ + } + } + i__2 = *k; + for (l = 1; l <= i__2; ++l) { + if (a[j + l * a_dim1] != 0.f) { + temp = *alpha * a[j + l * a_dim1]; + i__3 = j; + for (i__ = 1; i__ <= i__3; ++i__) { + c__[i__ + j * c_dim1] += temp * a[i__ + l * + a_dim1]; +/* L110: */ + } + } +/* L120: */ + } +/* L130: */ + } + } else { + i__1 = *n; + for (j = 1; j <= i__1; ++j) { + if (*beta == 0.f) { + i__2 = *n; + for (i__ = j; i__ <= i__2; ++i__) { + c__[i__ + j * c_dim1] = 0.f; +/* L140: */ + } + } else if (*beta != 1.f) { + i__2 = *n; + for (i__ = j; i__ <= i__2; ++i__) { + c__[i__ + j * c_dim1] = *beta * c__[i__ + j * c_dim1]; +/* L150: */ + } + } + i__2 = *k; + for (l = 1; l <= i__2; ++l) { + if (a[j + l * a_dim1] != 0.f) { + temp = *alpha * a[j + l * a_dim1]; + i__3 = *n; + for (i__ = j; i__ <= i__3; ++i__) { + c__[i__ + j * c_dim1] += temp * a[i__ + l * + a_dim1]; +/* L160: */ + } + } +/* L170: */ + } +/* L180: */ + } + } + } else { + +/* Form C := alpha*A'*A + beta*C. */ + + if (upper) { + i__1 = *n; + for (j = 1; j <= i__1; ++j) { + i__2 = j; + for (i__ = 1; i__ <= i__2; ++i__) { + temp = 0.f; + i__3 = *k; + for (l = 1; l <= i__3; ++l) { + temp += a[l + i__ * a_dim1] * a[l + j * a_dim1]; +/* L190: */ + } + if (*beta == 0.f) { + c__[i__ + j * c_dim1] = *alpha * temp; + } else { + c__[i__ + j * c_dim1] = *alpha * temp + *beta * c__[ + i__ + j * c_dim1]; + } +/* L200: */ + } +/* L210: */ + } + } else { + i__1 = *n; + for (j = 1; j <= i__1; ++j) { + i__2 = *n; + for (i__ = j; i__ <= i__2; ++i__) { + temp = 0.f; + i__3 = *k; + for (l = 1; l <= i__3; ++l) { + temp += a[l + i__ * a_dim1] * a[l + j * a_dim1]; +/* L220: */ + } + if (*beta == 0.f) { + c__[i__ + j * c_dim1] = *alpha * temp; + } else { + c__[i__ + j * c_dim1] = *alpha * temp + *beta * c__[ + i__ + j * c_dim1]; + } +/* L230: */ + } +/* L240: */ + } + } + } + + return 0; + +/* End of SSYRK . */ + +} /* ssyrk_ */ + +/* Subroutine */ int strmm_(char *side, char *uplo, char *transa, char *diag, + integer *m, integer *n, real *alpha, real *a, integer *lda, real *b, + integer *ldb) +{ + /* System generated locals */ + integer a_dim1, a_offset, b_dim1, b_offset, i__1, i__2, i__3; + + /* Local variables */ + static integer i__, j, k, info; + static real temp; + static logical lside; + extern logical lsame_(char *, char *); + static integer nrowa; + static logical upper; + extern /* Subroutine */ int xerbla_(char *, integer *); + static logical nounit; + + +/* + Purpose + ======= + + STRMM performs one of the matrix-matrix operations + + B := alpha*op( A )*B, or B := alpha*B*op( A ), + + where alpha is a scalar, B is an m by n matrix, A is a unit, or + non-unit, upper or lower triangular matrix and op( A ) is one of + + op( A ) = A or op( A ) = A'. + + Parameters + ========== + + SIDE - CHARACTER*1. + On entry, SIDE specifies whether op( A ) multiplies B from + the left or right as follows: + + SIDE = 'L' or 'l' B := alpha*op( A )*B. + + SIDE = 'R' or 'r' B := alpha*B*op( A ). + + Unchanged on exit. + + UPLO - CHARACTER*1. + On entry, UPLO specifies whether the matrix A is an upper or + lower triangular matrix as follows: + + UPLO = 'U' or 'u' A is an upper triangular matrix. + + UPLO = 'L' or 'l' A is a lower triangular matrix. + + Unchanged on exit. + + TRANSA - CHARACTER*1. + On entry, TRANSA specifies the form of op( A ) to be used in + the matrix multiplication as follows: + + TRANSA = 'N' or 'n' op( A ) = A. + + TRANSA = 'T' or 't' op( A ) = A'. + + TRANSA = 'C' or 'c' op( A ) = A'. + + Unchanged on exit. + + DIAG - CHARACTER*1. + On entry, DIAG specifies whether or not A is unit triangular + as follows: + + DIAG = 'U' or 'u' A is assumed to be unit triangular. + + DIAG = 'N' or 'n' A is not assumed to be unit + triangular. + + Unchanged on exit. + + M - INTEGER. + On entry, M specifies the number of rows of B. M must be at + least zero. + Unchanged on exit. + + N - INTEGER. + On entry, N specifies the number of columns of B. N must be + at least zero. + Unchanged on exit. + + ALPHA - REAL . + On entry, ALPHA specifies the scalar alpha. When alpha is + zero then A is not referenced and B need not be set before + entry. + Unchanged on exit. + + A - REAL array of DIMENSION ( LDA, k ), where k is m + when SIDE = 'L' or 'l' and is n when SIDE = 'R' or 'r'. + Before entry with UPLO = 'U' or 'u', the leading k by k + upper triangular part of the array A must contain the upper + triangular matrix and the strictly lower triangular part of + A is not referenced. + Before entry with UPLO = 'L' or 'l', the leading k by k + lower triangular part of the array A must contain the lower + triangular matrix and the strictly upper triangular part of + A is not referenced. + Note that when DIAG = 'U' or 'u', the diagonal elements of + A are not referenced either, but are assumed to be unity. + Unchanged on exit. + + LDA - INTEGER. + On entry, LDA specifies the first dimension of A as declared + in the calling (sub) program. When SIDE = 'L' or 'l' then + LDA must be at least max( 1, m ), when SIDE = 'R' or 'r' + then LDA must be at least max( 1, n ). + Unchanged on exit. + + B - REAL array of DIMENSION ( LDB, n ). + Before entry, the leading m by n part of the array B must + contain the matrix B, and on exit is overwritten by the + transformed matrix. + + LDB - INTEGER. + On entry, LDB specifies the first dimension of B as declared + in the calling (sub) program. LDB must be at least + max( 1, m ). + Unchanged on exit. + + + Level 3 Blas routine. + + -- Written on 8-February-1989. + Jack Dongarra, Argonne National Laboratory. + Iain Duff, AERE Harwell. + Jeremy Du Croz, Numerical Algorithms Group Ltd. + Sven Hammarling, Numerical Algorithms Group Ltd. + + + Test the input parameters. +*/ + + /* Parameter adjustments */ + a_dim1 = *lda; + a_offset = 1 + a_dim1; + a -= a_offset; + b_dim1 = *ldb; + b_offset = 1 + b_dim1; + b -= b_offset; + + /* Function Body */ + lside = lsame_(side, "L"); + if (lside) { + nrowa = *m; + } else { + nrowa = *n; + } + nounit = lsame_(diag, "N"); + upper = lsame_(uplo, "U"); + + info = 0; + if (! lside && ! lsame_(side, "R")) { + info = 1; + } else if (! upper && ! lsame_(uplo, "L")) { + info = 2; + } else if (! lsame_(transa, "N") && ! lsame_(transa, + "T") && ! lsame_(transa, "C")) { + info = 3; + } else if (! lsame_(diag, "U") && ! lsame_(diag, + "N")) { + info = 4; + } else if (*m < 0) { + info = 5; + } else if (*n < 0) { + info = 6; + } else if (*lda < max(1,nrowa)) { + info = 9; + } else if (*ldb < max(1,*m)) { + info = 11; + } + if (info != 0) { + xerbla_("STRMM ", &info); + return 0; + } + +/* Quick return if possible. */ + + if (*n == 0) { + return 0; + } + +/* And when alpha.eq.zero. */ + + if (*alpha == 0.f) { + i__1 = *n; + for (j = 1; j <= i__1; ++j) { + i__2 = *m; + for (i__ = 1; i__ <= i__2; ++i__) { + b[i__ + j * b_dim1] = 0.f; +/* L10: */ + } +/* L20: */ + } + return 0; + } + +/* Start the operations. */ + + if (lside) { + if (lsame_(transa, "N")) { + +/* Form B := alpha*A*B. */ + + if (upper) { + i__1 = *n; + for (j = 1; j <= i__1; ++j) { + i__2 = *m; + for (k = 1; k <= i__2; ++k) { + if (b[k + j * b_dim1] != 0.f) { + temp = *alpha * b[k + j * b_dim1]; + i__3 = k - 1; + for (i__ = 1; i__ <= i__3; ++i__) { + b[i__ + j * b_dim1] += temp * a[i__ + k * + a_dim1]; +/* L30: */ + } + if (nounit) { + temp *= a[k + k * a_dim1]; + } + b[k + j * b_dim1] = temp; + } +/* L40: */ + } +/* L50: */ + } + } else { + i__1 = *n; + for (j = 1; j <= i__1; ++j) { + for (k = *m; k >= 1; --k) { + if (b[k + j * b_dim1] != 0.f) { + temp = *alpha * b[k + j * b_dim1]; + b[k + j * b_dim1] = temp; + if (nounit) { + b[k + j * b_dim1] *= a[k + k * a_dim1]; + } + i__2 = *m; + for (i__ = k + 1; i__ <= i__2; ++i__) { + b[i__ + j * b_dim1] += temp * a[i__ + k * + a_dim1]; +/* L60: */ + } + } +/* L70: */ + } +/* L80: */ + } + } + } else { + +/* Form B := alpha*A'*B. */ + + if (upper) { + i__1 = *n; + for (j = 1; j <= i__1; ++j) { + for (i__ = *m; i__ >= 1; --i__) { + temp = b[i__ + j * b_dim1]; + if (nounit) { + temp *= a[i__ + i__ * a_dim1]; + } + i__2 = i__ - 1; + for (k = 1; k <= i__2; ++k) { + temp += a[k + i__ * a_dim1] * b[k + j * b_dim1]; +/* L90: */ + } + b[i__ + j * b_dim1] = *alpha * temp; +/* L100: */ + } +/* L110: */ + } + } else { + i__1 = *n; + for (j = 1; j <= i__1; ++j) { + i__2 = *m; + for (i__ = 1; i__ <= i__2; ++i__) { + temp = b[i__ + j * b_dim1]; + if (nounit) { + temp *= a[i__ + i__ * a_dim1]; + } + i__3 = *m; + for (k = i__ + 1; k <= i__3; ++k) { + temp += a[k + i__ * a_dim1] * b[k + j * b_dim1]; +/* L120: */ + } + b[i__ + j * b_dim1] = *alpha * temp; +/* L130: */ + } +/* L140: */ + } + } + } + } else { + if (lsame_(transa, "N")) { + +/* Form B := alpha*B*A. */ + + if (upper) { + for (j = *n; j >= 1; --j) { + temp = *alpha; + if (nounit) { + temp *= a[j + j * a_dim1]; + } + i__1 = *m; + for (i__ = 1; i__ <= i__1; ++i__) { + b[i__ + j * b_dim1] = temp * b[i__ + j * b_dim1]; +/* L150: */ + } + i__1 = j - 1; + for (k = 1; k <= i__1; ++k) { + if (a[k + j * a_dim1] != 0.f) { + temp = *alpha * a[k + j * a_dim1]; + i__2 = *m; + for (i__ = 1; i__ <= i__2; ++i__) { + b[i__ + j * b_dim1] += temp * b[i__ + k * + b_dim1]; +/* L160: */ + } + } +/* L170: */ + } +/* L180: */ + } + } else { + i__1 = *n; + for (j = 1; j <= i__1; ++j) { + temp = *alpha; + if (nounit) { + temp *= a[j + j * a_dim1]; + } + i__2 = *m; + for (i__ = 1; i__ <= i__2; ++i__) { + b[i__ + j * b_dim1] = temp * b[i__ + j * b_dim1]; +/* L190: */ + } + i__2 = *n; + for (k = j + 1; k <= i__2; ++k) { + if (a[k + j * a_dim1] != 0.f) { + temp = *alpha * a[k + j * a_dim1]; + i__3 = *m; + for (i__ = 1; i__ <= i__3; ++i__) { + b[i__ + j * b_dim1] += temp * b[i__ + k * + b_dim1]; +/* L200: */ + } + } +/* L210: */ + } +/* L220: */ + } + } + } else { + +/* Form B := alpha*B*A'. */ + + if (upper) { + i__1 = *n; + for (k = 1; k <= i__1; ++k) { + i__2 = k - 1; + for (j = 1; j <= i__2; ++j) { + if (a[j + k * a_dim1] != 0.f) { + temp = *alpha * a[j + k * a_dim1]; + i__3 = *m; + for (i__ = 1; i__ <= i__3; ++i__) { + b[i__ + j * b_dim1] += temp * b[i__ + k * + b_dim1]; +/* L230: */ + } + } +/* L240: */ + } + temp = *alpha; + if (nounit) { + temp *= a[k + k * a_dim1]; + } + if (temp != 1.f) { + i__2 = *m; + for (i__ = 1; i__ <= i__2; ++i__) { + b[i__ + k * b_dim1] = temp * b[i__ + k * b_dim1]; +/* L250: */ + } + } +/* L260: */ + } + } else { + for (k = *n; k >= 1; --k) { + i__1 = *n; + for (j = k + 1; j <= i__1; ++j) { + if (a[j + k * a_dim1] != 0.f) { + temp = *alpha * a[j + k * a_dim1]; + i__2 = *m; + for (i__ = 1; i__ <= i__2; ++i__) { + b[i__ + j * b_dim1] += temp * b[i__ + k * + b_dim1]; +/* L270: */ + } + } +/* L280: */ + } + temp = *alpha; + if (nounit) { + temp *= a[k + k * a_dim1]; + } + if (temp != 1.f) { + i__1 = *m; + for (i__ = 1; i__ <= i__1; ++i__) { + b[i__ + k * b_dim1] = temp * b[i__ + k * b_dim1]; +/* L290: */ + } + } +/* L300: */ + } + } + } + } + + return 0; + +/* End of STRMM . */ + +} /* strmm_ */ + +/* Subroutine */ int strmv_(char *uplo, char *trans, char *diag, integer *n, + real *a, integer *lda, real *x, integer *incx) +{ + /* System generated locals */ + integer a_dim1, a_offset, i__1, i__2; + + /* Local variables */ + static integer i__, j, ix, jx, kx, info; + static real temp; + extern logical lsame_(char *, char *); + extern /* Subroutine */ int xerbla_(char *, integer *); + static logical nounit; + + +/* + Purpose + ======= + + STRMV performs one of the matrix-vector operations + + x := A*x, or x := A'*x, + + where x is an n element vector and A is an n by n unit, or non-unit, + upper or lower triangular matrix. + + Parameters + ========== + + UPLO - CHARACTER*1. + On entry, UPLO specifies whether the matrix is an upper or + lower triangular matrix as follows: + + UPLO = 'U' or 'u' A is an upper triangular matrix. + + UPLO = 'L' or 'l' A is a lower triangular matrix. + + Unchanged on exit. + + TRANS - CHARACTER*1. + On entry, TRANS specifies the operation to be performed as + follows: + + TRANS = 'N' or 'n' x := A*x. + + TRANS = 'T' or 't' x := A'*x. + + TRANS = 'C' or 'c' x := A'*x. + + Unchanged on exit. + + DIAG - CHARACTER*1. + On entry, DIAG specifies whether or not A is unit + triangular as follows: + + DIAG = 'U' or 'u' A is assumed to be unit triangular. + + DIAG = 'N' or 'n' A is not assumed to be unit + triangular. + + Unchanged on exit. + + N - INTEGER. + On entry, N specifies the order of the matrix A. + N must be at least zero. + Unchanged on exit. + + A - REAL array of DIMENSION ( LDA, n ). + Before entry with UPLO = 'U' or 'u', the leading n by n + upper triangular part of the array A must contain the upper + triangular matrix and the strictly lower triangular part of + A is not referenced. + Before entry with UPLO = 'L' or 'l', the leading n by n + lower triangular part of the array A must contain the lower + triangular matrix and the strictly upper triangular part of + A is not referenced. + Note that when DIAG = 'U' or 'u', the diagonal elements of + A are not referenced either, but are assumed to be unity. + Unchanged on exit. + + LDA - INTEGER. + On entry, LDA specifies the first dimension of A as declared + in the calling (sub) program. LDA must be at least + max( 1, n ). + Unchanged on exit. + + X - REAL array of dimension at least + ( 1 + ( n - 1 )*abs( INCX ) ). + Before entry, the incremented array X must contain the n + element vector x. On exit, X is overwritten with the + tranformed vector x. + + INCX - INTEGER. + On entry, INCX specifies the increment for the elements of + X. INCX must not be zero. + Unchanged on exit. + + + Level 2 Blas routine. + + -- Written on 22-October-1986. + Jack Dongarra, Argonne National Lab. + Jeremy Du Croz, Nag Central Office. + Sven Hammarling, Nag Central Office. + Richard Hanson, Sandia National Labs. + + + Test the input parameters. +*/ + + /* Parameter adjustments */ + a_dim1 = *lda; + a_offset = 1 + a_dim1; + a -= a_offset; + --x; + + /* Function Body */ + info = 0; + if (! lsame_(uplo, "U") && ! lsame_(uplo, "L")) { + info = 1; + } else if (! lsame_(trans, "N") && ! lsame_(trans, + "T") && ! lsame_(trans, "C")) { + info = 2; + } else if (! lsame_(diag, "U") && ! lsame_(diag, + "N")) { + info = 3; + } else if (*n < 0) { + info = 4; + } else if (*lda < max(1,*n)) { + info = 6; + } else if (*incx == 0) { + info = 8; + } + if (info != 0) { + xerbla_("STRMV ", &info); + return 0; + } + +/* Quick return if possible. */ + + if (*n == 0) { + return 0; + } + + nounit = lsame_(diag, "N"); + +/* + Set up the start point in X if the increment is not unity. This + will be ( N - 1 )*INCX too small for descending loops. +*/ + + if (*incx <= 0) { + kx = 1 - (*n - 1) * *incx; + } else if (*incx != 1) { + kx = 1; + } + +/* + Start the operations. In this version the elements of A are + accessed sequentially with one pass through A. +*/ + + if (lsame_(trans, "N")) { + +/* Form x := A*x. */ + + if (lsame_(uplo, "U")) { + if (*incx == 1) { + i__1 = *n; + for (j = 1; j <= i__1; ++j) { + if (x[j] != 0.f) { + temp = x[j]; + i__2 = j - 1; + for (i__ = 1; i__ <= i__2; ++i__) { + x[i__] += temp * a[i__ + j * a_dim1]; +/* L10: */ + } + if (nounit) { + x[j] *= a[j + j * a_dim1]; + } + } +/* L20: */ + } + } else { + jx = kx; + i__1 = *n; + for (j = 1; j <= i__1; ++j) { + if (x[jx] != 0.f) { + temp = x[jx]; + ix = kx; + i__2 = j - 1; + for (i__ = 1; i__ <= i__2; ++i__) { + x[ix] += temp * a[i__ + j * a_dim1]; + ix += *incx; +/* L30: */ + } + if (nounit) { + x[jx] *= a[j + j * a_dim1]; + } + } + jx += *incx; +/* L40: */ + } + } + } else { + if (*incx == 1) { + for (j = *n; j >= 1; --j) { + if (x[j] != 0.f) { + temp = x[j]; + i__1 = j + 1; + for (i__ = *n; i__ >= i__1; --i__) { + x[i__] += temp * a[i__ + j * a_dim1]; +/* L50: */ + } + if (nounit) { + x[j] *= a[j + j * a_dim1]; + } + } +/* L60: */ + } + } else { + kx += (*n - 1) * *incx; + jx = kx; + for (j = *n; j >= 1; --j) { + if (x[jx] != 0.f) { + temp = x[jx]; + ix = kx; + i__1 = j + 1; + for (i__ = *n; i__ >= i__1; --i__) { + x[ix] += temp * a[i__ + j * a_dim1]; + ix -= *incx; +/* L70: */ + } + if (nounit) { + x[jx] *= a[j + j * a_dim1]; + } + } + jx -= *incx; +/* L80: */ + } + } + } + } else { + +/* Form x := A'*x. */ + + if (lsame_(uplo, "U")) { + if (*incx == 1) { + for (j = *n; j >= 1; --j) { + temp = x[j]; + if (nounit) { + temp *= a[j + j * a_dim1]; + } + for (i__ = j - 1; i__ >= 1; --i__) { + temp += a[i__ + j * a_dim1] * x[i__]; +/* L90: */ + } + x[j] = temp; +/* L100: */ + } + } else { + jx = kx + (*n - 1) * *incx; + for (j = *n; j >= 1; --j) { + temp = x[jx]; + ix = jx; + if (nounit) { + temp *= a[j + j * a_dim1]; + } + for (i__ = j - 1; i__ >= 1; --i__) { + ix -= *incx; + temp += a[i__ + j * a_dim1] * x[ix]; +/* L110: */ + } + x[jx] = temp; + jx -= *incx; +/* L120: */ + } + } + } else { + if (*incx == 1) { + i__1 = *n; + for (j = 1; j <= i__1; ++j) { + temp = x[j]; + if (nounit) { + temp *= a[j + j * a_dim1]; + } + i__2 = *n; + for (i__ = j + 1; i__ <= i__2; ++i__) { + temp += a[i__ + j * a_dim1] * x[i__]; +/* L130: */ + } + x[j] = temp; +/* L140: */ + } + } else { + jx = kx; + i__1 = *n; + for (j = 1; j <= i__1; ++j) { + temp = x[jx]; + ix = jx; + if (nounit) { + temp *= a[j + j * a_dim1]; + } + i__2 = *n; + for (i__ = j + 1; i__ <= i__2; ++i__) { + ix += *incx; + temp += a[i__ + j * a_dim1] * x[ix]; +/* L150: */ + } + x[jx] = temp; + jx += *incx; +/* L160: */ + } + } + } + } + + return 0; + +/* End of STRMV . */ + +} /* strmv_ */ + +/* Subroutine */ int strsm_(char *side, char *uplo, char *transa, char *diag, + integer *m, integer *n, real *alpha, real *a, integer *lda, real *b, + integer *ldb) +{ + /* System generated locals */ + integer a_dim1, a_offset, b_dim1, b_offset, i__1, i__2, i__3; + + /* Local variables */ + static integer i__, j, k, info; + static real temp; + static logical lside; + extern logical lsame_(char *, char *); + static integer nrowa; + static logical upper; + extern /* Subroutine */ int xerbla_(char *, integer *); + static logical nounit; + + +/* + Purpose + ======= + + STRSM solves one of the matrix equations + + op( A )*X = alpha*B, or X*op( A ) = alpha*B, + + where alpha is a scalar, X and B are m by n matrices, A is a unit, or + non-unit, upper or lower triangular matrix and op( A ) is one of + + op( A ) = A or op( A ) = A'. + + The matrix X is overwritten on B. + + Parameters + ========== + + SIDE - CHARACTER*1. + On entry, SIDE specifies whether op( A ) appears on the left + or right of X as follows: + + SIDE = 'L' or 'l' op( A )*X = alpha*B. + + SIDE = 'R' or 'r' X*op( A ) = alpha*B. + + Unchanged on exit. + + UPLO - CHARACTER*1. + On entry, UPLO specifies whether the matrix A is an upper or + lower triangular matrix as follows: + + UPLO = 'U' or 'u' A is an upper triangular matrix. + + UPLO = 'L' or 'l' A is a lower triangular matrix. + + Unchanged on exit. + + TRANSA - CHARACTER*1. + On entry, TRANSA specifies the form of op( A ) to be used in + the matrix multiplication as follows: + + TRANSA = 'N' or 'n' op( A ) = A. + + TRANSA = 'T' or 't' op( A ) = A'. + + TRANSA = 'C' or 'c' op( A ) = A'. + + Unchanged on exit. + + DIAG - CHARACTER*1. + On entry, DIAG specifies whether or not A is unit triangular + as follows: + + DIAG = 'U' or 'u' A is assumed to be unit triangular. + + DIAG = 'N' or 'n' A is not assumed to be unit + triangular. + + Unchanged on exit. + + M - INTEGER. + On entry, M specifies the number of rows of B. M must be at + least zero. + Unchanged on exit. + + N - INTEGER. + On entry, N specifies the number of columns of B. N must be + at least zero. + Unchanged on exit. + + ALPHA - REAL . + On entry, ALPHA specifies the scalar alpha. When alpha is + zero then A is not referenced and B need not be set before + entry. + Unchanged on exit. + + A - REAL array of DIMENSION ( LDA, k ), where k is m + when SIDE = 'L' or 'l' and is n when SIDE = 'R' or 'r'. + Before entry with UPLO = 'U' or 'u', the leading k by k + upper triangular part of the array A must contain the upper + triangular matrix and the strictly lower triangular part of + A is not referenced. + Before entry with UPLO = 'L' or 'l', the leading k by k + lower triangular part of the array A must contain the lower + triangular matrix and the strictly upper triangular part of + A is not referenced. + Note that when DIAG = 'U' or 'u', the diagonal elements of + A are not referenced either, but are assumed to be unity. + Unchanged on exit. + + LDA - INTEGER. + On entry, LDA specifies the first dimension of A as declared + in the calling (sub) program. When SIDE = 'L' or 'l' then + LDA must be at least max( 1, m ), when SIDE = 'R' or 'r' + then LDA must be at least max( 1, n ). + Unchanged on exit. + + B - REAL array of DIMENSION ( LDB, n ). + Before entry, the leading m by n part of the array B must + contain the right-hand side matrix B, and on exit is + overwritten by the solution matrix X. + + LDB - INTEGER. + On entry, LDB specifies the first dimension of B as declared + in the calling (sub) program. LDB must be at least + max( 1, m ). + Unchanged on exit. + + + Level 3 Blas routine. + + + -- Written on 8-February-1989. + Jack Dongarra, Argonne National Laboratory. + Iain Duff, AERE Harwell. + Jeremy Du Croz, Numerical Algorithms Group Ltd. + Sven Hammarling, Numerical Algorithms Group Ltd. + + + Test the input parameters. +*/ + + /* Parameter adjustments */ + a_dim1 = *lda; + a_offset = 1 + a_dim1; + a -= a_offset; + b_dim1 = *ldb; + b_offset = 1 + b_dim1; + b -= b_offset; + + /* Function Body */ + lside = lsame_(side, "L"); + if (lside) { + nrowa = *m; + } else { + nrowa = *n; + } + nounit = lsame_(diag, "N"); + upper = lsame_(uplo, "U"); + + info = 0; + if (! lside && ! lsame_(side, "R")) { + info = 1; + } else if (! upper && ! lsame_(uplo, "L")) { + info = 2; + } else if (! lsame_(transa, "N") && ! lsame_(transa, + "T") && ! lsame_(transa, "C")) { + info = 3; + } else if (! lsame_(diag, "U") && ! lsame_(diag, + "N")) { + info = 4; + } else if (*m < 0) { + info = 5; + } else if (*n < 0) { + info = 6; + } else if (*lda < max(1,nrowa)) { + info = 9; + } else if (*ldb < max(1,*m)) { + info = 11; + } + if (info != 0) { + xerbla_("STRSM ", &info); + return 0; + } + +/* Quick return if possible. */ + + if (*n == 0) { + return 0; + } + +/* And when alpha.eq.zero. */ + + if (*alpha == 0.f) { + i__1 = *n; + for (j = 1; j <= i__1; ++j) { + i__2 = *m; + for (i__ = 1; i__ <= i__2; ++i__) { + b[i__ + j * b_dim1] = 0.f; +/* L10: */ + } +/* L20: */ + } + return 0; + } + +/* Start the operations. */ + + if (lside) { + if (lsame_(transa, "N")) { + +/* Form B := alpha*inv( A )*B. */ + + if (upper) { + i__1 = *n; + for (j = 1; j <= i__1; ++j) { + if (*alpha != 1.f) { + i__2 = *m; + for (i__ = 1; i__ <= i__2; ++i__) { + b[i__ + j * b_dim1] = *alpha * b[i__ + j * b_dim1] + ; +/* L30: */ + } + } + for (k = *m; k >= 1; --k) { + if (b[k + j * b_dim1] != 0.f) { + if (nounit) { + b[k + j * b_dim1] /= a[k + k * a_dim1]; + } + i__2 = k - 1; + for (i__ = 1; i__ <= i__2; ++i__) { + b[i__ + j * b_dim1] -= b[k + j * b_dim1] * a[ + i__ + k * a_dim1]; +/* L40: */ + } + } +/* L50: */ + } +/* L60: */ + } + } else { + i__1 = *n; + for (j = 1; j <= i__1; ++j) { + if (*alpha != 1.f) { + i__2 = *m; + for (i__ = 1; i__ <= i__2; ++i__) { + b[i__ + j * b_dim1] = *alpha * b[i__ + j * b_dim1] + ; +/* L70: */ + } + } + i__2 = *m; + for (k = 1; k <= i__2; ++k) { + if (b[k + j * b_dim1] != 0.f) { + if (nounit) { + b[k + j * b_dim1] /= a[k + k * a_dim1]; + } + i__3 = *m; + for (i__ = k + 1; i__ <= i__3; ++i__) { + b[i__ + j * b_dim1] -= b[k + j * b_dim1] * a[ + i__ + k * a_dim1]; +/* L80: */ + } + } +/* L90: */ + } +/* L100: */ + } + } + } else { + +/* Form B := alpha*inv( A' )*B. */ + + if (upper) { + i__1 = *n; + for (j = 1; j <= i__1; ++j) { + i__2 = *m; + for (i__ = 1; i__ <= i__2; ++i__) { + temp = *alpha * b[i__ + j * b_dim1]; + i__3 = i__ - 1; + for (k = 1; k <= i__3; ++k) { + temp -= a[k + i__ * a_dim1] * b[k + j * b_dim1]; +/* L110: */ + } + if (nounit) { + temp /= a[i__ + i__ * a_dim1]; + } + b[i__ + j * b_dim1] = temp; +/* L120: */ + } +/* L130: */ + } + } else { + i__1 = *n; + for (j = 1; j <= i__1; ++j) { + for (i__ = *m; i__ >= 1; --i__) { + temp = *alpha * b[i__ + j * b_dim1]; + i__2 = *m; + for (k = i__ + 1; k <= i__2; ++k) { + temp -= a[k + i__ * a_dim1] * b[k + j * b_dim1]; +/* L140: */ + } + if (nounit) { + temp /= a[i__ + i__ * a_dim1]; + } + b[i__ + j * b_dim1] = temp; +/* L150: */ + } +/* L160: */ + } + } + } + } else { + if (lsame_(transa, "N")) { + +/* Form B := alpha*B*inv( A ). */ + + if (upper) { + i__1 = *n; + for (j = 1; j <= i__1; ++j) { + if (*alpha != 1.f) { + i__2 = *m; + for (i__ = 1; i__ <= i__2; ++i__) { + b[i__ + j * b_dim1] = *alpha * b[i__ + j * b_dim1] + ; +/* L170: */ + } + } + i__2 = j - 1; + for (k = 1; k <= i__2; ++k) { + if (a[k + j * a_dim1] != 0.f) { + i__3 = *m; + for (i__ = 1; i__ <= i__3; ++i__) { + b[i__ + j * b_dim1] -= a[k + j * a_dim1] * b[ + i__ + k * b_dim1]; +/* L180: */ + } + } +/* L190: */ + } + if (nounit) { + temp = 1.f / a[j + j * a_dim1]; + i__2 = *m; + for (i__ = 1; i__ <= i__2; ++i__) { + b[i__ + j * b_dim1] = temp * b[i__ + j * b_dim1]; +/* L200: */ + } + } +/* L210: */ + } + } else { + for (j = *n; j >= 1; --j) { + if (*alpha != 1.f) { + i__1 = *m; + for (i__ = 1; i__ <= i__1; ++i__) { + b[i__ + j * b_dim1] = *alpha * b[i__ + j * b_dim1] + ; +/* L220: */ + } + } + i__1 = *n; + for (k = j + 1; k <= i__1; ++k) { + if (a[k + j * a_dim1] != 0.f) { + i__2 = *m; + for (i__ = 1; i__ <= i__2; ++i__) { + b[i__ + j * b_dim1] -= a[k + j * a_dim1] * b[ + i__ + k * b_dim1]; +/* L230: */ + } + } +/* L240: */ + } + if (nounit) { + temp = 1.f / a[j + j * a_dim1]; + i__1 = *m; + for (i__ = 1; i__ <= i__1; ++i__) { + b[i__ + j * b_dim1] = temp * b[i__ + j * b_dim1]; +/* L250: */ + } + } +/* L260: */ + } + } + } else { + +/* Form B := alpha*B*inv( A' ). */ + + if (upper) { + for (k = *n; k >= 1; --k) { + if (nounit) { + temp = 1.f / a[k + k * a_dim1]; + i__1 = *m; + for (i__ = 1; i__ <= i__1; ++i__) { + b[i__ + k * b_dim1] = temp * b[i__ + k * b_dim1]; +/* L270: */ + } + } + i__1 = k - 1; + for (j = 1; j <= i__1; ++j) { + if (a[j + k * a_dim1] != 0.f) { + temp = a[j + k * a_dim1]; + i__2 = *m; + for (i__ = 1; i__ <= i__2; ++i__) { + b[i__ + j * b_dim1] -= temp * b[i__ + k * + b_dim1]; +/* L280: */ + } + } +/* L290: */ + } + if (*alpha != 1.f) { + i__1 = *m; + for (i__ = 1; i__ <= i__1; ++i__) { + b[i__ + k * b_dim1] = *alpha * b[i__ + k * b_dim1] + ; +/* L300: */ + } + } +/* L310: */ + } + } else { + i__1 = *n; + for (k = 1; k <= i__1; ++k) { + if (nounit) { + temp = 1.f / a[k + k * a_dim1]; + i__2 = *m; + for (i__ = 1; i__ <= i__2; ++i__) { + b[i__ + k * b_dim1] = temp * b[i__ + k * b_dim1]; +/* L320: */ + } + } + i__2 = *n; + for (j = k + 1; j <= i__2; ++j) { + if (a[j + k * a_dim1] != 0.f) { + temp = a[j + k * a_dim1]; + i__3 = *m; + for (i__ = 1; i__ <= i__3; ++i__) { + b[i__ + j * b_dim1] -= temp * b[i__ + k * + b_dim1]; +/* L330: */ + } + } +/* L340: */ + } + if (*alpha != 1.f) { + i__2 = *m; + for (i__ = 1; i__ <= i__2; ++i__) { + b[i__ + k * b_dim1] = *alpha * b[i__ + k * b_dim1] + ; +/* L350: */ + } + } +/* L360: */ + } + } + } + } + + return 0; + +/* End of STRSM . */ + +} /* strsm_ */ +#if 0 +/* Subroutine */ int xerbla_(char *srname, integer *info) +{ + /* Format strings */ + static char fmt_9999[] = "(\002 ** On entry to \002,a6,\002 parameter nu" + "mber \002,i2,\002 had \002,\002an illegal value\002)"; + + /* Builtin functions */ + integer s_wsfe(cilist *), do_fio(integer *, char *, ftnlen), e_wsfe(void); + /* Subroutine */ int s_stop(char *, ftnlen); + + /* Fortran I/O blocks */ + static cilist io___425 = { 0, 6, 0, fmt_9999, 0 }; + + +/* + -- LAPACK auxiliary routine (preliminary version) -- + Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd., + Courant Institute, Argonne National Lab, and Rice University + February 29, 1992 + + + Purpose + ======= + + XERBLA is an error handler for the LAPACK routines. + It is called by an LAPACK routine if an input parameter has an + invalid value. A message is printed and execution stops. + + Installers may consider modifying the STOP statement in order to + call system-specific exception-handling facilities. + + Arguments + ========= + + SRNAME (input) CHARACTER*6 + The name of the routine which called XERBLA. + + INFO (input) INTEGER + The position of the invalid parameter in the parameter list + of the calling routine. +*/ + + + s_wsfe(&io___425); + do_fio(&c__1, srname, (ftnlen)6); + do_fio(&c__1, (char *)&(*info), (ftnlen)sizeof(integer)); + e_wsfe(); + + s_stop("", (ftnlen)0); + + +/* End of XERBLA */ + + return 0; +} /* xerbla_ */ +#endif + +/* Subroutine */ int zaxpy_(integer *n, doublecomplex *za, doublecomplex *zx, + integer *incx, doublecomplex *zy, integer *incy) +{ + /* System generated locals */ + integer i__1, i__2, i__3, i__4; + doublecomplex z__1, z__2; + + /* Local variables */ + static integer i__, ix, iy; + extern doublereal dcabs1_(doublecomplex *); + + +/* + constant times a vector plus a vector. + jack dongarra, 3/11/78. + modified 12/3/93, array(1) declarations changed to array(*) +*/ + + /* Parameter adjustments */ + --zy; + --zx; + + /* Function Body */ + if (*n <= 0) { + return 0; + } + if (dcabs1_(za) == 0.) { + return 0; + } + if (*incx == 1 && *incy == 1) { + goto L20; + } + +/* + code for unequal increments or equal increments + not equal to 1 +*/ + + ix = 1; + iy = 1; + if (*incx < 0) { + ix = (-(*n) + 1) * *incx + 1; + } + if (*incy < 0) { + iy = (-(*n) + 1) * *incy + 1; + } + i__1 = *n; + for (i__ = 1; i__ <= i__1; ++i__) { + i__2 = iy; + i__3 = iy; + i__4 = ix; + z__2.r = za->r * zx[i__4].r - za->i * zx[i__4].i, z__2.i = za->r * zx[ + i__4].i + za->i * zx[i__4].r; + z__1.r = zy[i__3].r + z__2.r, z__1.i = zy[i__3].i + z__2.i; + zy[i__2].r = z__1.r, zy[i__2].i = z__1.i; + ix += *incx; + iy += *incy; +/* L10: */ + } + return 0; + +/* code for both increments equal to 1 */ + +L20: + i__1 = *n; + for (i__ = 1; i__ <= i__1; ++i__) { + i__2 = i__; + i__3 = i__; + i__4 = i__; + z__2.r = za->r * zx[i__4].r - za->i * zx[i__4].i, z__2.i = za->r * zx[ + i__4].i + za->i * zx[i__4].r; + z__1.r = zy[i__3].r + z__2.r, z__1.i = zy[i__3].i + z__2.i; + zy[i__2].r = z__1.r, zy[i__2].i = z__1.i; +/* L30: */ + } + return 0; +} /* zaxpy_ */ + +/* Subroutine */ int zcopy_(integer *n, doublecomplex *zx, integer *incx, + doublecomplex *zy, integer *incy) +{ + /* System generated locals */ + integer i__1, i__2, i__3; + + /* Local variables */ + static integer i__, ix, iy; + + +/* + copies a vector, x, to a vector, y. + jack dongarra, linpack, 4/11/78. + modified 12/3/93, array(1) declarations changed to array(*) +*/ + + + /* Parameter adjustments */ + --zy; + --zx; + + /* Function Body */ + if (*n <= 0) { + return 0; + } + if (*incx == 1 && *incy == 1) { + goto L20; + } + +/* + code for unequal increments or equal increments + not equal to 1 +*/ + + ix = 1; + iy = 1; + if (*incx < 0) { + ix = (-(*n) + 1) * *incx + 1; + } + if (*incy < 0) { + iy = (-(*n) + 1) * *incy + 1; + } + i__1 = *n; + for (i__ = 1; i__ <= i__1; ++i__) { + i__2 = iy; + i__3 = ix; + zy[i__2].r = zx[i__3].r, zy[i__2].i = zx[i__3].i; + ix += *incx; + iy += *incy; +/* L10: */ + } + return 0; + +/* code for both increments equal to 1 */ + +L20: + i__1 = *n; + for (i__ = 1; i__ <= i__1; ++i__) { + i__2 = i__; + i__3 = i__; + zy[i__2].r = zx[i__3].r, zy[i__2].i = zx[i__3].i; +/* L30: */ + } + return 0; +} /* zcopy_ */ + +/* Double Complex */ VOID zdotc_(doublecomplex * ret_val, integer *n, + doublecomplex *zx, integer *incx, doublecomplex *zy, integer *incy) +{ + /* System generated locals */ + integer i__1, i__2; + doublecomplex z__1, z__2, z__3; + + /* Builtin functions */ + void d_cnjg(doublecomplex *, doublecomplex *); + + /* Local variables */ + static integer i__, ix, iy; + static doublecomplex ztemp; + + +/* + forms the dot product of a vector. + jack dongarra, 3/11/78. + modified 12/3/93, array(1) declarations changed to array(*) +*/ + + /* Parameter adjustments */ + --zy; + --zx; + + /* Function Body */ + ztemp.r = 0., ztemp.i = 0.; + ret_val->r = 0., ret_val->i = 0.; + if (*n <= 0) { + return ; + } + if (*incx == 1 && *incy == 1) { + goto L20; + } + +/* + code for unequal increments or equal increments + not equal to 1 +*/ + + ix = 1; + iy = 1; + if (*incx < 0) { + ix = (-(*n) + 1) * *incx + 1; + } + if (*incy < 0) { + iy = (-(*n) + 1) * *incy + 1; + } + i__1 = *n; + for (i__ = 1; i__ <= i__1; ++i__) { + d_cnjg(&z__3, &zx[ix]); + i__2 = iy; + z__2.r = z__3.r * zy[i__2].r - z__3.i * zy[i__2].i, z__2.i = z__3.r * + zy[i__2].i + z__3.i * zy[i__2].r; + z__1.r = ztemp.r + z__2.r, z__1.i = ztemp.i + z__2.i; + ztemp.r = z__1.r, ztemp.i = z__1.i; + ix += *incx; + iy += *incy; +/* L10: */ + } + ret_val->r = ztemp.r, ret_val->i = ztemp.i; + return ; + +/* code for both increments equal to 1 */ + +L20: + i__1 = *n; + for (i__ = 1; i__ <= i__1; ++i__) { + d_cnjg(&z__3, &zx[i__]); + i__2 = i__; + z__2.r = z__3.r * zy[i__2].r - z__3.i * zy[i__2].i, z__2.i = z__3.r * + zy[i__2].i + z__3.i * zy[i__2].r; + z__1.r = ztemp.r + z__2.r, z__1.i = ztemp.i + z__2.i; + ztemp.r = z__1.r, ztemp.i = z__1.i; +/* L30: */ + } + ret_val->r = ztemp.r, ret_val->i = ztemp.i; + return ; +} /* zdotc_ */ + +/* Double Complex */ VOID zdotu_(doublecomplex * ret_val, integer *n, + doublecomplex *zx, integer *incx, doublecomplex *zy, integer *incy) +{ + /* System generated locals */ + integer i__1, i__2, i__3; + doublecomplex z__1, z__2; + + /* Local variables */ + static integer i__, ix, iy; + static doublecomplex ztemp; + + +/* + forms the dot product of two vectors. + jack dongarra, 3/11/78. + modified 12/3/93, array(1) declarations changed to array(*) +*/ + + /* Parameter adjustments */ + --zy; + --zx; + + /* Function Body */ + ztemp.r = 0., ztemp.i = 0.; + ret_val->r = 0., ret_val->i = 0.; + if (*n <= 0) { + return ; + } + if (*incx == 1 && *incy == 1) { + goto L20; + } + +/* + code for unequal increments or equal increments + not equal to 1 +*/ + + ix = 1; + iy = 1; + if (*incx < 0) { + ix = (-(*n) + 1) * *incx + 1; + } + if (*incy < 0) { + iy = (-(*n) + 1) * *incy + 1; + } + i__1 = *n; + for (i__ = 1; i__ <= i__1; ++i__) { + i__2 = ix; + i__3 = iy; + z__2.r = zx[i__2].r * zy[i__3].r - zx[i__2].i * zy[i__3].i, z__2.i = + zx[i__2].r * zy[i__3].i + zx[i__2].i * zy[i__3].r; + z__1.r = ztemp.r + z__2.r, z__1.i = ztemp.i + z__2.i; + ztemp.r = z__1.r, ztemp.i = z__1.i; + ix += *incx; + iy += *incy; +/* L10: */ + } + ret_val->r = ztemp.r, ret_val->i = ztemp.i; + return ; + +/* code for both increments equal to 1 */ + +L20: + i__1 = *n; + for (i__ = 1; i__ <= i__1; ++i__) { + i__2 = i__; + i__3 = i__; + z__2.r = zx[i__2].r * zy[i__3].r - zx[i__2].i * zy[i__3].i, z__2.i = + zx[i__2].r * zy[i__3].i + zx[i__2].i * zy[i__3].r; + z__1.r = ztemp.r + z__2.r, z__1.i = ztemp.i + z__2.i; + ztemp.r = z__1.r, ztemp.i = z__1.i; +/* L30: */ + } + ret_val->r = ztemp.r, ret_val->i = ztemp.i; + return ; +} /* zdotu_ */ + +/* Subroutine */ int zdscal_(integer *n, doublereal *da, doublecomplex *zx, + integer *incx) +{ + /* System generated locals */ + integer i__1, i__2, i__3; + doublecomplex z__1, z__2; + + /* Local variables */ + static integer i__, ix; + + +/* + scales a vector by a constant. + jack dongarra, 3/11/78. + modified 3/93 to return if incx .le. 0. + modified 12/3/93, array(1) declarations changed to array(*) +*/ + + + /* Parameter adjustments */ + --zx; + + /* Function Body */ + if ((*n <= 0) || (*incx <= 0)) { + return 0; + } + if (*incx == 1) { + goto L20; + } + +/* code for increment not equal to 1 */ + + ix = 1; + i__1 = *n; + for (i__ = 1; i__ <= i__1; ++i__) { + i__2 = ix; + z__2.r = *da, z__2.i = 0.; + i__3 = ix; + z__1.r = z__2.r * zx[i__3].r - z__2.i * zx[i__3].i, z__1.i = z__2.r * + zx[i__3].i + z__2.i * zx[i__3].r; + zx[i__2].r = z__1.r, zx[i__2].i = z__1.i; + ix += *incx; +/* L10: */ + } + return 0; + +/* code for increment equal to 1 */ + +L20: + i__1 = *n; + for (i__ = 1; i__ <= i__1; ++i__) { + i__2 = i__; + z__2.r = *da, z__2.i = 0.; + i__3 = i__; + z__1.r = z__2.r * zx[i__3].r - z__2.i * zx[i__3].i, z__1.i = z__2.r * + zx[i__3].i + z__2.i * zx[i__3].r; + zx[i__2].r = z__1.r, zx[i__2].i = z__1.i; +/* L30: */ + } + return 0; +} /* zdscal_ */ + +/* Subroutine */ int zgemm_(char *transa, char *transb, integer *m, integer * + n, integer *k, doublecomplex *alpha, doublecomplex *a, integer *lda, + doublecomplex *b, integer *ldb, doublecomplex *beta, doublecomplex * + c__, integer *ldc) +{ + /* System generated locals */ + integer a_dim1, a_offset, b_dim1, b_offset, c_dim1, c_offset, i__1, i__2, + i__3, i__4, i__5, i__6; + doublecomplex z__1, z__2, z__3, z__4; + + /* Builtin functions */ + void d_cnjg(doublecomplex *, doublecomplex *); + + /* Local variables */ + static integer i__, j, l, info; + static logical nota, notb; + static doublecomplex temp; + static logical conja, conjb; + static integer ncola; + extern logical lsame_(char *, char *); + static integer nrowa, nrowb; + extern /* Subroutine */ int xerbla_(char *, integer *); + + +/* + Purpose + ======= + + ZGEMM performs one of the matrix-matrix operations + + C := alpha*op( A )*op( B ) + beta*C, + + where op( X ) is one of + + op( X ) = X or op( X ) = X' or op( X ) = conjg( X' ), + + alpha and beta are scalars, and A, B and C are matrices, with op( A ) + an m by k matrix, op( B ) a k by n matrix and C an m by n matrix. + + Parameters + ========== + + TRANSA - CHARACTER*1. + On entry, TRANSA specifies the form of op( A ) to be used in + the matrix multiplication as follows: + + TRANSA = 'N' or 'n', op( A ) = A. + + TRANSA = 'T' or 't', op( A ) = A'. + + TRANSA = 'C' or 'c', op( A ) = conjg( A' ). + + Unchanged on exit. + + TRANSB - CHARACTER*1. + On entry, TRANSB specifies the form of op( B ) to be used in + the matrix multiplication as follows: + + TRANSB = 'N' or 'n', op( B ) = B. + + TRANSB = 'T' or 't', op( B ) = B'. + + TRANSB = 'C' or 'c', op( B ) = conjg( B' ). + + Unchanged on exit. + + M - INTEGER. + On entry, M specifies the number of rows of the matrix + op( A ) and of the matrix C. M must be at least zero. + Unchanged on exit. + + N - INTEGER. + On entry, N specifies the number of columns of the matrix + op( B ) and the number of columns of the matrix C. N must be + at least zero. + Unchanged on exit. + + K - INTEGER. + On entry, K specifies the number of columns of the matrix + op( A ) and the number of rows of the matrix op( B ). K must + be at least zero. + Unchanged on exit. + + ALPHA - COMPLEX*16 . + On entry, ALPHA specifies the scalar alpha. + Unchanged on exit. + + A - COMPLEX*16 array of DIMENSION ( LDA, ka ), where ka is + k when TRANSA = 'N' or 'n', and is m otherwise. + Before entry with TRANSA = 'N' or 'n', the leading m by k + part of the array A must contain the matrix A, otherwise + the leading k by m part of the array A must contain the + matrix A. + Unchanged on exit. + + LDA - INTEGER. + On entry, LDA specifies the first dimension of A as declared + in the calling (sub) program. When TRANSA = 'N' or 'n' then + LDA must be at least max( 1, m ), otherwise LDA must be at + least max( 1, k ). + Unchanged on exit. + + B - COMPLEX*16 array of DIMENSION ( LDB, kb ), where kb is + n when TRANSB = 'N' or 'n', and is k otherwise. + Before entry with TRANSB = 'N' or 'n', the leading k by n + part of the array B must contain the matrix B, otherwise + the leading n by k part of the array B must contain the + matrix B. + Unchanged on exit. + + LDB - INTEGER. + On entry, LDB specifies the first dimension of B as declared + in the calling (sub) program. When TRANSB = 'N' or 'n' then + LDB must be at least max( 1, k ), otherwise LDB must be at + least max( 1, n ). + Unchanged on exit. + + BETA - COMPLEX*16 . + On entry, BETA specifies the scalar beta. When BETA is + supplied as zero then C need not be set on input. + Unchanged on exit. + + C - COMPLEX*16 array of DIMENSION ( LDC, n ). + Before entry, the leading m by n part of the array C must + contain the matrix C, except when beta is zero, in which + case C need not be set on entry. + On exit, the array C is overwritten by the m by n matrix + ( alpha*op( A )*op( B ) + beta*C ). + + LDC - INTEGER. + On entry, LDC specifies the first dimension of C as declared + in the calling (sub) program. LDC must be at least + max( 1, m ). + Unchanged on exit. + + + Level 3 Blas routine. + + -- Written on 8-February-1989. + Jack Dongarra, Argonne National Laboratory. + Iain Duff, AERE Harwell. + Jeremy Du Croz, Numerical Algorithms Group Ltd. + Sven Hammarling, Numerical Algorithms Group Ltd. + + + Set NOTA and NOTB as true if A and B respectively are not + conjugated or transposed, set CONJA and CONJB as true if A and + B respectively are to be transposed but not conjugated and set + NROWA, NCOLA and NROWB as the number of rows and columns of A + and the number of rows of B respectively. +*/ + + /* Parameter adjustments */ + a_dim1 = *lda; + a_offset = 1 + a_dim1; + a -= a_offset; + b_dim1 = *ldb; + b_offset = 1 + b_dim1; + b -= b_offset; + c_dim1 = *ldc; + c_offset = 1 + c_dim1; + c__ -= c_offset; + + /* Function Body */ + nota = lsame_(transa, "N"); + notb = lsame_(transb, "N"); + conja = lsame_(transa, "C"); + conjb = lsame_(transb, "C"); + if (nota) { + nrowa = *m; + ncola = *k; + } else { + nrowa = *k; + ncola = *m; + } + if (notb) { + nrowb = *k; + } else { + nrowb = *n; + } + +/* Test the input parameters. */ + + info = 0; + if (! nota && ! conja && ! lsame_(transa, "T")) { + info = 1; + } else if (! notb && ! conjb && ! lsame_(transb, "T")) { + info = 2; + } else if (*m < 0) { + info = 3; + } else if (*n < 0) { + info = 4; + } else if (*k < 0) { + info = 5; + } else if (*lda < max(1,nrowa)) { + info = 8; + } else if (*ldb < max(1,nrowb)) { + info = 10; + } else if (*ldc < max(1,*m)) { + info = 13; + } + if (info != 0) { + xerbla_("ZGEMM ", &info); + return 0; + } + +/* Quick return if possible. */ + + if (((*m == 0) || (*n == 0)) || (((alpha->r == 0. && alpha->i == 0.) || (* + k == 0)) && (beta->r == 1. && beta->i == 0.))) { + return 0; + } + +/* And when alpha.eq.zero. */ + + if (alpha->r == 0. && alpha->i == 0.) { + if (beta->r == 0. && beta->i == 0.) { + i__1 = *n; + for (j = 1; j <= i__1; ++j) { + i__2 = *m; + for (i__ = 1; i__ <= i__2; ++i__) { + i__3 = i__ + j * c_dim1; + c__[i__3].r = 0., c__[i__3].i = 0.; +/* L10: */ + } +/* L20: */ + } + } else { + i__1 = *n; + for (j = 1; j <= i__1; ++j) { + i__2 = *m; + for (i__ = 1; i__ <= i__2; ++i__) { + i__3 = i__ + j * c_dim1; + i__4 = i__ + j * c_dim1; + z__1.r = beta->r * c__[i__4].r - beta->i * c__[i__4].i, + z__1.i = beta->r * c__[i__4].i + beta->i * c__[ + i__4].r; + c__[i__3].r = z__1.r, c__[i__3].i = z__1.i; +/* L30: */ + } +/* L40: */ + } + } + return 0; + } + +/* Start the operations. */ + + if (notb) { + if (nota) { + +/* Form C := alpha*A*B + beta*C. */ + + i__1 = *n; + for (j = 1; j <= i__1; ++j) { + if (beta->r == 0. && beta->i == 0.) { + i__2 = *m; + for (i__ = 1; i__ <= i__2; ++i__) { + i__3 = i__ + j * c_dim1; + c__[i__3].r = 0., c__[i__3].i = 0.; +/* L50: */ + } + } else if ((beta->r != 1.) || (beta->i != 0.)) { + i__2 = *m; + for (i__ = 1; i__ <= i__2; ++i__) { + i__3 = i__ + j * c_dim1; + i__4 = i__ + j * c_dim1; + z__1.r = beta->r * c__[i__4].r - beta->i * c__[i__4] + .i, z__1.i = beta->r * c__[i__4].i + beta->i * + c__[i__4].r; + c__[i__3].r = z__1.r, c__[i__3].i = z__1.i; +/* L60: */ + } + } + i__2 = *k; + for (l = 1; l <= i__2; ++l) { + i__3 = l + j * b_dim1; + if ((b[i__3].r != 0.) || (b[i__3].i != 0.)) { + i__3 = l + j * b_dim1; + z__1.r = alpha->r * b[i__3].r - alpha->i * b[i__3].i, + z__1.i = alpha->r * b[i__3].i + alpha->i * b[ + i__3].r; + temp.r = z__1.r, temp.i = z__1.i; + i__3 = *m; + for (i__ = 1; i__ <= i__3; ++i__) { + i__4 = i__ + j * c_dim1; + i__5 = i__ + j * c_dim1; + i__6 = i__ + l * a_dim1; + z__2.r = temp.r * a[i__6].r - temp.i * a[i__6].i, + z__2.i = temp.r * a[i__6].i + temp.i * a[ + i__6].r; + z__1.r = c__[i__5].r + z__2.r, z__1.i = c__[i__5] + .i + z__2.i; + c__[i__4].r = z__1.r, c__[i__4].i = z__1.i; +/* L70: */ + } + } +/* L80: */ + } +/* L90: */ + } + } else if (conja) { + +/* Form C := alpha*conjg( A' )*B + beta*C. */ + + i__1 = *n; + for (j = 1; j <= i__1; ++j) { + i__2 = *m; + for (i__ = 1; i__ <= i__2; ++i__) { + temp.r = 0., temp.i = 0.; + i__3 = *k; + for (l = 1; l <= i__3; ++l) { + d_cnjg(&z__3, &a[l + i__ * a_dim1]); + i__4 = l + j * b_dim1; + z__2.r = z__3.r * b[i__4].r - z__3.i * b[i__4].i, + z__2.i = z__3.r * b[i__4].i + z__3.i * b[i__4] + .r; + z__1.r = temp.r + z__2.r, z__1.i = temp.i + z__2.i; + temp.r = z__1.r, temp.i = z__1.i; +/* L100: */ + } + if (beta->r == 0. && beta->i == 0.) { + i__3 = i__ + j * c_dim1; + z__1.r = alpha->r * temp.r - alpha->i * temp.i, + z__1.i = alpha->r * temp.i + alpha->i * + temp.r; + c__[i__3].r = z__1.r, c__[i__3].i = z__1.i; + } else { + i__3 = i__ + j * c_dim1; + z__2.r = alpha->r * temp.r - alpha->i * temp.i, + z__2.i = alpha->r * temp.i + alpha->i * + temp.r; + i__4 = i__ + j * c_dim1; + z__3.r = beta->r * c__[i__4].r - beta->i * c__[i__4] + .i, z__3.i = beta->r * c__[i__4].i + beta->i * + c__[i__4].r; + z__1.r = z__2.r + z__3.r, z__1.i = z__2.i + z__3.i; + c__[i__3].r = z__1.r, c__[i__3].i = z__1.i; + } +/* L110: */ + } +/* L120: */ + } + } else { + +/* Form C := alpha*A'*B + beta*C */ + + i__1 = *n; + for (j = 1; j <= i__1; ++j) { + i__2 = *m; + for (i__ = 1; i__ <= i__2; ++i__) { + temp.r = 0., temp.i = 0.; + i__3 = *k; + for (l = 1; l <= i__3; ++l) { + i__4 = l + i__ * a_dim1; + i__5 = l + j * b_dim1; + z__2.r = a[i__4].r * b[i__5].r - a[i__4].i * b[i__5] + .i, z__2.i = a[i__4].r * b[i__5].i + a[i__4] + .i * b[i__5].r; + z__1.r = temp.r + z__2.r, z__1.i = temp.i + z__2.i; + temp.r = z__1.r, temp.i = z__1.i; +/* L130: */ + } + if (beta->r == 0. && beta->i == 0.) { + i__3 = i__ + j * c_dim1; + z__1.r = alpha->r * temp.r - alpha->i * temp.i, + z__1.i = alpha->r * temp.i + alpha->i * + temp.r; + c__[i__3].r = z__1.r, c__[i__3].i = z__1.i; + } else { + i__3 = i__ + j * c_dim1; + z__2.r = alpha->r * temp.r - alpha->i * temp.i, + z__2.i = alpha->r * temp.i + alpha->i * + temp.r; + i__4 = i__ + j * c_dim1; + z__3.r = beta->r * c__[i__4].r - beta->i * c__[i__4] + .i, z__3.i = beta->r * c__[i__4].i + beta->i * + c__[i__4].r; + z__1.r = z__2.r + z__3.r, z__1.i = z__2.i + z__3.i; + c__[i__3].r = z__1.r, c__[i__3].i = z__1.i; + } +/* L140: */ + } +/* L150: */ + } + } + } else if (nota) { + if (conjb) { + +/* Form C := alpha*A*conjg( B' ) + beta*C. */ + + i__1 = *n; + for (j = 1; j <= i__1; ++j) { + if (beta->r == 0. && beta->i == 0.) { + i__2 = *m; + for (i__ = 1; i__ <= i__2; ++i__) { + i__3 = i__ + j * c_dim1; + c__[i__3].r = 0., c__[i__3].i = 0.; +/* L160: */ + } + } else if ((beta->r != 1.) || (beta->i != 0.)) { + i__2 = *m; + for (i__ = 1; i__ <= i__2; ++i__) { + i__3 = i__ + j * c_dim1; + i__4 = i__ + j * c_dim1; + z__1.r = beta->r * c__[i__4].r - beta->i * c__[i__4] + .i, z__1.i = beta->r * c__[i__4].i + beta->i * + c__[i__4].r; + c__[i__3].r = z__1.r, c__[i__3].i = z__1.i; +/* L170: */ + } + } + i__2 = *k; + for (l = 1; l <= i__2; ++l) { + i__3 = j + l * b_dim1; + if ((b[i__3].r != 0.) || (b[i__3].i != 0.)) { + d_cnjg(&z__2, &b[j + l * b_dim1]); + z__1.r = alpha->r * z__2.r - alpha->i * z__2.i, + z__1.i = alpha->r * z__2.i + alpha->i * + z__2.r; + temp.r = z__1.r, temp.i = z__1.i; + i__3 = *m; + for (i__ = 1; i__ <= i__3; ++i__) { + i__4 = i__ + j * c_dim1; + i__5 = i__ + j * c_dim1; + i__6 = i__ + l * a_dim1; + z__2.r = temp.r * a[i__6].r - temp.i * a[i__6].i, + z__2.i = temp.r * a[i__6].i + temp.i * a[ + i__6].r; + z__1.r = c__[i__5].r + z__2.r, z__1.i = c__[i__5] + .i + z__2.i; + c__[i__4].r = z__1.r, c__[i__4].i = z__1.i; +/* L180: */ + } + } +/* L190: */ + } +/* L200: */ + } + } else { + +/* Form C := alpha*A*B' + beta*C */ + + i__1 = *n; + for (j = 1; j <= i__1; ++j) { + if (beta->r == 0. && beta->i == 0.) { + i__2 = *m; + for (i__ = 1; i__ <= i__2; ++i__) { + i__3 = i__ + j * c_dim1; + c__[i__3].r = 0., c__[i__3].i = 0.; +/* L210: */ + } + } else if ((beta->r != 1.) || (beta->i != 0.)) { + i__2 = *m; + for (i__ = 1; i__ <= i__2; ++i__) { + i__3 = i__ + j * c_dim1; + i__4 = i__ + j * c_dim1; + z__1.r = beta->r * c__[i__4].r - beta->i * c__[i__4] + .i, z__1.i = beta->r * c__[i__4].i + beta->i * + c__[i__4].r; + c__[i__3].r = z__1.r, c__[i__3].i = z__1.i; +/* L220: */ + } + } + i__2 = *k; + for (l = 1; l <= i__2; ++l) { + i__3 = j + l * b_dim1; + if ((b[i__3].r != 0.) || (b[i__3].i != 0.)) { + i__3 = j + l * b_dim1; + z__1.r = alpha->r * b[i__3].r - alpha->i * b[i__3].i, + z__1.i = alpha->r * b[i__3].i + alpha->i * b[ + i__3].r; + temp.r = z__1.r, temp.i = z__1.i; + i__3 = *m; + for (i__ = 1; i__ <= i__3; ++i__) { + i__4 = i__ + j * c_dim1; + i__5 = i__ + j * c_dim1; + i__6 = i__ + l * a_dim1; + z__2.r = temp.r * a[i__6].r - temp.i * a[i__6].i, + z__2.i = temp.r * a[i__6].i + temp.i * a[ + i__6].r; + z__1.r = c__[i__5].r + z__2.r, z__1.i = c__[i__5] + .i + z__2.i; + c__[i__4].r = z__1.r, c__[i__4].i = z__1.i; +/* L230: */ + } + } +/* L240: */ + } +/* L250: */ + } + } + } else if (conja) { + if (conjb) { + +/* Form C := alpha*conjg( A' )*conjg( B' ) + beta*C. */ + + i__1 = *n; + for (j = 1; j <= i__1; ++j) { + i__2 = *m; + for (i__ = 1; i__ <= i__2; ++i__) { + temp.r = 0., temp.i = 0.; + i__3 = *k; + for (l = 1; l <= i__3; ++l) { + d_cnjg(&z__3, &a[l + i__ * a_dim1]); + d_cnjg(&z__4, &b[j + l * b_dim1]); + z__2.r = z__3.r * z__4.r - z__3.i * z__4.i, z__2.i = + z__3.r * z__4.i + z__3.i * z__4.r; + z__1.r = temp.r + z__2.r, z__1.i = temp.i + z__2.i; + temp.r = z__1.r, temp.i = z__1.i; +/* L260: */ + } + if (beta->r == 0. && beta->i == 0.) { + i__3 = i__ + j * c_dim1; + z__1.r = alpha->r * temp.r - alpha->i * temp.i, + z__1.i = alpha->r * temp.i + alpha->i * + temp.r; + c__[i__3].r = z__1.r, c__[i__3].i = z__1.i; + } else { + i__3 = i__ + j * c_dim1; + z__2.r = alpha->r * temp.r - alpha->i * temp.i, + z__2.i = alpha->r * temp.i + alpha->i * + temp.r; + i__4 = i__ + j * c_dim1; + z__3.r = beta->r * c__[i__4].r - beta->i * c__[i__4] + .i, z__3.i = beta->r * c__[i__4].i + beta->i * + c__[i__4].r; + z__1.r = z__2.r + z__3.r, z__1.i = z__2.i + z__3.i; + c__[i__3].r = z__1.r, c__[i__3].i = z__1.i; + } +/* L270: */ + } +/* L280: */ + } + } else { + +/* Form C := alpha*conjg( A' )*B' + beta*C */ + + i__1 = *n; + for (j = 1; j <= i__1; ++j) { + i__2 = *m; + for (i__ = 1; i__ <= i__2; ++i__) { + temp.r = 0., temp.i = 0.; + i__3 = *k; + for (l = 1; l <= i__3; ++l) { + d_cnjg(&z__3, &a[l + i__ * a_dim1]); + i__4 = j + l * b_dim1; + z__2.r = z__3.r * b[i__4].r - z__3.i * b[i__4].i, + z__2.i = z__3.r * b[i__4].i + z__3.i * b[i__4] + .r; + z__1.r = temp.r + z__2.r, z__1.i = temp.i + z__2.i; + temp.r = z__1.r, temp.i = z__1.i; +/* L290: */ + } + if (beta->r == 0. && beta->i == 0.) { + i__3 = i__ + j * c_dim1; + z__1.r = alpha->r * temp.r - alpha->i * temp.i, + z__1.i = alpha->r * temp.i + alpha->i * + temp.r; + c__[i__3].r = z__1.r, c__[i__3].i = z__1.i; + } else { + i__3 = i__ + j * c_dim1; + z__2.r = alpha->r * temp.r - alpha->i * temp.i, + z__2.i = alpha->r * temp.i + alpha->i * + temp.r; + i__4 = i__ + j * c_dim1; + z__3.r = beta->r * c__[i__4].r - beta->i * c__[i__4] + .i, z__3.i = beta->r * c__[i__4].i + beta->i * + c__[i__4].r; + z__1.r = z__2.r + z__3.r, z__1.i = z__2.i + z__3.i; + c__[i__3].r = z__1.r, c__[i__3].i = z__1.i; + } +/* L300: */ + } +/* L310: */ + } + } + } else { + if (conjb) { + +/* Form C := alpha*A'*conjg( B' ) + beta*C */ + + i__1 = *n; + for (j = 1; j <= i__1; ++j) { + i__2 = *m; + for (i__ = 1; i__ <= i__2; ++i__) { + temp.r = 0., temp.i = 0.; + i__3 = *k; + for (l = 1; l <= i__3; ++l) { + i__4 = l + i__ * a_dim1; + d_cnjg(&z__3, &b[j + l * b_dim1]); + z__2.r = a[i__4].r * z__3.r - a[i__4].i * z__3.i, + z__2.i = a[i__4].r * z__3.i + a[i__4].i * + z__3.r; + z__1.r = temp.r + z__2.r, z__1.i = temp.i + z__2.i; + temp.r = z__1.r, temp.i = z__1.i; +/* L320: */ + } + if (beta->r == 0. && beta->i == 0.) { + i__3 = i__ + j * c_dim1; + z__1.r = alpha->r * temp.r - alpha->i * temp.i, + z__1.i = alpha->r * temp.i + alpha->i * + temp.r; + c__[i__3].r = z__1.r, c__[i__3].i = z__1.i; + } else { + i__3 = i__ + j * c_dim1; + z__2.r = alpha->r * temp.r - alpha->i * temp.i, + z__2.i = alpha->r * temp.i + alpha->i * + temp.r; + i__4 = i__ + j * c_dim1; + z__3.r = beta->r * c__[i__4].r - beta->i * c__[i__4] + .i, z__3.i = beta->r * c__[i__4].i + beta->i * + c__[i__4].r; + z__1.r = z__2.r + z__3.r, z__1.i = z__2.i + z__3.i; + c__[i__3].r = z__1.r, c__[i__3].i = z__1.i; + } +/* L330: */ + } +/* L340: */ + } + } else { + +/* Form C := alpha*A'*B' + beta*C */ + + i__1 = *n; + for (j = 1; j <= i__1; ++j) { + i__2 = *m; + for (i__ = 1; i__ <= i__2; ++i__) { + temp.r = 0., temp.i = 0.; + i__3 = *k; + for (l = 1; l <= i__3; ++l) { + i__4 = l + i__ * a_dim1; + i__5 = j + l * b_dim1; + z__2.r = a[i__4].r * b[i__5].r - a[i__4].i * b[i__5] + .i, z__2.i = a[i__4].r * b[i__5].i + a[i__4] + .i * b[i__5].r; + z__1.r = temp.r + z__2.r, z__1.i = temp.i + z__2.i; + temp.r = z__1.r, temp.i = z__1.i; +/* L350: */ + } + if (beta->r == 0. && beta->i == 0.) { + i__3 = i__ + j * c_dim1; + z__1.r = alpha->r * temp.r - alpha->i * temp.i, + z__1.i = alpha->r * temp.i + alpha->i * + temp.r; + c__[i__3].r = z__1.r, c__[i__3].i = z__1.i; + } else { + i__3 = i__ + j * c_dim1; + z__2.r = alpha->r * temp.r - alpha->i * temp.i, + z__2.i = alpha->r * temp.i + alpha->i * + temp.r; + i__4 = i__ + j * c_dim1; + z__3.r = beta->r * c__[i__4].r - beta->i * c__[i__4] + .i, z__3.i = beta->r * c__[i__4].i + beta->i * + c__[i__4].r; + z__1.r = z__2.r + z__3.r, z__1.i = z__2.i + z__3.i; + c__[i__3].r = z__1.r, c__[i__3].i = z__1.i; + } +/* L360: */ + } +/* L370: */ + } + } + } + + return 0; + +/* End of ZGEMM . */ + +} /* zgemm_ */ + +/* Subroutine */ int zgemv_(char *trans, integer *m, integer *n, + doublecomplex *alpha, doublecomplex *a, integer *lda, doublecomplex * + x, integer *incx, doublecomplex *beta, doublecomplex *y, integer * + incy) +{ + /* System generated locals */ + integer a_dim1, a_offset, i__1, i__2, i__3, i__4, i__5; + doublecomplex z__1, z__2, z__3; + + /* Builtin functions */ + void d_cnjg(doublecomplex *, doublecomplex *); + + /* Local variables */ + static integer i__, j, ix, iy, jx, jy, kx, ky, info; + static doublecomplex temp; + static integer lenx, leny; + extern logical lsame_(char *, char *); + extern /* Subroutine */ int xerbla_(char *, integer *); + static logical noconj; + + +/* + Purpose + ======= + + ZGEMV performs one of the matrix-vector operations + + y := alpha*A*x + beta*y, or y := alpha*A'*x + beta*y, or + + y := alpha*conjg( A' )*x + beta*y, + + where alpha and beta are scalars, x and y are vectors and A is an + m by n matrix. + + Parameters + ========== + + TRANS - CHARACTER*1. + On entry, TRANS specifies the operation to be performed as + follows: + + TRANS = 'N' or 'n' y := alpha*A*x + beta*y. + + TRANS = 'T' or 't' y := alpha*A'*x + beta*y. + + TRANS = 'C' or 'c' y := alpha*conjg( A' )*x + beta*y. + + Unchanged on exit. + + M - INTEGER. + On entry, M specifies the number of rows of the matrix A. + M must be at least zero. + Unchanged on exit. + + N - INTEGER. + On entry, N specifies the number of columns of the matrix A. + N must be at least zero. + Unchanged on exit. + + ALPHA - COMPLEX*16 . + On entry, ALPHA specifies the scalar alpha. + Unchanged on exit. + + A - COMPLEX*16 array of DIMENSION ( LDA, n ). + Before entry, the leading m by n part of the array A must + contain the matrix of coefficients. + Unchanged on exit. + + LDA - INTEGER. + On entry, LDA specifies the first dimension of A as declared + in the calling (sub) program. LDA must be at least + max( 1, m ). + Unchanged on exit. + + X - COMPLEX*16 array of DIMENSION at least + ( 1 + ( n - 1 )*abs( INCX ) ) when TRANS = 'N' or 'n' + and at least + ( 1 + ( m - 1 )*abs( INCX ) ) otherwise. + Before entry, the incremented array X must contain the + vector x. + Unchanged on exit. + + INCX - INTEGER. + On entry, INCX specifies the increment for the elements of + X. INCX must not be zero. + Unchanged on exit. + + BETA - COMPLEX*16 . + On entry, BETA specifies the scalar beta. When BETA is + supplied as zero then Y need not be set on input. + Unchanged on exit. + + Y - COMPLEX*16 array of DIMENSION at least + ( 1 + ( m - 1 )*abs( INCY ) ) when TRANS = 'N' or 'n' + and at least + ( 1 + ( n - 1 )*abs( INCY ) ) otherwise. + Before entry with BETA non-zero, the incremented array Y + must contain the vector y. On exit, Y is overwritten by the + updated vector y. + + INCY - INTEGER. + On entry, INCY specifies the increment for the elements of + Y. INCY must not be zero. + Unchanged on exit. + + + Level 2 Blas routine. + + -- Written on 22-October-1986. + Jack Dongarra, Argonne National Lab. + Jeremy Du Croz, Nag Central Office. + Sven Hammarling, Nag Central Office. + Richard Hanson, Sandia National Labs. + + + Test the input parameters. +*/ + + /* Parameter adjustments */ + a_dim1 = *lda; + a_offset = 1 + a_dim1; + a -= a_offset; + --x; + --y; + + /* Function Body */ + info = 0; + if (! lsame_(trans, "N") && ! lsame_(trans, "T") && ! lsame_(trans, "C") + ) { + info = 1; + } else if (*m < 0) { + info = 2; + } else if (*n < 0) { + info = 3; + } else if (*lda < max(1,*m)) { + info = 6; + } else if (*incx == 0) { + info = 8; + } else if (*incy == 0) { + info = 11; + } + if (info != 0) { + xerbla_("ZGEMV ", &info); + return 0; + } + +/* Quick return if possible. */ + + if (((*m == 0) || (*n == 0)) || (alpha->r == 0. && alpha->i == 0. && ( + beta->r == 1. && beta->i == 0.))) { + return 0; + } + + noconj = lsame_(trans, "T"); + +/* + Set LENX and LENY, the lengths of the vectors x and y, and set + up the start points in X and Y. +*/ + + if (lsame_(trans, "N")) { + lenx = *n; + leny = *m; + } else { + lenx = *m; + leny = *n; + } + if (*incx > 0) { + kx = 1; + } else { + kx = 1 - (lenx - 1) * *incx; + } + if (*incy > 0) { + ky = 1; + } else { + ky = 1 - (leny - 1) * *incy; + } + +/* + Start the operations. In this version the elements of A are + accessed sequentially with one pass through A. + + First form y := beta*y. +*/ + + if ((beta->r != 1.) || (beta->i != 0.)) { + if (*incy == 1) { + if (beta->r == 0. && beta->i == 0.) { + i__1 = leny; + for (i__ = 1; i__ <= i__1; ++i__) { + i__2 = i__; + y[i__2].r = 0., y[i__2].i = 0.; +/* L10: */ + } + } else { + i__1 = leny; + for (i__ = 1; i__ <= i__1; ++i__) { + i__2 = i__; + i__3 = i__; + z__1.r = beta->r * y[i__3].r - beta->i * y[i__3].i, + z__1.i = beta->r * y[i__3].i + beta->i * y[i__3] + .r; + y[i__2].r = z__1.r, y[i__2].i = z__1.i; +/* L20: */ + } + } + } else { + iy = ky; + if (beta->r == 0. && beta->i == 0.) { + i__1 = leny; + for (i__ = 1; i__ <= i__1; ++i__) { + i__2 = iy; + y[i__2].r = 0., y[i__2].i = 0.; + iy += *incy; +/* L30: */ + } + } else { + i__1 = leny; + for (i__ = 1; i__ <= i__1; ++i__) { + i__2 = iy; + i__3 = iy; + z__1.r = beta->r * y[i__3].r - beta->i * y[i__3].i, + z__1.i = beta->r * y[i__3].i + beta->i * y[i__3] + .r; + y[i__2].r = z__1.r, y[i__2].i = z__1.i; + iy += *incy; +/* L40: */ + } + } + } + } + if (alpha->r == 0. && alpha->i == 0.) { + return 0; + } + if (lsame_(trans, "N")) { + +/* Form y := alpha*A*x + y. */ + + jx = kx; + if (*incy == 1) { + i__1 = *n; + for (j = 1; j <= i__1; ++j) { + i__2 = jx; + if ((x[i__2].r != 0.) || (x[i__2].i != 0.)) { + i__2 = jx; + z__1.r = alpha->r * x[i__2].r - alpha->i * x[i__2].i, + z__1.i = alpha->r * x[i__2].i + alpha->i * x[i__2] + .r; + temp.r = z__1.r, temp.i = z__1.i; + i__2 = *m; + for (i__ = 1; i__ <= i__2; ++i__) { + i__3 = i__; + i__4 = i__; + i__5 = i__ + j * a_dim1; + z__2.r = temp.r * a[i__5].r - temp.i * a[i__5].i, + z__2.i = temp.r * a[i__5].i + temp.i * a[i__5] + .r; + z__1.r = y[i__4].r + z__2.r, z__1.i = y[i__4].i + + z__2.i; + y[i__3].r = z__1.r, y[i__3].i = z__1.i; +/* L50: */ + } + } + jx += *incx; +/* L60: */ + } + } else { + i__1 = *n; + for (j = 1; j <= i__1; ++j) { + i__2 = jx; + if ((x[i__2].r != 0.) || (x[i__2].i != 0.)) { + i__2 = jx; + z__1.r = alpha->r * x[i__2].r - alpha->i * x[i__2].i, + z__1.i = alpha->r * x[i__2].i + alpha->i * x[i__2] + .r; + temp.r = z__1.r, temp.i = z__1.i; + iy = ky; + i__2 = *m; + for (i__ = 1; i__ <= i__2; ++i__) { + i__3 = iy; + i__4 = iy; + i__5 = i__ + j * a_dim1; + z__2.r = temp.r * a[i__5].r - temp.i * a[i__5].i, + z__2.i = temp.r * a[i__5].i + temp.i * a[i__5] + .r; + z__1.r = y[i__4].r + z__2.r, z__1.i = y[i__4].i + + z__2.i; + y[i__3].r = z__1.r, y[i__3].i = z__1.i; + iy += *incy; +/* L70: */ + } + } + jx += *incx; +/* L80: */ + } + } + } else { + +/* Form y := alpha*A'*x + y or y := alpha*conjg( A' )*x + y. */ + + jy = ky; + if (*incx == 1) { + i__1 = *n; + for (j = 1; j <= i__1; ++j) { + temp.r = 0., temp.i = 0.; + if (noconj) { + i__2 = *m; + for (i__ = 1; i__ <= i__2; ++i__) { + i__3 = i__ + j * a_dim1; + i__4 = i__; + z__2.r = a[i__3].r * x[i__4].r - a[i__3].i * x[i__4] + .i, z__2.i = a[i__3].r * x[i__4].i + a[i__3] + .i * x[i__4].r; + z__1.r = temp.r + z__2.r, z__1.i = temp.i + z__2.i; + temp.r = z__1.r, temp.i = z__1.i; +/* L90: */ + } + } else { + i__2 = *m; + for (i__ = 1; i__ <= i__2; ++i__) { + d_cnjg(&z__3, &a[i__ + j * a_dim1]); + i__3 = i__; + z__2.r = z__3.r * x[i__3].r - z__3.i * x[i__3].i, + z__2.i = z__3.r * x[i__3].i + z__3.i * x[i__3] + .r; + z__1.r = temp.r + z__2.r, z__1.i = temp.i + z__2.i; + temp.r = z__1.r, temp.i = z__1.i; +/* L100: */ + } + } + i__2 = jy; + i__3 = jy; + z__2.r = alpha->r * temp.r - alpha->i * temp.i, z__2.i = + alpha->r * temp.i + alpha->i * temp.r; + z__1.r = y[i__3].r + z__2.r, z__1.i = y[i__3].i + z__2.i; + y[i__2].r = z__1.r, y[i__2].i = z__1.i; + jy += *incy; +/* L110: */ + } + } else { + i__1 = *n; + for (j = 1; j <= i__1; ++j) { + temp.r = 0., temp.i = 0.; + ix = kx; + if (noconj) { + i__2 = *m; + for (i__ = 1; i__ <= i__2; ++i__) { + i__3 = i__ + j * a_dim1; + i__4 = ix; + z__2.r = a[i__3].r * x[i__4].r - a[i__3].i * x[i__4] + .i, z__2.i = a[i__3].r * x[i__4].i + a[i__3] + .i * x[i__4].r; + z__1.r = temp.r + z__2.r, z__1.i = temp.i + z__2.i; + temp.r = z__1.r, temp.i = z__1.i; + ix += *incx; +/* L120: */ + } + } else { + i__2 = *m; + for (i__ = 1; i__ <= i__2; ++i__) { + d_cnjg(&z__3, &a[i__ + j * a_dim1]); + i__3 = ix; + z__2.r = z__3.r * x[i__3].r - z__3.i * x[i__3].i, + z__2.i = z__3.r * x[i__3].i + z__3.i * x[i__3] + .r; + z__1.r = temp.r + z__2.r, z__1.i = temp.i + z__2.i; + temp.r = z__1.r, temp.i = z__1.i; + ix += *incx; +/* L130: */ + } + } + i__2 = jy; + i__3 = jy; + z__2.r = alpha->r * temp.r - alpha->i * temp.i, z__2.i = + alpha->r * temp.i + alpha->i * temp.r; + z__1.r = y[i__3].r + z__2.r, z__1.i = y[i__3].i + z__2.i; + y[i__2].r = z__1.r, y[i__2].i = z__1.i; + jy += *incy; +/* L140: */ + } + } + } + + return 0; + +/* End of ZGEMV . */ + +} /* zgemv_ */ + +/* Subroutine */ int zgerc_(integer *m, integer *n, doublecomplex *alpha, + doublecomplex *x, integer *incx, doublecomplex *y, integer *incy, + doublecomplex *a, integer *lda) +{ + /* System generated locals */ + integer a_dim1, a_offset, i__1, i__2, i__3, i__4, i__5; + doublecomplex z__1, z__2; + + /* Builtin functions */ + void d_cnjg(doublecomplex *, doublecomplex *); + + /* Local variables */ + static integer i__, j, ix, jy, kx, info; + static doublecomplex temp; + extern /* Subroutine */ int xerbla_(char *, integer *); + + +/* + Purpose + ======= + + ZGERC performs the rank 1 operation + + A := alpha*x*conjg( y' ) + A, + + where alpha is a scalar, x is an m element vector, y is an n element + vector and A is an m by n matrix. + + Parameters + ========== + + M - INTEGER. + On entry, M specifies the number of rows of the matrix A. + M must be at least zero. + Unchanged on exit. + + N - INTEGER. + On entry, N specifies the number of columns of the matrix A. + N must be at least zero. + Unchanged on exit. + + ALPHA - COMPLEX*16 . + On entry, ALPHA specifies the scalar alpha. + Unchanged on exit. + + X - COMPLEX*16 array of dimension at least + ( 1 + ( m - 1 )*abs( INCX ) ). + Before entry, the incremented array X must contain the m + element vector x. + Unchanged on exit. + + INCX - INTEGER. + On entry, INCX specifies the increment for the elements of + X. INCX must not be zero. + Unchanged on exit. + + Y - COMPLEX*16 array of dimension at least + ( 1 + ( n - 1 )*abs( INCY ) ). + Before entry, the incremented array Y must contain the n + element vector y. + Unchanged on exit. + + INCY - INTEGER. + On entry, INCY specifies the increment for the elements of + Y. INCY must not be zero. + Unchanged on exit. + + A - COMPLEX*16 array of DIMENSION ( LDA, n ). + Before entry, the leading m by n part of the array A must + contain the matrix of coefficients. On exit, A is + overwritten by the updated matrix. + + LDA - INTEGER. + On entry, LDA specifies the first dimension of A as declared + in the calling (sub) program. LDA must be at least + max( 1, m ). + Unchanged on exit. + + + Level 2 Blas routine. + + -- Written on 22-October-1986. + Jack Dongarra, Argonne National Lab. + Jeremy Du Croz, Nag Central Office. + Sven Hammarling, Nag Central Office. + Richard Hanson, Sandia National Labs. + + + Test the input parameters. +*/ + + /* Parameter adjustments */ + --x; + --y; + a_dim1 = *lda; + a_offset = 1 + a_dim1; + a -= a_offset; + + /* Function Body */ + info = 0; + if (*m < 0) { + info = 1; + } else if (*n < 0) { + info = 2; + } else if (*incx == 0) { + info = 5; + } else if (*incy == 0) { + info = 7; + } else if (*lda < max(1,*m)) { + info = 9; + } + if (info != 0) { + xerbla_("ZGERC ", &info); + return 0; + } + +/* Quick return if possible. */ + + if (((*m == 0) || (*n == 0)) || (alpha->r == 0. && alpha->i == 0.)) { + return 0; + } + +/* + Start the operations. In this version the elements of A are + accessed sequentially with one pass through A. +*/ + + if (*incy > 0) { + jy = 1; + } else { + jy = 1 - (*n - 1) * *incy; + } + if (*incx == 1) { + i__1 = *n; + for (j = 1; j <= i__1; ++j) { + i__2 = jy; + if ((y[i__2].r != 0.) || (y[i__2].i != 0.)) { + d_cnjg(&z__2, &y[jy]); + z__1.r = alpha->r * z__2.r - alpha->i * z__2.i, z__1.i = + alpha->r * z__2.i + alpha->i * z__2.r; + temp.r = z__1.r, temp.i = z__1.i; + i__2 = *m; + for (i__ = 1; i__ <= i__2; ++i__) { + i__3 = i__ + j * a_dim1; + i__4 = i__ + j * a_dim1; + i__5 = i__; + z__2.r = x[i__5].r * temp.r - x[i__5].i * temp.i, z__2.i = + x[i__5].r * temp.i + x[i__5].i * temp.r; + z__1.r = a[i__4].r + z__2.r, z__1.i = a[i__4].i + z__2.i; + a[i__3].r = z__1.r, a[i__3].i = z__1.i; +/* L10: */ + } + } + jy += *incy; +/* L20: */ + } + } else { + if (*incx > 0) { + kx = 1; + } else { + kx = 1 - (*m - 1) * *incx; + } + i__1 = *n; + for (j = 1; j <= i__1; ++j) { + i__2 = jy; + if ((y[i__2].r != 0.) || (y[i__2].i != 0.)) { + d_cnjg(&z__2, &y[jy]); + z__1.r = alpha->r * z__2.r - alpha->i * z__2.i, z__1.i = + alpha->r * z__2.i + alpha->i * z__2.r; + temp.r = z__1.r, temp.i = z__1.i; + ix = kx; + i__2 = *m; + for (i__ = 1; i__ <= i__2; ++i__) { + i__3 = i__ + j * a_dim1; + i__4 = i__ + j * a_dim1; + i__5 = ix; + z__2.r = x[i__5].r * temp.r - x[i__5].i * temp.i, z__2.i = + x[i__5].r * temp.i + x[i__5].i * temp.r; + z__1.r = a[i__4].r + z__2.r, z__1.i = a[i__4].i + z__2.i; + a[i__3].r = z__1.r, a[i__3].i = z__1.i; + ix += *incx; +/* L30: */ + } + } + jy += *incy; +/* L40: */ + } + } + + return 0; + +/* End of ZGERC . */ + +} /* zgerc_ */ + +/* Subroutine */ int zgeru_(integer *m, integer *n, doublecomplex *alpha, + doublecomplex *x, integer *incx, doublecomplex *y, integer *incy, + doublecomplex *a, integer *lda) +{ + /* System generated locals */ + integer a_dim1, a_offset, i__1, i__2, i__3, i__4, i__5; + doublecomplex z__1, z__2; + + /* Local variables */ + static integer i__, j, ix, jy, kx, info; + static doublecomplex temp; + extern /* Subroutine */ int xerbla_(char *, integer *); + + +/* + Purpose + ======= + + ZGERU performs the rank 1 operation + + A := alpha*x*y' + A, + + where alpha is a scalar, x is an m element vector, y is an n element + vector and A is an m by n matrix. + + Parameters + ========== + + M - INTEGER. + On entry, M specifies the number of rows of the matrix A. + M must be at least zero. + Unchanged on exit. + + N - INTEGER. + On entry, N specifies the number of columns of the matrix A. + N must be at least zero. + Unchanged on exit. + + ALPHA - COMPLEX*16 . + On entry, ALPHA specifies the scalar alpha. + Unchanged on exit. + + X - COMPLEX*16 array of dimension at least + ( 1 + ( m - 1 )*abs( INCX ) ). + Before entry, the incremented array X must contain the m + element vector x. + Unchanged on exit. + + INCX - INTEGER. + On entry, INCX specifies the increment for the elements of + X. INCX must not be zero. + Unchanged on exit. + + Y - COMPLEX*16 array of dimension at least + ( 1 + ( n - 1 )*abs( INCY ) ). + Before entry, the incremented array Y must contain the n + element vector y. + Unchanged on exit. + + INCY - INTEGER. + On entry, INCY specifies the increment for the elements of + Y. INCY must not be zero. + Unchanged on exit. + + A - COMPLEX*16 array of DIMENSION ( LDA, n ). + Before entry, the leading m by n part of the array A must + contain the matrix of coefficients. On exit, A is + overwritten by the updated matrix. + + LDA - INTEGER. + On entry, LDA specifies the first dimension of A as declared + in the calling (sub) program. LDA must be at least + max( 1, m ). + Unchanged on exit. + + + Level 2 Blas routine. + + -- Written on 22-October-1986. + Jack Dongarra, Argonne National Lab. + Jeremy Du Croz, Nag Central Office. + Sven Hammarling, Nag Central Office. + Richard Hanson, Sandia National Labs. + + + Test the input parameters. +*/ + + /* Parameter adjustments */ + --x; + --y; + a_dim1 = *lda; + a_offset = 1 + a_dim1; + a -= a_offset; + + /* Function Body */ + info = 0; + if (*m < 0) { + info = 1; + } else if (*n < 0) { + info = 2; + } else if (*incx == 0) { + info = 5; + } else if (*incy == 0) { + info = 7; + } else if (*lda < max(1,*m)) { + info = 9; + } + if (info != 0) { + xerbla_("ZGERU ", &info); + return 0; + } + +/* Quick return if possible. */ + + if (((*m == 0) || (*n == 0)) || (alpha->r == 0. && alpha->i == 0.)) { + return 0; + } + +/* + Start the operations. In this version the elements of A are + accessed sequentially with one pass through A. +*/ + + if (*incy > 0) { + jy = 1; + } else { + jy = 1 - (*n - 1) * *incy; + } + if (*incx == 1) { + i__1 = *n; + for (j = 1; j <= i__1; ++j) { + i__2 = jy; + if ((y[i__2].r != 0.) || (y[i__2].i != 0.)) { + i__2 = jy; + z__1.r = alpha->r * y[i__2].r - alpha->i * y[i__2].i, z__1.i = + alpha->r * y[i__2].i + alpha->i * y[i__2].r; + temp.r = z__1.r, temp.i = z__1.i; + i__2 = *m; + for (i__ = 1; i__ <= i__2; ++i__) { + i__3 = i__ + j * a_dim1; + i__4 = i__ + j * a_dim1; + i__5 = i__; + z__2.r = x[i__5].r * temp.r - x[i__5].i * temp.i, z__2.i = + x[i__5].r * temp.i + x[i__5].i * temp.r; + z__1.r = a[i__4].r + z__2.r, z__1.i = a[i__4].i + z__2.i; + a[i__3].r = z__1.r, a[i__3].i = z__1.i; +/* L10: */ + } + } + jy += *incy; +/* L20: */ + } + } else { + if (*incx > 0) { + kx = 1; + } else { + kx = 1 - (*m - 1) * *incx; + } + i__1 = *n; + for (j = 1; j <= i__1; ++j) { + i__2 = jy; + if ((y[i__2].r != 0.) || (y[i__2].i != 0.)) { + i__2 = jy; + z__1.r = alpha->r * y[i__2].r - alpha->i * y[i__2].i, z__1.i = + alpha->r * y[i__2].i + alpha->i * y[i__2].r; + temp.r = z__1.r, temp.i = z__1.i; + ix = kx; + i__2 = *m; + for (i__ = 1; i__ <= i__2; ++i__) { + i__3 = i__ + j * a_dim1; + i__4 = i__ + j * a_dim1; + i__5 = ix; + z__2.r = x[i__5].r * temp.r - x[i__5].i * temp.i, z__2.i = + x[i__5].r * temp.i + x[i__5].i * temp.r; + z__1.r = a[i__4].r + z__2.r, z__1.i = a[i__4].i + z__2.i; + a[i__3].r = z__1.r, a[i__3].i = z__1.i; + ix += *incx; +/* L30: */ + } + } + jy += *incy; +/* L40: */ + } + } + + return 0; + +/* End of ZGERU . */ + +} /* zgeru_ */ + +/* Subroutine */ int zhemv_(char *uplo, integer *n, doublecomplex *alpha, + doublecomplex *a, integer *lda, doublecomplex *x, integer *incx, + doublecomplex *beta, doublecomplex *y, integer *incy) +{ + /* System generated locals */ + integer a_dim1, a_offset, i__1, i__2, i__3, i__4, i__5; + doublereal d__1; + doublecomplex z__1, z__2, z__3, z__4; + + /* Builtin functions */ + void d_cnjg(doublecomplex *, doublecomplex *); + + /* Local variables */ + static integer i__, j, ix, iy, jx, jy, kx, ky, info; + static doublecomplex temp1, temp2; + extern logical lsame_(char *, char *); + extern /* Subroutine */ int xerbla_(char *, integer *); + + +/* + Purpose + ======= + + ZHEMV performs the matrix-vector operation + + y := alpha*A*x + beta*y, + + where alpha and beta are scalars, x and y are n element vectors and + A is an n by n hermitian matrix. + + Parameters + ========== + + UPLO - CHARACTER*1. + On entry, UPLO specifies whether the upper or lower + triangular part of the array A is to be referenced as + follows: + + UPLO = 'U' or 'u' Only the upper triangular part of A + is to be referenced. + + UPLO = 'L' or 'l' Only the lower triangular part of A + is to be referenced. + + Unchanged on exit. + + N - INTEGER. + On entry, N specifies the order of the matrix A. + N must be at least zero. + Unchanged on exit. + + ALPHA - COMPLEX*16 . + On entry, ALPHA specifies the scalar alpha. + Unchanged on exit. + + A - COMPLEX*16 array of DIMENSION ( LDA, n ). + Before entry with UPLO = 'U' or 'u', the leading n by n + upper triangular part of the array A must contain the upper + triangular part of the hermitian matrix and the strictly + lower triangular part of A is not referenced. + Before entry with UPLO = 'L' or 'l', the leading n by n + lower triangular part of the array A must contain the lower + triangular part of the hermitian matrix and the strictly + upper triangular part of A is not referenced. + Note that the imaginary parts of the diagonal elements need + not be set and are assumed to be zero. + Unchanged on exit. + + LDA - INTEGER. + On entry, LDA specifies the first dimension of A as declared + in the calling (sub) program. LDA must be at least + max( 1, n ). + Unchanged on exit. + + X - COMPLEX*16 array of dimension at least + ( 1 + ( n - 1 )*abs( INCX ) ). + Before entry, the incremented array X must contain the n + element vector x. + Unchanged on exit. + + INCX - INTEGER. + On entry, INCX specifies the increment for the elements of + X. INCX must not be zero. + Unchanged on exit. + + BETA - COMPLEX*16 . + On entry, BETA specifies the scalar beta. When BETA is + supplied as zero then Y need not be set on input. + Unchanged on exit. + + Y - COMPLEX*16 array of dimension at least + ( 1 + ( n - 1 )*abs( INCY ) ). + Before entry, the incremented array Y must contain the n + element vector y. On exit, Y is overwritten by the updated + vector y. + + INCY - INTEGER. + On entry, INCY specifies the increment for the elements of + Y. INCY must not be zero. + Unchanged on exit. + + + Level 2 Blas routine. + + -- Written on 22-October-1986. + Jack Dongarra, Argonne National Lab. + Jeremy Du Croz, Nag Central Office. + Sven Hammarling, Nag Central Office. + Richard Hanson, Sandia National Labs. + + + Test the input parameters. +*/ + + /* Parameter adjustments */ + a_dim1 = *lda; + a_offset = 1 + a_dim1; + a -= a_offset; + --x; + --y; + + /* Function Body */ + info = 0; + if (! lsame_(uplo, "U") && ! lsame_(uplo, "L")) { + info = 1; + } else if (*n < 0) { + info = 2; + } else if (*lda < max(1,*n)) { + info = 5; + } else if (*incx == 0) { + info = 7; + } else if (*incy == 0) { + info = 10; + } + if (info != 0) { + xerbla_("ZHEMV ", &info); + return 0; + } + +/* Quick return if possible. */ + + if ((*n == 0) || (alpha->r == 0. && alpha->i == 0. && (beta->r == 1. && + beta->i == 0.))) { + return 0; + } + +/* Set up the start points in X and Y. */ + + if (*incx > 0) { + kx = 1; + } else { + kx = 1 - (*n - 1) * *incx; + } + if (*incy > 0) { + ky = 1; + } else { + ky = 1 - (*n - 1) * *incy; + } + +/* + Start the operations. In this version the elements of A are + accessed sequentially with one pass through the triangular part + of A. + + First form y := beta*y. +*/ + + if ((beta->r != 1.) || (beta->i != 0.)) { + if (*incy == 1) { + if (beta->r == 0. && beta->i == 0.) { + i__1 = *n; + for (i__ = 1; i__ <= i__1; ++i__) { + i__2 = i__; + y[i__2].r = 0., y[i__2].i = 0.; +/* L10: */ + } + } else { + i__1 = *n; + for (i__ = 1; i__ <= i__1; ++i__) { + i__2 = i__; + i__3 = i__; + z__1.r = beta->r * y[i__3].r - beta->i * y[i__3].i, + z__1.i = beta->r * y[i__3].i + beta->i * y[i__3] + .r; + y[i__2].r = z__1.r, y[i__2].i = z__1.i; +/* L20: */ + } + } + } else { + iy = ky; + if (beta->r == 0. && beta->i == 0.) { + i__1 = *n; + for (i__ = 1; i__ <= i__1; ++i__) { + i__2 = iy; + y[i__2].r = 0., y[i__2].i = 0.; + iy += *incy; +/* L30: */ + } + } else { + i__1 = *n; + for (i__ = 1; i__ <= i__1; ++i__) { + i__2 = iy; + i__3 = iy; + z__1.r = beta->r * y[i__3].r - beta->i * y[i__3].i, + z__1.i = beta->r * y[i__3].i + beta->i * y[i__3] + .r; + y[i__2].r = z__1.r, y[i__2].i = z__1.i; + iy += *incy; +/* L40: */ + } + } + } + } + if (alpha->r == 0. && alpha->i == 0.) { + return 0; + } + if (lsame_(uplo, "U")) { + +/* Form y when A is stored in upper triangle. */ + + if (*incx == 1 && *incy == 1) { + i__1 = *n; + for (j = 1; j <= i__1; ++j) { + i__2 = j; + z__1.r = alpha->r * x[i__2].r - alpha->i * x[i__2].i, z__1.i = + alpha->r * x[i__2].i + alpha->i * x[i__2].r; + temp1.r = z__1.r, temp1.i = z__1.i; + temp2.r = 0., temp2.i = 0.; + i__2 = j - 1; + for (i__ = 1; i__ <= i__2; ++i__) { + i__3 = i__; + i__4 = i__; + i__5 = i__ + j * a_dim1; + z__2.r = temp1.r * a[i__5].r - temp1.i * a[i__5].i, + z__2.i = temp1.r * a[i__5].i + temp1.i * a[i__5] + .r; + z__1.r = y[i__4].r + z__2.r, z__1.i = y[i__4].i + z__2.i; + y[i__3].r = z__1.r, y[i__3].i = z__1.i; + d_cnjg(&z__3, &a[i__ + j * a_dim1]); + i__3 = i__; + z__2.r = z__3.r * x[i__3].r - z__3.i * x[i__3].i, z__2.i = + z__3.r * x[i__3].i + z__3.i * x[i__3].r; + z__1.r = temp2.r + z__2.r, z__1.i = temp2.i + z__2.i; + temp2.r = z__1.r, temp2.i = z__1.i; +/* L50: */ + } + i__2 = j; + i__3 = j; + i__4 = j + j * a_dim1; + d__1 = a[i__4].r; + z__3.r = d__1 * temp1.r, z__3.i = d__1 * temp1.i; + z__2.r = y[i__3].r + z__3.r, z__2.i = y[i__3].i + z__3.i; + z__4.r = alpha->r * temp2.r - alpha->i * temp2.i, z__4.i = + alpha->r * temp2.i + alpha->i * temp2.r; + z__1.r = z__2.r + z__4.r, z__1.i = z__2.i + z__4.i; + y[i__2].r = z__1.r, y[i__2].i = z__1.i; +/* L60: */ + } + } else { + jx = kx; + jy = ky; + i__1 = *n; + for (j = 1; j <= i__1; ++j) { + i__2 = jx; + z__1.r = alpha->r * x[i__2].r - alpha->i * x[i__2].i, z__1.i = + alpha->r * x[i__2].i + alpha->i * x[i__2].r; + temp1.r = z__1.r, temp1.i = z__1.i; + temp2.r = 0., temp2.i = 0.; + ix = kx; + iy = ky; + i__2 = j - 1; + for (i__ = 1; i__ <= i__2; ++i__) { + i__3 = iy; + i__4 = iy; + i__5 = i__ + j * a_dim1; + z__2.r = temp1.r * a[i__5].r - temp1.i * a[i__5].i, + z__2.i = temp1.r * a[i__5].i + temp1.i * a[i__5] + .r; + z__1.r = y[i__4].r + z__2.r, z__1.i = y[i__4].i + z__2.i; + y[i__3].r = z__1.r, y[i__3].i = z__1.i; + d_cnjg(&z__3, &a[i__ + j * a_dim1]); + i__3 = ix; + z__2.r = z__3.r * x[i__3].r - z__3.i * x[i__3].i, z__2.i = + z__3.r * x[i__3].i + z__3.i * x[i__3].r; + z__1.r = temp2.r + z__2.r, z__1.i = temp2.i + z__2.i; + temp2.r = z__1.r, temp2.i = z__1.i; + ix += *incx; + iy += *incy; +/* L70: */ + } + i__2 = jy; + i__3 = jy; + i__4 = j + j * a_dim1; + d__1 = a[i__4].r; + z__3.r = d__1 * temp1.r, z__3.i = d__1 * temp1.i; + z__2.r = y[i__3].r + z__3.r, z__2.i = y[i__3].i + z__3.i; + z__4.r = alpha->r * temp2.r - alpha->i * temp2.i, z__4.i = + alpha->r * temp2.i + alpha->i * temp2.r; + z__1.r = z__2.r + z__4.r, z__1.i = z__2.i + z__4.i; + y[i__2].r = z__1.r, y[i__2].i = z__1.i; + jx += *incx; + jy += *incy; +/* L80: */ + } + } + } else { + +/* Form y when A is stored in lower triangle. */ + + if (*incx == 1 && *incy == 1) { + i__1 = *n; + for (j = 1; j <= i__1; ++j) { + i__2 = j; + z__1.r = alpha->r * x[i__2].r - alpha->i * x[i__2].i, z__1.i = + alpha->r * x[i__2].i + alpha->i * x[i__2].r; + temp1.r = z__1.r, temp1.i = z__1.i; + temp2.r = 0., temp2.i = 0.; + i__2 = j; + i__3 = j; + i__4 = j + j * a_dim1; + d__1 = a[i__4].r; + z__2.r = d__1 * temp1.r, z__2.i = d__1 * temp1.i; + z__1.r = y[i__3].r + z__2.r, z__1.i = y[i__3].i + z__2.i; + y[i__2].r = z__1.r, y[i__2].i = z__1.i; + i__2 = *n; + for (i__ = j + 1; i__ <= i__2; ++i__) { + i__3 = i__; + i__4 = i__; + i__5 = i__ + j * a_dim1; + z__2.r = temp1.r * a[i__5].r - temp1.i * a[i__5].i, + z__2.i = temp1.r * a[i__5].i + temp1.i * a[i__5] + .r; + z__1.r = y[i__4].r + z__2.r, z__1.i = y[i__4].i + z__2.i; + y[i__3].r = z__1.r, y[i__3].i = z__1.i; + d_cnjg(&z__3, &a[i__ + j * a_dim1]); + i__3 = i__; + z__2.r = z__3.r * x[i__3].r - z__3.i * x[i__3].i, z__2.i = + z__3.r * x[i__3].i + z__3.i * x[i__3].r; + z__1.r = temp2.r + z__2.r, z__1.i = temp2.i + z__2.i; + temp2.r = z__1.r, temp2.i = z__1.i; +/* L90: */ + } + i__2 = j; + i__3 = j; + z__2.r = alpha->r * temp2.r - alpha->i * temp2.i, z__2.i = + alpha->r * temp2.i + alpha->i * temp2.r; + z__1.r = y[i__3].r + z__2.r, z__1.i = y[i__3].i + z__2.i; + y[i__2].r = z__1.r, y[i__2].i = z__1.i; +/* L100: */ + } + } else { + jx = kx; + jy = ky; + i__1 = *n; + for (j = 1; j <= i__1; ++j) { + i__2 = jx; + z__1.r = alpha->r * x[i__2].r - alpha->i * x[i__2].i, z__1.i = + alpha->r * x[i__2].i + alpha->i * x[i__2].r; + temp1.r = z__1.r, temp1.i = z__1.i; + temp2.r = 0., temp2.i = 0.; + i__2 = jy; + i__3 = jy; + i__4 = j + j * a_dim1; + d__1 = a[i__4].r; + z__2.r = d__1 * temp1.r, z__2.i = d__1 * temp1.i; + z__1.r = y[i__3].r + z__2.r, z__1.i = y[i__3].i + z__2.i; + y[i__2].r = z__1.r, y[i__2].i = z__1.i; + ix = jx; + iy = jy; + i__2 = *n; + for (i__ = j + 1; i__ <= i__2; ++i__) { + ix += *incx; + iy += *incy; + i__3 = iy; + i__4 = iy; + i__5 = i__ + j * a_dim1; + z__2.r = temp1.r * a[i__5].r - temp1.i * a[i__5].i, + z__2.i = temp1.r * a[i__5].i + temp1.i * a[i__5] + .r; + z__1.r = y[i__4].r + z__2.r, z__1.i = y[i__4].i + z__2.i; + y[i__3].r = z__1.r, y[i__3].i = z__1.i; + d_cnjg(&z__3, &a[i__ + j * a_dim1]); + i__3 = ix; + z__2.r = z__3.r * x[i__3].r - z__3.i * x[i__3].i, z__2.i = + z__3.r * x[i__3].i + z__3.i * x[i__3].r; + z__1.r = temp2.r + z__2.r, z__1.i = temp2.i + z__2.i; + temp2.r = z__1.r, temp2.i = z__1.i; +/* L110: */ + } + i__2 = jy; + i__3 = jy; + z__2.r = alpha->r * temp2.r - alpha->i * temp2.i, z__2.i = + alpha->r * temp2.i + alpha->i * temp2.r; + z__1.r = y[i__3].r + z__2.r, z__1.i = y[i__3].i + z__2.i; + y[i__2].r = z__1.r, y[i__2].i = z__1.i; + jx += *incx; + jy += *incy; +/* L120: */ + } + } + } + + return 0; + +/* End of ZHEMV . */ + +} /* zhemv_ */ + +/* Subroutine */ int zher2_(char *uplo, integer *n, doublecomplex *alpha, + doublecomplex *x, integer *incx, doublecomplex *y, integer *incy, + doublecomplex *a, integer *lda) +{ + /* System generated locals */ + integer a_dim1, a_offset, i__1, i__2, i__3, i__4, i__5, i__6; + doublereal d__1; + doublecomplex z__1, z__2, z__3, z__4; + + /* Builtin functions */ + void d_cnjg(doublecomplex *, doublecomplex *); + + /* Local variables */ + static integer i__, j, ix, iy, jx, jy, kx, ky, info; + static doublecomplex temp1, temp2; + extern logical lsame_(char *, char *); + extern /* Subroutine */ int xerbla_(char *, integer *); + + +/* + Purpose + ======= + + ZHER2 performs the hermitian rank 2 operation + + A := alpha*x*conjg( y' ) + conjg( alpha )*y*conjg( x' ) + A, + + where alpha is a scalar, x and y are n element vectors and A is an n + by n hermitian matrix. + + Parameters + ========== + + UPLO - CHARACTER*1. + On entry, UPLO specifies whether the upper or lower + triangular part of the array A is to be referenced as + follows: + + UPLO = 'U' or 'u' Only the upper triangular part of A + is to be referenced. + + UPLO = 'L' or 'l' Only the lower triangular part of A + is to be referenced. + + Unchanged on exit. + + N - INTEGER. + On entry, N specifies the order of the matrix A. + N must be at least zero. + Unchanged on exit. + + ALPHA - COMPLEX*16 . + On entry, ALPHA specifies the scalar alpha. + Unchanged on exit. + + X - COMPLEX*16 array of dimension at least + ( 1 + ( n - 1 )*abs( INCX ) ). + Before entry, the incremented array X must contain the n + element vector x. + Unchanged on exit. + + INCX - INTEGER. + On entry, INCX specifies the increment for the elements of + X. INCX must not be zero. + Unchanged on exit. + + Y - COMPLEX*16 array of dimension at least + ( 1 + ( n - 1 )*abs( INCY ) ). + Before entry, the incremented array Y must contain the n + element vector y. + Unchanged on exit. + + INCY - INTEGER. + On entry, INCY specifies the increment for the elements of + Y. INCY must not be zero. + Unchanged on exit. + + A - COMPLEX*16 array of DIMENSION ( LDA, n ). + Before entry with UPLO = 'U' or 'u', the leading n by n + upper triangular part of the array A must contain the upper + triangular part of the hermitian matrix and the strictly + lower triangular part of A is not referenced. On exit, the + upper triangular part of the array A is overwritten by the + upper triangular part of the updated matrix. + Before entry with UPLO = 'L' or 'l', the leading n by n + lower triangular part of the array A must contain the lower + triangular part of the hermitian matrix and the strictly + upper triangular part of A is not referenced. On exit, the + lower triangular part of the array A is overwritten by the + lower triangular part of the updated matrix. + Note that the imaginary parts of the diagonal elements need + not be set, they are assumed to be zero, and on exit they + are set to zero. + + LDA - INTEGER. + On entry, LDA specifies the first dimension of A as declared + in the calling (sub) program. LDA must be at least + max( 1, n ). + Unchanged on exit. + + + Level 2 Blas routine. + + -- Written on 22-October-1986. + Jack Dongarra, Argonne National Lab. + Jeremy Du Croz, Nag Central Office. + Sven Hammarling, Nag Central Office. + Richard Hanson, Sandia National Labs. + + + Test the input parameters. +*/ + + /* Parameter adjustments */ + --x; + --y; + a_dim1 = *lda; + a_offset = 1 + a_dim1; + a -= a_offset; + + /* Function Body */ + info = 0; + if (! lsame_(uplo, "U") && ! lsame_(uplo, "L")) { + info = 1; + } else if (*n < 0) { + info = 2; + } else if (*incx == 0) { + info = 5; + } else if (*incy == 0) { + info = 7; + } else if (*lda < max(1,*n)) { + info = 9; + } + if (info != 0) { + xerbla_("ZHER2 ", &info); + return 0; + } + +/* Quick return if possible. */ + + if ((*n == 0) || (alpha->r == 0. && alpha->i == 0.)) { + return 0; + } + +/* + Set up the start points in X and Y if the increments are not both + unity. +*/ + + if ((*incx != 1) || (*incy != 1)) { + if (*incx > 0) { + kx = 1; + } else { + kx = 1 - (*n - 1) * *incx; + } + if (*incy > 0) { + ky = 1; + } else { + ky = 1 - (*n - 1) * *incy; + } + jx = kx; + jy = ky; + } + +/* + Start the operations. In this version the elements of A are + accessed sequentially with one pass through the triangular part + of A. +*/ + + if (lsame_(uplo, "U")) { + +/* Form A when A is stored in the upper triangle. */ + + if (*incx == 1 && *incy == 1) { + i__1 = *n; + for (j = 1; j <= i__1; ++j) { + i__2 = j; + i__3 = j; + if (((x[i__2].r != 0.) || (x[i__2].i != 0.)) || (((y[i__3].r + != 0.) || (y[i__3].i != 0.)))) { + d_cnjg(&z__2, &y[j]); + z__1.r = alpha->r * z__2.r - alpha->i * z__2.i, z__1.i = + alpha->r * z__2.i + alpha->i * z__2.r; + temp1.r = z__1.r, temp1.i = z__1.i; + i__2 = j; + z__2.r = alpha->r * x[i__2].r - alpha->i * x[i__2].i, + z__2.i = alpha->r * x[i__2].i + alpha->i * x[i__2] + .r; + d_cnjg(&z__1, &z__2); + temp2.r = z__1.r, temp2.i = z__1.i; + i__2 = j - 1; + for (i__ = 1; i__ <= i__2; ++i__) { + i__3 = i__ + j * a_dim1; + i__4 = i__ + j * a_dim1; + i__5 = i__; + z__3.r = x[i__5].r * temp1.r - x[i__5].i * temp1.i, + z__3.i = x[i__5].r * temp1.i + x[i__5].i * + temp1.r; + z__2.r = a[i__4].r + z__3.r, z__2.i = a[i__4].i + + z__3.i; + i__6 = i__; + z__4.r = y[i__6].r * temp2.r - y[i__6].i * temp2.i, + z__4.i = y[i__6].r * temp2.i + y[i__6].i * + temp2.r; + z__1.r = z__2.r + z__4.r, z__1.i = z__2.i + z__4.i; + a[i__3].r = z__1.r, a[i__3].i = z__1.i; +/* L10: */ + } + i__2 = j + j * a_dim1; + i__3 = j + j * a_dim1; + i__4 = j; + z__2.r = x[i__4].r * temp1.r - x[i__4].i * temp1.i, + z__2.i = x[i__4].r * temp1.i + x[i__4].i * + temp1.r; + i__5 = j; + z__3.r = y[i__5].r * temp2.r - y[i__5].i * temp2.i, + z__3.i = y[i__5].r * temp2.i + y[i__5].i * + temp2.r; + z__1.r = z__2.r + z__3.r, z__1.i = z__2.i + z__3.i; + d__1 = a[i__3].r + z__1.r; + a[i__2].r = d__1, a[i__2].i = 0.; + } else { + i__2 = j + j * a_dim1; + i__3 = j + j * a_dim1; + d__1 = a[i__3].r; + a[i__2].r = d__1, a[i__2].i = 0.; + } +/* L20: */ + } + } else { + i__1 = *n; + for (j = 1; j <= i__1; ++j) { + i__2 = jx; + i__3 = jy; + if (((x[i__2].r != 0.) || (x[i__2].i != 0.)) || (((y[i__3].r + != 0.) || (y[i__3].i != 0.)))) { + d_cnjg(&z__2, &y[jy]); + z__1.r = alpha->r * z__2.r - alpha->i * z__2.i, z__1.i = + alpha->r * z__2.i + alpha->i * z__2.r; + temp1.r = z__1.r, temp1.i = z__1.i; + i__2 = jx; + z__2.r = alpha->r * x[i__2].r - alpha->i * x[i__2].i, + z__2.i = alpha->r * x[i__2].i + alpha->i * x[i__2] + .r; + d_cnjg(&z__1, &z__2); + temp2.r = z__1.r, temp2.i = z__1.i; + ix = kx; + iy = ky; + i__2 = j - 1; + for (i__ = 1; i__ <= i__2; ++i__) { + i__3 = i__ + j * a_dim1; + i__4 = i__ + j * a_dim1; + i__5 = ix; + z__3.r = x[i__5].r * temp1.r - x[i__5].i * temp1.i, + z__3.i = x[i__5].r * temp1.i + x[i__5].i * + temp1.r; + z__2.r = a[i__4].r + z__3.r, z__2.i = a[i__4].i + + z__3.i; + i__6 = iy; + z__4.r = y[i__6].r * temp2.r - y[i__6].i * temp2.i, + z__4.i = y[i__6].r * temp2.i + y[i__6].i * + temp2.r; + z__1.r = z__2.r + z__4.r, z__1.i = z__2.i + z__4.i; + a[i__3].r = z__1.r, a[i__3].i = z__1.i; + ix += *incx; + iy += *incy; +/* L30: */ + } + i__2 = j + j * a_dim1; + i__3 = j + j * a_dim1; + i__4 = jx; + z__2.r = x[i__4].r * temp1.r - x[i__4].i * temp1.i, + z__2.i = x[i__4].r * temp1.i + x[i__4].i * + temp1.r; + i__5 = jy; + z__3.r = y[i__5].r * temp2.r - y[i__5].i * temp2.i, + z__3.i = y[i__5].r * temp2.i + y[i__5].i * + temp2.r; + z__1.r = z__2.r + z__3.r, z__1.i = z__2.i + z__3.i; + d__1 = a[i__3].r + z__1.r; + a[i__2].r = d__1, a[i__2].i = 0.; + } else { + i__2 = j + j * a_dim1; + i__3 = j + j * a_dim1; + d__1 = a[i__3].r; + a[i__2].r = d__1, a[i__2].i = 0.; + } + jx += *incx; + jy += *incy; +/* L40: */ + } + } + } else { + +/* Form A when A is stored in the lower triangle. */ + + if (*incx == 1 && *incy == 1) { + i__1 = *n; + for (j = 1; j <= i__1; ++j) { + i__2 = j; + i__3 = j; + if (((x[i__2].r != 0.) || (x[i__2].i != 0.)) || (((y[i__3].r + != 0.) || (y[i__3].i != 0.)))) { + d_cnjg(&z__2, &y[j]); + z__1.r = alpha->r * z__2.r - alpha->i * z__2.i, z__1.i = + alpha->r * z__2.i + alpha->i * z__2.r; + temp1.r = z__1.r, temp1.i = z__1.i; + i__2 = j; + z__2.r = alpha->r * x[i__2].r - alpha->i * x[i__2].i, + z__2.i = alpha->r * x[i__2].i + alpha->i * x[i__2] + .r; + d_cnjg(&z__1, &z__2); + temp2.r = z__1.r, temp2.i = z__1.i; + i__2 = j + j * a_dim1; + i__3 = j + j * a_dim1; + i__4 = j; + z__2.r = x[i__4].r * temp1.r - x[i__4].i * temp1.i, + z__2.i = x[i__4].r * temp1.i + x[i__4].i * + temp1.r; + i__5 = j; + z__3.r = y[i__5].r * temp2.r - y[i__5].i * temp2.i, + z__3.i = y[i__5].r * temp2.i + y[i__5].i * + temp2.r; + z__1.r = z__2.r + z__3.r, z__1.i = z__2.i + z__3.i; + d__1 = a[i__3].r + z__1.r; + a[i__2].r = d__1, a[i__2].i = 0.; + i__2 = *n; + for (i__ = j + 1; i__ <= i__2; ++i__) { + i__3 = i__ + j * a_dim1; + i__4 = i__ + j * a_dim1; + i__5 = i__; + z__3.r = x[i__5].r * temp1.r - x[i__5].i * temp1.i, + z__3.i = x[i__5].r * temp1.i + x[i__5].i * + temp1.r; + z__2.r = a[i__4].r + z__3.r, z__2.i = a[i__4].i + + z__3.i; + i__6 = i__; + z__4.r = y[i__6].r * temp2.r - y[i__6].i * temp2.i, + z__4.i = y[i__6].r * temp2.i + y[i__6].i * + temp2.r; + z__1.r = z__2.r + z__4.r, z__1.i = z__2.i + z__4.i; + a[i__3].r = z__1.r, a[i__3].i = z__1.i; +/* L50: */ + } + } else { + i__2 = j + j * a_dim1; + i__3 = j + j * a_dim1; + d__1 = a[i__3].r; + a[i__2].r = d__1, a[i__2].i = 0.; + } +/* L60: */ + } + } else { + i__1 = *n; + for (j = 1; j <= i__1; ++j) { + i__2 = jx; + i__3 = jy; + if (((x[i__2].r != 0.) || (x[i__2].i != 0.)) || (((y[i__3].r + != 0.) || (y[i__3].i != 0.)))) { + d_cnjg(&z__2, &y[jy]); + z__1.r = alpha->r * z__2.r - alpha->i * z__2.i, z__1.i = + alpha->r * z__2.i + alpha->i * z__2.r; + temp1.r = z__1.r, temp1.i = z__1.i; + i__2 = jx; + z__2.r = alpha->r * x[i__2].r - alpha->i * x[i__2].i, + z__2.i = alpha->r * x[i__2].i + alpha->i * x[i__2] + .r; + d_cnjg(&z__1, &z__2); + temp2.r = z__1.r, temp2.i = z__1.i; + i__2 = j + j * a_dim1; + i__3 = j + j * a_dim1; + i__4 = jx; + z__2.r = x[i__4].r * temp1.r - x[i__4].i * temp1.i, + z__2.i = x[i__4].r * temp1.i + x[i__4].i * + temp1.r; + i__5 = jy; + z__3.r = y[i__5].r * temp2.r - y[i__5].i * temp2.i, + z__3.i = y[i__5].r * temp2.i + y[i__5].i * + temp2.r; + z__1.r = z__2.r + z__3.r, z__1.i = z__2.i + z__3.i; + d__1 = a[i__3].r + z__1.r; + a[i__2].r = d__1, a[i__2].i = 0.; + ix = jx; + iy = jy; + i__2 = *n; + for (i__ = j + 1; i__ <= i__2; ++i__) { + ix += *incx; + iy += *incy; + i__3 = i__ + j * a_dim1; + i__4 = i__ + j * a_dim1; + i__5 = ix; + z__3.r = x[i__5].r * temp1.r - x[i__5].i * temp1.i, + z__3.i = x[i__5].r * temp1.i + x[i__5].i * + temp1.r; + z__2.r = a[i__4].r + z__3.r, z__2.i = a[i__4].i + + z__3.i; + i__6 = iy; + z__4.r = y[i__6].r * temp2.r - y[i__6].i * temp2.i, + z__4.i = y[i__6].r * temp2.i + y[i__6].i * + temp2.r; + z__1.r = z__2.r + z__4.r, z__1.i = z__2.i + z__4.i; + a[i__3].r = z__1.r, a[i__3].i = z__1.i; +/* L70: */ + } + } else { + i__2 = j + j * a_dim1; + i__3 = j + j * a_dim1; + d__1 = a[i__3].r; + a[i__2].r = d__1, a[i__2].i = 0.; + } + jx += *incx; + jy += *incy; +/* L80: */ + } + } + } + + return 0; + +/* End of ZHER2 . */ + +} /* zher2_ */ + +/* Subroutine */ int zher2k_(char *uplo, char *trans, integer *n, integer *k, + doublecomplex *alpha, doublecomplex *a, integer *lda, doublecomplex * + b, integer *ldb, doublereal *beta, doublecomplex *c__, integer *ldc) +{ + /* System generated locals */ + integer a_dim1, a_offset, b_dim1, b_offset, c_dim1, c_offset, i__1, i__2, + i__3, i__4, i__5, i__6, i__7; + doublereal d__1; + doublecomplex z__1, z__2, z__3, z__4, z__5, z__6; + + /* Builtin functions */ + void d_cnjg(doublecomplex *, doublecomplex *); + + /* Local variables */ + static integer i__, j, l, info; + static doublecomplex temp1, temp2; + extern logical lsame_(char *, char *); + static integer nrowa; + static logical upper; + extern /* Subroutine */ int xerbla_(char *, integer *); + + +/* + Purpose + ======= + + ZHER2K performs one of the hermitian rank 2k operations + + C := alpha*A*conjg( B' ) + conjg( alpha )*B*conjg( A' ) + beta*C, + + or + + C := alpha*conjg( A' )*B + conjg( alpha )*conjg( B' )*A + beta*C, + + where alpha and beta are scalars with beta real, C is an n by n + hermitian matrix and A and B are n by k matrices in the first case + and k by n matrices in the second case. + + Parameters + ========== + + UPLO - CHARACTER*1. + On entry, UPLO specifies whether the upper or lower + triangular part of the array C is to be referenced as + follows: + + UPLO = 'U' or 'u' Only the upper triangular part of C + is to be referenced. + + UPLO = 'L' or 'l' Only the lower triangular part of C + is to be referenced. + + Unchanged on exit. + + TRANS - CHARACTER*1. + On entry, TRANS specifies the operation to be performed as + follows: + + TRANS = 'N' or 'n' C := alpha*A*conjg( B' ) + + conjg( alpha )*B*conjg( A' ) + + beta*C. + + TRANS = 'C' or 'c' C := alpha*conjg( A' )*B + + conjg( alpha )*conjg( B' )*A + + beta*C. + + Unchanged on exit. + + N - INTEGER. + On entry, N specifies the order of the matrix C. N must be + at least zero. + Unchanged on exit. + + K - INTEGER. + On entry with TRANS = 'N' or 'n', K specifies the number + of columns of the matrices A and B, and on entry with + TRANS = 'C' or 'c', K specifies the number of rows of the + matrices A and B. K must be at least zero. + Unchanged on exit. + + ALPHA - COMPLEX*16 . + On entry, ALPHA specifies the scalar alpha. + Unchanged on exit. + + A - COMPLEX*16 array of DIMENSION ( LDA, ka ), where ka is + k when TRANS = 'N' or 'n', and is n otherwise. + Before entry with TRANS = 'N' or 'n', the leading n by k + part of the array A must contain the matrix A, otherwise + the leading k by n part of the array A must contain the + matrix A. + Unchanged on exit. + + LDA - INTEGER. + On entry, LDA specifies the first dimension of A as declared + in the calling (sub) program. When TRANS = 'N' or 'n' + then LDA must be at least max( 1, n ), otherwise LDA must + be at least max( 1, k ). + Unchanged on exit. + + B - COMPLEX*16 array of DIMENSION ( LDB, kb ), where kb is + k when TRANS = 'N' or 'n', and is n otherwise. + Before entry with TRANS = 'N' or 'n', the leading n by k + part of the array B must contain the matrix B, otherwise + the leading k by n part of the array B must contain the + matrix B. + Unchanged on exit. + + LDB - INTEGER. + On entry, LDB specifies the first dimension of B as declared + in the calling (sub) program. When TRANS = 'N' or 'n' + then LDB must be at least max( 1, n ), otherwise LDB must + be at least max( 1, k ). + Unchanged on exit. + + BETA - DOUBLE PRECISION . + On entry, BETA specifies the scalar beta. + Unchanged on exit. + + C - COMPLEX*16 array of DIMENSION ( LDC, n ). + Before entry with UPLO = 'U' or 'u', the leading n by n + upper triangular part of the array C must contain the upper + triangular part of the hermitian matrix and the strictly + lower triangular part of C is not referenced. On exit, the + upper triangular part of the array C is overwritten by the + upper triangular part of the updated matrix. + Before entry with UPLO = 'L' or 'l', the leading n by n + lower triangular part of the array C must contain the lower + triangular part of the hermitian matrix and the strictly + upper triangular part of C is not referenced. On exit, the + lower triangular part of the array C is overwritten by the + lower triangular part of the updated matrix. + Note that the imaginary parts of the diagonal elements need + not be set, they are assumed to be zero, and on exit they + are set to zero. + + LDC - INTEGER. + On entry, LDC specifies the first dimension of C as declared + in the calling (sub) program. LDC must be at least + max( 1, n ). + Unchanged on exit. + + + Level 3 Blas routine. + + -- Written on 8-February-1989. + Jack Dongarra, Argonne National Laboratory. + Iain Duff, AERE Harwell. + Jeremy Du Croz, Numerical Algorithms Group Ltd. + Sven Hammarling, Numerical Algorithms Group Ltd. + + -- Modified 8-Nov-93 to set C(J,J) to DBLE( C(J,J) ) when BETA = 1. + Ed Anderson, Cray Research Inc. + + + Test the input parameters. +*/ + + /* Parameter adjustments */ + a_dim1 = *lda; + a_offset = 1 + a_dim1; + a -= a_offset; + b_dim1 = *ldb; + b_offset = 1 + b_dim1; + b -= b_offset; + c_dim1 = *ldc; + c_offset = 1 + c_dim1; + c__ -= c_offset; + + /* Function Body */ + if (lsame_(trans, "N")) { + nrowa = *n; + } else { + nrowa = *k; + } + upper = lsame_(uplo, "U"); + + info = 0; + if (! upper && ! lsame_(uplo, "L")) { + info = 1; + } else if (! lsame_(trans, "N") && ! lsame_(trans, + "C")) { + info = 2; + } else if (*n < 0) { + info = 3; + } else if (*k < 0) { + info = 4; + } else if (*lda < max(1,nrowa)) { + info = 7; + } else if (*ldb < max(1,nrowa)) { + info = 9; + } else if (*ldc < max(1,*n)) { + info = 12; + } + if (info != 0) { + xerbla_("ZHER2K", &info); + return 0; + } + +/* Quick return if possible. */ + + if ((*n == 0) || (((alpha->r == 0. && alpha->i == 0.) || (*k == 0)) && * + beta == 1.)) { + return 0; + } + +/* And when alpha.eq.zero. */ + + if (alpha->r == 0. && alpha->i == 0.) { + if (upper) { + if (*beta == 0.) { + i__1 = *n; + for (j = 1; j <= i__1; ++j) { + i__2 = j; + for (i__ = 1; i__ <= i__2; ++i__) { + i__3 = i__ + j * c_dim1; + c__[i__3].r = 0., c__[i__3].i = 0.; +/* L10: */ + } +/* L20: */ + } + } else { + i__1 = *n; + for (j = 1; j <= i__1; ++j) { + i__2 = j - 1; + for (i__ = 1; i__ <= i__2; ++i__) { + i__3 = i__ + j * c_dim1; + i__4 = i__ + j * c_dim1; + z__1.r = *beta * c__[i__4].r, z__1.i = *beta * c__[ + i__4].i; + c__[i__3].r = z__1.r, c__[i__3].i = z__1.i; +/* L30: */ + } + i__2 = j + j * c_dim1; + i__3 = j + j * c_dim1; + d__1 = *beta * c__[i__3].r; + c__[i__2].r = d__1, c__[i__2].i = 0.; +/* L40: */ + } + } + } else { + if (*beta == 0.) { + i__1 = *n; + for (j = 1; j <= i__1; ++j) { + i__2 = *n; + for (i__ = j; i__ <= i__2; ++i__) { + i__3 = i__ + j * c_dim1; + c__[i__3].r = 0., c__[i__3].i = 0.; +/* L50: */ + } +/* L60: */ + } + } else { + i__1 = *n; + for (j = 1; j <= i__1; ++j) { + i__2 = j + j * c_dim1; + i__3 = j + j * c_dim1; + d__1 = *beta * c__[i__3].r; + c__[i__2].r = d__1, c__[i__2].i = 0.; + i__2 = *n; + for (i__ = j + 1; i__ <= i__2; ++i__) { + i__3 = i__ + j * c_dim1; + i__4 = i__ + j * c_dim1; + z__1.r = *beta * c__[i__4].r, z__1.i = *beta * c__[ + i__4].i; + c__[i__3].r = z__1.r, c__[i__3].i = z__1.i; +/* L70: */ + } +/* L80: */ + } + } + } + return 0; + } + +/* Start the operations. */ + + if (lsame_(trans, "N")) { + +/* + Form C := alpha*A*conjg( B' ) + conjg( alpha )*B*conjg( A' ) + + C. +*/ + + if (upper) { + i__1 = *n; + for (j = 1; j <= i__1; ++j) { + if (*beta == 0.) { + i__2 = j; + for (i__ = 1; i__ <= i__2; ++i__) { + i__3 = i__ + j * c_dim1; + c__[i__3].r = 0., c__[i__3].i = 0.; +/* L90: */ + } + } else if (*beta != 1.) { + i__2 = j - 1; + for (i__ = 1; i__ <= i__2; ++i__) { + i__3 = i__ + j * c_dim1; + i__4 = i__ + j * c_dim1; + z__1.r = *beta * c__[i__4].r, z__1.i = *beta * c__[ + i__4].i; + c__[i__3].r = z__1.r, c__[i__3].i = z__1.i; +/* L100: */ + } + i__2 = j + j * c_dim1; + i__3 = j + j * c_dim1; + d__1 = *beta * c__[i__3].r; + c__[i__2].r = d__1, c__[i__2].i = 0.; + } else { + i__2 = j + j * c_dim1; + i__3 = j + j * c_dim1; + d__1 = c__[i__3].r; + c__[i__2].r = d__1, c__[i__2].i = 0.; + } + i__2 = *k; + for (l = 1; l <= i__2; ++l) { + i__3 = j + l * a_dim1; + i__4 = j + l * b_dim1; + if (((a[i__3].r != 0.) || (a[i__3].i != 0.)) || (((b[i__4] + .r != 0.) || (b[i__4].i != 0.)))) { + d_cnjg(&z__2, &b[j + l * b_dim1]); + z__1.r = alpha->r * z__2.r - alpha->i * z__2.i, + z__1.i = alpha->r * z__2.i + alpha->i * + z__2.r; + temp1.r = z__1.r, temp1.i = z__1.i; + i__3 = j + l * a_dim1; + z__2.r = alpha->r * a[i__3].r - alpha->i * a[i__3].i, + z__2.i = alpha->r * a[i__3].i + alpha->i * a[ + i__3].r; + d_cnjg(&z__1, &z__2); + temp2.r = z__1.r, temp2.i = z__1.i; + i__3 = j - 1; + for (i__ = 1; i__ <= i__3; ++i__) { + i__4 = i__ + j * c_dim1; + i__5 = i__ + j * c_dim1; + i__6 = i__ + l * a_dim1; + z__3.r = a[i__6].r * temp1.r - a[i__6].i * + temp1.i, z__3.i = a[i__6].r * temp1.i + a[ + i__6].i * temp1.r; + z__2.r = c__[i__5].r + z__3.r, z__2.i = c__[i__5] + .i + z__3.i; + i__7 = i__ + l * b_dim1; + z__4.r = b[i__7].r * temp2.r - b[i__7].i * + temp2.i, z__4.i = b[i__7].r * temp2.i + b[ + i__7].i * temp2.r; + z__1.r = z__2.r + z__4.r, z__1.i = z__2.i + + z__4.i; + c__[i__4].r = z__1.r, c__[i__4].i = z__1.i; +/* L110: */ + } + i__3 = j + j * c_dim1; + i__4 = j + j * c_dim1; + i__5 = j + l * a_dim1; + z__2.r = a[i__5].r * temp1.r - a[i__5].i * temp1.i, + z__2.i = a[i__5].r * temp1.i + a[i__5].i * + temp1.r; + i__6 = j + l * b_dim1; + z__3.r = b[i__6].r * temp2.r - b[i__6].i * temp2.i, + z__3.i = b[i__6].r * temp2.i + b[i__6].i * + temp2.r; + z__1.r = z__2.r + z__3.r, z__1.i = z__2.i + z__3.i; + d__1 = c__[i__4].r + z__1.r; + c__[i__3].r = d__1, c__[i__3].i = 0.; + } +/* L120: */ + } +/* L130: */ + } + } else { + i__1 = *n; + for (j = 1; j <= i__1; ++j) { + if (*beta == 0.) { + i__2 = *n; + for (i__ = j; i__ <= i__2; ++i__) { + i__3 = i__ + j * c_dim1; + c__[i__3].r = 0., c__[i__3].i = 0.; +/* L140: */ + } + } else if (*beta != 1.) { + i__2 = *n; + for (i__ = j + 1; i__ <= i__2; ++i__) { + i__3 = i__ + j * c_dim1; + i__4 = i__ + j * c_dim1; + z__1.r = *beta * c__[i__4].r, z__1.i = *beta * c__[ + i__4].i; + c__[i__3].r = z__1.r, c__[i__3].i = z__1.i; +/* L150: */ + } + i__2 = j + j * c_dim1; + i__3 = j + j * c_dim1; + d__1 = *beta * c__[i__3].r; + c__[i__2].r = d__1, c__[i__2].i = 0.; + } else { + i__2 = j + j * c_dim1; + i__3 = j + j * c_dim1; + d__1 = c__[i__3].r; + c__[i__2].r = d__1, c__[i__2].i = 0.; + } + i__2 = *k; + for (l = 1; l <= i__2; ++l) { + i__3 = j + l * a_dim1; + i__4 = j + l * b_dim1; + if (((a[i__3].r != 0.) || (a[i__3].i != 0.)) || (((b[i__4] + .r != 0.) || (b[i__4].i != 0.)))) { + d_cnjg(&z__2, &b[j + l * b_dim1]); + z__1.r = alpha->r * z__2.r - alpha->i * z__2.i, + z__1.i = alpha->r * z__2.i + alpha->i * + z__2.r; + temp1.r = z__1.r, temp1.i = z__1.i; + i__3 = j + l * a_dim1; + z__2.r = alpha->r * a[i__3].r - alpha->i * a[i__3].i, + z__2.i = alpha->r * a[i__3].i + alpha->i * a[ + i__3].r; + d_cnjg(&z__1, &z__2); + temp2.r = z__1.r, temp2.i = z__1.i; + i__3 = *n; + for (i__ = j + 1; i__ <= i__3; ++i__) { + i__4 = i__ + j * c_dim1; + i__5 = i__ + j * c_dim1; + i__6 = i__ + l * a_dim1; + z__3.r = a[i__6].r * temp1.r - a[i__6].i * + temp1.i, z__3.i = a[i__6].r * temp1.i + a[ + i__6].i * temp1.r; + z__2.r = c__[i__5].r + z__3.r, z__2.i = c__[i__5] + .i + z__3.i; + i__7 = i__ + l * b_dim1; + z__4.r = b[i__7].r * temp2.r - b[i__7].i * + temp2.i, z__4.i = b[i__7].r * temp2.i + b[ + i__7].i * temp2.r; + z__1.r = z__2.r + z__4.r, z__1.i = z__2.i + + z__4.i; + c__[i__4].r = z__1.r, c__[i__4].i = z__1.i; +/* L160: */ + } + i__3 = j + j * c_dim1; + i__4 = j + j * c_dim1; + i__5 = j + l * a_dim1; + z__2.r = a[i__5].r * temp1.r - a[i__5].i * temp1.i, + z__2.i = a[i__5].r * temp1.i + a[i__5].i * + temp1.r; + i__6 = j + l * b_dim1; + z__3.r = b[i__6].r * temp2.r - b[i__6].i * temp2.i, + z__3.i = b[i__6].r * temp2.i + b[i__6].i * + temp2.r; + z__1.r = z__2.r + z__3.r, z__1.i = z__2.i + z__3.i; + d__1 = c__[i__4].r + z__1.r; + c__[i__3].r = d__1, c__[i__3].i = 0.; + } +/* L170: */ + } +/* L180: */ + } + } + } else { + +/* + Form C := alpha*conjg( A' )*B + conjg( alpha )*conjg( B' )*A + + C. +*/ + + if (upper) { + i__1 = *n; + for (j = 1; j <= i__1; ++j) { + i__2 = j; + for (i__ = 1; i__ <= i__2; ++i__) { + temp1.r = 0., temp1.i = 0.; + temp2.r = 0., temp2.i = 0.; + i__3 = *k; + for (l = 1; l <= i__3; ++l) { + d_cnjg(&z__3, &a[l + i__ * a_dim1]); + i__4 = l + j * b_dim1; + z__2.r = z__3.r * b[i__4].r - z__3.i * b[i__4].i, + z__2.i = z__3.r * b[i__4].i + z__3.i * b[i__4] + .r; + z__1.r = temp1.r + z__2.r, z__1.i = temp1.i + z__2.i; + temp1.r = z__1.r, temp1.i = z__1.i; + d_cnjg(&z__3, &b[l + i__ * b_dim1]); + i__4 = l + j * a_dim1; + z__2.r = z__3.r * a[i__4].r - z__3.i * a[i__4].i, + z__2.i = z__3.r * a[i__4].i + z__3.i * a[i__4] + .r; + z__1.r = temp2.r + z__2.r, z__1.i = temp2.i + z__2.i; + temp2.r = z__1.r, temp2.i = z__1.i; +/* L190: */ + } + if (i__ == j) { + if (*beta == 0.) { + i__3 = j + j * c_dim1; + z__2.r = alpha->r * temp1.r - alpha->i * temp1.i, + z__2.i = alpha->r * temp1.i + alpha->i * + temp1.r; + d_cnjg(&z__4, alpha); + z__3.r = z__4.r * temp2.r - z__4.i * temp2.i, + z__3.i = z__4.r * temp2.i + z__4.i * + temp2.r; + z__1.r = z__2.r + z__3.r, z__1.i = z__2.i + + z__3.i; + d__1 = z__1.r; + c__[i__3].r = d__1, c__[i__3].i = 0.; + } else { + i__3 = j + j * c_dim1; + i__4 = j + j * c_dim1; + z__2.r = alpha->r * temp1.r - alpha->i * temp1.i, + z__2.i = alpha->r * temp1.i + alpha->i * + temp1.r; + d_cnjg(&z__4, alpha); + z__3.r = z__4.r * temp2.r - z__4.i * temp2.i, + z__3.i = z__4.r * temp2.i + z__4.i * + temp2.r; + z__1.r = z__2.r + z__3.r, z__1.i = z__2.i + + z__3.i; + d__1 = *beta * c__[i__4].r + z__1.r; + c__[i__3].r = d__1, c__[i__3].i = 0.; + } + } else { + if (*beta == 0.) { + i__3 = i__ + j * c_dim1; + z__2.r = alpha->r * temp1.r - alpha->i * temp1.i, + z__2.i = alpha->r * temp1.i + alpha->i * + temp1.r; + d_cnjg(&z__4, alpha); + z__3.r = z__4.r * temp2.r - z__4.i * temp2.i, + z__3.i = z__4.r * temp2.i + z__4.i * + temp2.r; + z__1.r = z__2.r + z__3.r, z__1.i = z__2.i + + z__3.i; + c__[i__3].r = z__1.r, c__[i__3].i = z__1.i; + } else { + i__3 = i__ + j * c_dim1; + i__4 = i__ + j * c_dim1; + z__3.r = *beta * c__[i__4].r, z__3.i = *beta * + c__[i__4].i; + z__4.r = alpha->r * temp1.r - alpha->i * temp1.i, + z__4.i = alpha->r * temp1.i + alpha->i * + temp1.r; + z__2.r = z__3.r + z__4.r, z__2.i = z__3.i + + z__4.i; + d_cnjg(&z__6, alpha); + z__5.r = z__6.r * temp2.r - z__6.i * temp2.i, + z__5.i = z__6.r * temp2.i + z__6.i * + temp2.r; + z__1.r = z__2.r + z__5.r, z__1.i = z__2.i + + z__5.i; + c__[i__3].r = z__1.r, c__[i__3].i = z__1.i; + } + } +/* L200: */ + } +/* L210: */ + } + } else { + i__1 = *n; + for (j = 1; j <= i__1; ++j) { + i__2 = *n; + for (i__ = j; i__ <= i__2; ++i__) { + temp1.r = 0., temp1.i = 0.; + temp2.r = 0., temp2.i = 0.; + i__3 = *k; + for (l = 1; l <= i__3; ++l) { + d_cnjg(&z__3, &a[l + i__ * a_dim1]); + i__4 = l + j * b_dim1; + z__2.r = z__3.r * b[i__4].r - z__3.i * b[i__4].i, + z__2.i = z__3.r * b[i__4].i + z__3.i * b[i__4] + .r; + z__1.r = temp1.r + z__2.r, z__1.i = temp1.i + z__2.i; + temp1.r = z__1.r, temp1.i = z__1.i; + d_cnjg(&z__3, &b[l + i__ * b_dim1]); + i__4 = l + j * a_dim1; + z__2.r = z__3.r * a[i__4].r - z__3.i * a[i__4].i, + z__2.i = z__3.r * a[i__4].i + z__3.i * a[i__4] + .r; + z__1.r = temp2.r + z__2.r, z__1.i = temp2.i + z__2.i; + temp2.r = z__1.r, temp2.i = z__1.i; +/* L220: */ + } + if (i__ == j) { + if (*beta == 0.) { + i__3 = j + j * c_dim1; + z__2.r = alpha->r * temp1.r - alpha->i * temp1.i, + z__2.i = alpha->r * temp1.i + alpha->i * + temp1.r; + d_cnjg(&z__4, alpha); + z__3.r = z__4.r * temp2.r - z__4.i * temp2.i, + z__3.i = z__4.r * temp2.i + z__4.i * + temp2.r; + z__1.r = z__2.r + z__3.r, z__1.i = z__2.i + + z__3.i; + d__1 = z__1.r; + c__[i__3].r = d__1, c__[i__3].i = 0.; + } else { + i__3 = j + j * c_dim1; + i__4 = j + j * c_dim1; + z__2.r = alpha->r * temp1.r - alpha->i * temp1.i, + z__2.i = alpha->r * temp1.i + alpha->i * + temp1.r; + d_cnjg(&z__4, alpha); + z__3.r = z__4.r * temp2.r - z__4.i * temp2.i, + z__3.i = z__4.r * temp2.i + z__4.i * + temp2.r; + z__1.r = z__2.r + z__3.r, z__1.i = z__2.i + + z__3.i; + d__1 = *beta * c__[i__4].r + z__1.r; + c__[i__3].r = d__1, c__[i__3].i = 0.; + } + } else { + if (*beta == 0.) { + i__3 = i__ + j * c_dim1; + z__2.r = alpha->r * temp1.r - alpha->i * temp1.i, + z__2.i = alpha->r * temp1.i + alpha->i * + temp1.r; + d_cnjg(&z__4, alpha); + z__3.r = z__4.r * temp2.r - z__4.i * temp2.i, + z__3.i = z__4.r * temp2.i + z__4.i * + temp2.r; + z__1.r = z__2.r + z__3.r, z__1.i = z__2.i + + z__3.i; + c__[i__3].r = z__1.r, c__[i__3].i = z__1.i; + } else { + i__3 = i__ + j * c_dim1; + i__4 = i__ + j * c_dim1; + z__3.r = *beta * c__[i__4].r, z__3.i = *beta * + c__[i__4].i; + z__4.r = alpha->r * temp1.r - alpha->i * temp1.i, + z__4.i = alpha->r * temp1.i + alpha->i * + temp1.r; + z__2.r = z__3.r + z__4.r, z__2.i = z__3.i + + z__4.i; + d_cnjg(&z__6, alpha); + z__5.r = z__6.r * temp2.r - z__6.i * temp2.i, + z__5.i = z__6.r * temp2.i + z__6.i * + temp2.r; + z__1.r = z__2.r + z__5.r, z__1.i = z__2.i + + z__5.i; + c__[i__3].r = z__1.r, c__[i__3].i = z__1.i; + } + } +/* L230: */ + } +/* L240: */ + } + } + } + + return 0; + +/* End of ZHER2K. */ + +} /* zher2k_ */ + +/* Subroutine */ int zherk_(char *uplo, char *trans, integer *n, integer *k, + doublereal *alpha, doublecomplex *a, integer *lda, doublereal *beta, + doublecomplex *c__, integer *ldc) +{ + /* System generated locals */ + integer a_dim1, a_offset, c_dim1, c_offset, i__1, i__2, i__3, i__4, i__5, + i__6; + doublereal d__1; + doublecomplex z__1, z__2, z__3; + + /* Builtin functions */ + void d_cnjg(doublecomplex *, doublecomplex *); + + /* Local variables */ + static integer i__, j, l, info; + static doublecomplex temp; + extern logical lsame_(char *, char *); + static integer nrowa; + static doublereal rtemp; + static logical upper; + extern /* Subroutine */ int xerbla_(char *, integer *); + + +/* + Purpose + ======= + + ZHERK performs one of the hermitian rank k operations + + C := alpha*A*conjg( A' ) + beta*C, + + or + + C := alpha*conjg( A' )*A + beta*C, + + where alpha and beta are real scalars, C is an n by n hermitian + matrix and A is an n by k matrix in the first case and a k by n + matrix in the second case. + + Parameters + ========== + + UPLO - CHARACTER*1. + On entry, UPLO specifies whether the upper or lower + triangular part of the array C is to be referenced as + follows: + + UPLO = 'U' or 'u' Only the upper triangular part of C + is to be referenced. + + UPLO = 'L' or 'l' Only the lower triangular part of C + is to be referenced. + + Unchanged on exit. + + TRANS - CHARACTER*1. + On entry, TRANS specifies the operation to be performed as + follows: + + TRANS = 'N' or 'n' C := alpha*A*conjg( A' ) + beta*C. + + TRANS = 'C' or 'c' C := alpha*conjg( A' )*A + beta*C. + + Unchanged on exit. + + N - INTEGER. + On entry, N specifies the order of the matrix C. N must be + at least zero. + Unchanged on exit. + + K - INTEGER. + On entry with TRANS = 'N' or 'n', K specifies the number + of columns of the matrix A, and on entry with + TRANS = 'C' or 'c', K specifies the number of rows of the + matrix A. K must be at least zero. + Unchanged on exit. + + ALPHA - DOUBLE PRECISION . + On entry, ALPHA specifies the scalar alpha. + Unchanged on exit. + + A - COMPLEX*16 array of DIMENSION ( LDA, ka ), where ka is + k when TRANS = 'N' or 'n', and is n otherwise. + Before entry with TRANS = 'N' or 'n', the leading n by k + part of the array A must contain the matrix A, otherwise + the leading k by n part of the array A must contain the + matrix A. + Unchanged on exit. + + LDA - INTEGER. + On entry, LDA specifies the first dimension of A as declared + in the calling (sub) program. When TRANS = 'N' or 'n' + then LDA must be at least max( 1, n ), otherwise LDA must + be at least max( 1, k ). + Unchanged on exit. + + BETA - DOUBLE PRECISION. + On entry, BETA specifies the scalar beta. + Unchanged on exit. + + C - COMPLEX*16 array of DIMENSION ( LDC, n ). + Before entry with UPLO = 'U' or 'u', the leading n by n + upper triangular part of the array C must contain the upper + triangular part of the hermitian matrix and the strictly + lower triangular part of C is not referenced. On exit, the + upper triangular part of the array C is overwritten by the + upper triangular part of the updated matrix. + Before entry with UPLO = 'L' or 'l', the leading n by n + lower triangular part of the array C must contain the lower + triangular part of the hermitian matrix and the strictly + upper triangular part of C is not referenced. On exit, the + lower triangular part of the array C is overwritten by the + lower triangular part of the updated matrix. + Note that the imaginary parts of the diagonal elements need + not be set, they are assumed to be zero, and on exit they + are set to zero. + + LDC - INTEGER. + On entry, LDC specifies the first dimension of C as declared + in the calling (sub) program. LDC must be at least + max( 1, n ). + Unchanged on exit. + + + Level 3 Blas routine. + + -- Written on 8-February-1989. + Jack Dongarra, Argonne National Laboratory. + Iain Duff, AERE Harwell. + Jeremy Du Croz, Numerical Algorithms Group Ltd. + Sven Hammarling, Numerical Algorithms Group Ltd. + + -- Modified 8-Nov-93 to set C(J,J) to DBLE( C(J,J) ) when BETA = 1. + Ed Anderson, Cray Research Inc. + + + Test the input parameters. +*/ + + /* Parameter adjustments */ + a_dim1 = *lda; + a_offset = 1 + a_dim1; + a -= a_offset; + c_dim1 = *ldc; + c_offset = 1 + c_dim1; + c__ -= c_offset; + + /* Function Body */ + if (lsame_(trans, "N")) { + nrowa = *n; + } else { + nrowa = *k; + } + upper = lsame_(uplo, "U"); + + info = 0; + if (! upper && ! lsame_(uplo, "L")) { + info = 1; + } else if (! lsame_(trans, "N") && ! lsame_(trans, + "C")) { + info = 2; + } else if (*n < 0) { + info = 3; + } else if (*k < 0) { + info = 4; + } else if (*lda < max(1,nrowa)) { + info = 7; + } else if (*ldc < max(1,*n)) { + info = 10; + } + if (info != 0) { + xerbla_("ZHERK ", &info); + return 0; + } + +/* Quick return if possible. */ + + if ((*n == 0) || (((*alpha == 0.) || (*k == 0)) && *beta == 1.)) { + return 0; + } + +/* And when alpha.eq.zero. */ + + if (*alpha == 0.) { + if (upper) { + if (*beta == 0.) { + i__1 = *n; + for (j = 1; j <= i__1; ++j) { + i__2 = j; + for (i__ = 1; i__ <= i__2; ++i__) { + i__3 = i__ + j * c_dim1; + c__[i__3].r = 0., c__[i__3].i = 0.; +/* L10: */ + } +/* L20: */ + } + } else { + i__1 = *n; + for (j = 1; j <= i__1; ++j) { + i__2 = j - 1; + for (i__ = 1; i__ <= i__2; ++i__) { + i__3 = i__ + j * c_dim1; + i__4 = i__ + j * c_dim1; + z__1.r = *beta * c__[i__4].r, z__1.i = *beta * c__[ + i__4].i; + c__[i__3].r = z__1.r, c__[i__3].i = z__1.i; +/* L30: */ + } + i__2 = j + j * c_dim1; + i__3 = j + j * c_dim1; + d__1 = *beta * c__[i__3].r; + c__[i__2].r = d__1, c__[i__2].i = 0.; +/* L40: */ + } + } + } else { + if (*beta == 0.) { + i__1 = *n; + for (j = 1; j <= i__1; ++j) { + i__2 = *n; + for (i__ = j; i__ <= i__2; ++i__) { + i__3 = i__ + j * c_dim1; + c__[i__3].r = 0., c__[i__3].i = 0.; +/* L50: */ + } +/* L60: */ + } + } else { + i__1 = *n; + for (j = 1; j <= i__1; ++j) { + i__2 = j + j * c_dim1; + i__3 = j + j * c_dim1; + d__1 = *beta * c__[i__3].r; + c__[i__2].r = d__1, c__[i__2].i = 0.; + i__2 = *n; + for (i__ = j + 1; i__ <= i__2; ++i__) { + i__3 = i__ + j * c_dim1; + i__4 = i__ + j * c_dim1; + z__1.r = *beta * c__[i__4].r, z__1.i = *beta * c__[ + i__4].i; + c__[i__3].r = z__1.r, c__[i__3].i = z__1.i; +/* L70: */ + } +/* L80: */ + } + } + } + return 0; + } + +/* Start the operations. */ + + if (lsame_(trans, "N")) { + +/* Form C := alpha*A*conjg( A' ) + beta*C. */ + + if (upper) { + i__1 = *n; + for (j = 1; j <= i__1; ++j) { + if (*beta == 0.) { + i__2 = j; + for (i__ = 1; i__ <= i__2; ++i__) { + i__3 = i__ + j * c_dim1; + c__[i__3].r = 0., c__[i__3].i = 0.; +/* L90: */ + } + } else if (*beta != 1.) { + i__2 = j - 1; + for (i__ = 1; i__ <= i__2; ++i__) { + i__3 = i__ + j * c_dim1; + i__4 = i__ + j * c_dim1; + z__1.r = *beta * c__[i__4].r, z__1.i = *beta * c__[ + i__4].i; + c__[i__3].r = z__1.r, c__[i__3].i = z__1.i; +/* L100: */ + } + i__2 = j + j * c_dim1; + i__3 = j + j * c_dim1; + d__1 = *beta * c__[i__3].r; + c__[i__2].r = d__1, c__[i__2].i = 0.; + } else { + i__2 = j + j * c_dim1; + i__3 = j + j * c_dim1; + d__1 = c__[i__3].r; + c__[i__2].r = d__1, c__[i__2].i = 0.; + } + i__2 = *k; + for (l = 1; l <= i__2; ++l) { + i__3 = j + l * a_dim1; + if ((a[i__3].r != 0.) || (a[i__3].i != 0.)) { + d_cnjg(&z__2, &a[j + l * a_dim1]); + z__1.r = *alpha * z__2.r, z__1.i = *alpha * z__2.i; + temp.r = z__1.r, temp.i = z__1.i; + i__3 = j - 1; + for (i__ = 1; i__ <= i__3; ++i__) { + i__4 = i__ + j * c_dim1; + i__5 = i__ + j * c_dim1; + i__6 = i__ + l * a_dim1; + z__2.r = temp.r * a[i__6].r - temp.i * a[i__6].i, + z__2.i = temp.r * a[i__6].i + temp.i * a[ + i__6].r; + z__1.r = c__[i__5].r + z__2.r, z__1.i = c__[i__5] + .i + z__2.i; + c__[i__4].r = z__1.r, c__[i__4].i = z__1.i; +/* L110: */ + } + i__3 = j + j * c_dim1; + i__4 = j + j * c_dim1; + i__5 = i__ + l * a_dim1; + z__1.r = temp.r * a[i__5].r - temp.i * a[i__5].i, + z__1.i = temp.r * a[i__5].i + temp.i * a[i__5] + .r; + d__1 = c__[i__4].r + z__1.r; + c__[i__3].r = d__1, c__[i__3].i = 0.; + } +/* L120: */ + } +/* L130: */ + } + } else { + i__1 = *n; + for (j = 1; j <= i__1; ++j) { + if (*beta == 0.) { + i__2 = *n; + for (i__ = j; i__ <= i__2; ++i__) { + i__3 = i__ + j * c_dim1; + c__[i__3].r = 0., c__[i__3].i = 0.; +/* L140: */ + } + } else if (*beta != 1.) { + i__2 = j + j * c_dim1; + i__3 = j + j * c_dim1; + d__1 = *beta * c__[i__3].r; + c__[i__2].r = d__1, c__[i__2].i = 0.; + i__2 = *n; + for (i__ = j + 1; i__ <= i__2; ++i__) { + i__3 = i__ + j * c_dim1; + i__4 = i__ + j * c_dim1; + z__1.r = *beta * c__[i__4].r, z__1.i = *beta * c__[ + i__4].i; + c__[i__3].r = z__1.r, c__[i__3].i = z__1.i; +/* L150: */ + } + } else { + i__2 = j + j * c_dim1; + i__3 = j + j * c_dim1; + d__1 = c__[i__3].r; + c__[i__2].r = d__1, c__[i__2].i = 0.; + } + i__2 = *k; + for (l = 1; l <= i__2; ++l) { + i__3 = j + l * a_dim1; + if ((a[i__3].r != 0.) || (a[i__3].i != 0.)) { + d_cnjg(&z__2, &a[j + l * a_dim1]); + z__1.r = *alpha * z__2.r, z__1.i = *alpha * z__2.i; + temp.r = z__1.r, temp.i = z__1.i; + i__3 = j + j * c_dim1; + i__4 = j + j * c_dim1; + i__5 = j + l * a_dim1; + z__1.r = temp.r * a[i__5].r - temp.i * a[i__5].i, + z__1.i = temp.r * a[i__5].i + temp.i * a[i__5] + .r; + d__1 = c__[i__4].r + z__1.r; + c__[i__3].r = d__1, c__[i__3].i = 0.; + i__3 = *n; + for (i__ = j + 1; i__ <= i__3; ++i__) { + i__4 = i__ + j * c_dim1; + i__5 = i__ + j * c_dim1; + i__6 = i__ + l * a_dim1; + z__2.r = temp.r * a[i__6].r - temp.i * a[i__6].i, + z__2.i = temp.r * a[i__6].i + temp.i * a[ + i__6].r; + z__1.r = c__[i__5].r + z__2.r, z__1.i = c__[i__5] + .i + z__2.i; + c__[i__4].r = z__1.r, c__[i__4].i = z__1.i; +/* L160: */ + } + } +/* L170: */ + } +/* L180: */ + } + } + } else { + +/* Form C := alpha*conjg( A' )*A + beta*C. */ + + if (upper) { + i__1 = *n; + for (j = 1; j <= i__1; ++j) { + i__2 = j - 1; + for (i__ = 1; i__ <= i__2; ++i__) { + temp.r = 0., temp.i = 0.; + i__3 = *k; + for (l = 1; l <= i__3; ++l) { + d_cnjg(&z__3, &a[l + i__ * a_dim1]); + i__4 = l + j * a_dim1; + z__2.r = z__3.r * a[i__4].r - z__3.i * a[i__4].i, + z__2.i = z__3.r * a[i__4].i + z__3.i * a[i__4] + .r; + z__1.r = temp.r + z__2.r, z__1.i = temp.i + z__2.i; + temp.r = z__1.r, temp.i = z__1.i; +/* L190: */ + } + if (*beta == 0.) { + i__3 = i__ + j * c_dim1; + z__1.r = *alpha * temp.r, z__1.i = *alpha * temp.i; + c__[i__3].r = z__1.r, c__[i__3].i = z__1.i; + } else { + i__3 = i__ + j * c_dim1; + z__2.r = *alpha * temp.r, z__2.i = *alpha * temp.i; + i__4 = i__ + j * c_dim1; + z__3.r = *beta * c__[i__4].r, z__3.i = *beta * c__[ + i__4].i; + z__1.r = z__2.r + z__3.r, z__1.i = z__2.i + z__3.i; + c__[i__3].r = z__1.r, c__[i__3].i = z__1.i; + } +/* L200: */ + } + rtemp = 0.; + i__2 = *k; + for (l = 1; l <= i__2; ++l) { + d_cnjg(&z__3, &a[l + j * a_dim1]); + i__3 = l + j * a_dim1; + z__2.r = z__3.r * a[i__3].r - z__3.i * a[i__3].i, z__2.i = + z__3.r * a[i__3].i + z__3.i * a[i__3].r; + z__1.r = rtemp + z__2.r, z__1.i = z__2.i; + rtemp = z__1.r; +/* L210: */ + } + if (*beta == 0.) { + i__2 = j + j * c_dim1; + d__1 = *alpha * rtemp; + c__[i__2].r = d__1, c__[i__2].i = 0.; + } else { + i__2 = j + j * c_dim1; + i__3 = j + j * c_dim1; + d__1 = *alpha * rtemp + *beta * c__[i__3].r; + c__[i__2].r = d__1, c__[i__2].i = 0.; + } +/* L220: */ + } + } else { + i__1 = *n; + for (j = 1; j <= i__1; ++j) { + rtemp = 0.; + i__2 = *k; + for (l = 1; l <= i__2; ++l) { + d_cnjg(&z__3, &a[l + j * a_dim1]); + i__3 = l + j * a_dim1; + z__2.r = z__3.r * a[i__3].r - z__3.i * a[i__3].i, z__2.i = + z__3.r * a[i__3].i + z__3.i * a[i__3].r; + z__1.r = rtemp + z__2.r, z__1.i = z__2.i; + rtemp = z__1.r; +/* L230: */ + } + if (*beta == 0.) { + i__2 = j + j * c_dim1; + d__1 = *alpha * rtemp; + c__[i__2].r = d__1, c__[i__2].i = 0.; + } else { + i__2 = j + j * c_dim1; + i__3 = j + j * c_dim1; + d__1 = *alpha * rtemp + *beta * c__[i__3].r; + c__[i__2].r = d__1, c__[i__2].i = 0.; + } + i__2 = *n; + for (i__ = j + 1; i__ <= i__2; ++i__) { + temp.r = 0., temp.i = 0.; + i__3 = *k; + for (l = 1; l <= i__3; ++l) { + d_cnjg(&z__3, &a[l + i__ * a_dim1]); + i__4 = l + j * a_dim1; + z__2.r = z__3.r * a[i__4].r - z__3.i * a[i__4].i, + z__2.i = z__3.r * a[i__4].i + z__3.i * a[i__4] + .r; + z__1.r = temp.r + z__2.r, z__1.i = temp.i + z__2.i; + temp.r = z__1.r, temp.i = z__1.i; +/* L240: */ + } + if (*beta == 0.) { + i__3 = i__ + j * c_dim1; + z__1.r = *alpha * temp.r, z__1.i = *alpha * temp.i; + c__[i__3].r = z__1.r, c__[i__3].i = z__1.i; + } else { + i__3 = i__ + j * c_dim1; + z__2.r = *alpha * temp.r, z__2.i = *alpha * temp.i; + i__4 = i__ + j * c_dim1; + z__3.r = *beta * c__[i__4].r, z__3.i = *beta * c__[ + i__4].i; + z__1.r = z__2.r + z__3.r, z__1.i = z__2.i + z__3.i; + c__[i__3].r = z__1.r, c__[i__3].i = z__1.i; + } +/* L250: */ + } +/* L260: */ + } + } + } + + return 0; + +/* End of ZHERK . */ + +} /* zherk_ */ + +/* Subroutine */ int zscal_(integer *n, doublecomplex *za, doublecomplex *zx, + integer *incx) +{ + /* System generated locals */ + integer i__1, i__2, i__3; + doublecomplex z__1; + + /* Local variables */ + static integer i__, ix; + + +/* + scales a vector by a constant. + jack dongarra, 3/11/78. + modified 3/93 to return if incx .le. 0. + modified 12/3/93, array(1) declarations changed to array(*) +*/ + + + /* Parameter adjustments */ + --zx; + + /* Function Body */ + if ((*n <= 0) || (*incx <= 0)) { + return 0; + } + if (*incx == 1) { + goto L20; + } + +/* code for increment not equal to 1 */ + + ix = 1; + i__1 = *n; + for (i__ = 1; i__ <= i__1; ++i__) { + i__2 = ix; + i__3 = ix; + z__1.r = za->r * zx[i__3].r - za->i * zx[i__3].i, z__1.i = za->r * zx[ + i__3].i + za->i * zx[i__3].r; + zx[i__2].r = z__1.r, zx[i__2].i = z__1.i; + ix += *incx; +/* L10: */ + } + return 0; + +/* code for increment equal to 1 */ + +L20: + i__1 = *n; + for (i__ = 1; i__ <= i__1; ++i__) { + i__2 = i__; + i__3 = i__; + z__1.r = za->r * zx[i__3].r - za->i * zx[i__3].i, z__1.i = za->r * zx[ + i__3].i + za->i * zx[i__3].r; + zx[i__2].r = z__1.r, zx[i__2].i = z__1.i; +/* L30: */ + } + return 0; +} /* zscal_ */ + +/* Subroutine */ int zswap_(integer *n, doublecomplex *zx, integer *incx, + doublecomplex *zy, integer *incy) +{ + /* System generated locals */ + integer i__1, i__2, i__3; + + /* Local variables */ + static integer i__, ix, iy; + static doublecomplex ztemp; + + +/* + interchanges two vectors. + jack dongarra, 3/11/78. + modified 12/3/93, array(1) declarations changed to array(*) +*/ + + + /* Parameter adjustments */ + --zy; + --zx; + + /* Function Body */ + if (*n <= 0) { + return 0; + } + if (*incx == 1 && *incy == 1) { + goto L20; + } + +/* + code for unequal increments or equal increments not equal + to 1 +*/ + + ix = 1; + iy = 1; + if (*incx < 0) { + ix = (-(*n) + 1) * *incx + 1; + } + if (*incy < 0) { + iy = (-(*n) + 1) * *incy + 1; + } + i__1 = *n; + for (i__ = 1; i__ <= i__1; ++i__) { + i__2 = ix; + ztemp.r = zx[i__2].r, ztemp.i = zx[i__2].i; + i__2 = ix; + i__3 = iy; + zx[i__2].r = zy[i__3].r, zx[i__2].i = zy[i__3].i; + i__2 = iy; + zy[i__2].r = ztemp.r, zy[i__2].i = ztemp.i; + ix += *incx; + iy += *incy; +/* L10: */ + } + return 0; + +/* code for both increments equal to 1 */ +L20: + i__1 = *n; + for (i__ = 1; i__ <= i__1; ++i__) { + i__2 = i__; + ztemp.r = zx[i__2].r, ztemp.i = zx[i__2].i; + i__2 = i__; + i__3 = i__; + zx[i__2].r = zy[i__3].r, zx[i__2].i = zy[i__3].i; + i__2 = i__; + zy[i__2].r = ztemp.r, zy[i__2].i = ztemp.i; +/* L30: */ + } + return 0; +} /* zswap_ */ + +/* Subroutine */ int ztrmm_(char *side, char *uplo, char *transa, char *diag, + integer *m, integer *n, doublecomplex *alpha, doublecomplex *a, + integer *lda, doublecomplex *b, integer *ldb) +{ + /* System generated locals */ + integer a_dim1, a_offset, b_dim1, b_offset, i__1, i__2, i__3, i__4, i__5, + i__6; + doublecomplex z__1, z__2, z__3; + + /* Builtin functions */ + void d_cnjg(doublecomplex *, doublecomplex *); + + /* Local variables */ + static integer i__, j, k, info; + static doublecomplex temp; + static logical lside; + extern logical lsame_(char *, char *); + static integer nrowa; + static logical upper; + extern /* Subroutine */ int xerbla_(char *, integer *); + static logical noconj, nounit; + + +/* + Purpose + ======= + + ZTRMM performs one of the matrix-matrix operations + + B := alpha*op( A )*B, or B := alpha*B*op( A ) + + where alpha is a scalar, B is an m by n matrix, A is a unit, or + non-unit, upper or lower triangular matrix and op( A ) is one of + + op( A ) = A or op( A ) = A' or op( A ) = conjg( A' ). + + Parameters + ========== + + SIDE - CHARACTER*1. + On entry, SIDE specifies whether op( A ) multiplies B from + the left or right as follows: + + SIDE = 'L' or 'l' B := alpha*op( A )*B. + + SIDE = 'R' or 'r' B := alpha*B*op( A ). + + Unchanged on exit. + + UPLO - CHARACTER*1. + On entry, UPLO specifies whether the matrix A is an upper or + lower triangular matrix as follows: + + UPLO = 'U' or 'u' A is an upper triangular matrix. + + UPLO = 'L' or 'l' A is a lower triangular matrix. + + Unchanged on exit. + + TRANSA - CHARACTER*1. + On entry, TRANSA specifies the form of op( A ) to be used in + the matrix multiplication as follows: + + TRANSA = 'N' or 'n' op( A ) = A. + + TRANSA = 'T' or 't' op( A ) = A'. + + TRANSA = 'C' or 'c' op( A ) = conjg( A' ). + + Unchanged on exit. + + DIAG - CHARACTER*1. + On entry, DIAG specifies whether or not A is unit triangular + as follows: + + DIAG = 'U' or 'u' A is assumed to be unit triangular. + + DIAG = 'N' or 'n' A is not assumed to be unit + triangular. + + Unchanged on exit. + + M - INTEGER. + On entry, M specifies the number of rows of B. M must be at + least zero. + Unchanged on exit. + + N - INTEGER. + On entry, N specifies the number of columns of B. N must be + at least zero. + Unchanged on exit. + + ALPHA - COMPLEX*16 . + On entry, ALPHA specifies the scalar alpha. When alpha is + zero then A is not referenced and B need not be set before + entry. + Unchanged on exit. + + A - COMPLEX*16 array of DIMENSION ( LDA, k ), where k is m + when SIDE = 'L' or 'l' and is n when SIDE = 'R' or 'r'. + Before entry with UPLO = 'U' or 'u', the leading k by k + upper triangular part of the array A must contain the upper + triangular matrix and the strictly lower triangular part of + A is not referenced. + Before entry with UPLO = 'L' or 'l', the leading k by k + lower triangular part of the array A must contain the lower + triangular matrix and the strictly upper triangular part of + A is not referenced. + Note that when DIAG = 'U' or 'u', the diagonal elements of + A are not referenced either, but are assumed to be unity. + Unchanged on exit. + + LDA - INTEGER. + On entry, LDA specifies the first dimension of A as declared + in the calling (sub) program. When SIDE = 'L' or 'l' then + LDA must be at least max( 1, m ), when SIDE = 'R' or 'r' + then LDA must be at least max( 1, n ). + Unchanged on exit. + + B - COMPLEX*16 array of DIMENSION ( LDB, n ). + Before entry, the leading m by n part of the array B must + contain the matrix B, and on exit is overwritten by the + transformed matrix. + + LDB - INTEGER. + On entry, LDB specifies the first dimension of B as declared + in the calling (sub) program. LDB must be at least + max( 1, m ). + Unchanged on exit. + + + Level 3 Blas routine. + + -- Written on 8-February-1989. + Jack Dongarra, Argonne National Laboratory. + Iain Duff, AERE Harwell. + Jeremy Du Croz, Numerical Algorithms Group Ltd. + Sven Hammarling, Numerical Algorithms Group Ltd. + + + Test the input parameters. +*/ + + /* Parameter adjustments */ + a_dim1 = *lda; + a_offset = 1 + a_dim1; + a -= a_offset; + b_dim1 = *ldb; + b_offset = 1 + b_dim1; + b -= b_offset; + + /* Function Body */ + lside = lsame_(side, "L"); + if (lside) { + nrowa = *m; + } else { + nrowa = *n; + } + noconj = lsame_(transa, "T"); + nounit = lsame_(diag, "N"); + upper = lsame_(uplo, "U"); + + info = 0; + if (! lside && ! lsame_(side, "R")) { + info = 1; + } else if (! upper && ! lsame_(uplo, "L")) { + info = 2; + } else if (! lsame_(transa, "N") && ! lsame_(transa, + "T") && ! lsame_(transa, "C")) { + info = 3; + } else if (! lsame_(diag, "U") && ! lsame_(diag, + "N")) { + info = 4; + } else if (*m < 0) { + info = 5; + } else if (*n < 0) { + info = 6; + } else if (*lda < max(1,nrowa)) { + info = 9; + } else if (*ldb < max(1,*m)) { + info = 11; + } + if (info != 0) { + xerbla_("ZTRMM ", &info); + return 0; + } + +/* Quick return if possible. */ + + if (*n == 0) { + return 0; + } + +/* And when alpha.eq.zero. */ + + if (alpha->r == 0. && alpha->i == 0.) { + i__1 = *n; + for (j = 1; j <= i__1; ++j) { + i__2 = *m; + for (i__ = 1; i__ <= i__2; ++i__) { + i__3 = i__ + j * b_dim1; + b[i__3].r = 0., b[i__3].i = 0.; +/* L10: */ + } +/* L20: */ + } + return 0; + } + +/* Start the operations. */ + + if (lside) { + if (lsame_(transa, "N")) { + +/* Form B := alpha*A*B. */ + + if (upper) { + i__1 = *n; + for (j = 1; j <= i__1; ++j) { + i__2 = *m; + for (k = 1; k <= i__2; ++k) { + i__3 = k + j * b_dim1; + if ((b[i__3].r != 0.) || (b[i__3].i != 0.)) { + i__3 = k + j * b_dim1; + z__1.r = alpha->r * b[i__3].r - alpha->i * b[i__3] + .i, z__1.i = alpha->r * b[i__3].i + + alpha->i * b[i__3].r; + temp.r = z__1.r, temp.i = z__1.i; + i__3 = k - 1; + for (i__ = 1; i__ <= i__3; ++i__) { + i__4 = i__ + j * b_dim1; + i__5 = i__ + j * b_dim1; + i__6 = i__ + k * a_dim1; + z__2.r = temp.r * a[i__6].r - temp.i * a[i__6] + .i, z__2.i = temp.r * a[i__6].i + + temp.i * a[i__6].r; + z__1.r = b[i__5].r + z__2.r, z__1.i = b[i__5] + .i + z__2.i; + b[i__4].r = z__1.r, b[i__4].i = z__1.i; +/* L30: */ + } + if (nounit) { + i__3 = k + k * a_dim1; + z__1.r = temp.r * a[i__3].r - temp.i * a[i__3] + .i, z__1.i = temp.r * a[i__3].i + + temp.i * a[i__3].r; + temp.r = z__1.r, temp.i = z__1.i; + } + i__3 = k + j * b_dim1; + b[i__3].r = temp.r, b[i__3].i = temp.i; + } +/* L40: */ + } +/* L50: */ + } + } else { + i__1 = *n; + for (j = 1; j <= i__1; ++j) { + for (k = *m; k >= 1; --k) { + i__2 = k + j * b_dim1; + if ((b[i__2].r != 0.) || (b[i__2].i != 0.)) { + i__2 = k + j * b_dim1; + z__1.r = alpha->r * b[i__2].r - alpha->i * b[i__2] + .i, z__1.i = alpha->r * b[i__2].i + + alpha->i * b[i__2].r; + temp.r = z__1.r, temp.i = z__1.i; + i__2 = k + j * b_dim1; + b[i__2].r = temp.r, b[i__2].i = temp.i; + if (nounit) { + i__2 = k + j * b_dim1; + i__3 = k + j * b_dim1; + i__4 = k + k * a_dim1; + z__1.r = b[i__3].r * a[i__4].r - b[i__3].i * + a[i__4].i, z__1.i = b[i__3].r * a[ + i__4].i + b[i__3].i * a[i__4].r; + b[i__2].r = z__1.r, b[i__2].i = z__1.i; + } + i__2 = *m; + for (i__ = k + 1; i__ <= i__2; ++i__) { + i__3 = i__ + j * b_dim1; + i__4 = i__ + j * b_dim1; + i__5 = i__ + k * a_dim1; + z__2.r = temp.r * a[i__5].r - temp.i * a[i__5] + .i, z__2.i = temp.r * a[i__5].i + + temp.i * a[i__5].r; + z__1.r = b[i__4].r + z__2.r, z__1.i = b[i__4] + .i + z__2.i; + b[i__3].r = z__1.r, b[i__3].i = z__1.i; +/* L60: */ + } + } +/* L70: */ + } +/* L80: */ + } + } + } else { + +/* Form B := alpha*A'*B or B := alpha*conjg( A' )*B. */ + + if (upper) { + i__1 = *n; + for (j = 1; j <= i__1; ++j) { + for (i__ = *m; i__ >= 1; --i__) { + i__2 = i__ + j * b_dim1; + temp.r = b[i__2].r, temp.i = b[i__2].i; + if (noconj) { + if (nounit) { + i__2 = i__ + i__ * a_dim1; + z__1.r = temp.r * a[i__2].r - temp.i * a[i__2] + .i, z__1.i = temp.r * a[i__2].i + + temp.i * a[i__2].r; + temp.r = z__1.r, temp.i = z__1.i; + } + i__2 = i__ - 1; + for (k = 1; k <= i__2; ++k) { + i__3 = k + i__ * a_dim1; + i__4 = k + j * b_dim1; + z__2.r = a[i__3].r * b[i__4].r - a[i__3].i * + b[i__4].i, z__2.i = a[i__3].r * b[ + i__4].i + a[i__3].i * b[i__4].r; + z__1.r = temp.r + z__2.r, z__1.i = temp.i + + z__2.i; + temp.r = z__1.r, temp.i = z__1.i; +/* L90: */ + } + } else { + if (nounit) { + d_cnjg(&z__2, &a[i__ + i__ * a_dim1]); + z__1.r = temp.r * z__2.r - temp.i * z__2.i, + z__1.i = temp.r * z__2.i + temp.i * + z__2.r; + temp.r = z__1.r, temp.i = z__1.i; + } + i__2 = i__ - 1; + for (k = 1; k <= i__2; ++k) { + d_cnjg(&z__3, &a[k + i__ * a_dim1]); + i__3 = k + j * b_dim1; + z__2.r = z__3.r * b[i__3].r - z__3.i * b[i__3] + .i, z__2.i = z__3.r * b[i__3].i + + z__3.i * b[i__3].r; + z__1.r = temp.r + z__2.r, z__1.i = temp.i + + z__2.i; + temp.r = z__1.r, temp.i = z__1.i; +/* L100: */ + } + } + i__2 = i__ + j * b_dim1; + z__1.r = alpha->r * temp.r - alpha->i * temp.i, + z__1.i = alpha->r * temp.i + alpha->i * + temp.r; + b[i__2].r = z__1.r, b[i__2].i = z__1.i; +/* L110: */ + } +/* L120: */ + } + } else { + i__1 = *n; + for (j = 1; j <= i__1; ++j) { + i__2 = *m; + for (i__ = 1; i__ <= i__2; ++i__) { + i__3 = i__ + j * b_dim1; + temp.r = b[i__3].r, temp.i = b[i__3].i; + if (noconj) { + if (nounit) { + i__3 = i__ + i__ * a_dim1; + z__1.r = temp.r * a[i__3].r - temp.i * a[i__3] + .i, z__1.i = temp.r * a[i__3].i + + temp.i * a[i__3].r; + temp.r = z__1.r, temp.i = z__1.i; + } + i__3 = *m; + for (k = i__ + 1; k <= i__3; ++k) { + i__4 = k + i__ * a_dim1; + i__5 = k + j * b_dim1; + z__2.r = a[i__4].r * b[i__5].r - a[i__4].i * + b[i__5].i, z__2.i = a[i__4].r * b[ + i__5].i + a[i__4].i * b[i__5].r; + z__1.r = temp.r + z__2.r, z__1.i = temp.i + + z__2.i; + temp.r = z__1.r, temp.i = z__1.i; +/* L130: */ + } + } else { + if (nounit) { + d_cnjg(&z__2, &a[i__ + i__ * a_dim1]); + z__1.r = temp.r * z__2.r - temp.i * z__2.i, + z__1.i = temp.r * z__2.i + temp.i * + z__2.r; + temp.r = z__1.r, temp.i = z__1.i; + } + i__3 = *m; + for (k = i__ + 1; k <= i__3; ++k) { + d_cnjg(&z__3, &a[k + i__ * a_dim1]); + i__4 = k + j * b_dim1; + z__2.r = z__3.r * b[i__4].r - z__3.i * b[i__4] + .i, z__2.i = z__3.r * b[i__4].i + + z__3.i * b[i__4].r; + z__1.r = temp.r + z__2.r, z__1.i = temp.i + + z__2.i; + temp.r = z__1.r, temp.i = z__1.i; +/* L140: */ + } + } + i__3 = i__ + j * b_dim1; + z__1.r = alpha->r * temp.r - alpha->i * temp.i, + z__1.i = alpha->r * temp.i + alpha->i * + temp.r; + b[i__3].r = z__1.r, b[i__3].i = z__1.i; +/* L150: */ + } +/* L160: */ + } + } + } + } else { + if (lsame_(transa, "N")) { + +/* Form B := alpha*B*A. */ + + if (upper) { + for (j = *n; j >= 1; --j) { + temp.r = alpha->r, temp.i = alpha->i; + if (nounit) { + i__1 = j + j * a_dim1; + z__1.r = temp.r * a[i__1].r - temp.i * a[i__1].i, + z__1.i = temp.r * a[i__1].i + temp.i * a[i__1] + .r; + temp.r = z__1.r, temp.i = z__1.i; + } + i__1 = *m; + for (i__ = 1; i__ <= i__1; ++i__) { + i__2 = i__ + j * b_dim1; + i__3 = i__ + j * b_dim1; + z__1.r = temp.r * b[i__3].r - temp.i * b[i__3].i, + z__1.i = temp.r * b[i__3].i + temp.i * b[i__3] + .r; + b[i__2].r = z__1.r, b[i__2].i = z__1.i; +/* L170: */ + } + i__1 = j - 1; + for (k = 1; k <= i__1; ++k) { + i__2 = k + j * a_dim1; + if ((a[i__2].r != 0.) || (a[i__2].i != 0.)) { + i__2 = k + j * a_dim1; + z__1.r = alpha->r * a[i__2].r - alpha->i * a[i__2] + .i, z__1.i = alpha->r * a[i__2].i + + alpha->i * a[i__2].r; + temp.r = z__1.r, temp.i = z__1.i; + i__2 = *m; + for (i__ = 1; i__ <= i__2; ++i__) { + i__3 = i__ + j * b_dim1; + i__4 = i__ + j * b_dim1; + i__5 = i__ + k * b_dim1; + z__2.r = temp.r * b[i__5].r - temp.i * b[i__5] + .i, z__2.i = temp.r * b[i__5].i + + temp.i * b[i__5].r; + z__1.r = b[i__4].r + z__2.r, z__1.i = b[i__4] + .i + z__2.i; + b[i__3].r = z__1.r, b[i__3].i = z__1.i; +/* L180: */ + } + } +/* L190: */ + } +/* L200: */ + } + } else { + i__1 = *n; + for (j = 1; j <= i__1; ++j) { + temp.r = alpha->r, temp.i = alpha->i; + if (nounit) { + i__2 = j + j * a_dim1; + z__1.r = temp.r * a[i__2].r - temp.i * a[i__2].i, + z__1.i = temp.r * a[i__2].i + temp.i * a[i__2] + .r; + temp.r = z__1.r, temp.i = z__1.i; + } + i__2 = *m; + for (i__ = 1; i__ <= i__2; ++i__) { + i__3 = i__ + j * b_dim1; + i__4 = i__ + j * b_dim1; + z__1.r = temp.r * b[i__4].r - temp.i * b[i__4].i, + z__1.i = temp.r * b[i__4].i + temp.i * b[i__4] + .r; + b[i__3].r = z__1.r, b[i__3].i = z__1.i; +/* L210: */ + } + i__2 = *n; + for (k = j + 1; k <= i__2; ++k) { + i__3 = k + j * a_dim1; + if ((a[i__3].r != 0.) || (a[i__3].i != 0.)) { + i__3 = k + j * a_dim1; + z__1.r = alpha->r * a[i__3].r - alpha->i * a[i__3] + .i, z__1.i = alpha->r * a[i__3].i + + alpha->i * a[i__3].r; + temp.r = z__1.r, temp.i = z__1.i; + i__3 = *m; + for (i__ = 1; i__ <= i__3; ++i__) { + i__4 = i__ + j * b_dim1; + i__5 = i__ + j * b_dim1; + i__6 = i__ + k * b_dim1; + z__2.r = temp.r * b[i__6].r - temp.i * b[i__6] + .i, z__2.i = temp.r * b[i__6].i + + temp.i * b[i__6].r; + z__1.r = b[i__5].r + z__2.r, z__1.i = b[i__5] + .i + z__2.i; + b[i__4].r = z__1.r, b[i__4].i = z__1.i; +/* L220: */ + } + } +/* L230: */ + } +/* L240: */ + } + } + } else { + +/* Form B := alpha*B*A' or B := alpha*B*conjg( A' ). */ + + if (upper) { + i__1 = *n; + for (k = 1; k <= i__1; ++k) { + i__2 = k - 1; + for (j = 1; j <= i__2; ++j) { + i__3 = j + k * a_dim1; + if ((a[i__3].r != 0.) || (a[i__3].i != 0.)) { + if (noconj) { + i__3 = j + k * a_dim1; + z__1.r = alpha->r * a[i__3].r - alpha->i * a[ + i__3].i, z__1.i = alpha->r * a[i__3] + .i + alpha->i * a[i__3].r; + temp.r = z__1.r, temp.i = z__1.i; + } else { + d_cnjg(&z__2, &a[j + k * a_dim1]); + z__1.r = alpha->r * z__2.r - alpha->i * + z__2.i, z__1.i = alpha->r * z__2.i + + alpha->i * z__2.r; + temp.r = z__1.r, temp.i = z__1.i; + } + i__3 = *m; + for (i__ = 1; i__ <= i__3; ++i__) { + i__4 = i__ + j * b_dim1; + i__5 = i__ + j * b_dim1; + i__6 = i__ + k * b_dim1; + z__2.r = temp.r * b[i__6].r - temp.i * b[i__6] + .i, z__2.i = temp.r * b[i__6].i + + temp.i * b[i__6].r; + z__1.r = b[i__5].r + z__2.r, z__1.i = b[i__5] + .i + z__2.i; + b[i__4].r = z__1.r, b[i__4].i = z__1.i; +/* L250: */ + } + } +/* L260: */ + } + temp.r = alpha->r, temp.i = alpha->i; + if (nounit) { + if (noconj) { + i__2 = k + k * a_dim1; + z__1.r = temp.r * a[i__2].r - temp.i * a[i__2].i, + z__1.i = temp.r * a[i__2].i + temp.i * a[ + i__2].r; + temp.r = z__1.r, temp.i = z__1.i; + } else { + d_cnjg(&z__2, &a[k + k * a_dim1]); + z__1.r = temp.r * z__2.r - temp.i * z__2.i, + z__1.i = temp.r * z__2.i + temp.i * + z__2.r; + temp.r = z__1.r, temp.i = z__1.i; + } + } + if ((temp.r != 1.) || (temp.i != 0.)) { + i__2 = *m; + for (i__ = 1; i__ <= i__2; ++i__) { + i__3 = i__ + k * b_dim1; + i__4 = i__ + k * b_dim1; + z__1.r = temp.r * b[i__4].r - temp.i * b[i__4].i, + z__1.i = temp.r * b[i__4].i + temp.i * b[ + i__4].r; + b[i__3].r = z__1.r, b[i__3].i = z__1.i; +/* L270: */ + } + } +/* L280: */ + } + } else { + for (k = *n; k >= 1; --k) { + i__1 = *n; + for (j = k + 1; j <= i__1; ++j) { + i__2 = j + k * a_dim1; + if ((a[i__2].r != 0.) || (a[i__2].i != 0.)) { + if (noconj) { + i__2 = j + k * a_dim1; + z__1.r = alpha->r * a[i__2].r - alpha->i * a[ + i__2].i, z__1.i = alpha->r * a[i__2] + .i + alpha->i * a[i__2].r; + temp.r = z__1.r, temp.i = z__1.i; + } else { + d_cnjg(&z__2, &a[j + k * a_dim1]); + z__1.r = alpha->r * z__2.r - alpha->i * + z__2.i, z__1.i = alpha->r * z__2.i + + alpha->i * z__2.r; + temp.r = z__1.r, temp.i = z__1.i; + } + i__2 = *m; + for (i__ = 1; i__ <= i__2; ++i__) { + i__3 = i__ + j * b_dim1; + i__4 = i__ + j * b_dim1; + i__5 = i__ + k * b_dim1; + z__2.r = temp.r * b[i__5].r - temp.i * b[i__5] + .i, z__2.i = temp.r * b[i__5].i + + temp.i * b[i__5].r; + z__1.r = b[i__4].r + z__2.r, z__1.i = b[i__4] + .i + z__2.i; + b[i__3].r = z__1.r, b[i__3].i = z__1.i; +/* L290: */ + } + } +/* L300: */ + } + temp.r = alpha->r, temp.i = alpha->i; + if (nounit) { + if (noconj) { + i__1 = k + k * a_dim1; + z__1.r = temp.r * a[i__1].r - temp.i * a[i__1].i, + z__1.i = temp.r * a[i__1].i + temp.i * a[ + i__1].r; + temp.r = z__1.r, temp.i = z__1.i; + } else { + d_cnjg(&z__2, &a[k + k * a_dim1]); + z__1.r = temp.r * z__2.r - temp.i * z__2.i, + z__1.i = temp.r * z__2.i + temp.i * + z__2.r; + temp.r = z__1.r, temp.i = z__1.i; + } + } + if ((temp.r != 1.) || (temp.i != 0.)) { + i__1 = *m; + for (i__ = 1; i__ <= i__1; ++i__) { + i__2 = i__ + k * b_dim1; + i__3 = i__ + k * b_dim1; + z__1.r = temp.r * b[i__3].r - temp.i * b[i__3].i, + z__1.i = temp.r * b[i__3].i + temp.i * b[ + i__3].r; + b[i__2].r = z__1.r, b[i__2].i = z__1.i; +/* L310: */ + } + } +/* L320: */ + } + } + } + } + + return 0; + +/* End of ZTRMM . */ + +} /* ztrmm_ */ + +/* Subroutine */ int ztrmv_(char *uplo, char *trans, char *diag, integer *n, + doublecomplex *a, integer *lda, doublecomplex *x, integer *incx) +{ + /* System generated locals */ + integer a_dim1, a_offset, i__1, i__2, i__3, i__4, i__5; + doublecomplex z__1, z__2, z__3; + + /* Builtin functions */ + void d_cnjg(doublecomplex *, doublecomplex *); + + /* Local variables */ + static integer i__, j, ix, jx, kx, info; + static doublecomplex temp; + extern logical lsame_(char *, char *); + extern /* Subroutine */ int xerbla_(char *, integer *); + static logical noconj, nounit; + + +/* + Purpose + ======= + + ZTRMV performs one of the matrix-vector operations + + x := A*x, or x := A'*x, or x := conjg( A' )*x, + + where x is an n element vector and A is an n by n unit, or non-unit, + upper or lower triangular matrix. + + Parameters + ========== + + UPLO - CHARACTER*1. + On entry, UPLO specifies whether the matrix is an upper or + lower triangular matrix as follows: + + UPLO = 'U' or 'u' A is an upper triangular matrix. + + UPLO = 'L' or 'l' A is a lower triangular matrix. + + Unchanged on exit. + + TRANS - CHARACTER*1. + On entry, TRANS specifies the operation to be performed as + follows: + + TRANS = 'N' or 'n' x := A*x. + + TRANS = 'T' or 't' x := A'*x. + + TRANS = 'C' or 'c' x := conjg( A' )*x. + + Unchanged on exit. + + DIAG - CHARACTER*1. + On entry, DIAG specifies whether or not A is unit + triangular as follows: + + DIAG = 'U' or 'u' A is assumed to be unit triangular. + + DIAG = 'N' or 'n' A is not assumed to be unit + triangular. + + Unchanged on exit. + + N - INTEGER. + On entry, N specifies the order of the matrix A. + N must be at least zero. + Unchanged on exit. + + A - COMPLEX*16 array of DIMENSION ( LDA, n ). + Before entry with UPLO = 'U' or 'u', the leading n by n + upper triangular part of the array A must contain the upper + triangular matrix and the strictly lower triangular part of + A is not referenced. + Before entry with UPLO = 'L' or 'l', the leading n by n + lower triangular part of the array A must contain the lower + triangular matrix and the strictly upper triangular part of + A is not referenced. + Note that when DIAG = 'U' or 'u', the diagonal elements of + A are not referenced either, but are assumed to be unity. + Unchanged on exit. + + LDA - INTEGER. + On entry, LDA specifies the first dimension of A as declared + in the calling (sub) program. LDA must be at least + max( 1, n ). + Unchanged on exit. + + X - COMPLEX*16 array of dimension at least + ( 1 + ( n - 1 )*abs( INCX ) ). + Before entry, the incremented array X must contain the n + element vector x. On exit, X is overwritten with the + tranformed vector x. + + INCX - INTEGER. + On entry, INCX specifies the increment for the elements of + X. INCX must not be zero. + Unchanged on exit. + + + Level 2 Blas routine. + + -- Written on 22-October-1986. + Jack Dongarra, Argonne National Lab. + Jeremy Du Croz, Nag Central Office. + Sven Hammarling, Nag Central Office. + Richard Hanson, Sandia National Labs. + + + Test the input parameters. +*/ + + /* Parameter adjustments */ + a_dim1 = *lda; + a_offset = 1 + a_dim1; + a -= a_offset; + --x; + + /* Function Body */ + info = 0; + if (! lsame_(uplo, "U") && ! lsame_(uplo, "L")) { + info = 1; + } else if (! lsame_(trans, "N") && ! lsame_(trans, + "T") && ! lsame_(trans, "C")) { + info = 2; + } else if (! lsame_(diag, "U") && ! lsame_(diag, + "N")) { + info = 3; + } else if (*n < 0) { + info = 4; + } else if (*lda < max(1,*n)) { + info = 6; + } else if (*incx == 0) { + info = 8; + } + if (info != 0) { + xerbla_("ZTRMV ", &info); + return 0; + } + +/* Quick return if possible. */ + + if (*n == 0) { + return 0; + } + + noconj = lsame_(trans, "T"); + nounit = lsame_(diag, "N"); + +/* + Set up the start point in X if the increment is not unity. This + will be ( N - 1 )*INCX too small for descending loops. +*/ + + if (*incx <= 0) { + kx = 1 - (*n - 1) * *incx; + } else if (*incx != 1) { + kx = 1; + } + +/* + Start the operations. In this version the elements of A are + accessed sequentially with one pass through A. +*/ + + if (lsame_(trans, "N")) { + +/* Form x := A*x. */ + + if (lsame_(uplo, "U")) { + if (*incx == 1) { + i__1 = *n; + for (j = 1; j <= i__1; ++j) { + i__2 = j; + if ((x[i__2].r != 0.) || (x[i__2].i != 0.)) { + i__2 = j; + temp.r = x[i__2].r, temp.i = x[i__2].i; + i__2 = j - 1; + for (i__ = 1; i__ <= i__2; ++i__) { + i__3 = i__; + i__4 = i__; + i__5 = i__ + j * a_dim1; + z__2.r = temp.r * a[i__5].r - temp.i * a[i__5].i, + z__2.i = temp.r * a[i__5].i + temp.i * a[ + i__5].r; + z__1.r = x[i__4].r + z__2.r, z__1.i = x[i__4].i + + z__2.i; + x[i__3].r = z__1.r, x[i__3].i = z__1.i; +/* L10: */ + } + if (nounit) { + i__2 = j; + i__3 = j; + i__4 = j + j * a_dim1; + z__1.r = x[i__3].r * a[i__4].r - x[i__3].i * a[ + i__4].i, z__1.i = x[i__3].r * a[i__4].i + + x[i__3].i * a[i__4].r; + x[i__2].r = z__1.r, x[i__2].i = z__1.i; + } + } +/* L20: */ + } + } else { + jx = kx; + i__1 = *n; + for (j = 1; j <= i__1; ++j) { + i__2 = jx; + if ((x[i__2].r != 0.) || (x[i__2].i != 0.)) { + i__2 = jx; + temp.r = x[i__2].r, temp.i = x[i__2].i; + ix = kx; + i__2 = j - 1; + for (i__ = 1; i__ <= i__2; ++i__) { + i__3 = ix; + i__4 = ix; + i__5 = i__ + j * a_dim1; + z__2.r = temp.r * a[i__5].r - temp.i * a[i__5].i, + z__2.i = temp.r * a[i__5].i + temp.i * a[ + i__5].r; + z__1.r = x[i__4].r + z__2.r, z__1.i = x[i__4].i + + z__2.i; + x[i__3].r = z__1.r, x[i__3].i = z__1.i; + ix += *incx; +/* L30: */ + } + if (nounit) { + i__2 = jx; + i__3 = jx; + i__4 = j + j * a_dim1; + z__1.r = x[i__3].r * a[i__4].r - x[i__3].i * a[ + i__4].i, z__1.i = x[i__3].r * a[i__4].i + + x[i__3].i * a[i__4].r; + x[i__2].r = z__1.r, x[i__2].i = z__1.i; + } + } + jx += *incx; +/* L40: */ + } + } + } else { + if (*incx == 1) { + for (j = *n; j >= 1; --j) { + i__1 = j; + if ((x[i__1].r != 0.) || (x[i__1].i != 0.)) { + i__1 = j; + temp.r = x[i__1].r, temp.i = x[i__1].i; + i__1 = j + 1; + for (i__ = *n; i__ >= i__1; --i__) { + i__2 = i__; + i__3 = i__; + i__4 = i__ + j * a_dim1; + z__2.r = temp.r * a[i__4].r - temp.i * a[i__4].i, + z__2.i = temp.r * a[i__4].i + temp.i * a[ + i__4].r; + z__1.r = x[i__3].r + z__2.r, z__1.i = x[i__3].i + + z__2.i; + x[i__2].r = z__1.r, x[i__2].i = z__1.i; +/* L50: */ + } + if (nounit) { + i__1 = j; + i__2 = j; + i__3 = j + j * a_dim1; + z__1.r = x[i__2].r * a[i__3].r - x[i__2].i * a[ + i__3].i, z__1.i = x[i__2].r * a[i__3].i + + x[i__2].i * a[i__3].r; + x[i__1].r = z__1.r, x[i__1].i = z__1.i; + } + } +/* L60: */ + } + } else { + kx += (*n - 1) * *incx; + jx = kx; + for (j = *n; j >= 1; --j) { + i__1 = jx; + if ((x[i__1].r != 0.) || (x[i__1].i != 0.)) { + i__1 = jx; + temp.r = x[i__1].r, temp.i = x[i__1].i; + ix = kx; + i__1 = j + 1; + for (i__ = *n; i__ >= i__1; --i__) { + i__2 = ix; + i__3 = ix; + i__4 = i__ + j * a_dim1; + z__2.r = temp.r * a[i__4].r - temp.i * a[i__4].i, + z__2.i = temp.r * a[i__4].i + temp.i * a[ + i__4].r; + z__1.r = x[i__3].r + z__2.r, z__1.i = x[i__3].i + + z__2.i; + x[i__2].r = z__1.r, x[i__2].i = z__1.i; + ix -= *incx; +/* L70: */ + } + if (nounit) { + i__1 = jx; + i__2 = jx; + i__3 = j + j * a_dim1; + z__1.r = x[i__2].r * a[i__3].r - x[i__2].i * a[ + i__3].i, z__1.i = x[i__2].r * a[i__3].i + + x[i__2].i * a[i__3].r; + x[i__1].r = z__1.r, x[i__1].i = z__1.i; + } + } + jx -= *incx; +/* L80: */ + } + } + } + } else { + +/* Form x := A'*x or x := conjg( A' )*x. */ + + if (lsame_(uplo, "U")) { + if (*incx == 1) { + for (j = *n; j >= 1; --j) { + i__1 = j; + temp.r = x[i__1].r, temp.i = x[i__1].i; + if (noconj) { + if (nounit) { + i__1 = j + j * a_dim1; + z__1.r = temp.r * a[i__1].r - temp.i * a[i__1].i, + z__1.i = temp.r * a[i__1].i + temp.i * a[ + i__1].r; + temp.r = z__1.r, temp.i = z__1.i; + } + for (i__ = j - 1; i__ >= 1; --i__) { + i__1 = i__ + j * a_dim1; + i__2 = i__; + z__2.r = a[i__1].r * x[i__2].r - a[i__1].i * x[ + i__2].i, z__2.i = a[i__1].r * x[i__2].i + + a[i__1].i * x[i__2].r; + z__1.r = temp.r + z__2.r, z__1.i = temp.i + + z__2.i; + temp.r = z__1.r, temp.i = z__1.i; +/* L90: */ + } + } else { + if (nounit) { + d_cnjg(&z__2, &a[j + j * a_dim1]); + z__1.r = temp.r * z__2.r - temp.i * z__2.i, + z__1.i = temp.r * z__2.i + temp.i * + z__2.r; + temp.r = z__1.r, temp.i = z__1.i; + } + for (i__ = j - 1; i__ >= 1; --i__) { + d_cnjg(&z__3, &a[i__ + j * a_dim1]); + i__1 = i__; + z__2.r = z__3.r * x[i__1].r - z__3.i * x[i__1].i, + z__2.i = z__3.r * x[i__1].i + z__3.i * x[ + i__1].r; + z__1.r = temp.r + z__2.r, z__1.i = temp.i + + z__2.i; + temp.r = z__1.r, temp.i = z__1.i; +/* L100: */ + } + } + i__1 = j; + x[i__1].r = temp.r, x[i__1].i = temp.i; +/* L110: */ + } + } else { + jx = kx + (*n - 1) * *incx; + for (j = *n; j >= 1; --j) { + i__1 = jx; + temp.r = x[i__1].r, temp.i = x[i__1].i; + ix = jx; + if (noconj) { + if (nounit) { + i__1 = j + j * a_dim1; + z__1.r = temp.r * a[i__1].r - temp.i * a[i__1].i, + z__1.i = temp.r * a[i__1].i + temp.i * a[ + i__1].r; + temp.r = z__1.r, temp.i = z__1.i; + } + for (i__ = j - 1; i__ >= 1; --i__) { + ix -= *incx; + i__1 = i__ + j * a_dim1; + i__2 = ix; + z__2.r = a[i__1].r * x[i__2].r - a[i__1].i * x[ + i__2].i, z__2.i = a[i__1].r * x[i__2].i + + a[i__1].i * x[i__2].r; + z__1.r = temp.r + z__2.r, z__1.i = temp.i + + z__2.i; + temp.r = z__1.r, temp.i = z__1.i; +/* L120: */ + } + } else { + if (nounit) { + d_cnjg(&z__2, &a[j + j * a_dim1]); + z__1.r = temp.r * z__2.r - temp.i * z__2.i, + z__1.i = temp.r * z__2.i + temp.i * + z__2.r; + temp.r = z__1.r, temp.i = z__1.i; + } + for (i__ = j - 1; i__ >= 1; --i__) { + ix -= *incx; + d_cnjg(&z__3, &a[i__ + j * a_dim1]); + i__1 = ix; + z__2.r = z__3.r * x[i__1].r - z__3.i * x[i__1].i, + z__2.i = z__3.r * x[i__1].i + z__3.i * x[ + i__1].r; + z__1.r = temp.r + z__2.r, z__1.i = temp.i + + z__2.i; + temp.r = z__1.r, temp.i = z__1.i; +/* L130: */ + } + } + i__1 = jx; + x[i__1].r = temp.r, x[i__1].i = temp.i; + jx -= *incx; +/* L140: */ + } + } + } else { + if (*incx == 1) { + i__1 = *n; + for (j = 1; j <= i__1; ++j) { + i__2 = j; + temp.r = x[i__2].r, temp.i = x[i__2].i; + if (noconj) { + if (nounit) { + i__2 = j + j * a_dim1; + z__1.r = temp.r * a[i__2].r - temp.i * a[i__2].i, + z__1.i = temp.r * a[i__2].i + temp.i * a[ + i__2].r; + temp.r = z__1.r, temp.i = z__1.i; + } + i__2 = *n; + for (i__ = j + 1; i__ <= i__2; ++i__) { + i__3 = i__ + j * a_dim1; + i__4 = i__; + z__2.r = a[i__3].r * x[i__4].r - a[i__3].i * x[ + i__4].i, z__2.i = a[i__3].r * x[i__4].i + + a[i__3].i * x[i__4].r; + z__1.r = temp.r + z__2.r, z__1.i = temp.i + + z__2.i; + temp.r = z__1.r, temp.i = z__1.i; +/* L150: */ + } + } else { + if (nounit) { + d_cnjg(&z__2, &a[j + j * a_dim1]); + z__1.r = temp.r * z__2.r - temp.i * z__2.i, + z__1.i = temp.r * z__2.i + temp.i * + z__2.r; + temp.r = z__1.r, temp.i = z__1.i; + } + i__2 = *n; + for (i__ = j + 1; i__ <= i__2; ++i__) { + d_cnjg(&z__3, &a[i__ + j * a_dim1]); + i__3 = i__; + z__2.r = z__3.r * x[i__3].r - z__3.i * x[i__3].i, + z__2.i = z__3.r * x[i__3].i + z__3.i * x[ + i__3].r; + z__1.r = temp.r + z__2.r, z__1.i = temp.i + + z__2.i; + temp.r = z__1.r, temp.i = z__1.i; +/* L160: */ + } + } + i__2 = j; + x[i__2].r = temp.r, x[i__2].i = temp.i; +/* L170: */ + } + } else { + jx = kx; + i__1 = *n; + for (j = 1; j <= i__1; ++j) { + i__2 = jx; + temp.r = x[i__2].r, temp.i = x[i__2].i; + ix = jx; + if (noconj) { + if (nounit) { + i__2 = j + j * a_dim1; + z__1.r = temp.r * a[i__2].r - temp.i * a[i__2].i, + z__1.i = temp.r * a[i__2].i + temp.i * a[ + i__2].r; + temp.r = z__1.r, temp.i = z__1.i; + } + i__2 = *n; + for (i__ = j + 1; i__ <= i__2; ++i__) { + ix += *incx; + i__3 = i__ + j * a_dim1; + i__4 = ix; + z__2.r = a[i__3].r * x[i__4].r - a[i__3].i * x[ + i__4].i, z__2.i = a[i__3].r * x[i__4].i + + a[i__3].i * x[i__4].r; + z__1.r = temp.r + z__2.r, z__1.i = temp.i + + z__2.i; + temp.r = z__1.r, temp.i = z__1.i; +/* L180: */ + } + } else { + if (nounit) { + d_cnjg(&z__2, &a[j + j * a_dim1]); + z__1.r = temp.r * z__2.r - temp.i * z__2.i, + z__1.i = temp.r * z__2.i + temp.i * + z__2.r; + temp.r = z__1.r, temp.i = z__1.i; + } + i__2 = *n; + for (i__ = j + 1; i__ <= i__2; ++i__) { + ix += *incx; + d_cnjg(&z__3, &a[i__ + j * a_dim1]); + i__3 = ix; + z__2.r = z__3.r * x[i__3].r - z__3.i * x[i__3].i, + z__2.i = z__3.r * x[i__3].i + z__3.i * x[ + i__3].r; + z__1.r = temp.r + z__2.r, z__1.i = temp.i + + z__2.i; + temp.r = z__1.r, temp.i = z__1.i; +/* L190: */ + } + } + i__2 = jx; + x[i__2].r = temp.r, x[i__2].i = temp.i; + jx += *incx; +/* L200: */ + } + } + } + } + + return 0; + +/* End of ZTRMV . */ + +} /* ztrmv_ */ + +/* Subroutine */ int ztrsm_(char *side, char *uplo, char *transa, char *diag, + integer *m, integer *n, doublecomplex *alpha, doublecomplex *a, + integer *lda, doublecomplex *b, integer *ldb) +{ + /* System generated locals */ + integer a_dim1, a_offset, b_dim1, b_offset, i__1, i__2, i__3, i__4, i__5, + i__6, i__7; + doublecomplex z__1, z__2, z__3; + + /* Builtin functions */ + void z_div(doublecomplex *, doublecomplex *, doublecomplex *), d_cnjg( + doublecomplex *, doublecomplex *); + + /* Local variables */ + static integer i__, j, k, info; + static doublecomplex temp; + static logical lside; + extern logical lsame_(char *, char *); + static integer nrowa; + static logical upper; + extern /* Subroutine */ int xerbla_(char *, integer *); + static logical noconj, nounit; + + +/* + Purpose + ======= + + ZTRSM solves one of the matrix equations + + op( A )*X = alpha*B, or X*op( A ) = alpha*B, + + where alpha is a scalar, X and B are m by n matrices, A is a unit, or + non-unit, upper or lower triangular matrix and op( A ) is one of + + op( A ) = A or op( A ) = A' or op( A ) = conjg( A' ). + + The matrix X is overwritten on B. + + Parameters + ========== + + SIDE - CHARACTER*1. + On entry, SIDE specifies whether op( A ) appears on the left + or right of X as follows: + + SIDE = 'L' or 'l' op( A )*X = alpha*B. + + SIDE = 'R' or 'r' X*op( A ) = alpha*B. + + Unchanged on exit. + + UPLO - CHARACTER*1. + On entry, UPLO specifies whether the matrix A is an upper or + lower triangular matrix as follows: + + UPLO = 'U' or 'u' A is an upper triangular matrix. + + UPLO = 'L' or 'l' A is a lower triangular matrix. + + Unchanged on exit. + + TRANSA - CHARACTER*1. + On entry, TRANSA specifies the form of op( A ) to be used in + the matrix multiplication as follows: + + TRANSA = 'N' or 'n' op( A ) = A. + + TRANSA = 'T' or 't' op( A ) = A'. + + TRANSA = 'C' or 'c' op( A ) = conjg( A' ). + + Unchanged on exit. + + DIAG - CHARACTER*1. + On entry, DIAG specifies whether or not A is unit triangular + as follows: + + DIAG = 'U' or 'u' A is assumed to be unit triangular. + + DIAG = 'N' or 'n' A is not assumed to be unit + triangular. + + Unchanged on exit. + + M - INTEGER. + On entry, M specifies the number of rows of B. M must be at + least zero. + Unchanged on exit. + + N - INTEGER. + On entry, N specifies the number of columns of B. N must be + at least zero. + Unchanged on exit. + + ALPHA - COMPLEX*16 . + On entry, ALPHA specifies the scalar alpha. When alpha is + zero then A is not referenced and B need not be set before + entry. + Unchanged on exit. + + A - COMPLEX*16 array of DIMENSION ( LDA, k ), where k is m + when SIDE = 'L' or 'l' and is n when SIDE = 'R' or 'r'. + Before entry with UPLO = 'U' or 'u', the leading k by k + upper triangular part of the array A must contain the upper + triangular matrix and the strictly lower triangular part of + A is not referenced. + Before entry with UPLO = 'L' or 'l', the leading k by k + lower triangular part of the array A must contain the lower + triangular matrix and the strictly upper triangular part of + A is not referenced. + Note that when DIAG = 'U' or 'u', the diagonal elements of + A are not referenced either, but are assumed to be unity. + Unchanged on exit. + + LDA - INTEGER. + On entry, LDA specifies the first dimension of A as declared + in the calling (sub) program. When SIDE = 'L' or 'l' then + LDA must be at least max( 1, m ), when SIDE = 'R' or 'r' + then LDA must be at least max( 1, n ). + Unchanged on exit. + + B - COMPLEX*16 array of DIMENSION ( LDB, n ). + Before entry, the leading m by n part of the array B must + contain the right-hand side matrix B, and on exit is + overwritten by the solution matrix X. + + LDB - INTEGER. + On entry, LDB specifies the first dimension of B as declared + in the calling (sub) program. LDB must be at least + max( 1, m ). + Unchanged on exit. + + + Level 3 Blas routine. + + -- Written on 8-February-1989. + Jack Dongarra, Argonne National Laboratory. + Iain Duff, AERE Harwell. + Jeremy Du Croz, Numerical Algorithms Group Ltd. + Sven Hammarling, Numerical Algorithms Group Ltd. + + + Test the input parameters. +*/ + + /* Parameter adjustments */ + a_dim1 = *lda; + a_offset = 1 + a_dim1; + a -= a_offset; + b_dim1 = *ldb; + b_offset = 1 + b_dim1; + b -= b_offset; + + /* Function Body */ + lside = lsame_(side, "L"); + if (lside) { + nrowa = *m; + } else { + nrowa = *n; + } + noconj = lsame_(transa, "T"); + nounit = lsame_(diag, "N"); + upper = lsame_(uplo, "U"); + + info = 0; + if (! lside && ! lsame_(side, "R")) { + info = 1; + } else if (! upper && ! lsame_(uplo, "L")) { + info = 2; + } else if (! lsame_(transa, "N") && ! lsame_(transa, + "T") && ! lsame_(transa, "C")) { + info = 3; + } else if (! lsame_(diag, "U") && ! lsame_(diag, + "N")) { + info = 4; + } else if (*m < 0) { + info = 5; + } else if (*n < 0) { + info = 6; + } else if (*lda < max(1,nrowa)) { + info = 9; + } else if (*ldb < max(1,*m)) { + info = 11; + } + if (info != 0) { + xerbla_("ZTRSM ", &info); + return 0; + } + +/* Quick return if possible. */ + + if (*n == 0) { + return 0; + } + +/* And when alpha.eq.zero. */ + + if (alpha->r == 0. && alpha->i == 0.) { + i__1 = *n; + for (j = 1; j <= i__1; ++j) { + i__2 = *m; + for (i__ = 1; i__ <= i__2; ++i__) { + i__3 = i__ + j * b_dim1; + b[i__3].r = 0., b[i__3].i = 0.; +/* L10: */ + } +/* L20: */ + } + return 0; + } + +/* Start the operations. */ + + if (lside) { + if (lsame_(transa, "N")) { + +/* Form B := alpha*inv( A )*B. */ + + if (upper) { + i__1 = *n; + for (j = 1; j <= i__1; ++j) { + if ((alpha->r != 1.) || (alpha->i != 0.)) { + i__2 = *m; + for (i__ = 1; i__ <= i__2; ++i__) { + i__3 = i__ + j * b_dim1; + i__4 = i__ + j * b_dim1; + z__1.r = alpha->r * b[i__4].r - alpha->i * b[i__4] + .i, z__1.i = alpha->r * b[i__4].i + + alpha->i * b[i__4].r; + b[i__3].r = z__1.r, b[i__3].i = z__1.i; +/* L30: */ + } + } + for (k = *m; k >= 1; --k) { + i__2 = k + j * b_dim1; + if ((b[i__2].r != 0.) || (b[i__2].i != 0.)) { + if (nounit) { + i__2 = k + j * b_dim1; + z_div(&z__1, &b[k + j * b_dim1], &a[k + k * + a_dim1]); + b[i__2].r = z__1.r, b[i__2].i = z__1.i; + } + i__2 = k - 1; + for (i__ = 1; i__ <= i__2; ++i__) { + i__3 = i__ + j * b_dim1; + i__4 = i__ + j * b_dim1; + i__5 = k + j * b_dim1; + i__6 = i__ + k * a_dim1; + z__2.r = b[i__5].r * a[i__6].r - b[i__5].i * + a[i__6].i, z__2.i = b[i__5].r * a[ + i__6].i + b[i__5].i * a[i__6].r; + z__1.r = b[i__4].r - z__2.r, z__1.i = b[i__4] + .i - z__2.i; + b[i__3].r = z__1.r, b[i__3].i = z__1.i; +/* L40: */ + } + } +/* L50: */ + } +/* L60: */ + } + } else { + i__1 = *n; + for (j = 1; j <= i__1; ++j) { + if ((alpha->r != 1.) || (alpha->i != 0.)) { + i__2 = *m; + for (i__ = 1; i__ <= i__2; ++i__) { + i__3 = i__ + j * b_dim1; + i__4 = i__ + j * b_dim1; + z__1.r = alpha->r * b[i__4].r - alpha->i * b[i__4] + .i, z__1.i = alpha->r * b[i__4].i + + alpha->i * b[i__4].r; + b[i__3].r = z__1.r, b[i__3].i = z__1.i; +/* L70: */ + } + } + i__2 = *m; + for (k = 1; k <= i__2; ++k) { + i__3 = k + j * b_dim1; + if ((b[i__3].r != 0.) || (b[i__3].i != 0.)) { + if (nounit) { + i__3 = k + j * b_dim1; + z_div(&z__1, &b[k + j * b_dim1], &a[k + k * + a_dim1]); + b[i__3].r = z__1.r, b[i__3].i = z__1.i; + } + i__3 = *m; + for (i__ = k + 1; i__ <= i__3; ++i__) { + i__4 = i__ + j * b_dim1; + i__5 = i__ + j * b_dim1; + i__6 = k + j * b_dim1; + i__7 = i__ + k * a_dim1; + z__2.r = b[i__6].r * a[i__7].r - b[i__6].i * + a[i__7].i, z__2.i = b[i__6].r * a[ + i__7].i + b[i__6].i * a[i__7].r; + z__1.r = b[i__5].r - z__2.r, z__1.i = b[i__5] + .i - z__2.i; + b[i__4].r = z__1.r, b[i__4].i = z__1.i; +/* L80: */ + } + } +/* L90: */ + } +/* L100: */ + } + } + } else { + +/* + Form B := alpha*inv( A' )*B + or B := alpha*inv( conjg( A' ) )*B. +*/ + + if (upper) { + i__1 = *n; + for (j = 1; j <= i__1; ++j) { + i__2 = *m; + for (i__ = 1; i__ <= i__2; ++i__) { + i__3 = i__ + j * b_dim1; + z__1.r = alpha->r * b[i__3].r - alpha->i * b[i__3].i, + z__1.i = alpha->r * b[i__3].i + alpha->i * b[ + i__3].r; + temp.r = z__1.r, temp.i = z__1.i; + if (noconj) { + i__3 = i__ - 1; + for (k = 1; k <= i__3; ++k) { + i__4 = k + i__ * a_dim1; + i__5 = k + j * b_dim1; + z__2.r = a[i__4].r * b[i__5].r - a[i__4].i * + b[i__5].i, z__2.i = a[i__4].r * b[ + i__5].i + a[i__4].i * b[i__5].r; + z__1.r = temp.r - z__2.r, z__1.i = temp.i - + z__2.i; + temp.r = z__1.r, temp.i = z__1.i; +/* L110: */ + } + if (nounit) { + z_div(&z__1, &temp, &a[i__ + i__ * a_dim1]); + temp.r = z__1.r, temp.i = z__1.i; + } + } else { + i__3 = i__ - 1; + for (k = 1; k <= i__3; ++k) { + d_cnjg(&z__3, &a[k + i__ * a_dim1]); + i__4 = k + j * b_dim1; + z__2.r = z__3.r * b[i__4].r - z__3.i * b[i__4] + .i, z__2.i = z__3.r * b[i__4].i + + z__3.i * b[i__4].r; + z__1.r = temp.r - z__2.r, z__1.i = temp.i - + z__2.i; + temp.r = z__1.r, temp.i = z__1.i; +/* L120: */ + } + if (nounit) { + d_cnjg(&z__2, &a[i__ + i__ * a_dim1]); + z_div(&z__1, &temp, &z__2); + temp.r = z__1.r, temp.i = z__1.i; + } + } + i__3 = i__ + j * b_dim1; + b[i__3].r = temp.r, b[i__3].i = temp.i; +/* L130: */ + } +/* L140: */ + } + } else { + i__1 = *n; + for (j = 1; j <= i__1; ++j) { + for (i__ = *m; i__ >= 1; --i__) { + i__2 = i__ + j * b_dim1; + z__1.r = alpha->r * b[i__2].r - alpha->i * b[i__2].i, + z__1.i = alpha->r * b[i__2].i + alpha->i * b[ + i__2].r; + temp.r = z__1.r, temp.i = z__1.i; + if (noconj) { + i__2 = *m; + for (k = i__ + 1; k <= i__2; ++k) { + i__3 = k + i__ * a_dim1; + i__4 = k + j * b_dim1; + z__2.r = a[i__3].r * b[i__4].r - a[i__3].i * + b[i__4].i, z__2.i = a[i__3].r * b[ + i__4].i + a[i__3].i * b[i__4].r; + z__1.r = temp.r - z__2.r, z__1.i = temp.i - + z__2.i; + temp.r = z__1.r, temp.i = z__1.i; +/* L150: */ + } + if (nounit) { + z_div(&z__1, &temp, &a[i__ + i__ * a_dim1]); + temp.r = z__1.r, temp.i = z__1.i; + } + } else { + i__2 = *m; + for (k = i__ + 1; k <= i__2; ++k) { + d_cnjg(&z__3, &a[k + i__ * a_dim1]); + i__3 = k + j * b_dim1; + z__2.r = z__3.r * b[i__3].r - z__3.i * b[i__3] + .i, z__2.i = z__3.r * b[i__3].i + + z__3.i * b[i__3].r; + z__1.r = temp.r - z__2.r, z__1.i = temp.i - + z__2.i; + temp.r = z__1.r, temp.i = z__1.i; +/* L160: */ + } + if (nounit) { + d_cnjg(&z__2, &a[i__ + i__ * a_dim1]); + z_div(&z__1, &temp, &z__2); + temp.r = z__1.r, temp.i = z__1.i; + } + } + i__2 = i__ + j * b_dim1; + b[i__2].r = temp.r, b[i__2].i = temp.i; +/* L170: */ + } +/* L180: */ + } + } + } + } else { + if (lsame_(transa, "N")) { + +/* Form B := alpha*B*inv( A ). */ + + if (upper) { + i__1 = *n; + for (j = 1; j <= i__1; ++j) { + if ((alpha->r != 1.) || (alpha->i != 0.)) { + i__2 = *m; + for (i__ = 1; i__ <= i__2; ++i__) { + i__3 = i__ + j * b_dim1; + i__4 = i__ + j * b_dim1; + z__1.r = alpha->r * b[i__4].r - alpha->i * b[i__4] + .i, z__1.i = alpha->r * b[i__4].i + + alpha->i * b[i__4].r; + b[i__3].r = z__1.r, b[i__3].i = z__1.i; +/* L190: */ + } + } + i__2 = j - 1; + for (k = 1; k <= i__2; ++k) { + i__3 = k + j * a_dim1; + if ((a[i__3].r != 0.) || (a[i__3].i != 0.)) { + i__3 = *m; + for (i__ = 1; i__ <= i__3; ++i__) { + i__4 = i__ + j * b_dim1; + i__5 = i__ + j * b_dim1; + i__6 = k + j * a_dim1; + i__7 = i__ + k * b_dim1; + z__2.r = a[i__6].r * b[i__7].r - a[i__6].i * + b[i__7].i, z__2.i = a[i__6].r * b[ + i__7].i + a[i__6].i * b[i__7].r; + z__1.r = b[i__5].r - z__2.r, z__1.i = b[i__5] + .i - z__2.i; + b[i__4].r = z__1.r, b[i__4].i = z__1.i; +/* L200: */ + } + } +/* L210: */ + } + if (nounit) { + z_div(&z__1, &c_b1077, &a[j + j * a_dim1]); + temp.r = z__1.r, temp.i = z__1.i; + i__2 = *m; + for (i__ = 1; i__ <= i__2; ++i__) { + i__3 = i__ + j * b_dim1; + i__4 = i__ + j * b_dim1; + z__1.r = temp.r * b[i__4].r - temp.i * b[i__4].i, + z__1.i = temp.r * b[i__4].i + temp.i * b[ + i__4].r; + b[i__3].r = z__1.r, b[i__3].i = z__1.i; +/* L220: */ + } + } +/* L230: */ + } + } else { + for (j = *n; j >= 1; --j) { + if ((alpha->r != 1.) || (alpha->i != 0.)) { + i__1 = *m; + for (i__ = 1; i__ <= i__1; ++i__) { + i__2 = i__ + j * b_dim1; + i__3 = i__ + j * b_dim1; + z__1.r = alpha->r * b[i__3].r - alpha->i * b[i__3] + .i, z__1.i = alpha->r * b[i__3].i + + alpha->i * b[i__3].r; + b[i__2].r = z__1.r, b[i__2].i = z__1.i; +/* L240: */ + } + } + i__1 = *n; + for (k = j + 1; k <= i__1; ++k) { + i__2 = k + j * a_dim1; + if ((a[i__2].r != 0.) || (a[i__2].i != 0.)) { + i__2 = *m; + for (i__ = 1; i__ <= i__2; ++i__) { + i__3 = i__ + j * b_dim1; + i__4 = i__ + j * b_dim1; + i__5 = k + j * a_dim1; + i__6 = i__ + k * b_dim1; + z__2.r = a[i__5].r * b[i__6].r - a[i__5].i * + b[i__6].i, z__2.i = a[i__5].r * b[ + i__6].i + a[i__5].i * b[i__6].r; + z__1.r = b[i__4].r - z__2.r, z__1.i = b[i__4] + .i - z__2.i; + b[i__3].r = z__1.r, b[i__3].i = z__1.i; +/* L250: */ + } + } +/* L260: */ + } + if (nounit) { + z_div(&z__1, &c_b1077, &a[j + j * a_dim1]); + temp.r = z__1.r, temp.i = z__1.i; + i__1 = *m; + for (i__ = 1; i__ <= i__1; ++i__) { + i__2 = i__ + j * b_dim1; + i__3 = i__ + j * b_dim1; + z__1.r = temp.r * b[i__3].r - temp.i * b[i__3].i, + z__1.i = temp.r * b[i__3].i + temp.i * b[ + i__3].r; + b[i__2].r = z__1.r, b[i__2].i = z__1.i; +/* L270: */ + } + } +/* L280: */ + } + } + } else { + +/* + Form B := alpha*B*inv( A' ) + or B := alpha*B*inv( conjg( A' ) ). +*/ + + if (upper) { + for (k = *n; k >= 1; --k) { + if (nounit) { + if (noconj) { + z_div(&z__1, &c_b1077, &a[k + k * a_dim1]); + temp.r = z__1.r, temp.i = z__1.i; + } else { + d_cnjg(&z__2, &a[k + k * a_dim1]); + z_div(&z__1, &c_b1077, &z__2); + temp.r = z__1.r, temp.i = z__1.i; + } + i__1 = *m; + for (i__ = 1; i__ <= i__1; ++i__) { + i__2 = i__ + k * b_dim1; + i__3 = i__ + k * b_dim1; + z__1.r = temp.r * b[i__3].r - temp.i * b[i__3].i, + z__1.i = temp.r * b[i__3].i + temp.i * b[ + i__3].r; + b[i__2].r = z__1.r, b[i__2].i = z__1.i; +/* L290: */ + } + } + i__1 = k - 1; + for (j = 1; j <= i__1; ++j) { + i__2 = j + k * a_dim1; + if ((a[i__2].r != 0.) || (a[i__2].i != 0.)) { + if (noconj) { + i__2 = j + k * a_dim1; + temp.r = a[i__2].r, temp.i = a[i__2].i; + } else { + d_cnjg(&z__1, &a[j + k * a_dim1]); + temp.r = z__1.r, temp.i = z__1.i; + } + i__2 = *m; + for (i__ = 1; i__ <= i__2; ++i__) { + i__3 = i__ + j * b_dim1; + i__4 = i__ + j * b_dim1; + i__5 = i__ + k * b_dim1; + z__2.r = temp.r * b[i__5].r - temp.i * b[i__5] + .i, z__2.i = temp.r * b[i__5].i + + temp.i * b[i__5].r; + z__1.r = b[i__4].r - z__2.r, z__1.i = b[i__4] + .i - z__2.i; + b[i__3].r = z__1.r, b[i__3].i = z__1.i; +/* L300: */ + } + } +/* L310: */ + } + if ((alpha->r != 1.) || (alpha->i != 0.)) { + i__1 = *m; + for (i__ = 1; i__ <= i__1; ++i__) { + i__2 = i__ + k * b_dim1; + i__3 = i__ + k * b_dim1; + z__1.r = alpha->r * b[i__3].r - alpha->i * b[i__3] + .i, z__1.i = alpha->r * b[i__3].i + + alpha->i * b[i__3].r; + b[i__2].r = z__1.r, b[i__2].i = z__1.i; +/* L320: */ + } + } +/* L330: */ + } + } else { + i__1 = *n; + for (k = 1; k <= i__1; ++k) { + if (nounit) { + if (noconj) { + z_div(&z__1, &c_b1077, &a[k + k * a_dim1]); + temp.r = z__1.r, temp.i = z__1.i; + } else { + d_cnjg(&z__2, &a[k + k * a_dim1]); + z_div(&z__1, &c_b1077, &z__2); + temp.r = z__1.r, temp.i = z__1.i; + } + i__2 = *m; + for (i__ = 1; i__ <= i__2; ++i__) { + i__3 = i__ + k * b_dim1; + i__4 = i__ + k * b_dim1; + z__1.r = temp.r * b[i__4].r - temp.i * b[i__4].i, + z__1.i = temp.r * b[i__4].i + temp.i * b[ + i__4].r; + b[i__3].r = z__1.r, b[i__3].i = z__1.i; +/* L340: */ + } + } + i__2 = *n; + for (j = k + 1; j <= i__2; ++j) { + i__3 = j + k * a_dim1; + if ((a[i__3].r != 0.) || (a[i__3].i != 0.)) { + if (noconj) { + i__3 = j + k * a_dim1; + temp.r = a[i__3].r, temp.i = a[i__3].i; + } else { + d_cnjg(&z__1, &a[j + k * a_dim1]); + temp.r = z__1.r, temp.i = z__1.i; + } + i__3 = *m; + for (i__ = 1; i__ <= i__3; ++i__) { + i__4 = i__ + j * b_dim1; + i__5 = i__ + j * b_dim1; + i__6 = i__ + k * b_dim1; + z__2.r = temp.r * b[i__6].r - temp.i * b[i__6] + .i, z__2.i = temp.r * b[i__6].i + + temp.i * b[i__6].r; + z__1.r = b[i__5].r - z__2.r, z__1.i = b[i__5] + .i - z__2.i; + b[i__4].r = z__1.r, b[i__4].i = z__1.i; +/* L350: */ + } + } +/* L360: */ + } + if ((alpha->r != 1.) || (alpha->i != 0.)) { + i__2 = *m; + for (i__ = 1; i__ <= i__2; ++i__) { + i__3 = i__ + k * b_dim1; + i__4 = i__ + k * b_dim1; + z__1.r = alpha->r * b[i__4].r - alpha->i * b[i__4] + .i, z__1.i = alpha->r * b[i__4].i + + alpha->i * b[i__4].r; + b[i__3].r = z__1.r, b[i__3].i = z__1.i; +/* L370: */ + } + } +/* L380: */ + } + } + } + } + + return 0; + +/* End of ZTRSM . */ + +} /* ztrsm_ */ + +/* Subroutine */ int ztrsv_(char *uplo, char *trans, char *diag, integer *n, + doublecomplex *a, integer *lda, doublecomplex *x, integer *incx) +{ + /* System generated locals */ + integer a_dim1, a_offset, i__1, i__2, i__3, i__4, i__5; + doublecomplex z__1, z__2, z__3; + + /* Builtin functions */ + void z_div(doublecomplex *, doublecomplex *, doublecomplex *), d_cnjg( + doublecomplex *, doublecomplex *); + + /* Local variables */ + static integer i__, j, ix, jx, kx, info; + static doublecomplex temp; + extern logical lsame_(char *, char *); + extern /* Subroutine */ int xerbla_(char *, integer *); + static logical noconj, nounit; + + +/* + Purpose + ======= + + ZTRSV solves one of the systems of equations + + A*x = b, or A'*x = b, or conjg( A' )*x = b, + + where b and x are n element vectors and A is an n by n unit, or + non-unit, upper or lower triangular matrix. + + No test for singularity or near-singularity is included in this + routine. Such tests must be performed before calling this routine. + + Parameters + ========== + + UPLO - CHARACTER*1. + On entry, UPLO specifies whether the matrix is an upper or + lower triangular matrix as follows: + + UPLO = 'U' or 'u' A is an upper triangular matrix. + + UPLO = 'L' or 'l' A is a lower triangular matrix. + + Unchanged on exit. + + TRANS - CHARACTER*1. + On entry, TRANS specifies the equations to be solved as + follows: + + TRANS = 'N' or 'n' A*x = b. + + TRANS = 'T' or 't' A'*x = b. + + TRANS = 'C' or 'c' conjg( A' )*x = b. + + Unchanged on exit. + + DIAG - CHARACTER*1. + On entry, DIAG specifies whether or not A is unit + triangular as follows: + + DIAG = 'U' or 'u' A is assumed to be unit triangular. + + DIAG = 'N' or 'n' A is not assumed to be unit + triangular. + + Unchanged on exit. + + N - INTEGER. + On entry, N specifies the order of the matrix A. + N must be at least zero. + Unchanged on exit. + + A - COMPLEX*16 array of DIMENSION ( LDA, n ). + Before entry with UPLO = 'U' or 'u', the leading n by n + upper triangular part of the array A must contain the upper + triangular matrix and the strictly lower triangular part of + A is not referenced. + Before entry with UPLO = 'L' or 'l', the leading n by n + lower triangular part of the array A must contain the lower + triangular matrix and the strictly upper triangular part of + A is not referenced. + Note that when DIAG = 'U' or 'u', the diagonal elements of + A are not referenced either, but are assumed to be unity. + Unchanged on exit. + + LDA - INTEGER. + On entry, LDA specifies the first dimension of A as declared + in the calling (sub) program. LDA must be at least + max( 1, n ). + Unchanged on exit. + + X - COMPLEX*16 array of dimension at least + ( 1 + ( n - 1 )*abs( INCX ) ). + Before entry, the incremented array X must contain the n + element right-hand side vector b. On exit, X is overwritten + with the solution vector x. + + INCX - INTEGER. + On entry, INCX specifies the increment for the elements of + X. INCX must not be zero. + Unchanged on exit. + + + Level 2 Blas routine. + + -- Written on 22-October-1986. + Jack Dongarra, Argonne National Lab. + Jeremy Du Croz, Nag Central Office. + Sven Hammarling, Nag Central Office. + Richard Hanson, Sandia National Labs. + + + Test the input parameters. +*/ + + /* Parameter adjustments */ + a_dim1 = *lda; + a_offset = 1 + a_dim1; + a -= a_offset; + --x; + + /* Function Body */ + info = 0; + if (! lsame_(uplo, "U") && ! lsame_(uplo, "L")) { + info = 1; + } else if (! lsame_(trans, "N") && ! lsame_(trans, + "T") && ! lsame_(trans, "C")) { + info = 2; + } else if (! lsame_(diag, "U") && ! lsame_(diag, + "N")) { + info = 3; + } else if (*n < 0) { + info = 4; + } else if (*lda < max(1,*n)) { + info = 6; + } else if (*incx == 0) { + info = 8; + } + if (info != 0) { + xerbla_("ZTRSV ", &info); + return 0; + } + +/* Quick return if possible. */ + + if (*n == 0) { + return 0; + } + + noconj = lsame_(trans, "T"); + nounit = lsame_(diag, "N"); + +/* + Set up the start point in X if the increment is not unity. This + will be ( N - 1 )*INCX too small for descending loops. +*/ + + if (*incx <= 0) { + kx = 1 - (*n - 1) * *incx; + } else if (*incx != 1) { + kx = 1; + } + +/* + Start the operations. In this version the elements of A are + accessed sequentially with one pass through A. +*/ + + if (lsame_(trans, "N")) { + +/* Form x := inv( A )*x. */ + + if (lsame_(uplo, "U")) { + if (*incx == 1) { + for (j = *n; j >= 1; --j) { + i__1 = j; + if ((x[i__1].r != 0.) || (x[i__1].i != 0.)) { + if (nounit) { + i__1 = j; + z_div(&z__1, &x[j], &a[j + j * a_dim1]); + x[i__1].r = z__1.r, x[i__1].i = z__1.i; + } + i__1 = j; + temp.r = x[i__1].r, temp.i = x[i__1].i; + for (i__ = j - 1; i__ >= 1; --i__) { + i__1 = i__; + i__2 = i__; + i__3 = i__ + j * a_dim1; + z__2.r = temp.r * a[i__3].r - temp.i * a[i__3].i, + z__2.i = temp.r * a[i__3].i + temp.i * a[ + i__3].r; + z__1.r = x[i__2].r - z__2.r, z__1.i = x[i__2].i - + z__2.i; + x[i__1].r = z__1.r, x[i__1].i = z__1.i; +/* L10: */ + } + } +/* L20: */ + } + } else { + jx = kx + (*n - 1) * *incx; + for (j = *n; j >= 1; --j) { + i__1 = jx; + if ((x[i__1].r != 0.) || (x[i__1].i != 0.)) { + if (nounit) { + i__1 = jx; + z_div(&z__1, &x[jx], &a[j + j * a_dim1]); + x[i__1].r = z__1.r, x[i__1].i = z__1.i; + } + i__1 = jx; + temp.r = x[i__1].r, temp.i = x[i__1].i; + ix = jx; + for (i__ = j - 1; i__ >= 1; --i__) { + ix -= *incx; + i__1 = ix; + i__2 = ix; + i__3 = i__ + j * a_dim1; + z__2.r = temp.r * a[i__3].r - temp.i * a[i__3].i, + z__2.i = temp.r * a[i__3].i + temp.i * a[ + i__3].r; + z__1.r = x[i__2].r - z__2.r, z__1.i = x[i__2].i - + z__2.i; + x[i__1].r = z__1.r, x[i__1].i = z__1.i; +/* L30: */ + } + } + jx -= *incx; +/* L40: */ + } + } + } else { + if (*incx == 1) { + i__1 = *n; + for (j = 1; j <= i__1; ++j) { + i__2 = j; + if ((x[i__2].r != 0.) || (x[i__2].i != 0.)) { + if (nounit) { + i__2 = j; + z_div(&z__1, &x[j], &a[j + j * a_dim1]); + x[i__2].r = z__1.r, x[i__2].i = z__1.i; + } + i__2 = j; + temp.r = x[i__2].r, temp.i = x[i__2].i; + i__2 = *n; + for (i__ = j + 1; i__ <= i__2; ++i__) { + i__3 = i__; + i__4 = i__; + i__5 = i__ + j * a_dim1; + z__2.r = temp.r * a[i__5].r - temp.i * a[i__5].i, + z__2.i = temp.r * a[i__5].i + temp.i * a[ + i__5].r; + z__1.r = x[i__4].r - z__2.r, z__1.i = x[i__4].i - + z__2.i; + x[i__3].r = z__1.r, x[i__3].i = z__1.i; +/* L50: */ + } + } +/* L60: */ + } + } else { + jx = kx; + i__1 = *n; + for (j = 1; j <= i__1; ++j) { + i__2 = jx; + if ((x[i__2].r != 0.) || (x[i__2].i != 0.)) { + if (nounit) { + i__2 = jx; + z_div(&z__1, &x[jx], &a[j + j * a_dim1]); + x[i__2].r = z__1.r, x[i__2].i = z__1.i; + } + i__2 = jx; + temp.r = x[i__2].r, temp.i = x[i__2].i; + ix = jx; + i__2 = *n; + for (i__ = j + 1; i__ <= i__2; ++i__) { + ix += *incx; + i__3 = ix; + i__4 = ix; + i__5 = i__ + j * a_dim1; + z__2.r = temp.r * a[i__5].r - temp.i * a[i__5].i, + z__2.i = temp.r * a[i__5].i + temp.i * a[ + i__5].r; + z__1.r = x[i__4].r - z__2.r, z__1.i = x[i__4].i - + z__2.i; + x[i__3].r = z__1.r, x[i__3].i = z__1.i; +/* L70: */ + } + } + jx += *incx; +/* L80: */ + } + } + } + } else { + +/* Form x := inv( A' )*x or x := inv( conjg( A' ) )*x. */ + + if (lsame_(uplo, "U")) { + if (*incx == 1) { + i__1 = *n; + for (j = 1; j <= i__1; ++j) { + i__2 = j; + temp.r = x[i__2].r, temp.i = x[i__2].i; + if (noconj) { + i__2 = j - 1; + for (i__ = 1; i__ <= i__2; ++i__) { + i__3 = i__ + j * a_dim1; + i__4 = i__; + z__2.r = a[i__3].r * x[i__4].r - a[i__3].i * x[ + i__4].i, z__2.i = a[i__3].r * x[i__4].i + + a[i__3].i * x[i__4].r; + z__1.r = temp.r - z__2.r, z__1.i = temp.i - + z__2.i; + temp.r = z__1.r, temp.i = z__1.i; +/* L90: */ + } + if (nounit) { + z_div(&z__1, &temp, &a[j + j * a_dim1]); + temp.r = z__1.r, temp.i = z__1.i; + } + } else { + i__2 = j - 1; + for (i__ = 1; i__ <= i__2; ++i__) { + d_cnjg(&z__3, &a[i__ + j * a_dim1]); + i__3 = i__; + z__2.r = z__3.r * x[i__3].r - z__3.i * x[i__3].i, + z__2.i = z__3.r * x[i__3].i + z__3.i * x[ + i__3].r; + z__1.r = temp.r - z__2.r, z__1.i = temp.i - + z__2.i; + temp.r = z__1.r, temp.i = z__1.i; +/* L100: */ + } + if (nounit) { + d_cnjg(&z__2, &a[j + j * a_dim1]); + z_div(&z__1, &temp, &z__2); + temp.r = z__1.r, temp.i = z__1.i; + } + } + i__2 = j; + x[i__2].r = temp.r, x[i__2].i = temp.i; +/* L110: */ + } + } else { + jx = kx; + i__1 = *n; + for (j = 1; j <= i__1; ++j) { + ix = kx; + i__2 = jx; + temp.r = x[i__2].r, temp.i = x[i__2].i; + if (noconj) { + i__2 = j - 1; + for (i__ = 1; i__ <= i__2; ++i__) { + i__3 = i__ + j * a_dim1; + i__4 = ix; + z__2.r = a[i__3].r * x[i__4].r - a[i__3].i * x[ + i__4].i, z__2.i = a[i__3].r * x[i__4].i + + a[i__3].i * x[i__4].r; + z__1.r = temp.r - z__2.r, z__1.i = temp.i - + z__2.i; + temp.r = z__1.r, temp.i = z__1.i; + ix += *incx; +/* L120: */ + } + if (nounit) { + z_div(&z__1, &temp, &a[j + j * a_dim1]); + temp.r = z__1.r, temp.i = z__1.i; + } + } else { + i__2 = j - 1; + for (i__ = 1; i__ <= i__2; ++i__) { + d_cnjg(&z__3, &a[i__ + j * a_dim1]); + i__3 = ix; + z__2.r = z__3.r * x[i__3].r - z__3.i * x[i__3].i, + z__2.i = z__3.r * x[i__3].i + z__3.i * x[ + i__3].r; + z__1.r = temp.r - z__2.r, z__1.i = temp.i - + z__2.i; + temp.r = z__1.r, temp.i = z__1.i; + ix += *incx; +/* L130: */ + } + if (nounit) { + d_cnjg(&z__2, &a[j + j * a_dim1]); + z_div(&z__1, &temp, &z__2); + temp.r = z__1.r, temp.i = z__1.i; + } + } + i__2 = jx; + x[i__2].r = temp.r, x[i__2].i = temp.i; + jx += *incx; +/* L140: */ + } + } + } else { + if (*incx == 1) { + for (j = *n; j >= 1; --j) { + i__1 = j; + temp.r = x[i__1].r, temp.i = x[i__1].i; + if (noconj) { + i__1 = j + 1; + for (i__ = *n; i__ >= i__1; --i__) { + i__2 = i__ + j * a_dim1; + i__3 = i__; + z__2.r = a[i__2].r * x[i__3].r - a[i__2].i * x[ + i__3].i, z__2.i = a[i__2].r * x[i__3].i + + a[i__2].i * x[i__3].r; + z__1.r = temp.r - z__2.r, z__1.i = temp.i - + z__2.i; + temp.r = z__1.r, temp.i = z__1.i; +/* L150: */ + } + if (nounit) { + z_div(&z__1, &temp, &a[j + j * a_dim1]); + temp.r = z__1.r, temp.i = z__1.i; + } + } else { + i__1 = j + 1; + for (i__ = *n; i__ >= i__1; --i__) { + d_cnjg(&z__3, &a[i__ + j * a_dim1]); + i__2 = i__; + z__2.r = z__3.r * x[i__2].r - z__3.i * x[i__2].i, + z__2.i = z__3.r * x[i__2].i + z__3.i * x[ + i__2].r; + z__1.r = temp.r - z__2.r, z__1.i = temp.i - + z__2.i; + temp.r = z__1.r, temp.i = z__1.i; +/* L160: */ + } + if (nounit) { + d_cnjg(&z__2, &a[j + j * a_dim1]); + z_div(&z__1, &temp, &z__2); + temp.r = z__1.r, temp.i = z__1.i; + } + } + i__1 = j; + x[i__1].r = temp.r, x[i__1].i = temp.i; +/* L170: */ + } + } else { + kx += (*n - 1) * *incx; + jx = kx; + for (j = *n; j >= 1; --j) { + ix = kx; + i__1 = jx; + temp.r = x[i__1].r, temp.i = x[i__1].i; + if (noconj) { + i__1 = j + 1; + for (i__ = *n; i__ >= i__1; --i__) { + i__2 = i__ + j * a_dim1; + i__3 = ix; + z__2.r = a[i__2].r * x[i__3].r - a[i__2].i * x[ + i__3].i, z__2.i = a[i__2].r * x[i__3].i + + a[i__2].i * x[i__3].r; + z__1.r = temp.r - z__2.r, z__1.i = temp.i - + z__2.i; + temp.r = z__1.r, temp.i = z__1.i; + ix -= *incx; +/* L180: */ + } + if (nounit) { + z_div(&z__1, &temp, &a[j + j * a_dim1]); + temp.r = z__1.r, temp.i = z__1.i; + } + } else { + i__1 = j + 1; + for (i__ = *n; i__ >= i__1; --i__) { + d_cnjg(&z__3, &a[i__ + j * a_dim1]); + i__2 = ix; + z__2.r = z__3.r * x[i__2].r - z__3.i * x[i__2].i, + z__2.i = z__3.r * x[i__2].i + z__3.i * x[ + i__2].r; + z__1.r = temp.r - z__2.r, z__1.i = temp.i - + z__2.i; + temp.r = z__1.r, temp.i = z__1.i; + ix -= *incx; +/* L190: */ + } + if (nounit) { + d_cnjg(&z__2, &a[j + j * a_dim1]); + z_div(&z__1, &temp, &z__2); + temp.r = z__1.r, temp.i = z__1.i; + } + } + i__1 = jx; + x[i__1].r = temp.r, x[i__1].i = temp.i; + jx -= *incx; +/* L200: */ + } + } + } + } + + return 0; + +/* End of ZTRSV . */ + +} /* ztrsv_ */ + |