diff options
Diffstat (limited to 'numpy/linalg/lapack_lite/f2c_c_lapack.c')
-rw-r--r-- | numpy/linalg/lapack_lite/f2c_c_lapack.c | 24264 |
1 files changed, 24264 insertions, 0 deletions
diff --git a/numpy/linalg/lapack_lite/f2c_c_lapack.c b/numpy/linalg/lapack_lite/f2c_c_lapack.c new file mode 100644 index 000000000..e2c757728 --- /dev/null +++ b/numpy/linalg/lapack_lite/f2c_c_lapack.c @@ -0,0 +1,24264 @@ +/* +NOTE: This is generated code. Look in Misc/lapack_lite for information on + remaking this file. +*/ +#include "f2c.h" + +#ifdef HAVE_CONFIG +#include "config.h" +#else +extern doublereal dlamch_(char *); +#define EPSILON dlamch_("Epsilon") +#define SAFEMINIMUM dlamch_("Safe minimum") +#define PRECISION dlamch_("Precision") +#define BASE dlamch_("Base") +#endif + +extern doublereal dlapy2_(doublereal *x, doublereal *y); + +/* +f2c knows the exact rules for precedence, and so omits parentheses where not +strictly necessary. Since this is generated code, we don't really care if +it's readable, and we know what is written is correct. So don't warn about +them. +*/ +#if defined(__GNUC__) +#pragma GCC diagnostic ignored "-Wparentheses" +#endif + + +/* Table of constant values */ + +static integer c__1 = 1; +static complex c_b55 = {0.f,0.f}; +static complex c_b56 = {1.f,0.f}; +static integer c_n1 = -1; +static integer c__3 = 3; +static integer c__2 = 2; +static integer c__0 = 0; +static integer c__8 = 8; +static integer c__4 = 4; +static integer c__65 = 65; +static real c_b871 = 1.f; +static integer c__15 = 15; +static logical c_false = FALSE_; +static real c_b1101 = 0.f; +static integer c__9 = 9; +static real c_b1150 = -1.f; +static real c_b1794 = .5f; + +/* Subroutine */ int cgebak_(char *job, char *side, integer *n, integer *ilo, + integer *ihi, real *scale, integer *m, complex *v, integer *ldv, + integer *info) +{ + /* System generated locals */ + integer v_dim1, v_offset, i__1; + + /* Local variables */ + static integer i__, k; + static real s; + static integer ii; + extern logical lsame_(char *, char *); + extern /* Subroutine */ int cswap_(integer *, complex *, integer *, + complex *, integer *); + static logical leftv; + extern /* Subroutine */ int csscal_(integer *, real *, complex *, integer + *), xerbla_(char *, integer *); + static logical rightv; + + +/* + -- LAPACK routine (version 3.0) -- + Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd., + Courant Institute, Argonne National Lab, and Rice University + September 30, 1994 + + + Purpose + ======= + + CGEBAK forms the right or left eigenvectors of a complex general + matrix by backward transformation on the computed eigenvectors of the + balanced matrix output by CGEBAL. + + Arguments + ========= + + JOB (input) CHARACTER*1 + Specifies the type of backward transformation required: + = 'N', do nothing, return immediately; + = 'P', do backward transformation for permutation only; + = 'S', do backward transformation for scaling only; + = 'B', do backward transformations for both permutation and + scaling. + JOB must be the same as the argument JOB supplied to CGEBAL. + + SIDE (input) CHARACTER*1 + = 'R': V contains right eigenvectors; + = 'L': V contains left eigenvectors. + + N (input) INTEGER + The number of rows of the matrix V. N >= 0. + + ILO (input) INTEGER + IHI (input) INTEGER + The integers ILO and IHI determined by CGEBAL. + 1 <= ILO <= IHI <= N, if N > 0; ILO=1 and IHI=0, if N=0. + + SCALE (input) REAL array, dimension (N) + Details of the permutation and scaling factors, as returned + by CGEBAL. + + M (input) INTEGER + The number of columns of the matrix V. M >= 0. + + V (input/output) COMPLEX array, dimension (LDV,M) + On entry, the matrix of right or left eigenvectors to be + transformed, as returned by CHSEIN or CTREVC. + On exit, V is overwritten by the transformed eigenvectors. + + LDV (input) INTEGER + The leading dimension of the array V. LDV >= max(1,N). + + INFO (output) INTEGER + = 0: successful exit + < 0: if INFO = -i, the i-th argument had an illegal value. + + ===================================================================== + + + Decode and Test the input parameters +*/ + + /* Parameter adjustments */ + --scale; + v_dim1 = *ldv; + v_offset = 1 + v_dim1; + v -= v_offset; + + /* Function Body */ + rightv = lsame_(side, "R"); + leftv = lsame_(side, "L"); + + *info = 0; + if (! lsame_(job, "N") && ! lsame_(job, "P") && ! lsame_(job, "S") + && ! lsame_(job, "B")) { + *info = -1; + } else if (! rightv && ! leftv) { + *info = -2; + } else if (*n < 0) { + *info = -3; + } else if (*ilo < 1 || *ilo > max(1,*n)) { + *info = -4; + } else if (*ihi < min(*ilo,*n) || *ihi > *n) { + *info = -5; + } else if (*m < 0) { + *info = -7; + } else if (*ldv < max(1,*n)) { + *info = -9; + } + if (*info != 0) { + i__1 = -(*info); + xerbla_("CGEBAK", &i__1); + return 0; + } + +/* Quick return if possible */ + + if (*n == 0) { + return 0; + } + if (*m == 0) { + return 0; + } + if (lsame_(job, "N")) { + return 0; + } + + if (*ilo == *ihi) { + goto L30; + } + +/* Backward balance */ + + if (lsame_(job, "S") || lsame_(job, "B")) { + + if (rightv) { + i__1 = *ihi; + for (i__ = *ilo; i__ <= i__1; ++i__) { + s = scale[i__]; + csscal_(m, &s, &v[i__ + v_dim1], ldv); +/* L10: */ + } + } + + if (leftv) { + i__1 = *ihi; + for (i__ = *ilo; i__ <= i__1; ++i__) { + s = 1.f / scale[i__]; + csscal_(m, &s, &v[i__ + v_dim1], ldv); +/* L20: */ + } + } + + } + +/* + Backward permutation + + For I = ILO-1 step -1 until 1, + IHI+1 step 1 until N do -- +*/ + +L30: + if (lsame_(job, "P") || lsame_(job, "B")) { + if (rightv) { + i__1 = *n; + for (ii = 1; ii <= i__1; ++ii) { + i__ = ii; + if (i__ >= *ilo && i__ <= *ihi) { + goto L40; + } + if (i__ < *ilo) { + i__ = *ilo - ii; + } + k = scale[i__]; + if (k == i__) { + goto L40; + } + cswap_(m, &v[i__ + v_dim1], ldv, &v[k + v_dim1], ldv); +L40: + ; + } + } + + if (leftv) { + i__1 = *n; + for (ii = 1; ii <= i__1; ++ii) { + i__ = ii; + if (i__ >= *ilo && i__ <= *ihi) { + goto L50; + } + if (i__ < *ilo) { + i__ = *ilo - ii; + } + k = scale[i__]; + if (k == i__) { + goto L50; + } + cswap_(m, &v[i__ + v_dim1], ldv, &v[k + v_dim1], ldv); +L50: + ; + } + } + } + + return 0; + +/* End of CGEBAK */ + +} /* cgebak_ */ + +/* Subroutine */ int cgebal_(char *job, integer *n, complex *a, integer *lda, + integer *ilo, integer *ihi, real *scale, integer *info) +{ + /* System generated locals */ + integer a_dim1, a_offset, i__1, i__2, i__3; + real r__1, r__2; + + /* Builtin functions */ + double r_imag(complex *), c_abs(complex *); + + /* Local variables */ + static real c__, f, g; + static integer i__, j, k, l, m; + static real r__, s, ca, ra; + static integer ica, ira, iexc; + extern logical lsame_(char *, char *); + extern /* Subroutine */ int cswap_(integer *, complex *, integer *, + complex *, integer *); + static real sfmin1, sfmin2, sfmax1, sfmax2; + extern integer icamax_(integer *, complex *, integer *); + extern doublereal slamch_(char *); + extern /* Subroutine */ int csscal_(integer *, real *, complex *, integer + *), xerbla_(char *, integer *); + static logical noconv; + + +/* + -- LAPACK routine (version 3.0) -- + Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd., + Courant Institute, Argonne National Lab, and Rice University + June 30, 1999 + + + Purpose + ======= + + CGEBAL balances a general complex matrix A. This involves, first, + permuting A by a similarity transformation to isolate eigenvalues + in the first 1 to ILO-1 and last IHI+1 to N elements on the + diagonal; and second, applying a diagonal similarity transformation + to rows and columns ILO to IHI to make the rows and columns as + close in norm as possible. Both steps are optional. + + Balancing may reduce the 1-norm of the matrix, and improve the + accuracy of the computed eigenvalues and/or eigenvectors. + + Arguments + ========= + + JOB (input) CHARACTER*1 + Specifies the operations to be performed on A: + = 'N': none: simply set ILO = 1, IHI = N, SCALE(I) = 1.0 + for i = 1,...,N; + = 'P': permute only; + = 'S': scale only; + = 'B': both permute and scale. + + N (input) INTEGER + The order of the matrix A. N >= 0. + + A (input/output) COMPLEX array, dimension (LDA,N) + On entry, the input matrix A. + On exit, A is overwritten by the balanced matrix. + If JOB = 'N', A is not referenced. + See Further Details. + + LDA (input) INTEGER + The leading dimension of the array A. LDA >= max(1,N). + + ILO (output) INTEGER + IHI (output) INTEGER + ILO and IHI are set to integers such that on exit + A(i,j) = 0 if i > j and j = 1,...,ILO-1 or I = IHI+1,...,N. + If JOB = 'N' or 'S', ILO = 1 and IHI = N. + + SCALE (output) REAL array, dimension (N) + Details of the permutations and scaling factors applied to + A. If P(j) is the index of the row and column interchanged + with row and column j and D(j) is the scaling factor + applied to row and column j, then + SCALE(j) = P(j) for j = 1,...,ILO-1 + = D(j) for j = ILO,...,IHI + = P(j) for j = IHI+1,...,N. + The order in which the interchanges are made is N to IHI+1, + then 1 to ILO-1. + + INFO (output) INTEGER + = 0: successful exit. + < 0: if INFO = -i, the i-th argument had an illegal value. + + Further Details + =============== + + The permutations consist of row and column interchanges which put + the matrix in the form + + ( T1 X Y ) + P A P = ( 0 B Z ) + ( 0 0 T2 ) + + where T1 and T2 are upper triangular matrices whose eigenvalues lie + along the diagonal. The column indices ILO and IHI mark the starting + and ending columns of the submatrix B. Balancing consists of applying + a diagonal similarity transformation inv(D) * B * D to make the + 1-norms of each row of B and its corresponding column nearly equal. + The output matrix is + + ( T1 X*D Y ) + ( 0 inv(D)*B*D inv(D)*Z ). + ( 0 0 T2 ) + + Information about the permutations P and the diagonal matrix D is + returned in the vector SCALE. + + This subroutine is based on the EISPACK routine CBAL. + + Modified by Tzu-Yi Chen, Computer Science Division, University of + California at Berkeley, USA + + ===================================================================== + + + Test the input parameters +*/ + + /* Parameter adjustments */ + a_dim1 = *lda; + a_offset = 1 + a_dim1; + a -= a_offset; + --scale; + + /* Function Body */ + *info = 0; + if (! lsame_(job, "N") && ! lsame_(job, "P") && ! lsame_(job, "S") + && ! lsame_(job, "B")) { + *info = -1; + } else if (*n < 0) { + *info = -2; + } else if (*lda < max(1,*n)) { + *info = -4; + } + if (*info != 0) { + i__1 = -(*info); + xerbla_("CGEBAL", &i__1); + return 0; + } + + k = 1; + l = *n; + + if (*n == 0) { + goto L210; + } + + if (lsame_(job, "N")) { + i__1 = *n; + for (i__ = 1; i__ <= i__1; ++i__) { + scale[i__] = 1.f; +/* L10: */ + } + goto L210; + } + + if (lsame_(job, "S")) { + goto L120; + } + +/* Permutation to isolate eigenvalues if possible */ + + goto L50; + +/* Row and column exchange. */ + +L20: + scale[m] = (real) j; + if (j == m) { + goto L30; + } + + cswap_(&l, &a[j * a_dim1 + 1], &c__1, &a[m * a_dim1 + 1], &c__1); + i__1 = *n - k + 1; + cswap_(&i__1, &a[j + k * a_dim1], lda, &a[m + k * a_dim1], lda); + +L30: + switch (iexc) { + case 1: goto L40; + case 2: goto L80; + } + +/* Search for rows isolating an eigenvalue and push them down. */ + +L40: + if (l == 1) { + goto L210; + } + --l; + +L50: + for (j = l; j >= 1; --j) { + + i__1 = l; + for (i__ = 1; i__ <= i__1; ++i__) { + if (i__ == j) { + goto L60; + } + i__2 = j + i__ * a_dim1; + if (a[i__2].r != 0.f || r_imag(&a[j + i__ * a_dim1]) != 0.f) { + goto L70; + } +L60: + ; + } + + m = l; + iexc = 1; + goto L20; +L70: + ; + } + + goto L90; + +/* Search for columns isolating an eigenvalue and push them left. */ + +L80: + ++k; + +L90: + i__1 = l; + for (j = k; j <= i__1; ++j) { + + i__2 = l; + for (i__ = k; i__ <= i__2; ++i__) { + if (i__ == j) { + goto L100; + } + i__3 = i__ + j * a_dim1; + if (a[i__3].r != 0.f || r_imag(&a[i__ + j * a_dim1]) != 0.f) { + goto L110; + } +L100: + ; + } + + m = k; + iexc = 2; + goto L20; +L110: + ; + } + +L120: + i__1 = l; + for (i__ = k; i__ <= i__1; ++i__) { + scale[i__] = 1.f; +/* L130: */ + } + + if (lsame_(job, "P")) { + goto L210; + } + +/* + Balance the submatrix in rows K to L. + + Iterative loop for norm reduction +*/ + + sfmin1 = slamch_("S") / slamch_("P"); + sfmax1 = 1.f / sfmin1; + sfmin2 = sfmin1 * 8.f; + sfmax2 = 1.f / sfmin2; +L140: + noconv = FALSE_; + + i__1 = l; + for (i__ = k; i__ <= i__1; ++i__) { + c__ = 0.f; + r__ = 0.f; + + i__2 = l; + for (j = k; j <= i__2; ++j) { + if (j == i__) { + goto L150; + } + i__3 = j + i__ * a_dim1; + c__ += (r__1 = a[i__3].r, dabs(r__1)) + (r__2 = r_imag(&a[j + i__ + * a_dim1]), dabs(r__2)); + i__3 = i__ + j * a_dim1; + r__ += (r__1 = a[i__3].r, dabs(r__1)) + (r__2 = r_imag(&a[i__ + j + * a_dim1]), dabs(r__2)); +L150: + ; + } + ica = icamax_(&l, &a[i__ * a_dim1 + 1], &c__1); + ca = c_abs(&a[ica + i__ * a_dim1]); + i__2 = *n - k + 1; + ira = icamax_(&i__2, &a[i__ + k * a_dim1], lda); + ra = c_abs(&a[i__ + (ira + k - 1) * a_dim1]); + +/* Guard against zero C or R due to underflow. */ + + if (c__ == 0.f || r__ == 0.f) { + goto L200; + } + g = r__ / 8.f; + f = 1.f; + s = c__ + r__; +L160: +/* Computing MAX */ + r__1 = max(f,c__); +/* Computing MIN */ + r__2 = min(r__,g); + if (c__ >= g || dmax(r__1,ca) >= sfmax2 || dmin(r__2,ra) <= sfmin2) { + goto L170; + } + f *= 8.f; + c__ *= 8.f; + ca *= 8.f; + r__ /= 8.f; + g /= 8.f; + ra /= 8.f; + goto L160; + +L170: + g = c__ / 8.f; +L180: +/* Computing MIN */ + r__1 = min(f,c__), r__1 = min(r__1,g); + if (g < r__ || dmax(r__,ra) >= sfmax2 || dmin(r__1,ca) <= sfmin2) { + goto L190; + } + f /= 8.f; + c__ /= 8.f; + g /= 8.f; + ca /= 8.f; + r__ *= 8.f; + ra *= 8.f; + goto L180; + +/* Now balance. */ + +L190: + if (c__ + r__ >= s * .95f) { + goto L200; + } + if (f < 1.f && scale[i__] < 1.f) { + if (f * scale[i__] <= sfmin1) { + goto L200; + } + } + if (f > 1.f && scale[i__] > 1.f) { + if (scale[i__] >= sfmax1 / f) { + goto L200; + } + } + g = 1.f / f; + scale[i__] *= f; + noconv = TRUE_; + + i__2 = *n - k + 1; + csscal_(&i__2, &g, &a[i__ + k * a_dim1], lda); + csscal_(&l, &f, &a[i__ * a_dim1 + 1], &c__1); + +L200: + ; + } + + if (noconv) { + goto L140; + } + +L210: + *ilo = k; + *ihi = l; + + return 0; + +/* End of CGEBAL */ + +} /* cgebal_ */ + +/* Subroutine */ int cgebd2_(integer *m, integer *n, complex *a, integer *lda, + real *d__, real *e, complex *tauq, complex *taup, complex *work, + integer *info) +{ + /* System generated locals */ + integer a_dim1, a_offset, i__1, i__2, i__3, i__4; + complex q__1; + + /* Builtin functions */ + void r_cnjg(complex *, complex *); + + /* Local variables */ + static integer i__; + static complex alpha; + extern /* Subroutine */ int clarf_(char *, integer *, integer *, complex * + , integer *, complex *, complex *, integer *, complex *), + clarfg_(integer *, complex *, complex *, integer *, complex *), + clacgv_(integer *, complex *, integer *), xerbla_(char *, integer + *); + + +/* + -- LAPACK routine (version 3.0) -- + Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd., + Courant Institute, Argonne National Lab, and Rice University + September 30, 1994 + + + Purpose + ======= + + CGEBD2 reduces a complex general m by n matrix A to upper or lower + real bidiagonal form B by a unitary transformation: Q' * A * P = B. + + If m >= n, B is upper bidiagonal; if m < n, B is lower bidiagonal. + + Arguments + ========= + + M (input) INTEGER + The number of rows in the matrix A. M >= 0. + + N (input) INTEGER + The number of columns in the matrix A. N >= 0. + + A (input/output) COMPLEX array, dimension (LDA,N) + On entry, the m by n general matrix to be reduced. + On exit, + if m >= n, the diagonal and the first superdiagonal are + overwritten with the upper bidiagonal matrix B; the + elements below the diagonal, with the array TAUQ, represent + the unitary matrix Q as a product of elementary + reflectors, and the elements above the first superdiagonal, + with the array TAUP, represent the unitary matrix P as + a product of elementary reflectors; + if m < n, the diagonal and the first subdiagonal are + overwritten with the lower bidiagonal matrix B; the + elements below the first subdiagonal, with the array TAUQ, + represent the unitary matrix Q as a product of + elementary reflectors, and the elements above the diagonal, + with the array TAUP, represent the unitary matrix P as + a product of elementary reflectors. + See Further Details. + + LDA (input) INTEGER + The leading dimension of the array A. LDA >= max(1,M). + + D (output) REAL array, dimension (min(M,N)) + The diagonal elements of the bidiagonal matrix B: + D(i) = A(i,i). + + E (output) REAL array, dimension (min(M,N)-1) + The off-diagonal elements of the bidiagonal matrix B: + if m >= n, E(i) = A(i,i+1) for i = 1,2,...,n-1; + if m < n, E(i) = A(i+1,i) for i = 1,2,...,m-1. + + TAUQ (output) COMPLEX array dimension (min(M,N)) + The scalar factors of the elementary reflectors which + represent the unitary matrix Q. See Further Details. + + TAUP (output) COMPLEX array, dimension (min(M,N)) + The scalar factors of the elementary reflectors which + represent the unitary matrix P. See Further Details. + + WORK (workspace) COMPLEX array, dimension (max(M,N)) + + INFO (output) INTEGER + = 0: successful exit + < 0: if INFO = -i, the i-th argument had an illegal value. + + Further Details + =============== + + The matrices Q and P are represented as products of elementary + reflectors: + + If m >= n, + + Q = H(1) H(2) . . . H(n) and P = G(1) G(2) . . . G(n-1) + + Each H(i) and G(i) has the form: + + H(i) = I - tauq * v * v' and G(i) = I - taup * u * u' + + where tauq and taup are complex scalars, and v and u are complex + vectors; v(1:i-1) = 0, v(i) = 1, and v(i+1:m) is stored on exit in + A(i+1:m,i); u(1:i) = 0, u(i+1) = 1, and u(i+2:n) is stored on exit in + A(i,i+2:n); tauq is stored in TAUQ(i) and taup in TAUP(i). + + If m < n, + + Q = H(1) H(2) . . . H(m-1) and P = G(1) G(2) . . . G(m) + + Each H(i) and G(i) has the form: + + H(i) = I - tauq * v * v' and G(i) = I - taup * u * u' + + where tauq and taup are complex scalars, v and u are complex vectors; + v(1:i) = 0, v(i+1) = 1, and v(i+2:m) is stored on exit in A(i+2:m,i); + u(1:i-1) = 0, u(i) = 1, and u(i+1:n) is stored on exit in A(i,i+1:n); + tauq is stored in TAUQ(i) and taup in TAUP(i). + + The contents of A on exit are illustrated by the following examples: + + m = 6 and n = 5 (m > n): m = 5 and n = 6 (m < n): + + ( d e u1 u1 u1 ) ( d u1 u1 u1 u1 u1 ) + ( v1 d e u2 u2 ) ( e d u2 u2 u2 u2 ) + ( v1 v2 d e u3 ) ( v1 e d u3 u3 u3 ) + ( v1 v2 v3 d e ) ( v1 v2 e d u4 u4 ) + ( v1 v2 v3 v4 d ) ( v1 v2 v3 e d u5 ) + ( v1 v2 v3 v4 v5 ) + + where d and e denote diagonal and off-diagonal elements of B, vi + denotes an element of the vector defining H(i), and ui an element of + the vector defining G(i). + + ===================================================================== + + + Test the input parameters +*/ + + /* Parameter adjustments */ + a_dim1 = *lda; + a_offset = 1 + a_dim1; + a -= a_offset; + --d__; + --e; + --tauq; + --taup; + --work; + + /* Function Body */ + *info = 0; + if (*m < 0) { + *info = -1; + } else if (*n < 0) { + *info = -2; + } else if (*lda < max(1,*m)) { + *info = -4; + } + if (*info < 0) { + i__1 = -(*info); + xerbla_("CGEBD2", &i__1); + return 0; + } + + if (*m >= *n) { + +/* Reduce to upper bidiagonal form */ + + i__1 = *n; + for (i__ = 1; i__ <= i__1; ++i__) { + +/* Generate elementary reflector H(i) to annihilate A(i+1:m,i) */ + + i__2 = i__ + i__ * a_dim1; + alpha.r = a[i__2].r, alpha.i = a[i__2].i; + i__2 = *m - i__ + 1; +/* Computing MIN */ + i__3 = i__ + 1; + clarfg_(&i__2, &alpha, &a[min(i__3,*m) + i__ * a_dim1], &c__1, & + tauq[i__]); + i__2 = i__; + d__[i__2] = alpha.r; + i__2 = i__ + i__ * a_dim1; + a[i__2].r = 1.f, a[i__2].i = 0.f; + +/* Apply H(i)' to A(i:m,i+1:n) from the left */ + + i__2 = *m - i__ + 1; + i__3 = *n - i__; + r_cnjg(&q__1, &tauq[i__]); + clarf_("Left", &i__2, &i__3, &a[i__ + i__ * a_dim1], &c__1, &q__1, + &a[i__ + (i__ + 1) * a_dim1], lda, &work[1]); + i__2 = i__ + i__ * a_dim1; + i__3 = i__; + a[i__2].r = d__[i__3], a[i__2].i = 0.f; + + if (i__ < *n) { + +/* + Generate elementary reflector G(i) to annihilate + A(i,i+2:n) +*/ + + i__2 = *n - i__; + clacgv_(&i__2, &a[i__ + (i__ + 1) * a_dim1], lda); + i__2 = i__ + (i__ + 1) * a_dim1; + alpha.r = a[i__2].r, alpha.i = a[i__2].i; + i__2 = *n - i__; +/* Computing MIN */ + i__3 = i__ + 2; + clarfg_(&i__2, &alpha, &a[i__ + min(i__3,*n) * a_dim1], lda, & + taup[i__]); + i__2 = i__; + e[i__2] = alpha.r; + i__2 = i__ + (i__ + 1) * a_dim1; + a[i__2].r = 1.f, a[i__2].i = 0.f; + +/* Apply G(i) to A(i+1:m,i+1:n) from the right */ + + i__2 = *m - i__; + i__3 = *n - i__; + clarf_("Right", &i__2, &i__3, &a[i__ + (i__ + 1) * a_dim1], + lda, &taup[i__], &a[i__ + 1 + (i__ + 1) * a_dim1], + lda, &work[1]); + i__2 = *n - i__; + clacgv_(&i__2, &a[i__ + (i__ + 1) * a_dim1], lda); + i__2 = i__ + (i__ + 1) * a_dim1; + i__3 = i__; + a[i__2].r = e[i__3], a[i__2].i = 0.f; + } else { + i__2 = i__; + taup[i__2].r = 0.f, taup[i__2].i = 0.f; + } +/* L10: */ + } + } else { + +/* Reduce to lower bidiagonal form */ + + i__1 = *m; + for (i__ = 1; i__ <= i__1; ++i__) { + +/* Generate elementary reflector G(i) to annihilate A(i,i+1:n) */ + + i__2 = *n - i__ + 1; + clacgv_(&i__2, &a[i__ + i__ * a_dim1], lda); + i__2 = i__ + i__ * a_dim1; + alpha.r = a[i__2].r, alpha.i = a[i__2].i; + i__2 = *n - i__ + 1; +/* Computing MIN */ + i__3 = i__ + 1; + clarfg_(&i__2, &alpha, &a[i__ + min(i__3,*n) * a_dim1], lda, & + taup[i__]); + i__2 = i__; + d__[i__2] = alpha.r; + i__2 = i__ + i__ * a_dim1; + a[i__2].r = 1.f, a[i__2].i = 0.f; + +/* Apply G(i) to A(i+1:m,i:n) from the right */ + + i__2 = *m - i__; + i__3 = *n - i__ + 1; +/* Computing MIN */ + i__4 = i__ + 1; + clarf_("Right", &i__2, &i__3, &a[i__ + i__ * a_dim1], lda, &taup[ + i__], &a[min(i__4,*m) + i__ * a_dim1], lda, &work[1]); + i__2 = *n - i__ + 1; + clacgv_(&i__2, &a[i__ + i__ * a_dim1], lda); + i__2 = i__ + i__ * a_dim1; + i__3 = i__; + a[i__2].r = d__[i__3], a[i__2].i = 0.f; + + if (i__ < *m) { + +/* + Generate elementary reflector H(i) to annihilate + A(i+2:m,i) +*/ + + i__2 = i__ + 1 + i__ * a_dim1; + alpha.r = a[i__2].r, alpha.i = a[i__2].i; + i__2 = *m - i__; +/* Computing MIN */ + i__3 = i__ + 2; + clarfg_(&i__2, &alpha, &a[min(i__3,*m) + i__ * a_dim1], &c__1, + &tauq[i__]); + i__2 = i__; + e[i__2] = alpha.r; + i__2 = i__ + 1 + i__ * a_dim1; + a[i__2].r = 1.f, a[i__2].i = 0.f; + +/* Apply H(i)' to A(i+1:m,i+1:n) from the left */ + + i__2 = *m - i__; + i__3 = *n - i__; + r_cnjg(&q__1, &tauq[i__]); + clarf_("Left", &i__2, &i__3, &a[i__ + 1 + i__ * a_dim1], & + c__1, &q__1, &a[i__ + 1 + (i__ + 1) * a_dim1], lda, & + work[1]); + i__2 = i__ + 1 + i__ * a_dim1; + i__3 = i__; + a[i__2].r = e[i__3], a[i__2].i = 0.f; + } else { + i__2 = i__; + tauq[i__2].r = 0.f, tauq[i__2].i = 0.f; + } +/* L20: */ + } + } + return 0; + +/* End of CGEBD2 */ + +} /* cgebd2_ */ + +/* Subroutine */ int cgebrd_(integer *m, integer *n, complex *a, integer *lda, + real *d__, real *e, complex *tauq, complex *taup, complex *work, + integer *lwork, integer *info) +{ + /* System generated locals */ + integer a_dim1, a_offset, i__1, i__2, i__3, i__4, i__5; + real r__1; + complex q__1; + + /* Local variables */ + static integer i__, j, nb, nx; + static real ws; + extern /* Subroutine */ int cgemm_(char *, char *, integer *, integer *, + integer *, complex *, complex *, integer *, complex *, integer *, + complex *, complex *, integer *); + static integer nbmin, iinfo, minmn; + extern /* Subroutine */ int cgebd2_(integer *, integer *, complex *, + integer *, real *, real *, complex *, complex *, complex *, + integer *), clabrd_(integer *, integer *, integer *, complex *, + integer *, real *, real *, complex *, complex *, complex *, + integer *, complex *, integer *), xerbla_(char *, integer *); + extern integer ilaenv_(integer *, char *, char *, integer *, integer *, + integer *, integer *, ftnlen, ftnlen); + static integer ldwrkx, ldwrky, lwkopt; + static logical lquery; + + +/* + -- LAPACK routine (version 3.0) -- + Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd., + Courant Institute, Argonne National Lab, and Rice University + June 30, 1999 + + + Purpose + ======= + + CGEBRD reduces a general complex M-by-N matrix A to upper or lower + bidiagonal form B by a unitary transformation: Q**H * A * P = B. + + If m >= n, B is upper bidiagonal; if m < n, B is lower bidiagonal. + + Arguments + ========= + + M (input) INTEGER + The number of rows in the matrix A. M >= 0. + + N (input) INTEGER + The number of columns in the matrix A. N >= 0. + + A (input/output) COMPLEX array, dimension (LDA,N) + On entry, the M-by-N general matrix to be reduced. + On exit, + if m >= n, the diagonal and the first superdiagonal are + overwritten with the upper bidiagonal matrix B; the + elements below the diagonal, with the array TAUQ, represent + the unitary matrix Q as a product of elementary + reflectors, and the elements above the first superdiagonal, + with the array TAUP, represent the unitary matrix P as + a product of elementary reflectors; + if m < n, the diagonal and the first subdiagonal are + overwritten with the lower bidiagonal matrix B; the + elements below the first subdiagonal, with the array TAUQ, + represent the unitary matrix Q as a product of + elementary reflectors, and the elements above the diagonal, + with the array TAUP, represent the unitary matrix P as + a product of elementary reflectors. + See Further Details. + + LDA (input) INTEGER + The leading dimension of the array A. LDA >= max(1,M). + + D (output) REAL array, dimension (min(M,N)) + The diagonal elements of the bidiagonal matrix B: + D(i) = A(i,i). + + E (output) REAL array, dimension (min(M,N)-1) + The off-diagonal elements of the bidiagonal matrix B: + if m >= n, E(i) = A(i,i+1) for i = 1,2,...,n-1; + if m < n, E(i) = A(i+1,i) for i = 1,2,...,m-1. + + TAUQ (output) COMPLEX array dimension (min(M,N)) + The scalar factors of the elementary reflectors which + represent the unitary matrix Q. See Further Details. + + TAUP (output) COMPLEX array, dimension (min(M,N)) + The scalar factors of the elementary reflectors which + represent the unitary matrix P. See Further Details. + + WORK (workspace/output) COMPLEX array, dimension (LWORK) + On exit, if INFO = 0, WORK(1) returns the optimal LWORK. + + LWORK (input) INTEGER + The length of the array WORK. LWORK >= max(1,M,N). + For optimum performance LWORK >= (M+N)*NB, where NB + is the optimal blocksize. + + If LWORK = -1, then a workspace query is assumed; the routine + only calculates the optimal size of the WORK array, returns + this value as the first entry of the WORK array, and no error + message related to LWORK is issued by XERBLA. + + INFO (output) INTEGER + = 0: successful exit. + < 0: if INFO = -i, the i-th argument had an illegal value. + + Further Details + =============== + + The matrices Q and P are represented as products of elementary + reflectors: + + If m >= n, + + Q = H(1) H(2) . . . H(n) and P = G(1) G(2) . . . G(n-1) + + Each H(i) and G(i) has the form: + + H(i) = I - tauq * v * v' and G(i) = I - taup * u * u' + + where tauq and taup are complex scalars, and v and u are complex + vectors; v(1:i-1) = 0, v(i) = 1, and v(i+1:m) is stored on exit in + A(i+1:m,i); u(1:i) = 0, u(i+1) = 1, and u(i+2:n) is stored on exit in + A(i,i+2:n); tauq is stored in TAUQ(i) and taup in TAUP(i). + + If m < n, + + Q = H(1) H(2) . . . H(m-1) and P = G(1) G(2) . . . G(m) + + Each H(i) and G(i) has the form: + + H(i) = I - tauq * v * v' and G(i) = I - taup * u * u' + + where tauq and taup are complex scalars, and v and u are complex + vectors; v(1:i) = 0, v(i+1) = 1, and v(i+2:m) is stored on exit in + A(i+2:m,i); u(1:i-1) = 0, u(i) = 1, and u(i+1:n) is stored on exit in + A(i,i+1:n); tauq is stored in TAUQ(i) and taup in TAUP(i). + + The contents of A on exit are illustrated by the following examples: + + m = 6 and n = 5 (m > n): m = 5 and n = 6 (m < n): + + ( d e u1 u1 u1 ) ( d u1 u1 u1 u1 u1 ) + ( v1 d e u2 u2 ) ( e d u2 u2 u2 u2 ) + ( v1 v2 d e u3 ) ( v1 e d u3 u3 u3 ) + ( v1 v2 v3 d e ) ( v1 v2 e d u4 u4 ) + ( v1 v2 v3 v4 d ) ( v1 v2 v3 e d u5 ) + ( v1 v2 v3 v4 v5 ) + + where d and e denote diagonal and off-diagonal elements of B, vi + denotes an element of the vector defining H(i), and ui an element of + the vector defining G(i). + + ===================================================================== + + + Test the input parameters +*/ + + /* Parameter adjustments */ + a_dim1 = *lda; + a_offset = 1 + a_dim1; + a -= a_offset; + --d__; + --e; + --tauq; + --taup; + --work; + + /* Function Body */ + *info = 0; +/* Computing MAX */ + i__1 = 1, i__2 = ilaenv_(&c__1, "CGEBRD", " ", m, n, &c_n1, &c_n1, ( + ftnlen)6, (ftnlen)1); + nb = max(i__1,i__2); + lwkopt = (*m + *n) * nb; + r__1 = (real) lwkopt; + work[1].r = r__1, work[1].i = 0.f; + lquery = *lwork == -1; + if (*m < 0) { + *info = -1; + } else if (*n < 0) { + *info = -2; + } else if (*lda < max(1,*m)) { + *info = -4; + } else /* if(complicated condition) */ { +/* Computing MAX */ + i__1 = max(1,*m); + if (*lwork < max(i__1,*n) && ! lquery) { + *info = -10; + } + } + if (*info < 0) { + i__1 = -(*info); + xerbla_("CGEBRD", &i__1); + return 0; + } else if (lquery) { + return 0; + } + +/* Quick return if possible */ + + minmn = min(*m,*n); + if (minmn == 0) { + work[1].r = 1.f, work[1].i = 0.f; + return 0; + } + + ws = (real) max(*m,*n); + ldwrkx = *m; + ldwrky = *n; + + if (nb > 1 && nb < minmn) { + +/* + Set the crossover point NX. + + Computing MAX +*/ + i__1 = nb, i__2 = ilaenv_(&c__3, "CGEBRD", " ", m, n, &c_n1, &c_n1, ( + ftnlen)6, (ftnlen)1); + nx = max(i__1,i__2); + +/* Determine when to switch from blocked to unblocked code. */ + + if (nx < minmn) { + ws = (real) ((*m + *n) * nb); + if ((real) (*lwork) < ws) { + +/* + Not enough work space for the optimal NB, consider using + a smaller block size. +*/ + + nbmin = ilaenv_(&c__2, "CGEBRD", " ", m, n, &c_n1, &c_n1, ( + ftnlen)6, (ftnlen)1); + if (*lwork >= (*m + *n) * nbmin) { + nb = *lwork / (*m + *n); + } else { + nb = 1; + nx = minmn; + } + } + } + } else { + nx = minmn; + } + + i__1 = minmn - nx; + i__2 = nb; + for (i__ = 1; i__2 < 0 ? i__ >= i__1 : i__ <= i__1; i__ += i__2) { + +/* + Reduce rows and columns i:i+ib-1 to bidiagonal form and return + the matrices X and Y which are needed to update the unreduced + part of the matrix +*/ + + i__3 = *m - i__ + 1; + i__4 = *n - i__ + 1; + clabrd_(&i__3, &i__4, &nb, &a[i__ + i__ * a_dim1], lda, &d__[i__], &e[ + i__], &tauq[i__], &taup[i__], &work[1], &ldwrkx, &work[ldwrkx + * nb + 1], &ldwrky); + +/* + Update the trailing submatrix A(i+ib:m,i+ib:n), using + an update of the form A := A - V*Y' - X*U' +*/ + + i__3 = *m - i__ - nb + 1; + i__4 = *n - i__ - nb + 1; + q__1.r = -1.f, q__1.i = -0.f; + cgemm_("No transpose", "Conjugate transpose", &i__3, &i__4, &nb, & + q__1, &a[i__ + nb + i__ * a_dim1], lda, &work[ldwrkx * nb + + nb + 1], &ldwrky, &c_b56, &a[i__ + nb + (i__ + nb) * a_dim1], + lda); + i__3 = *m - i__ - nb + 1; + i__4 = *n - i__ - nb + 1; + q__1.r = -1.f, q__1.i = -0.f; + cgemm_("No transpose", "No transpose", &i__3, &i__4, &nb, &q__1, & + work[nb + 1], &ldwrkx, &a[i__ + (i__ + nb) * a_dim1], lda, & + c_b56, &a[i__ + nb + (i__ + nb) * a_dim1], lda); + +/* Copy diagonal and off-diagonal elements of B back into A */ + + if (*m >= *n) { + i__3 = i__ + nb - 1; + for (j = i__; j <= i__3; ++j) { + i__4 = j + j * a_dim1; + i__5 = j; + a[i__4].r = d__[i__5], a[i__4].i = 0.f; + i__4 = j + (j + 1) * a_dim1; + i__5 = j; + a[i__4].r = e[i__5], a[i__4].i = 0.f; +/* L10: */ + } + } else { + i__3 = i__ + nb - 1; + for (j = i__; j <= i__3; ++j) { + i__4 = j + j * a_dim1; + i__5 = j; + a[i__4].r = d__[i__5], a[i__4].i = 0.f; + i__4 = j + 1 + j * a_dim1; + i__5 = j; + a[i__4].r = e[i__5], a[i__4].i = 0.f; +/* L20: */ + } + } +/* L30: */ + } + +/* Use unblocked code to reduce the remainder of the matrix */ + + i__2 = *m - i__ + 1; + i__1 = *n - i__ + 1; + cgebd2_(&i__2, &i__1, &a[i__ + i__ * a_dim1], lda, &d__[i__], &e[i__], & + tauq[i__], &taup[i__], &work[1], &iinfo); + work[1].r = ws, work[1].i = 0.f; + return 0; + +/* End of CGEBRD */ + +} /* cgebrd_ */ + +/* Subroutine */ int cgeev_(char *jobvl, char *jobvr, integer *n, complex *a, + integer *lda, complex *w, complex *vl, integer *ldvl, complex *vr, + integer *ldvr, complex *work, integer *lwork, real *rwork, integer * + info) +{ + /* System generated locals */ + integer a_dim1, a_offset, vl_dim1, vl_offset, vr_dim1, vr_offset, i__1, + i__2, i__3, i__4; + real r__1, r__2; + complex q__1, q__2; + + /* Builtin functions */ + double sqrt(doublereal), r_imag(complex *); + void r_cnjg(complex *, complex *); + + /* Local variables */ + static integer i__, k, ihi; + static real scl; + static integer ilo; + static real dum[1], eps; + static complex tmp; + static integer ibal; + static char side[1]; + static integer maxb; + static real anrm; + static integer ierr, itau, iwrk, nout; + extern /* Subroutine */ int cscal_(integer *, complex *, complex *, + integer *); + extern logical lsame_(char *, char *); + extern doublereal scnrm2_(integer *, complex *, integer *); + extern /* Subroutine */ int cgebak_(char *, char *, integer *, integer *, + integer *, real *, integer *, complex *, integer *, integer *), cgebal_(char *, integer *, complex *, integer *, + integer *, integer *, real *, integer *), slabad_(real *, + real *); + static logical scalea; + extern doublereal clange_(char *, integer *, integer *, complex *, + integer *, real *); + static real cscale; + extern /* Subroutine */ int cgehrd_(integer *, integer *, integer *, + complex *, integer *, complex *, complex *, integer *, integer *), + clascl_(char *, integer *, integer *, real *, real *, integer *, + integer *, complex *, integer *, integer *); + extern doublereal slamch_(char *); + extern /* Subroutine */ int csscal_(integer *, real *, complex *, integer + *), clacpy_(char *, integer *, integer *, complex *, integer *, + complex *, integer *), xerbla_(char *, integer *); + extern integer ilaenv_(integer *, char *, char *, integer *, integer *, + integer *, integer *, ftnlen, ftnlen); + static logical select[1]; + static real bignum; + extern integer isamax_(integer *, real *, integer *); + extern /* Subroutine */ int chseqr_(char *, char *, integer *, integer *, + integer *, complex *, integer *, complex *, complex *, integer *, + complex *, integer *, integer *), ctrevc_(char *, + char *, logical *, integer *, complex *, integer *, complex *, + integer *, complex *, integer *, integer *, integer *, complex *, + real *, integer *), cunghr_(integer *, integer *, + integer *, complex *, integer *, complex *, complex *, integer *, + integer *); + static integer minwrk, maxwrk; + static logical wantvl; + static real smlnum; + static integer hswork, irwork; + static logical lquery, wantvr; + + +/* + -- LAPACK driver routine (version 3.0) -- + Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd., + Courant Institute, Argonne National Lab, and Rice University + June 30, 1999 + + + Purpose + ======= + + CGEEV computes for an N-by-N complex nonsymmetric matrix A, the + eigenvalues and, optionally, the left and/or right eigenvectors. + + The right eigenvector v(j) of A satisfies + A * v(j) = lambda(j) * v(j) + where lambda(j) is its eigenvalue. + The left eigenvector u(j) of A satisfies + u(j)**H * A = lambda(j) * u(j)**H + where u(j)**H denotes the conjugate transpose of u(j). + + The computed eigenvectors are normalized to have Euclidean norm + equal to 1 and largest component real. + + Arguments + ========= + + JOBVL (input) CHARACTER*1 + = 'N': left eigenvectors of A are not computed; + = 'V': left eigenvectors of are computed. + + JOBVR (input) CHARACTER*1 + = 'N': right eigenvectors of A are not computed; + = 'V': right eigenvectors of A are computed. + + N (input) INTEGER + The order of the matrix A. N >= 0. + + A (input/output) COMPLEX array, dimension (LDA,N) + On entry, the N-by-N matrix A. + On exit, A has been overwritten. + + LDA (input) INTEGER + The leading dimension of the array A. LDA >= max(1,N). + + W (output) COMPLEX array, dimension (N) + W contains the computed eigenvalues. + + VL (output) COMPLEX array, dimension (LDVL,N) + If JOBVL = 'V', the left eigenvectors u(j) are stored one + after another in the columns of VL, in the same order + as their eigenvalues. + If JOBVL = 'N', VL is not referenced. + u(j) = VL(:,j), the j-th column of VL. + + LDVL (input) INTEGER + The leading dimension of the array VL. LDVL >= 1; if + JOBVL = 'V', LDVL >= N. + + VR (output) COMPLEX array, dimension (LDVR,N) + If JOBVR = 'V', the right eigenvectors v(j) are stored one + after another in the columns of VR, in the same order + as their eigenvalues. + If JOBVR = 'N', VR is not referenced. + v(j) = VR(:,j), the j-th column of VR. + + LDVR (input) INTEGER + The leading dimension of the array VR. LDVR >= 1; if + JOBVR = 'V', LDVR >= N. + + WORK (workspace/output) COMPLEX array, dimension (LWORK) + On exit, if INFO = 0, WORK(1) returns the optimal LWORK. + + LWORK (input) INTEGER + The dimension of the array WORK. LWORK >= max(1,2*N). + For good performance, LWORK must generally be larger. + + If LWORK = -1, then a workspace query is assumed; the routine + only calculates the optimal size of the WORK array, returns + this value as the first entry of the WORK array, and no error + message related to LWORK is issued by XERBLA. + + RWORK (workspace) REAL array, dimension (2*N) + + INFO (output) INTEGER + = 0: successful exit + < 0: if INFO = -i, the i-th argument had an illegal value. + > 0: if INFO = i, the QR algorithm failed to compute all the + eigenvalues, and no eigenvectors have been computed; + elements and i+1:N of W contain eigenvalues which have + converged. + + ===================================================================== + + + Test the input arguments +*/ + + /* Parameter adjustments */ + a_dim1 = *lda; + a_offset = 1 + a_dim1; + a -= a_offset; + --w; + vl_dim1 = *ldvl; + vl_offset = 1 + vl_dim1; + vl -= vl_offset; + vr_dim1 = *ldvr; + vr_offset = 1 + vr_dim1; + vr -= vr_offset; + --work; + --rwork; + + /* Function Body */ + *info = 0; + lquery = *lwork == -1; + wantvl = lsame_(jobvl, "V"); + wantvr = lsame_(jobvr, "V"); + if (! wantvl && ! lsame_(jobvl, "N")) { + *info = -1; + } else if (! wantvr && ! lsame_(jobvr, "N")) { + *info = -2; + } else if (*n < 0) { + *info = -3; + } else if (*lda < max(1,*n)) { + *info = -5; + } else if (*ldvl < 1 || wantvl && *ldvl < *n) { + *info = -8; + } else if (*ldvr < 1 || wantvr && *ldvr < *n) { + *info = -10; + } + +/* + Compute workspace + (Note: Comments in the code beginning "Workspace:" describe the + minimal amount of workspace needed at that point in the code, + as well as the preferred amount for good performance. + CWorkspace refers to complex workspace, and RWorkspace to real + workspace. NB refers to the optimal block size for the + immediately following subroutine, as returned by ILAENV. + HSWORK refers to the workspace preferred by CHSEQR, as + calculated below. HSWORK is computed assuming ILO=1 and IHI=N, + the worst case.) +*/ + + minwrk = 1; + if (*info == 0 && (*lwork >= 1 || lquery)) { + maxwrk = *n + *n * ilaenv_(&c__1, "CGEHRD", " ", n, &c__1, n, &c__0, ( + ftnlen)6, (ftnlen)1); + if (! wantvl && ! wantvr) { +/* Computing MAX */ + i__1 = 1, i__2 = *n << 1; + minwrk = max(i__1,i__2); +/* Computing MAX */ + i__1 = ilaenv_(&c__8, "CHSEQR", "EN", n, &c__1, n, &c_n1, (ftnlen) + 6, (ftnlen)2); + maxb = max(i__1,2); +/* + Computing MIN + Computing MAX +*/ + i__3 = 2, i__4 = ilaenv_(&c__4, "CHSEQR", "EN", n, &c__1, n, & + c_n1, (ftnlen)6, (ftnlen)2); + i__1 = min(maxb,*n), i__2 = max(i__3,i__4); + k = min(i__1,i__2); +/* Computing MAX */ + i__1 = k * (k + 2), i__2 = *n << 1; + hswork = max(i__1,i__2); + maxwrk = max(maxwrk,hswork); + } else { +/* Computing MAX */ + i__1 = 1, i__2 = *n << 1; + minwrk = max(i__1,i__2); +/* Computing MAX */ + i__1 = maxwrk, i__2 = *n + (*n - 1) * ilaenv_(&c__1, "CUNGHR", + " ", n, &c__1, n, &c_n1, (ftnlen)6, (ftnlen)1); + maxwrk = max(i__1,i__2); +/* Computing MAX */ + i__1 = ilaenv_(&c__8, "CHSEQR", "SV", n, &c__1, n, &c_n1, (ftnlen) + 6, (ftnlen)2); + maxb = max(i__1,2); +/* + Computing MIN + Computing MAX +*/ + i__3 = 2, i__4 = ilaenv_(&c__4, "CHSEQR", "SV", n, &c__1, n, & + c_n1, (ftnlen)6, (ftnlen)2); + i__1 = min(maxb,*n), i__2 = max(i__3,i__4); + k = min(i__1,i__2); +/* Computing MAX */ + i__1 = k * (k + 2), i__2 = *n << 1; + hswork = max(i__1,i__2); +/* Computing MAX */ + i__1 = max(maxwrk,hswork), i__2 = *n << 1; + maxwrk = max(i__1,i__2); + } + work[1].r = (real) maxwrk, work[1].i = 0.f; + } + if (*lwork < minwrk && ! lquery) { + *info = -12; + } + if (*info != 0) { + i__1 = -(*info); + xerbla_("CGEEV ", &i__1); + return 0; + } else if (lquery) { + return 0; + } + +/* Quick return if possible */ + + if (*n == 0) { + return 0; + } + +/* Get machine constants */ + + eps = slamch_("P"); + smlnum = slamch_("S"); + bignum = 1.f / smlnum; + slabad_(&smlnum, &bignum); + smlnum = sqrt(smlnum) / eps; + bignum = 1.f / smlnum; + +/* Scale A if max element outside range [SMLNUM,BIGNUM] */ + + anrm = clange_("M", n, n, &a[a_offset], lda, dum); + scalea = FALSE_; + if (anrm > 0.f && anrm < smlnum) { + scalea = TRUE_; + cscale = smlnum; + } else if (anrm > bignum) { + scalea = TRUE_; + cscale = bignum; + } + if (scalea) { + clascl_("G", &c__0, &c__0, &anrm, &cscale, n, n, &a[a_offset], lda, & + ierr); + } + +/* + Balance the matrix + (CWorkspace: none) + (RWorkspace: need N) +*/ + + ibal = 1; + cgebal_("B", n, &a[a_offset], lda, &ilo, &ihi, &rwork[ibal], &ierr); + +/* + Reduce to upper Hessenberg form + (CWorkspace: need 2*N, prefer N+N*NB) + (RWorkspace: none) +*/ + + itau = 1; + iwrk = itau + *n; + i__1 = *lwork - iwrk + 1; + cgehrd_(n, &ilo, &ihi, &a[a_offset], lda, &work[itau], &work[iwrk], &i__1, + &ierr); + + if (wantvl) { + +/* + Want left eigenvectors + Copy Householder vectors to VL +*/ + + *(unsigned char *)side = 'L'; + clacpy_("L", n, n, &a[a_offset], lda, &vl[vl_offset], ldvl) + ; + +/* + Generate unitary matrix in VL + (CWorkspace: need 2*N-1, prefer N+(N-1)*NB) + (RWorkspace: none) +*/ + + i__1 = *lwork - iwrk + 1; + cunghr_(n, &ilo, &ihi, &vl[vl_offset], ldvl, &work[itau], &work[iwrk], + &i__1, &ierr); + +/* + Perform QR iteration, accumulating Schur vectors in VL + (CWorkspace: need 1, prefer HSWORK (see comments) ) + (RWorkspace: none) +*/ + + iwrk = itau; + i__1 = *lwork - iwrk + 1; + chseqr_("S", "V", n, &ilo, &ihi, &a[a_offset], lda, &w[1], &vl[ + vl_offset], ldvl, &work[iwrk], &i__1, info); + + if (wantvr) { + +/* + Want left and right eigenvectors + Copy Schur vectors to VR +*/ + + *(unsigned char *)side = 'B'; + clacpy_("F", n, n, &vl[vl_offset], ldvl, &vr[vr_offset], ldvr); + } + + } else if (wantvr) { + +/* + Want right eigenvectors + Copy Householder vectors to VR +*/ + + *(unsigned char *)side = 'R'; + clacpy_("L", n, n, &a[a_offset], lda, &vr[vr_offset], ldvr) + ; + +/* + Generate unitary matrix in VR + (CWorkspace: need 2*N-1, prefer N+(N-1)*NB) + (RWorkspace: none) +*/ + + i__1 = *lwork - iwrk + 1; + cunghr_(n, &ilo, &ihi, &vr[vr_offset], ldvr, &work[itau], &work[iwrk], + &i__1, &ierr); + +/* + Perform QR iteration, accumulating Schur vectors in VR + (CWorkspace: need 1, prefer HSWORK (see comments) ) + (RWorkspace: none) +*/ + + iwrk = itau; + i__1 = *lwork - iwrk + 1; + chseqr_("S", "V", n, &ilo, &ihi, &a[a_offset], lda, &w[1], &vr[ + vr_offset], ldvr, &work[iwrk], &i__1, info); + + } else { + +/* + Compute eigenvalues only + (CWorkspace: need 1, prefer HSWORK (see comments) ) + (RWorkspace: none) +*/ + + iwrk = itau; + i__1 = *lwork - iwrk + 1; + chseqr_("E", "N", n, &ilo, &ihi, &a[a_offset], lda, &w[1], &vr[ + vr_offset], ldvr, &work[iwrk], &i__1, info); + } + +/* If INFO > 0 from CHSEQR, then quit */ + + if (*info > 0) { + goto L50; + } + + if (wantvl || wantvr) { + +/* + Compute left and/or right eigenvectors + (CWorkspace: need 2*N) + (RWorkspace: need 2*N) +*/ + + irwork = ibal + *n; + ctrevc_(side, "B", select, n, &a[a_offset], lda, &vl[vl_offset], ldvl, + &vr[vr_offset], ldvr, n, &nout, &work[iwrk], &rwork[irwork], + &ierr); + } + + if (wantvl) { + +/* + Undo balancing of left eigenvectors + (CWorkspace: none) + (RWorkspace: need N) +*/ + + cgebak_("B", "L", n, &ilo, &ihi, &rwork[ibal], n, &vl[vl_offset], + ldvl, &ierr); + +/* Normalize left eigenvectors and make largest component real */ + + i__1 = *n; + for (i__ = 1; i__ <= i__1; ++i__) { + scl = 1.f / scnrm2_(n, &vl[i__ * vl_dim1 + 1], &c__1); + csscal_(n, &scl, &vl[i__ * vl_dim1 + 1], &c__1); + i__2 = *n; + for (k = 1; k <= i__2; ++k) { + i__3 = k + i__ * vl_dim1; +/* Computing 2nd power */ + r__1 = vl[i__3].r; +/* Computing 2nd power */ + r__2 = r_imag(&vl[k + i__ * vl_dim1]); + rwork[irwork + k - 1] = r__1 * r__1 + r__2 * r__2; +/* L10: */ + } + k = isamax_(n, &rwork[irwork], &c__1); + r_cnjg(&q__2, &vl[k + i__ * vl_dim1]); + r__1 = sqrt(rwork[irwork + k - 1]); + q__1.r = q__2.r / r__1, q__1.i = q__2.i / r__1; + tmp.r = q__1.r, tmp.i = q__1.i; + cscal_(n, &tmp, &vl[i__ * vl_dim1 + 1], &c__1); + i__2 = k + i__ * vl_dim1; + i__3 = k + i__ * vl_dim1; + r__1 = vl[i__3].r; + q__1.r = r__1, q__1.i = 0.f; + vl[i__2].r = q__1.r, vl[i__2].i = q__1.i; +/* L20: */ + } + } + + if (wantvr) { + +/* + Undo balancing of right eigenvectors + (CWorkspace: none) + (RWorkspace: need N) +*/ + + cgebak_("B", "R", n, &ilo, &ihi, &rwork[ibal], n, &vr[vr_offset], + ldvr, &ierr); + +/* Normalize right eigenvectors and make largest component real */ + + i__1 = *n; + for (i__ = 1; i__ <= i__1; ++i__) { + scl = 1.f / scnrm2_(n, &vr[i__ * vr_dim1 + 1], &c__1); + csscal_(n, &scl, &vr[i__ * vr_dim1 + 1], &c__1); + i__2 = *n; + for (k = 1; k <= i__2; ++k) { + i__3 = k + i__ * vr_dim1; +/* Computing 2nd power */ + r__1 = vr[i__3].r; +/* Computing 2nd power */ + r__2 = r_imag(&vr[k + i__ * vr_dim1]); + rwork[irwork + k - 1] = r__1 * r__1 + r__2 * r__2; +/* L30: */ + } + k = isamax_(n, &rwork[irwork], &c__1); + r_cnjg(&q__2, &vr[k + i__ * vr_dim1]); + r__1 = sqrt(rwork[irwork + k - 1]); + q__1.r = q__2.r / r__1, q__1.i = q__2.i / r__1; + tmp.r = q__1.r, tmp.i = q__1.i; + cscal_(n, &tmp, &vr[i__ * vr_dim1 + 1], &c__1); + i__2 = k + i__ * vr_dim1; + i__3 = k + i__ * vr_dim1; + r__1 = vr[i__3].r; + q__1.r = r__1, q__1.i = 0.f; + vr[i__2].r = q__1.r, vr[i__2].i = q__1.i; +/* L40: */ + } + } + +/* Undo scaling if necessary */ + +L50: + if (scalea) { + i__1 = *n - *info; +/* Computing MAX */ + i__3 = *n - *info; + i__2 = max(i__3,1); + clascl_("G", &c__0, &c__0, &cscale, &anrm, &i__1, &c__1, &w[*info + 1] + , &i__2, &ierr); + if (*info > 0) { + i__1 = ilo - 1; + clascl_("G", &c__0, &c__0, &cscale, &anrm, &i__1, &c__1, &w[1], n, + &ierr); + } + } + + work[1].r = (real) maxwrk, work[1].i = 0.f; + return 0; + +/* End of CGEEV */ + +} /* cgeev_ */ + +/* Subroutine */ int cgehd2_(integer *n, integer *ilo, integer *ihi, complex * + a, integer *lda, complex *tau, complex *work, integer *info) +{ + /* System generated locals */ + integer a_dim1, a_offset, i__1, i__2, i__3; + complex q__1; + + /* Builtin functions */ + void r_cnjg(complex *, complex *); + + /* Local variables */ + static integer i__; + static complex alpha; + extern /* Subroutine */ int clarf_(char *, integer *, integer *, complex * + , integer *, complex *, complex *, integer *, complex *), + clarfg_(integer *, complex *, complex *, integer *, complex *), + xerbla_(char *, integer *); + + +/* + -- LAPACK routine (version 3.0) -- + Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd., + Courant Institute, Argonne National Lab, and Rice University + September 30, 1994 + + + Purpose + ======= + + CGEHD2 reduces a complex general matrix A to upper Hessenberg form H + by a unitary similarity transformation: Q' * A * Q = H . + + Arguments + ========= + + N (input) INTEGER + The order of the matrix A. N >= 0. + + ILO (input) INTEGER + IHI (input) INTEGER + It is assumed that A is already upper triangular in rows + and columns 1:ILO-1 and IHI+1:N. ILO and IHI are normally + set by a previous call to CGEBAL; otherwise they should be + set to 1 and N respectively. See Further Details. + 1 <= ILO <= IHI <= max(1,N). + + A (input/output) COMPLEX array, dimension (LDA,N) + On entry, the n by n general matrix to be reduced. + On exit, the upper triangle and the first subdiagonal of A + are overwritten with the upper Hessenberg matrix H, and the + elements below the first subdiagonal, with the array TAU, + represent the unitary matrix Q as a product of elementary + reflectors. See Further Details. + + LDA (input) INTEGER + The leading dimension of the array A. LDA >= max(1,N). + + TAU (output) COMPLEX array, dimension (N-1) + The scalar factors of the elementary reflectors (see Further + Details). + + WORK (workspace) COMPLEX array, dimension (N) + + INFO (output) INTEGER + = 0: successful exit + < 0: if INFO = -i, the i-th argument had an illegal value. + + Further Details + =============== + + The matrix Q is represented as a product of (ihi-ilo) elementary + reflectors + + Q = H(ilo) H(ilo+1) . . . H(ihi-1). + + Each H(i) has the form + + H(i) = I - tau * v * v' + + where tau is a complex scalar, and v is a complex vector with + v(1:i) = 0, v(i+1) = 1 and v(ihi+1:n) = 0; v(i+2:ihi) is stored on + exit in A(i+2:ihi,i), and tau in TAU(i). + + The contents of A are illustrated by the following example, with + n = 7, ilo = 2 and ihi = 6: + + on entry, on exit, + + ( a a a a a a a ) ( a a h h h h a ) + ( a a a a a a ) ( a h h h h a ) + ( a a a a a a ) ( h h h h h h ) + ( a a a a a a ) ( v2 h h h h h ) + ( a a a a a a ) ( v2 v3 h h h h ) + ( a a a a a a ) ( v2 v3 v4 h h h ) + ( a ) ( a ) + + where a denotes an element of the original matrix A, h denotes a + modified element of the upper Hessenberg matrix H, and vi denotes an + element of the vector defining H(i). + + ===================================================================== + + + Test the input parameters +*/ + + /* Parameter adjustments */ + a_dim1 = *lda; + a_offset = 1 + a_dim1; + a -= a_offset; + --tau; + --work; + + /* Function Body */ + *info = 0; + if (*n < 0) { + *info = -1; + } else if (*ilo < 1 || *ilo > max(1,*n)) { + *info = -2; + } else if (*ihi < min(*ilo,*n) || *ihi > *n) { + *info = -3; + } else if (*lda < max(1,*n)) { + *info = -5; + } + if (*info != 0) { + i__1 = -(*info); + xerbla_("CGEHD2", &i__1); + return 0; + } + + i__1 = *ihi - 1; + for (i__ = *ilo; i__ <= i__1; ++i__) { + +/* Compute elementary reflector H(i) to annihilate A(i+2:ihi,i) */ + + i__2 = i__ + 1 + i__ * a_dim1; + alpha.r = a[i__2].r, alpha.i = a[i__2].i; + i__2 = *ihi - i__; +/* Computing MIN */ + i__3 = i__ + 2; + clarfg_(&i__2, &alpha, &a[min(i__3,*n) + i__ * a_dim1], &c__1, &tau[ + i__]); + i__2 = i__ + 1 + i__ * a_dim1; + a[i__2].r = 1.f, a[i__2].i = 0.f; + +/* Apply H(i) to A(1:ihi,i+1:ihi) from the right */ + + i__2 = *ihi - i__; + clarf_("Right", ihi, &i__2, &a[i__ + 1 + i__ * a_dim1], &c__1, &tau[ + i__], &a[(i__ + 1) * a_dim1 + 1], lda, &work[1]); + +/* Apply H(i)' to A(i+1:ihi,i+1:n) from the left */ + + i__2 = *ihi - i__; + i__3 = *n - i__; + r_cnjg(&q__1, &tau[i__]); + clarf_("Left", &i__2, &i__3, &a[i__ + 1 + i__ * a_dim1], &c__1, &q__1, + &a[i__ + 1 + (i__ + 1) * a_dim1], lda, &work[1]); + + i__2 = i__ + 1 + i__ * a_dim1; + a[i__2].r = alpha.r, a[i__2].i = alpha.i; +/* L10: */ + } + + return 0; + +/* End of CGEHD2 */ + +} /* cgehd2_ */ + +/* Subroutine */ int cgehrd_(integer *n, integer *ilo, integer *ihi, complex * + a, integer *lda, complex *tau, complex *work, integer *lwork, integer + *info) +{ + /* System generated locals */ + integer a_dim1, a_offset, i__1, i__2, i__3, i__4; + complex q__1; + + /* Local variables */ + static integer i__; + static complex t[4160] /* was [65][64] */; + static integer ib; + static complex ei; + static integer nb, nh, nx, iws; + extern /* Subroutine */ int cgemm_(char *, char *, integer *, integer *, + integer *, complex *, complex *, integer *, complex *, integer *, + complex *, complex *, integer *); + static integer nbmin, iinfo; + extern /* Subroutine */ int cgehd2_(integer *, integer *, integer *, + complex *, integer *, complex *, complex *, integer *), clarfb_( + char *, char *, char *, char *, integer *, integer *, integer *, + complex *, integer *, complex *, integer *, complex *, integer *, + complex *, integer *), clahrd_( + integer *, integer *, integer *, complex *, integer *, complex *, + complex *, integer *, complex *, integer *), xerbla_(char *, + integer *); + extern integer ilaenv_(integer *, char *, char *, integer *, integer *, + integer *, integer *, ftnlen, ftnlen); + static integer ldwork, lwkopt; + static logical lquery; + + +/* + -- LAPACK routine (version 3.0) -- + Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd., + Courant Institute, Argonne National Lab, and Rice University + June 30, 1999 + + + Purpose + ======= + + CGEHRD reduces a complex general matrix A to upper Hessenberg form H + by a unitary similarity transformation: Q' * A * Q = H . + + Arguments + ========= + + N (input) INTEGER + The order of the matrix A. N >= 0. + + ILO (input) INTEGER + IHI (input) INTEGER + It is assumed that A is already upper triangular in rows + and columns 1:ILO-1 and IHI+1:N. ILO and IHI are normally + set by a previous call to CGEBAL; otherwise they should be + set to 1 and N respectively. See Further Details. + 1 <= ILO <= IHI <= N, if N > 0; ILO=1 and IHI=0, if N=0. + + A (input/output) COMPLEX array, dimension (LDA,N) + On entry, the N-by-N general matrix to be reduced. + On exit, the upper triangle and the first subdiagonal of A + are overwritten with the upper Hessenberg matrix H, and the + elements below the first subdiagonal, with the array TAU, + represent the unitary matrix Q as a product of elementary + reflectors. See Further Details. + + LDA (input) INTEGER + The leading dimension of the array A. LDA >= max(1,N). + + TAU (output) COMPLEX array, dimension (N-1) + The scalar factors of the elementary reflectors (see Further + Details). Elements 1:ILO-1 and IHI:N-1 of TAU are set to + zero. + + WORK (workspace/output) COMPLEX array, dimension (LWORK) + On exit, if INFO = 0, WORK(1) returns the optimal LWORK. + + LWORK (input) INTEGER + The length of the array WORK. LWORK >= max(1,N). + For optimum performance LWORK >= N*NB, where NB is the + optimal blocksize. + + If LWORK = -1, then a workspace query is assumed; the routine + only calculates the optimal size of the WORK array, returns + this value as the first entry of the WORK array, and no error + message related to LWORK is issued by XERBLA. + + INFO (output) INTEGER + = 0: successful exit + < 0: if INFO = -i, the i-th argument had an illegal value. + + Further Details + =============== + + The matrix Q is represented as a product of (ihi-ilo) elementary + reflectors + + Q = H(ilo) H(ilo+1) . . . H(ihi-1). + + Each H(i) has the form + + H(i) = I - tau * v * v' + + where tau is a complex scalar, and v is a complex vector with + v(1:i) = 0, v(i+1) = 1 and v(ihi+1:n) = 0; v(i+2:ihi) is stored on + exit in A(i+2:ihi,i), and tau in TAU(i). + + The contents of A are illustrated by the following example, with + n = 7, ilo = 2 and ihi = 6: + + on entry, on exit, + + ( a a a a a a a ) ( a a h h h h a ) + ( a a a a a a ) ( a h h h h a ) + ( a a a a a a ) ( h h h h h h ) + ( a a a a a a ) ( v2 h h h h h ) + ( a a a a a a ) ( v2 v3 h h h h ) + ( a a a a a a ) ( v2 v3 v4 h h h ) + ( a ) ( a ) + + where a denotes an element of the original matrix A, h denotes a + modified element of the upper Hessenberg matrix H, and vi denotes an + element of the vector defining H(i). + + ===================================================================== + + + Test the input parameters +*/ + + /* Parameter adjustments */ + a_dim1 = *lda; + a_offset = 1 + a_dim1; + a -= a_offset; + --tau; + --work; + + /* Function Body */ + *info = 0; +/* Computing MIN */ + i__1 = 64, i__2 = ilaenv_(&c__1, "CGEHRD", " ", n, ilo, ihi, &c_n1, ( + ftnlen)6, (ftnlen)1); + nb = min(i__1,i__2); + lwkopt = *n * nb; + work[1].r = (real) lwkopt, work[1].i = 0.f; + lquery = *lwork == -1; + if (*n < 0) { + *info = -1; + } else if (*ilo < 1 || *ilo > max(1,*n)) { + *info = -2; + } else if (*ihi < min(*ilo,*n) || *ihi > *n) { + *info = -3; + } else if (*lda < max(1,*n)) { + *info = -5; + } else if (*lwork < max(1,*n) && ! lquery) { + *info = -8; + } + if (*info != 0) { + i__1 = -(*info); + xerbla_("CGEHRD", &i__1); + return 0; + } else if (lquery) { + return 0; + } + +/* Set elements 1:ILO-1 and IHI:N-1 of TAU to zero */ + + i__1 = *ilo - 1; + for (i__ = 1; i__ <= i__1; ++i__) { + i__2 = i__; + tau[i__2].r = 0.f, tau[i__2].i = 0.f; +/* L10: */ + } + i__1 = *n - 1; + for (i__ = max(1,*ihi); i__ <= i__1; ++i__) { + i__2 = i__; + tau[i__2].r = 0.f, tau[i__2].i = 0.f; +/* L20: */ + } + +/* Quick return if possible */ + + nh = *ihi - *ilo + 1; + if (nh <= 1) { + work[1].r = 1.f, work[1].i = 0.f; + return 0; + } + + nbmin = 2; + iws = 1; + if (nb > 1 && nb < nh) { + +/* + Determine when to cross over from blocked to unblocked code + (last block is always handled by unblocked code). + + Computing MAX +*/ + i__1 = nb, i__2 = ilaenv_(&c__3, "CGEHRD", " ", n, ilo, ihi, &c_n1, ( + ftnlen)6, (ftnlen)1); + nx = max(i__1,i__2); + if (nx < nh) { + +/* Determine if workspace is large enough for blocked code. */ + + iws = *n * nb; + if (*lwork < iws) { + +/* + Not enough workspace to use optimal NB: determine the + minimum value of NB, and reduce NB or force use of + unblocked code. + + Computing MAX +*/ + i__1 = 2, i__2 = ilaenv_(&c__2, "CGEHRD", " ", n, ilo, ihi, & + c_n1, (ftnlen)6, (ftnlen)1); + nbmin = max(i__1,i__2); + if (*lwork >= *n * nbmin) { + nb = *lwork / *n; + } else { + nb = 1; + } + } + } + } + ldwork = *n; + + if (nb < nbmin || nb >= nh) { + +/* Use unblocked code below */ + + i__ = *ilo; + + } else { + +/* Use blocked code */ + + i__1 = *ihi - 1 - nx; + i__2 = nb; + for (i__ = *ilo; i__2 < 0 ? i__ >= i__1 : i__ <= i__1; i__ += i__2) { +/* Computing MIN */ + i__3 = nb, i__4 = *ihi - i__; + ib = min(i__3,i__4); + +/* + Reduce columns i:i+ib-1 to Hessenberg form, returning the + matrices V and T of the block reflector H = I - V*T*V' + which performs the reduction, and also the matrix Y = A*V*T +*/ + + clahrd_(ihi, &i__, &ib, &a[i__ * a_dim1 + 1], lda, &tau[i__], t, & + c__65, &work[1], &ldwork); + +/* + Apply the block reflector H to A(1:ihi,i+ib:ihi) from the + right, computing A := A - Y * V'. V(i+ib,ib-1) must be set + to 1. +*/ + + i__3 = i__ + ib + (i__ + ib - 1) * a_dim1; + ei.r = a[i__3].r, ei.i = a[i__3].i; + i__3 = i__ + ib + (i__ + ib - 1) * a_dim1; + a[i__3].r = 1.f, a[i__3].i = 0.f; + i__3 = *ihi - i__ - ib + 1; + q__1.r = -1.f, q__1.i = -0.f; + cgemm_("No transpose", "Conjugate transpose", ihi, &i__3, &ib, & + q__1, &work[1], &ldwork, &a[i__ + ib + i__ * a_dim1], lda, + &c_b56, &a[(i__ + ib) * a_dim1 + 1], lda); + i__3 = i__ + ib + (i__ + ib - 1) * a_dim1; + a[i__3].r = ei.r, a[i__3].i = ei.i; + +/* + Apply the block reflector H to A(i+1:ihi,i+ib:n) from the + left +*/ + + i__3 = *ihi - i__; + i__4 = *n - i__ - ib + 1; + clarfb_("Left", "Conjugate transpose", "Forward", "Columnwise", & + i__3, &i__4, &ib, &a[i__ + 1 + i__ * a_dim1], lda, t, & + c__65, &a[i__ + 1 + (i__ + ib) * a_dim1], lda, &work[1], & + ldwork); +/* L30: */ + } + } + +/* Use unblocked code to reduce the rest of the matrix */ + + cgehd2_(n, &i__, ihi, &a[a_offset], lda, &tau[1], &work[1], &iinfo); + work[1].r = (real) iws, work[1].i = 0.f; + + return 0; + +/* End of CGEHRD */ + +} /* cgehrd_ */ + +/* Subroutine */ int cgelq2_(integer *m, integer *n, complex *a, integer *lda, + complex *tau, complex *work, integer *info) +{ + /* System generated locals */ + integer a_dim1, a_offset, i__1, i__2, i__3; + + /* Local variables */ + static integer i__, k; + static complex alpha; + extern /* Subroutine */ int clarf_(char *, integer *, integer *, complex * + , integer *, complex *, complex *, integer *, complex *), + clarfg_(integer *, complex *, complex *, integer *, complex *), + clacgv_(integer *, complex *, integer *), xerbla_(char *, integer + *); + + +/* + -- LAPACK routine (version 3.0) -- + Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd., + Courant Institute, Argonne National Lab, and Rice University + September 30, 1994 + + + Purpose + ======= + + CGELQ2 computes an LQ factorization of a complex m by n matrix A: + A = L * Q. + + Arguments + ========= + + M (input) INTEGER + The number of rows of the matrix A. M >= 0. + + N (input) INTEGER + The number of columns of the matrix A. N >= 0. + + A (input/output) COMPLEX array, dimension (LDA,N) + On entry, the m by n matrix A. + On exit, the elements on and below the diagonal of the array + contain the m by min(m,n) lower trapezoidal matrix L (L is + lower triangular if m <= n); the elements above the diagonal, + with the array TAU, represent the unitary matrix Q as a + product of elementary reflectors (see Further Details). + + LDA (input) INTEGER + The leading dimension of the array A. LDA >= max(1,M). + + TAU (output) COMPLEX array, dimension (min(M,N)) + The scalar factors of the elementary reflectors (see Further + Details). + + WORK (workspace) COMPLEX array, dimension (M) + + INFO (output) INTEGER + = 0: successful exit + < 0: if INFO = -i, the i-th argument had an illegal value + + Further Details + =============== + + The matrix Q is represented as a product of elementary reflectors + + Q = H(k)' . . . H(2)' H(1)', where k = min(m,n). + + Each H(i) has the form + + H(i) = I - tau * v * v' + + where tau is a complex scalar, and v is a complex vector with + v(1:i-1) = 0 and v(i) = 1; conjg(v(i+1:n)) is stored on exit in + A(i,i+1:n), and tau in TAU(i). + + ===================================================================== + + + Test the input arguments +*/ + + /* Parameter adjustments */ + a_dim1 = *lda; + a_offset = 1 + a_dim1; + a -= a_offset; + --tau; + --work; + + /* Function Body */ + *info = 0; + if (*m < 0) { + *info = -1; + } else if (*n < 0) { + *info = -2; + } else if (*lda < max(1,*m)) { + *info = -4; + } + if (*info != 0) { + i__1 = -(*info); + xerbla_("CGELQ2", &i__1); + return 0; + } + + k = min(*m,*n); + + i__1 = k; + for (i__ = 1; i__ <= i__1; ++i__) { + +/* Generate elementary reflector H(i) to annihilate A(i,i+1:n) */ + + i__2 = *n - i__ + 1; + clacgv_(&i__2, &a[i__ + i__ * a_dim1], lda); + i__2 = i__ + i__ * a_dim1; + alpha.r = a[i__2].r, alpha.i = a[i__2].i; + i__2 = *n - i__ + 1; +/* Computing MIN */ + i__3 = i__ + 1; + clarfg_(&i__2, &alpha, &a[i__ + min(i__3,*n) * a_dim1], lda, &tau[i__] + ); + if (i__ < *m) { + +/* Apply H(i) to A(i+1:m,i:n) from the right */ + + i__2 = i__ + i__ * a_dim1; + a[i__2].r = 1.f, a[i__2].i = 0.f; + i__2 = *m - i__; + i__3 = *n - i__ + 1; + clarf_("Right", &i__2, &i__3, &a[i__ + i__ * a_dim1], lda, &tau[ + i__], &a[i__ + 1 + i__ * a_dim1], lda, &work[1]); + } + i__2 = i__ + i__ * a_dim1; + a[i__2].r = alpha.r, a[i__2].i = alpha.i; + i__2 = *n - i__ + 1; + clacgv_(&i__2, &a[i__ + i__ * a_dim1], lda); +/* L10: */ + } + return 0; + +/* End of CGELQ2 */ + +} /* cgelq2_ */ + +/* Subroutine */ int cgelqf_(integer *m, integer *n, complex *a, integer *lda, + complex *tau, complex *work, integer *lwork, integer *info) +{ + /* System generated locals */ + integer a_dim1, a_offset, i__1, i__2, i__3, i__4; + + /* Local variables */ + static integer i__, k, ib, nb, nx, iws, nbmin, iinfo; + extern /* Subroutine */ int cgelq2_(integer *, integer *, complex *, + integer *, complex *, complex *, integer *), clarfb_(char *, char + *, char *, char *, integer *, integer *, integer *, complex *, + integer *, complex *, integer *, complex *, integer *, complex *, + integer *), clarft_(char *, char * + , integer *, integer *, complex *, integer *, complex *, complex * + , integer *), xerbla_(char *, integer *); + extern integer ilaenv_(integer *, char *, char *, integer *, integer *, + integer *, integer *, ftnlen, ftnlen); + static integer ldwork, lwkopt; + static logical lquery; + + +/* + -- LAPACK routine (version 3.0) -- + Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd., + Courant Institute, Argonne National Lab, and Rice University + June 30, 1999 + + + Purpose + ======= + + CGELQF computes an LQ factorization of a complex M-by-N matrix A: + A = L * Q. + + Arguments + ========= + + M (input) INTEGER + The number of rows of the matrix A. M >= 0. + + N (input) INTEGER + The number of columns of the matrix A. N >= 0. + + A (input/output) COMPLEX array, dimension (LDA,N) + On entry, the M-by-N matrix A. + On exit, the elements on and below the diagonal of the array + contain the m-by-min(m,n) lower trapezoidal matrix L (L is + lower triangular if m <= n); the elements above the diagonal, + with the array TAU, represent the unitary matrix Q as a + product of elementary reflectors (see Further Details). + + LDA (input) INTEGER + The leading dimension of the array A. LDA >= max(1,M). + + TAU (output) COMPLEX array, dimension (min(M,N)) + The scalar factors of the elementary reflectors (see Further + Details). + + WORK (workspace/output) COMPLEX array, dimension (LWORK) + On exit, if INFO = 0, WORK(1) returns the optimal LWORK. + + LWORK (input) INTEGER + The dimension of the array WORK. LWORK >= max(1,M). + For optimum performance LWORK >= M*NB, where NB is the + optimal blocksize. + + If LWORK = -1, then a workspace query is assumed; the routine + only calculates the optimal size of the WORK array, returns + this value as the first entry of the WORK array, and no error + message related to LWORK is issued by XERBLA. + + INFO (output) INTEGER + = 0: successful exit + < 0: if INFO = -i, the i-th argument had an illegal value + + Further Details + =============== + + The matrix Q is represented as a product of elementary reflectors + + Q = H(k)' . . . H(2)' H(1)', where k = min(m,n). + + Each H(i) has the form + + H(i) = I - tau * v * v' + + where tau is a complex scalar, and v is a complex vector with + v(1:i-1) = 0 and v(i) = 1; conjg(v(i+1:n)) is stored on exit in + A(i,i+1:n), and tau in TAU(i). + + ===================================================================== + + + Test the input arguments +*/ + + /* Parameter adjustments */ + a_dim1 = *lda; + a_offset = 1 + a_dim1; + a -= a_offset; + --tau; + --work; + + /* Function Body */ + *info = 0; + nb = ilaenv_(&c__1, "CGELQF", " ", m, n, &c_n1, &c_n1, (ftnlen)6, (ftnlen) + 1); + lwkopt = *m * nb; + work[1].r = (real) lwkopt, work[1].i = 0.f; + lquery = *lwork == -1; + if (*m < 0) { + *info = -1; + } else if (*n < 0) { + *info = -2; + } else if (*lda < max(1,*m)) { + *info = -4; + } else if (*lwork < max(1,*m) && ! lquery) { + *info = -7; + } + if (*info != 0) { + i__1 = -(*info); + xerbla_("CGELQF", &i__1); + return 0; + } else if (lquery) { + return 0; + } + +/* Quick return if possible */ + + k = min(*m,*n); + if (k == 0) { + work[1].r = 1.f, work[1].i = 0.f; + return 0; + } + + nbmin = 2; + nx = 0; + iws = *m; + if (nb > 1 && nb < k) { + +/* + Determine when to cross over from blocked to unblocked code. + + Computing MAX +*/ + i__1 = 0, i__2 = ilaenv_(&c__3, "CGELQF", " ", m, n, &c_n1, &c_n1, ( + ftnlen)6, (ftnlen)1); + nx = max(i__1,i__2); + if (nx < k) { + +/* Determine if workspace is large enough for blocked code. */ + + ldwork = *m; + iws = ldwork * nb; + if (*lwork < iws) { + +/* + Not enough workspace to use optimal NB: reduce NB and + determine the minimum value of NB. +*/ + + nb = *lwork / ldwork; +/* Computing MAX */ + i__1 = 2, i__2 = ilaenv_(&c__2, "CGELQF", " ", m, n, &c_n1, & + c_n1, (ftnlen)6, (ftnlen)1); + nbmin = max(i__1,i__2); + } + } + } + + if (nb >= nbmin && nb < k && nx < k) { + +/* Use blocked code initially */ + + i__1 = k - nx; + i__2 = nb; + for (i__ = 1; i__2 < 0 ? i__ >= i__1 : i__ <= i__1; i__ += i__2) { +/* Computing MIN */ + i__3 = k - i__ + 1; + ib = min(i__3,nb); + +/* + Compute the LQ factorization of the current block + A(i:i+ib-1,i:n) +*/ + + i__3 = *n - i__ + 1; + cgelq2_(&ib, &i__3, &a[i__ + i__ * a_dim1], lda, &tau[i__], &work[ + 1], &iinfo); + if (i__ + ib <= *m) { + +/* + Form the triangular factor of the block reflector + H = H(i) H(i+1) . . . H(i+ib-1) +*/ + + i__3 = *n - i__ + 1; + clarft_("Forward", "Rowwise", &i__3, &ib, &a[i__ + i__ * + a_dim1], lda, &tau[i__], &work[1], &ldwork); + +/* Apply H to A(i+ib:m,i:n) from the right */ + + i__3 = *m - i__ - ib + 1; + i__4 = *n - i__ + 1; + clarfb_("Right", "No transpose", "Forward", "Rowwise", &i__3, + &i__4, &ib, &a[i__ + i__ * a_dim1], lda, &work[1], & + ldwork, &a[i__ + ib + i__ * a_dim1], lda, &work[ib + + 1], &ldwork); + } +/* L10: */ + } + } else { + i__ = 1; + } + +/* Use unblocked code to factor the last or only block. */ + + if (i__ <= k) { + i__2 = *m - i__ + 1; + i__1 = *n - i__ + 1; + cgelq2_(&i__2, &i__1, &a[i__ + i__ * a_dim1], lda, &tau[i__], &work[1] + , &iinfo); + } + + work[1].r = (real) iws, work[1].i = 0.f; + return 0; + +/* End of CGELQF */ + +} /* cgelqf_ */ + +/* Subroutine */ int cgeqr2_(integer *m, integer *n, complex *a, integer *lda, + complex *tau, complex *work, integer *info) +{ + /* System generated locals */ + integer a_dim1, a_offset, i__1, i__2, i__3; + complex q__1; + + /* Builtin functions */ + void r_cnjg(complex *, complex *); + + /* Local variables */ + static integer i__, k; + static complex alpha; + extern /* Subroutine */ int clarf_(char *, integer *, integer *, complex * + , integer *, complex *, complex *, integer *, complex *), + clarfg_(integer *, complex *, complex *, integer *, complex *), + xerbla_(char *, integer *); + + +/* + -- LAPACK routine (version 3.0) -- + Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd., + Courant Institute, Argonne National Lab, and Rice University + September 30, 1994 + + + Purpose + ======= + + CGEQR2 computes a QR factorization of a complex m by n matrix A: + A = Q * R. + + Arguments + ========= + + M (input) INTEGER + The number of rows of the matrix A. M >= 0. + + N (input) INTEGER + The number of columns of the matrix A. N >= 0. + + A (input/output) COMPLEX array, dimension (LDA,N) + On entry, the m by n matrix A. + On exit, the elements on and above the diagonal of the array + contain the min(m,n) by n upper trapezoidal matrix R (R is + upper triangular if m >= n); the elements below the diagonal, + with the array TAU, represent the unitary matrix Q as a + product of elementary reflectors (see Further Details). + + LDA (input) INTEGER + The leading dimension of the array A. LDA >= max(1,M). + + TAU (output) COMPLEX array, dimension (min(M,N)) + The scalar factors of the elementary reflectors (see Further + Details). + + WORK (workspace) COMPLEX array, dimension (N) + + INFO (output) INTEGER + = 0: successful exit + < 0: if INFO = -i, the i-th argument had an illegal value + + Further Details + =============== + + The matrix Q is represented as a product of elementary reflectors + + Q = H(1) H(2) . . . H(k), where k = min(m,n). + + Each H(i) has the form + + H(i) = I - tau * v * v' + + where tau is a complex scalar, and v is a complex vector with + v(1:i-1) = 0 and v(i) = 1; v(i+1:m) is stored on exit in A(i+1:m,i), + and tau in TAU(i). + + ===================================================================== + + + Test the input arguments +*/ + + /* Parameter adjustments */ + a_dim1 = *lda; + a_offset = 1 + a_dim1; + a -= a_offset; + --tau; + --work; + + /* Function Body */ + *info = 0; + if (*m < 0) { + *info = -1; + } else if (*n < 0) { + *info = -2; + } else if (*lda < max(1,*m)) { + *info = -4; + } + if (*info != 0) { + i__1 = -(*info); + xerbla_("CGEQR2", &i__1); + return 0; + } + + k = min(*m,*n); + + i__1 = k; + for (i__ = 1; i__ <= i__1; ++i__) { + +/* Generate elementary reflector H(i) to annihilate A(i+1:m,i) */ + + i__2 = *m - i__ + 1; +/* Computing MIN */ + i__3 = i__ + 1; + clarfg_(&i__2, &a[i__ + i__ * a_dim1], &a[min(i__3,*m) + i__ * a_dim1] + , &c__1, &tau[i__]); + if (i__ < *n) { + +/* Apply H(i)' to A(i:m,i+1:n) from the left */ + + i__2 = i__ + i__ * a_dim1; + alpha.r = a[i__2].r, alpha.i = a[i__2].i; + i__2 = i__ + i__ * a_dim1; + a[i__2].r = 1.f, a[i__2].i = 0.f; + i__2 = *m - i__ + 1; + i__3 = *n - i__; + r_cnjg(&q__1, &tau[i__]); + clarf_("Left", &i__2, &i__3, &a[i__ + i__ * a_dim1], &c__1, &q__1, + &a[i__ + (i__ + 1) * a_dim1], lda, &work[1]); + i__2 = i__ + i__ * a_dim1; + a[i__2].r = alpha.r, a[i__2].i = alpha.i; + } +/* L10: */ + } + return 0; + +/* End of CGEQR2 */ + +} /* cgeqr2_ */ + +/* Subroutine */ int cgeqrf_(integer *m, integer *n, complex *a, integer *lda, + complex *tau, complex *work, integer *lwork, integer *info) +{ + /* System generated locals */ + integer a_dim1, a_offset, i__1, i__2, i__3, i__4; + + /* Local variables */ + static integer i__, k, ib, nb, nx, iws, nbmin, iinfo; + extern /* Subroutine */ int cgeqr2_(integer *, integer *, complex *, + integer *, complex *, complex *, integer *), clarfb_(char *, char + *, char *, char *, integer *, integer *, integer *, complex *, + integer *, complex *, integer *, complex *, integer *, complex *, + integer *), clarft_(char *, char * + , integer *, integer *, complex *, integer *, complex *, complex * + , integer *), xerbla_(char *, integer *); + extern integer ilaenv_(integer *, char *, char *, integer *, integer *, + integer *, integer *, ftnlen, ftnlen); + static integer ldwork, lwkopt; + static logical lquery; + + +/* + -- LAPACK routine (version 3.0) -- + Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd., + Courant Institute, Argonne National Lab, and Rice University + June 30, 1999 + + + Purpose + ======= + + CGEQRF computes a QR factorization of a complex M-by-N matrix A: + A = Q * R. + + Arguments + ========= + + M (input) INTEGER + The number of rows of the matrix A. M >= 0. + + N (input) INTEGER + The number of columns of the matrix A. N >= 0. + + A (input/output) COMPLEX array, dimension (LDA,N) + On entry, the M-by-N matrix A. + On exit, the elements on and above the diagonal of the array + contain the min(M,N)-by-N upper trapezoidal matrix R (R is + upper triangular if m >= n); the elements below the diagonal, + with the array TAU, represent the unitary matrix Q as a + product of min(m,n) elementary reflectors (see Further + Details). + + LDA (input) INTEGER + The leading dimension of the array A. LDA >= max(1,M). + + TAU (output) COMPLEX array, dimension (min(M,N)) + The scalar factors of the elementary reflectors (see Further + Details). + + WORK (workspace/output) COMPLEX array, dimension (LWORK) + On exit, if INFO = 0, WORK(1) returns the optimal LWORK. + + LWORK (input) INTEGER + The dimension of the array WORK. LWORK >= max(1,N). + For optimum performance LWORK >= N*NB, where NB is + the optimal blocksize. + + If LWORK = -1, then a workspace query is assumed; the routine + only calculates the optimal size of the WORK array, returns + this value as the first entry of the WORK array, and no error + message related to LWORK is issued by XERBLA. + + INFO (output) INTEGER + = 0: successful exit + < 0: if INFO = -i, the i-th argument had an illegal value + + Further Details + =============== + + The matrix Q is represented as a product of elementary reflectors + + Q = H(1) H(2) . . . H(k), where k = min(m,n). + + Each H(i) has the form + + H(i) = I - tau * v * v' + + where tau is a complex scalar, and v is a complex vector with + v(1:i-1) = 0 and v(i) = 1; v(i+1:m) is stored on exit in A(i+1:m,i), + and tau in TAU(i). + + ===================================================================== + + + Test the input arguments +*/ + + /* Parameter adjustments */ + a_dim1 = *lda; + a_offset = 1 + a_dim1; + a -= a_offset; + --tau; + --work; + + /* Function Body */ + *info = 0; + nb = ilaenv_(&c__1, "CGEQRF", " ", m, n, &c_n1, &c_n1, (ftnlen)6, (ftnlen) + 1); + lwkopt = *n * nb; + work[1].r = (real) lwkopt, work[1].i = 0.f; + lquery = *lwork == -1; + if (*m < 0) { + *info = -1; + } else if (*n < 0) { + *info = -2; + } else if (*lda < max(1,*m)) { + *info = -4; + } else if (*lwork < max(1,*n) && ! lquery) { + *info = -7; + } + if (*info != 0) { + i__1 = -(*info); + xerbla_("CGEQRF", &i__1); + return 0; + } else if (lquery) { + return 0; + } + +/* Quick return if possible */ + + k = min(*m,*n); + if (k == 0) { + work[1].r = 1.f, work[1].i = 0.f; + return 0; + } + + nbmin = 2; + nx = 0; + iws = *n; + if (nb > 1 && nb < k) { + +/* + Determine when to cross over from blocked to unblocked code. + + Computing MAX +*/ + i__1 = 0, i__2 = ilaenv_(&c__3, "CGEQRF", " ", m, n, &c_n1, &c_n1, ( + ftnlen)6, (ftnlen)1); + nx = max(i__1,i__2); + if (nx < k) { + +/* Determine if workspace is large enough for blocked code. */ + + ldwork = *n; + iws = ldwork * nb; + if (*lwork < iws) { + +/* + Not enough workspace to use optimal NB: reduce NB and + determine the minimum value of NB. +*/ + + nb = *lwork / ldwork; +/* Computing MAX */ + i__1 = 2, i__2 = ilaenv_(&c__2, "CGEQRF", " ", m, n, &c_n1, & + c_n1, (ftnlen)6, (ftnlen)1); + nbmin = max(i__1,i__2); + } + } + } + + if (nb >= nbmin && nb < k && nx < k) { + +/* Use blocked code initially */ + + i__1 = k - nx; + i__2 = nb; + for (i__ = 1; i__2 < 0 ? i__ >= i__1 : i__ <= i__1; i__ += i__2) { +/* Computing MIN */ + i__3 = k - i__ + 1; + ib = min(i__3,nb); + +/* + Compute the QR factorization of the current block + A(i:m,i:i+ib-1) +*/ + + i__3 = *m - i__ + 1; + cgeqr2_(&i__3, &ib, &a[i__ + i__ * a_dim1], lda, &tau[i__], &work[ + 1], &iinfo); + if (i__ + ib <= *n) { + +/* + Form the triangular factor of the block reflector + H = H(i) H(i+1) . . . H(i+ib-1) +*/ + + i__3 = *m - i__ + 1; + clarft_("Forward", "Columnwise", &i__3, &ib, &a[i__ + i__ * + a_dim1], lda, &tau[i__], &work[1], &ldwork); + +/* Apply H' to A(i:m,i+ib:n) from the left */ + + i__3 = *m - i__ + 1; + i__4 = *n - i__ - ib + 1; + clarfb_("Left", "Conjugate transpose", "Forward", "Columnwise" + , &i__3, &i__4, &ib, &a[i__ + i__ * a_dim1], lda, & + work[1], &ldwork, &a[i__ + (i__ + ib) * a_dim1], lda, + &work[ib + 1], &ldwork); + } +/* L10: */ + } + } else { + i__ = 1; + } + +/* Use unblocked code to factor the last or only block. */ + + if (i__ <= k) { + i__2 = *m - i__ + 1; + i__1 = *n - i__ + 1; + cgeqr2_(&i__2, &i__1, &a[i__ + i__ * a_dim1], lda, &tau[i__], &work[1] + , &iinfo); + } + + work[1].r = (real) iws, work[1].i = 0.f; + return 0; + +/* End of CGEQRF */ + +} /* cgeqrf_ */ + +/* Subroutine */ int cgesdd_(char *jobz, integer *m, integer *n, complex *a, + integer *lda, real *s, complex *u, integer *ldu, complex *vt, integer + *ldvt, complex *work, integer *lwork, real *rwork, integer *iwork, + integer *info) +{ + /* System generated locals */ + integer a_dim1, a_offset, u_dim1, u_offset, vt_dim1, vt_offset, i__1, + i__2, i__3; + + /* Builtin functions */ + double sqrt(doublereal); + + /* Local variables */ + static integer i__, ie, il, ir, iu, blk; + static real dum[1], eps; + static integer iru, ivt, iscl; + static real anrm; + static integer idum[1], ierr, itau, irvt; + extern /* Subroutine */ int cgemm_(char *, char *, integer *, integer *, + integer *, complex *, complex *, integer *, complex *, integer *, + complex *, complex *, integer *); + extern logical lsame_(char *, char *); + static integer chunk, minmn, wrkbl, itaup, itauq; + static logical wntqa; + static integer nwork; + extern /* Subroutine */ int clacp2_(char *, integer *, integer *, real *, + integer *, complex *, integer *); + static logical wntqn, wntqo, wntqs; + static integer mnthr1, mnthr2; + extern /* Subroutine */ int cgebrd_(integer *, integer *, complex *, + integer *, real *, real *, complex *, complex *, complex *, + integer *, integer *); + extern doublereal clange_(char *, integer *, integer *, complex *, + integer *, real *); + extern /* Subroutine */ int cgelqf_(integer *, integer *, complex *, + integer *, complex *, complex *, integer *, integer *), clacrm_( + integer *, integer *, complex *, integer *, real *, integer *, + complex *, integer *, real *), clarcm_(integer *, integer *, real + *, integer *, complex *, integer *, complex *, integer *, real *), + clascl_(char *, integer *, integer *, real *, real *, integer *, + integer *, complex *, integer *, integer *), sbdsdc_(char + *, char *, integer *, real *, real *, real *, integer *, real *, + integer *, real *, integer *, real *, integer *, integer *), cgeqrf_(integer *, integer *, complex *, integer + *, complex *, complex *, integer *, integer *); + extern doublereal slamch_(char *); + extern /* Subroutine */ int clacpy_(char *, integer *, integer *, complex + *, integer *, complex *, integer *), claset_(char *, + integer *, integer *, complex *, complex *, complex *, integer *), xerbla_(char *, integer *); + extern integer ilaenv_(integer *, char *, char *, integer *, integer *, + integer *, integer *, ftnlen, ftnlen); + extern /* Subroutine */ int cungbr_(char *, integer *, integer *, integer + *, complex *, integer *, complex *, complex *, integer *, integer + *); + static real bignum; + extern /* Subroutine */ int slascl_(char *, integer *, integer *, real *, + real *, integer *, integer *, real *, integer *, integer *), cunmbr_(char *, char *, char *, integer *, integer *, + integer *, complex *, integer *, complex *, complex *, integer *, + complex *, integer *, integer *), cunglq_( + integer *, integer *, integer *, complex *, integer *, complex *, + complex *, integer *, integer *); + static integer ldwrkl; + extern /* Subroutine */ int cungqr_(integer *, integer *, integer *, + complex *, integer *, complex *, complex *, integer *, integer *); + static integer ldwrkr, minwrk, ldwrku, maxwrk, ldwkvt; + static real smlnum; + static logical wntqas, lquery; + static integer nrwork; + + +/* + -- LAPACK driver routine (version 3.0) -- + Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd., + Courant Institute, Argonne National Lab, and Rice University + October 31, 1999 + + + Purpose + ======= + + CGESDD computes the singular value decomposition (SVD) of a complex + M-by-N matrix A, optionally computing the left and/or right singular + vectors, by using divide-and-conquer method. The SVD is written + + A = U * SIGMA * conjugate-transpose(V) + + where SIGMA is an M-by-N matrix which is zero except for its + min(m,n) diagonal elements, U is an M-by-M unitary matrix, and + V is an N-by-N unitary matrix. The diagonal elements of SIGMA + are the singular values of A; they are real and non-negative, and + are returned in descending order. The first min(m,n) columns of + U and V are the left and right singular vectors of A. + + Note that the routine returns VT = V**H, not V. + + The divide and conquer algorithm makes very mild assumptions about + floating point arithmetic. It will work on machines with a guard + digit in add/subtract, or on those binary machines without guard + digits which subtract like the Cray X-MP, Cray Y-MP, Cray C-90, or + Cray-2. It could conceivably fail on hexadecimal or decimal machines + without guard digits, but we know of none. + + Arguments + ========= + + JOBZ (input) CHARACTER*1 + Specifies options for computing all or part of the matrix U: + = 'A': all M columns of U and all N rows of V**H are + returned in the arrays U and VT; + = 'S': the first min(M,N) columns of U and the first + min(M,N) rows of V**H are returned in the arrays U + and VT; + = 'O': If M >= N, the first N columns of U are overwritten + on the array A and all rows of V**H are returned in + the array VT; + otherwise, all columns of U are returned in the + array U and the first M rows of V**H are overwritten + in the array VT; + = 'N': no columns of U or rows of V**H are computed. + + M (input) INTEGER + The number of rows of the input matrix A. M >= 0. + + N (input) INTEGER + The number of columns of the input matrix A. N >= 0. + + A (input/output) COMPLEX array, dimension (LDA,N) + On entry, the M-by-N matrix A. + On exit, + if JOBZ = 'O', A is overwritten with the first N columns + of U (the left singular vectors, stored + columnwise) if M >= N; + A is overwritten with the first M rows + of V**H (the right singular vectors, stored + rowwise) otherwise. + if JOBZ .ne. 'O', the contents of A are destroyed. + + LDA (input) INTEGER + The leading dimension of the array A. LDA >= max(1,M). + + S (output) REAL array, dimension (min(M,N)) + The singular values of A, sorted so that S(i) >= S(i+1). + + U (output) COMPLEX array, dimension (LDU,UCOL) + UCOL = M if JOBZ = 'A' or JOBZ = 'O' and M < N; + UCOL = min(M,N) if JOBZ = 'S'. + If JOBZ = 'A' or JOBZ = 'O' and M < N, U contains the M-by-M + unitary matrix U; + if JOBZ = 'S', U contains the first min(M,N) columns of U + (the left singular vectors, stored columnwise); + if JOBZ = 'O' and M >= N, or JOBZ = 'N', U is not referenced. + + LDU (input) INTEGER + The leading dimension of the array U. LDU >= 1; if + JOBZ = 'S' or 'A' or JOBZ = 'O' and M < N, LDU >= M. + + VT (output) COMPLEX array, dimension (LDVT,N) + If JOBZ = 'A' or JOBZ = 'O' and M >= N, VT contains the + N-by-N unitary matrix V**H; + if JOBZ = 'S', VT contains the first min(M,N) rows of + V**H (the right singular vectors, stored rowwise); + if JOBZ = 'O' and M < N, or JOBZ = 'N', VT is not referenced. + + LDVT (input) INTEGER + The leading dimension of the array VT. LDVT >= 1; if + JOBZ = 'A' or JOBZ = 'O' and M >= N, LDVT >= N; + if JOBZ = 'S', LDVT >= min(M,N). + + WORK (workspace/output) COMPLEX array, dimension (LWORK) + On exit, if INFO = 0, WORK(1) returns the optimal LWORK. + + LWORK (input) INTEGER + The dimension of the array WORK. LWORK >= 1. + if JOBZ = 'N', LWORK >= 2*min(M,N)+max(M,N). + if JOBZ = 'O', + LWORK >= 2*min(M,N)*min(M,N)+2*min(M,N)+max(M,N). + if JOBZ = 'S' or 'A', + LWORK >= min(M,N)*min(M,N)+2*min(M,N)+max(M,N). + For good performance, LWORK should generally be larger. + If LWORK < 0 but other input arguments are legal, WORK(1) + returns the optimal LWORK. + + RWORK (workspace) REAL array, dimension (LRWORK) + If JOBZ = 'N', LRWORK >= 7*min(M,N). + Otherwise, LRWORK >= 5*min(M,N)*min(M,N) + 5*min(M,N) + + IWORK (workspace) INTEGER array, dimension (8*min(M,N)) + + INFO (output) INTEGER + = 0: successful exit. + < 0: if INFO = -i, the i-th argument had an illegal value. + > 0: The updating process of SBDSDC did not converge. + + Further Details + =============== + + Based on contributions by + Ming Gu and Huan Ren, Computer Science Division, University of + California at Berkeley, USA + + ===================================================================== + + + Test the input arguments +*/ + + /* Parameter adjustments */ + a_dim1 = *lda; + a_offset = 1 + a_dim1; + a -= a_offset; + --s; + u_dim1 = *ldu; + u_offset = 1 + u_dim1; + u -= u_offset; + vt_dim1 = *ldvt; + vt_offset = 1 + vt_dim1; + vt -= vt_offset; + --work; + --rwork; + --iwork; + + /* Function Body */ + *info = 0; + minmn = min(*m,*n); + mnthr1 = (integer) (minmn * 17.f / 9.f); + mnthr2 = (integer) (minmn * 5.f / 3.f); + wntqa = lsame_(jobz, "A"); + wntqs = lsame_(jobz, "S"); + wntqas = wntqa || wntqs; + wntqo = lsame_(jobz, "O"); + wntqn = lsame_(jobz, "N"); + minwrk = 1; + maxwrk = 1; + lquery = *lwork == -1; + + if (! (wntqa || wntqs || wntqo || wntqn)) { + *info = -1; + } else if (*m < 0) { + *info = -2; + } else if (*n < 0) { + *info = -3; + } else if (*lda < max(1,*m)) { + *info = -5; + } else if (*ldu < 1 || wntqas && *ldu < *m || wntqo && *m < *n && *ldu < * + m) { + *info = -8; + } else if (*ldvt < 1 || wntqa && *ldvt < *n || wntqs && *ldvt < minmn || + wntqo && *m >= *n && *ldvt < *n) { + *info = -10; + } + +/* + Compute workspace + (Note: Comments in the code beginning "Workspace:" describe the + minimal amount of workspace needed at that point in the code, + as well as the preferred amount for good performance. + CWorkspace refers to complex workspace, and RWorkspace to + real workspace. NB refers to the optimal block size for the + immediately following subroutine, as returned by ILAENV.) +*/ + + if (*info == 0 && *m > 0 && *n > 0) { + if (*m >= *n) { + +/* + There is no complex work space needed for bidiagonal SVD + The real work space needed for bidiagonal SVD is BDSPAC, + BDSPAC = 3*N*N + 4*N +*/ + + if (*m >= mnthr1) { + if (wntqn) { + +/* Path 1 (M much larger than N, JOBZ='N') */ + + wrkbl = *n + *n * ilaenv_(&c__1, "CGEQRF", " ", m, n, & + c_n1, &c_n1, (ftnlen)6, (ftnlen)1); +/* Computing MAX */ + i__1 = wrkbl, i__2 = (*n << 1) + (*n << 1) * ilaenv_(& + c__1, "CGEBRD", " ", n, n, &c_n1, &c_n1, (ftnlen) + 6, (ftnlen)1); + wrkbl = max(i__1,i__2); + maxwrk = wrkbl; + minwrk = *n * 3; + } else if (wntqo) { + +/* Path 2 (M much larger than N, JOBZ='O') */ + + wrkbl = *n + *n * ilaenv_(&c__1, "CGEQRF", " ", m, n, & + c_n1, &c_n1, (ftnlen)6, (ftnlen)1); +/* Computing MAX */ + i__1 = wrkbl, i__2 = *n + *n * ilaenv_(&c__1, "CUNGQR", + " ", m, n, n, &c_n1, (ftnlen)6, (ftnlen)1); + wrkbl = max(i__1,i__2); +/* Computing MAX */ + i__1 = wrkbl, i__2 = (*n << 1) + (*n << 1) * ilaenv_(& + c__1, "CGEBRD", " ", n, n, &c_n1, &c_n1, (ftnlen) + 6, (ftnlen)1); + wrkbl = max(i__1,i__2); +/* Computing MAX */ + i__1 = wrkbl, i__2 = (*n << 1) + *n * ilaenv_(&c__1, + "CUNMBR", "QLN", n, n, n, &c_n1, (ftnlen)6, ( + ftnlen)3); + wrkbl = max(i__1,i__2); +/* Computing MAX */ + i__1 = wrkbl, i__2 = (*n << 1) + *n * ilaenv_(&c__1, + "CUNMBR", "PRC", n, n, n, &c_n1, (ftnlen)6, ( + ftnlen)3); + wrkbl = max(i__1,i__2); + maxwrk = *m * *n + *n * *n + wrkbl; + minwrk = (*n << 1) * *n + *n * 3; + } else if (wntqs) { + +/* Path 3 (M much larger than N, JOBZ='S') */ + + wrkbl = *n + *n * ilaenv_(&c__1, "CGEQRF", " ", m, n, & + c_n1, &c_n1, (ftnlen)6, (ftnlen)1); +/* Computing MAX */ + i__1 = wrkbl, i__2 = *n + *n * ilaenv_(&c__1, "CUNGQR", + " ", m, n, n, &c_n1, (ftnlen)6, (ftnlen)1); + wrkbl = max(i__1,i__2); +/* Computing MAX */ + i__1 = wrkbl, i__2 = (*n << 1) + (*n << 1) * ilaenv_(& + c__1, "CGEBRD", " ", n, n, &c_n1, &c_n1, (ftnlen) + 6, (ftnlen)1); + wrkbl = max(i__1,i__2); +/* Computing MAX */ + i__1 = wrkbl, i__2 = (*n << 1) + *n * ilaenv_(&c__1, + "CUNMBR", "QLN", n, n, n, &c_n1, (ftnlen)6, ( + ftnlen)3); + wrkbl = max(i__1,i__2); +/* Computing MAX */ + i__1 = wrkbl, i__2 = (*n << 1) + *n * ilaenv_(&c__1, + "CUNMBR", "PRC", n, n, n, &c_n1, (ftnlen)6, ( + ftnlen)3); + wrkbl = max(i__1,i__2); + maxwrk = *n * *n + wrkbl; + minwrk = *n * *n + *n * 3; + } else if (wntqa) { + +/* Path 4 (M much larger than N, JOBZ='A') */ + + wrkbl = *n + *n * ilaenv_(&c__1, "CGEQRF", " ", m, n, & + c_n1, &c_n1, (ftnlen)6, (ftnlen)1); +/* Computing MAX */ + i__1 = wrkbl, i__2 = *n + *m * ilaenv_(&c__1, "CUNGQR", + " ", m, m, n, &c_n1, (ftnlen)6, (ftnlen)1); + wrkbl = max(i__1,i__2); +/* Computing MAX */ + i__1 = wrkbl, i__2 = (*n << 1) + (*n << 1) * ilaenv_(& + c__1, "CGEBRD", " ", n, n, &c_n1, &c_n1, (ftnlen) + 6, (ftnlen)1); + wrkbl = max(i__1,i__2); +/* Computing MAX */ + i__1 = wrkbl, i__2 = (*n << 1) + *n * ilaenv_(&c__1, + "CUNMBR", "QLN", n, n, n, &c_n1, (ftnlen)6, ( + ftnlen)3); + wrkbl = max(i__1,i__2); +/* Computing MAX */ + i__1 = wrkbl, i__2 = (*n << 1) + *n * ilaenv_(&c__1, + "CUNMBR", "PRC", n, n, n, &c_n1, (ftnlen)6, ( + ftnlen)3); + wrkbl = max(i__1,i__2); + maxwrk = *n * *n + wrkbl; + minwrk = *n * *n + (*n << 1) + *m; + } + } else if (*m >= mnthr2) { + +/* Path 5 (M much larger than N, but not as much as MNTHR1) */ + + maxwrk = (*n << 1) + (*m + *n) * ilaenv_(&c__1, "CGEBRD", + " ", m, n, &c_n1, &c_n1, (ftnlen)6, (ftnlen)1); + minwrk = (*n << 1) + *m; + if (wntqo) { +/* Computing MAX */ + i__1 = maxwrk, i__2 = (*n << 1) + *n * ilaenv_(&c__1, + "CUNGBR", "P", n, n, n, &c_n1, (ftnlen)6, (ftnlen) + 1); + maxwrk = max(i__1,i__2); +/* Computing MAX */ + i__1 = maxwrk, i__2 = (*n << 1) + *n * ilaenv_(&c__1, + "CUNGBR", "Q", m, n, n, &c_n1, (ftnlen)6, (ftnlen) + 1); + maxwrk = max(i__1,i__2); + maxwrk += *m * *n; + minwrk += *n * *n; + } else if (wntqs) { +/* Computing MAX */ + i__1 = maxwrk, i__2 = (*n << 1) + *n * ilaenv_(&c__1, + "CUNGBR", "P", n, n, n, &c_n1, (ftnlen)6, (ftnlen) + 1); + maxwrk = max(i__1,i__2); +/* Computing MAX */ + i__1 = maxwrk, i__2 = (*n << 1) + *n * ilaenv_(&c__1, + "CUNGBR", "Q", m, n, n, &c_n1, (ftnlen)6, (ftnlen) + 1); + maxwrk = max(i__1,i__2); + } else if (wntqa) { +/* Computing MAX */ + i__1 = maxwrk, i__2 = (*n << 1) + *n * ilaenv_(&c__1, + "CUNGBR", "P", n, n, n, &c_n1, (ftnlen)6, (ftnlen) + 1); + maxwrk = max(i__1,i__2); +/* Computing MAX */ + i__1 = maxwrk, i__2 = (*n << 1) + *m * ilaenv_(&c__1, + "CUNGBR", "Q", m, m, n, &c_n1, (ftnlen)6, (ftnlen) + 1); + maxwrk = max(i__1,i__2); + } + } else { + +/* Path 6 (M at least N, but not much larger) */ + + maxwrk = (*n << 1) + (*m + *n) * ilaenv_(&c__1, "CGEBRD", + " ", m, n, &c_n1, &c_n1, (ftnlen)6, (ftnlen)1); + minwrk = (*n << 1) + *m; + if (wntqo) { +/* Computing MAX */ + i__1 = maxwrk, i__2 = (*n << 1) + *n * ilaenv_(&c__1, + "CUNMBR", "PRC", n, n, n, &c_n1, (ftnlen)6, ( + ftnlen)3); + maxwrk = max(i__1,i__2); +/* Computing MAX */ + i__1 = maxwrk, i__2 = (*n << 1) + *n * ilaenv_(&c__1, + "CUNMBR", "QLN", m, n, n, &c_n1, (ftnlen)6, ( + ftnlen)3); + maxwrk = max(i__1,i__2); + maxwrk += *m * *n; + minwrk += *n * *n; + } else if (wntqs) { +/* Computing MAX */ + i__1 = maxwrk, i__2 = (*n << 1) + *n * ilaenv_(&c__1, + "CUNMBR", "PRC", n, n, n, &c_n1, (ftnlen)6, ( + ftnlen)3); + maxwrk = max(i__1,i__2); +/* Computing MAX */ + i__1 = maxwrk, i__2 = (*n << 1) + *n * ilaenv_(&c__1, + "CUNMBR", "QLN", m, n, n, &c_n1, (ftnlen)6, ( + ftnlen)3); + maxwrk = max(i__1,i__2); + } else if (wntqa) { +/* Computing MAX */ + i__1 = maxwrk, i__2 = (*n << 1) + *n * ilaenv_(&c__1, + "CUNGBR", "PRC", n, n, n, &c_n1, (ftnlen)6, ( + ftnlen)3); + maxwrk = max(i__1,i__2); +/* Computing MAX */ + i__1 = maxwrk, i__2 = (*n << 1) + *m * ilaenv_(&c__1, + "CUNGBR", "QLN", m, m, n, &c_n1, (ftnlen)6, ( + ftnlen)3); + maxwrk = max(i__1,i__2); + } + } + } else { + +/* + There is no complex work space needed for bidiagonal SVD + The real work space needed for bidiagonal SVD is BDSPAC, + BDSPAC = 3*M*M + 4*M +*/ + + if (*n >= mnthr1) { + if (wntqn) { + +/* Path 1t (N much larger than M, JOBZ='N') */ + + maxwrk = *m + *m * ilaenv_(&c__1, "CGELQF", " ", m, n, & + c_n1, &c_n1, (ftnlen)6, (ftnlen)1); +/* Computing MAX */ + i__1 = maxwrk, i__2 = (*m << 1) + (*m << 1) * ilaenv_(& + c__1, "CGEBRD", " ", m, m, &c_n1, &c_n1, (ftnlen) + 6, (ftnlen)1); + maxwrk = max(i__1,i__2); + minwrk = *m * 3; + } else if (wntqo) { + +/* Path 2t (N much larger than M, JOBZ='O') */ + + wrkbl = *m + *m * ilaenv_(&c__1, "CGELQF", " ", m, n, & + c_n1, &c_n1, (ftnlen)6, (ftnlen)1); +/* Computing MAX */ + i__1 = wrkbl, i__2 = *m + *m * ilaenv_(&c__1, "CUNGLQ", + " ", m, n, m, &c_n1, (ftnlen)6, (ftnlen)1); + wrkbl = max(i__1,i__2); +/* Computing MAX */ + i__1 = wrkbl, i__2 = (*m << 1) + (*m << 1) * ilaenv_(& + c__1, "CGEBRD", " ", m, m, &c_n1, &c_n1, (ftnlen) + 6, (ftnlen)1); + wrkbl = max(i__1,i__2); +/* Computing MAX */ + i__1 = wrkbl, i__2 = (*m << 1) + *m * ilaenv_(&c__1, + "CUNMBR", "PRC", m, m, m, &c_n1, (ftnlen)6, ( + ftnlen)3); + wrkbl = max(i__1,i__2); +/* Computing MAX */ + i__1 = wrkbl, i__2 = (*m << 1) + *m * ilaenv_(&c__1, + "CUNMBR", "QLN", m, m, m, &c_n1, (ftnlen)6, ( + ftnlen)3); + wrkbl = max(i__1,i__2); + maxwrk = *m * *n + *m * *m + wrkbl; + minwrk = (*m << 1) * *m + *m * 3; + } else if (wntqs) { + +/* Path 3t (N much larger than M, JOBZ='S') */ + + wrkbl = *m + *m * ilaenv_(&c__1, "CGELQF", " ", m, n, & + c_n1, &c_n1, (ftnlen)6, (ftnlen)1); +/* Computing MAX */ + i__1 = wrkbl, i__2 = *m + *m * ilaenv_(&c__1, "CUNGLQ", + " ", m, n, m, &c_n1, (ftnlen)6, (ftnlen)1); + wrkbl = max(i__1,i__2); +/* Computing MAX */ + i__1 = wrkbl, i__2 = (*m << 1) + (*m << 1) * ilaenv_(& + c__1, "CGEBRD", " ", m, m, &c_n1, &c_n1, (ftnlen) + 6, (ftnlen)1); + wrkbl = max(i__1,i__2); +/* Computing MAX */ + i__1 = wrkbl, i__2 = (*m << 1) + *m * ilaenv_(&c__1, + "CUNMBR", "PRC", m, m, m, &c_n1, (ftnlen)6, ( + ftnlen)3); + wrkbl = max(i__1,i__2); +/* Computing MAX */ + i__1 = wrkbl, i__2 = (*m << 1) + *m * ilaenv_(&c__1, + "CUNMBR", "QLN", m, m, m, &c_n1, (ftnlen)6, ( + ftnlen)3); + wrkbl = max(i__1,i__2); + maxwrk = *m * *m + wrkbl; + minwrk = *m * *m + *m * 3; + } else if (wntqa) { + +/* Path 4t (N much larger than M, JOBZ='A') */ + + wrkbl = *m + *m * ilaenv_(&c__1, "CGELQF", " ", m, n, & + c_n1, &c_n1, (ftnlen)6, (ftnlen)1); +/* Computing MAX */ + i__1 = wrkbl, i__2 = *m + *n * ilaenv_(&c__1, "CUNGLQ", + " ", n, n, m, &c_n1, (ftnlen)6, (ftnlen)1); + wrkbl = max(i__1,i__2); +/* Computing MAX */ + i__1 = wrkbl, i__2 = (*m << 1) + (*m << 1) * ilaenv_(& + c__1, "CGEBRD", " ", m, m, &c_n1, &c_n1, (ftnlen) + 6, (ftnlen)1); + wrkbl = max(i__1,i__2); +/* Computing MAX */ + i__1 = wrkbl, i__2 = (*m << 1) + *m * ilaenv_(&c__1, + "CUNMBR", "PRC", m, m, m, &c_n1, (ftnlen)6, ( + ftnlen)3); + wrkbl = max(i__1,i__2); +/* Computing MAX */ + i__1 = wrkbl, i__2 = (*m << 1) + *m * ilaenv_(&c__1, + "CUNMBR", "QLN", m, m, m, &c_n1, (ftnlen)6, ( + ftnlen)3); + wrkbl = max(i__1,i__2); + maxwrk = *m * *m + wrkbl; + minwrk = *m * *m + (*m << 1) + *n; + } + } else if (*n >= mnthr2) { + +/* Path 5t (N much larger than M, but not as much as MNTHR1) */ + + maxwrk = (*m << 1) + (*m + *n) * ilaenv_(&c__1, "CGEBRD", + " ", m, n, &c_n1, &c_n1, (ftnlen)6, (ftnlen)1); + minwrk = (*m << 1) + *n; + if (wntqo) { +/* Computing MAX */ + i__1 = maxwrk, i__2 = (*m << 1) + *m * ilaenv_(&c__1, + "CUNGBR", "P", m, n, m, &c_n1, (ftnlen)6, (ftnlen) + 1); + maxwrk = max(i__1,i__2); +/* Computing MAX */ + i__1 = maxwrk, i__2 = (*m << 1) + *m * ilaenv_(&c__1, + "CUNGBR", "Q", m, m, n, &c_n1, (ftnlen)6, (ftnlen) + 1); + maxwrk = max(i__1,i__2); + maxwrk += *m * *n; + minwrk += *m * *m; + } else if (wntqs) { +/* Computing MAX */ + i__1 = maxwrk, i__2 = (*m << 1) + *m * ilaenv_(&c__1, + "CUNGBR", "P", m, n, m, &c_n1, (ftnlen)6, (ftnlen) + 1); + maxwrk = max(i__1,i__2); +/* Computing MAX */ + i__1 = maxwrk, i__2 = (*m << 1) + *m * ilaenv_(&c__1, + "CUNGBR", "Q", m, m, n, &c_n1, (ftnlen)6, (ftnlen) + 1); + maxwrk = max(i__1,i__2); + } else if (wntqa) { +/* Computing MAX */ + i__1 = maxwrk, i__2 = (*m << 1) + *n * ilaenv_(&c__1, + "CUNGBR", "P", n, n, m, &c_n1, (ftnlen)6, (ftnlen) + 1); + maxwrk = max(i__1,i__2); +/* Computing MAX */ + i__1 = maxwrk, i__2 = (*m << 1) + *m * ilaenv_(&c__1, + "CUNGBR", "Q", m, m, n, &c_n1, (ftnlen)6, (ftnlen) + 1); + maxwrk = max(i__1,i__2); + } + } else { + +/* Path 6t (N greater than M, but not much larger) */ + + maxwrk = (*m << 1) + (*m + *n) * ilaenv_(&c__1, "CGEBRD", + " ", m, n, &c_n1, &c_n1, (ftnlen)6, (ftnlen)1); + minwrk = (*m << 1) + *n; + if (wntqo) { +/* Computing MAX */ + i__1 = maxwrk, i__2 = (*m << 1) + *m * ilaenv_(&c__1, + "CUNMBR", "PRC", m, n, m, &c_n1, (ftnlen)6, ( + ftnlen)3); + maxwrk = max(i__1,i__2); +/* Computing MAX */ + i__1 = maxwrk, i__2 = (*m << 1) + *m * ilaenv_(&c__1, + "CUNMBR", "QLN", m, m, n, &c_n1, (ftnlen)6, ( + ftnlen)3); + maxwrk = max(i__1,i__2); + maxwrk += *m * *n; + minwrk += *m * *m; + } else if (wntqs) { +/* Computing MAX */ + i__1 = maxwrk, i__2 = (*m << 1) + *m * ilaenv_(&c__1, + "CUNGBR", "PRC", m, n, m, &c_n1, (ftnlen)6, ( + ftnlen)3); + maxwrk = max(i__1,i__2); +/* Computing MAX */ + i__1 = maxwrk, i__2 = (*m << 1) + *m * ilaenv_(&c__1, + "CUNGBR", "QLN", m, m, n, &c_n1, (ftnlen)6, ( + ftnlen)3); + maxwrk = max(i__1,i__2); + } else if (wntqa) { +/* Computing MAX */ + i__1 = maxwrk, i__2 = (*m << 1) + *n * ilaenv_(&c__1, + "CUNGBR", "PRC", n, n, m, &c_n1, (ftnlen)6, ( + ftnlen)3); + maxwrk = max(i__1,i__2); +/* Computing MAX */ + i__1 = maxwrk, i__2 = (*m << 1) + *m * ilaenv_(&c__1, + "CUNGBR", "QLN", m, m, n, &c_n1, (ftnlen)6, ( + ftnlen)3); + maxwrk = max(i__1,i__2); + } + } + } + maxwrk = max(maxwrk,minwrk); + work[1].r = (real) maxwrk, work[1].i = 0.f; + } + + if (*lwork < minwrk && ! lquery) { + *info = -13; + } + if (*info != 0) { + i__1 = -(*info); + xerbla_("CGESDD", &i__1); + return 0; + } else if (lquery) { + return 0; + } + +/* Quick return if possible */ + + if (*m == 0 || *n == 0) { + if (*lwork >= 1) { + work[1].r = 1.f, work[1].i = 0.f; + } + return 0; + } + +/* Get machine constants */ + + eps = slamch_("P"); + smlnum = sqrt(slamch_("S")) / eps; + bignum = 1.f / smlnum; + +/* Scale A if max element outside range [SMLNUM,BIGNUM] */ + + anrm = clange_("M", m, n, &a[a_offset], lda, dum); + iscl = 0; + if (anrm > 0.f && anrm < smlnum) { + iscl = 1; + clascl_("G", &c__0, &c__0, &anrm, &smlnum, m, n, &a[a_offset], lda, & + ierr); + } else if (anrm > bignum) { + iscl = 1; + clascl_("G", &c__0, &c__0, &anrm, &bignum, m, n, &a[a_offset], lda, & + ierr); + } + + if (*m >= *n) { + +/* + A has at least as many rows as columns. If A has sufficiently + more rows than columns, first reduce using the QR + decomposition (if sufficient workspace available) +*/ + + if (*m >= mnthr1) { + + if (wntqn) { + +/* + Path 1 (M much larger than N, JOBZ='N') + No singular vectors to be computed +*/ + + itau = 1; + nwork = itau + *n; + +/* + Compute A=Q*R + (CWorkspace: need 2*N, prefer N+N*NB) + (RWorkspace: need 0) +*/ + + i__1 = *lwork - nwork + 1; + cgeqrf_(m, n, &a[a_offset], lda, &work[itau], &work[nwork], & + i__1, &ierr); + +/* Zero out below R */ + + i__1 = *n - 1; + i__2 = *n - 1; + claset_("L", &i__1, &i__2, &c_b55, &c_b55, &a[a_dim1 + 2], + lda); + ie = 1; + itauq = 1; + itaup = itauq + *n; + nwork = itaup + *n; + +/* + Bidiagonalize R in A + (CWorkspace: need 3*N, prefer 2*N+2*N*NB) + (RWorkspace: need N) +*/ + + i__1 = *lwork - nwork + 1; + cgebrd_(n, n, &a[a_offset], lda, &s[1], &rwork[ie], &work[ + itauq], &work[itaup], &work[nwork], &i__1, &ierr); + nrwork = ie + *n; + +/* + Perform bidiagonal SVD, compute singular values only + (CWorkspace: 0) + (RWorkspace: need BDSPAC) +*/ + + sbdsdc_("U", "N", n, &s[1], &rwork[ie], dum, &c__1, dum, & + c__1, dum, idum, &rwork[nrwork], &iwork[1], info); + + } else if (wntqo) { + +/* + Path 2 (M much larger than N, JOBZ='O') + N left singular vectors to be overwritten on A and + N right singular vectors to be computed in VT +*/ + + iu = 1; + +/* WORK(IU) is N by N */ + + ldwrku = *n; + ir = iu + ldwrku * *n; + if (*lwork >= *m * *n + *n * *n + *n * 3) { + +/* WORK(IR) is M by N */ + + ldwrkr = *m; + } else { + ldwrkr = (*lwork - *n * *n - *n * 3) / *n; + } + itau = ir + ldwrkr * *n; + nwork = itau + *n; + +/* + Compute A=Q*R + (CWorkspace: need N*N+2*N, prefer M*N+N+N*NB) + (RWorkspace: 0) +*/ + + i__1 = *lwork - nwork + 1; + cgeqrf_(m, n, &a[a_offset], lda, &work[itau], &work[nwork], & + i__1, &ierr); + +/* Copy R to WORK( IR ), zeroing out below it */ + + clacpy_("U", n, n, &a[a_offset], lda, &work[ir], &ldwrkr); + i__1 = *n - 1; + i__2 = *n - 1; + claset_("L", &i__1, &i__2, &c_b55, &c_b55, &work[ir + 1], & + ldwrkr); + +/* + Generate Q in A + (CWorkspace: need 2*N, prefer N+N*NB) + (RWorkspace: 0) +*/ + + i__1 = *lwork - nwork + 1; + cungqr_(m, n, n, &a[a_offset], lda, &work[itau], &work[nwork], + &i__1, &ierr); + ie = 1; + itauq = itau; + itaup = itauq + *n; + nwork = itaup + *n; + +/* + Bidiagonalize R in WORK(IR) + (CWorkspace: need N*N+3*N, prefer M*N+2*N+2*N*NB) + (RWorkspace: need N) +*/ + + i__1 = *lwork - nwork + 1; + cgebrd_(n, n, &work[ir], &ldwrkr, &s[1], &rwork[ie], &work[ + itauq], &work[itaup], &work[nwork], &i__1, &ierr); + +/* + Perform bidiagonal SVD, computing left singular vectors + of R in WORK(IRU) and computing right singular vectors + of R in WORK(IRVT) + (CWorkspace: need 0) + (RWorkspace: need BDSPAC) +*/ + + iru = ie + *n; + irvt = iru + *n * *n; + nrwork = irvt + *n * *n; + sbdsdc_("U", "I", n, &s[1], &rwork[ie], &rwork[iru], n, & + rwork[irvt], n, dum, idum, &rwork[nrwork], &iwork[1], + info); + +/* + Copy real matrix RWORK(IRU) to complex matrix WORK(IU) + Overwrite WORK(IU) by the left singular vectors of R + (CWorkspace: need 2*N*N+3*N, prefer M*N+N*N+2*N+N*NB) + (RWorkspace: 0) +*/ + + clacp2_("F", n, n, &rwork[iru], n, &work[iu], &ldwrku); + i__1 = *lwork - nwork + 1; + cunmbr_("Q", "L", "N", n, n, n, &work[ir], &ldwrkr, &work[ + itauq], &work[iu], &ldwrku, &work[nwork], &i__1, & + ierr); + +/* + Copy real matrix RWORK(IRVT) to complex matrix VT + Overwrite VT by the right singular vectors of R + (CWorkspace: need N*N+3*N, prefer M*N+2*N+N*NB) + (RWorkspace: 0) +*/ + + clacp2_("F", n, n, &rwork[irvt], n, &vt[vt_offset], ldvt); + i__1 = *lwork - nwork + 1; + cunmbr_("P", "R", "C", n, n, n, &work[ir], &ldwrkr, &work[ + itaup], &vt[vt_offset], ldvt, &work[nwork], &i__1, & + ierr); + +/* + Multiply Q in A by left singular vectors of R in + WORK(IU), storing result in WORK(IR) and copying to A + (CWorkspace: need 2*N*N, prefer N*N+M*N) + (RWorkspace: 0) +*/ + + i__1 = *m; + i__2 = ldwrkr; + for (i__ = 1; i__2 < 0 ? i__ >= i__1 : i__ <= i__1; i__ += + i__2) { +/* Computing MIN */ + i__3 = *m - i__ + 1; + chunk = min(i__3,ldwrkr); + cgemm_("N", "N", &chunk, n, n, &c_b56, &a[i__ + a_dim1], + lda, &work[iu], &ldwrku, &c_b55, &work[ir], & + ldwrkr); + clacpy_("F", &chunk, n, &work[ir], &ldwrkr, &a[i__ + + a_dim1], lda); +/* L10: */ + } + + } else if (wntqs) { + +/* + Path 3 (M much larger than N, JOBZ='S') + N left singular vectors to be computed in U and + N right singular vectors to be computed in VT +*/ + + ir = 1; + +/* WORK(IR) is N by N */ + + ldwrkr = *n; + itau = ir + ldwrkr * *n; + nwork = itau + *n; + +/* + Compute A=Q*R + (CWorkspace: need N*N+2*N, prefer N*N+N+N*NB) + (RWorkspace: 0) +*/ + + i__2 = *lwork - nwork + 1; + cgeqrf_(m, n, &a[a_offset], lda, &work[itau], &work[nwork], & + i__2, &ierr); + +/* Copy R to WORK(IR), zeroing out below it */ + + clacpy_("U", n, n, &a[a_offset], lda, &work[ir], &ldwrkr); + i__2 = *n - 1; + i__1 = *n - 1; + claset_("L", &i__2, &i__1, &c_b55, &c_b55, &work[ir + 1], & + ldwrkr); + +/* + Generate Q in A + (CWorkspace: need 2*N, prefer N+N*NB) + (RWorkspace: 0) +*/ + + i__2 = *lwork - nwork + 1; + cungqr_(m, n, n, &a[a_offset], lda, &work[itau], &work[nwork], + &i__2, &ierr); + ie = 1; + itauq = itau; + itaup = itauq + *n; + nwork = itaup + *n; + +/* + Bidiagonalize R in WORK(IR) + (CWorkspace: need N*N+3*N, prefer N*N+2*N+2*N*NB) + (RWorkspace: need N) +*/ + + i__2 = *lwork - nwork + 1; + cgebrd_(n, n, &work[ir], &ldwrkr, &s[1], &rwork[ie], &work[ + itauq], &work[itaup], &work[nwork], &i__2, &ierr); + +/* + Perform bidiagonal SVD, computing left singular vectors + of bidiagonal matrix in RWORK(IRU) and computing right + singular vectors of bidiagonal matrix in RWORK(IRVT) + (CWorkspace: need 0) + (RWorkspace: need BDSPAC) +*/ + + iru = ie + *n; + irvt = iru + *n * *n; + nrwork = irvt + *n * *n; + sbdsdc_("U", "I", n, &s[1], &rwork[ie], &rwork[iru], n, & + rwork[irvt], n, dum, idum, &rwork[nrwork], &iwork[1], + info); + +/* + Copy real matrix RWORK(IRU) to complex matrix U + Overwrite U by left singular vectors of R + (CWorkspace: need N*N+3*N, prefer N*N+2*N+N*NB) + (RWorkspace: 0) +*/ + + clacp2_("F", n, n, &rwork[iru], n, &u[u_offset], ldu); + i__2 = *lwork - nwork + 1; + cunmbr_("Q", "L", "N", n, n, n, &work[ir], &ldwrkr, &work[ + itauq], &u[u_offset], ldu, &work[nwork], &i__2, &ierr); + +/* + Copy real matrix RWORK(IRVT) to complex matrix VT + Overwrite VT by right singular vectors of R + (CWorkspace: need N*N+3*N, prefer N*N+2*N+N*NB) + (RWorkspace: 0) +*/ + + clacp2_("F", n, n, &rwork[irvt], n, &vt[vt_offset], ldvt); + i__2 = *lwork - nwork + 1; + cunmbr_("P", "R", "C", n, n, n, &work[ir], &ldwrkr, &work[ + itaup], &vt[vt_offset], ldvt, &work[nwork], &i__2, & + ierr); + +/* + Multiply Q in A by left singular vectors of R in + WORK(IR), storing result in U + (CWorkspace: need N*N) + (RWorkspace: 0) +*/ + + clacpy_("F", n, n, &u[u_offset], ldu, &work[ir], &ldwrkr); + cgemm_("N", "N", m, n, n, &c_b56, &a[a_offset], lda, &work[ir] + , &ldwrkr, &c_b55, &u[u_offset], ldu); + + } else if (wntqa) { + +/* + Path 4 (M much larger than N, JOBZ='A') + M left singular vectors to be computed in U and + N right singular vectors to be computed in VT +*/ + + iu = 1; + +/* WORK(IU) is N by N */ + + ldwrku = *n; + itau = iu + ldwrku * *n; + nwork = itau + *n; + +/* + Compute A=Q*R, copying result to U + (CWorkspace: need 2*N, prefer N+N*NB) + (RWorkspace: 0) +*/ + + i__2 = *lwork - nwork + 1; + cgeqrf_(m, n, &a[a_offset], lda, &work[itau], &work[nwork], & + i__2, &ierr); + clacpy_("L", m, n, &a[a_offset], lda, &u[u_offset], ldu); + +/* + Generate Q in U + (CWorkspace: need N+M, prefer N+M*NB) + (RWorkspace: 0) +*/ + + i__2 = *lwork - nwork + 1; + cungqr_(m, m, n, &u[u_offset], ldu, &work[itau], &work[nwork], + &i__2, &ierr); + +/* Produce R in A, zeroing out below it */ + + i__2 = *n - 1; + i__1 = *n - 1; + claset_("L", &i__2, &i__1, &c_b55, &c_b55, &a[a_dim1 + 2], + lda); + ie = 1; + itauq = itau; + itaup = itauq + *n; + nwork = itaup + *n; + +/* + Bidiagonalize R in A + (CWorkspace: need 3*N, prefer 2*N+2*N*NB) + (RWorkspace: need N) +*/ + + i__2 = *lwork - nwork + 1; + cgebrd_(n, n, &a[a_offset], lda, &s[1], &rwork[ie], &work[ + itauq], &work[itaup], &work[nwork], &i__2, &ierr); + iru = ie + *n; + irvt = iru + *n * *n; + nrwork = irvt + *n * *n; + +/* + Perform bidiagonal SVD, computing left singular vectors + of bidiagonal matrix in RWORK(IRU) and computing right + singular vectors of bidiagonal matrix in RWORK(IRVT) + (CWorkspace: need 0) + (RWorkspace: need BDSPAC) +*/ + + sbdsdc_("U", "I", n, &s[1], &rwork[ie], &rwork[iru], n, & + rwork[irvt], n, dum, idum, &rwork[nrwork], &iwork[1], + info); + +/* + Copy real matrix RWORK(IRU) to complex matrix WORK(IU) + Overwrite WORK(IU) by left singular vectors of R + (CWorkspace: need N*N+3*N, prefer N*N+2*N+N*NB) + (RWorkspace: 0) +*/ + + clacp2_("F", n, n, &rwork[iru], n, &work[iu], &ldwrku); + i__2 = *lwork - nwork + 1; + cunmbr_("Q", "L", "N", n, n, n, &a[a_offset], lda, &work[ + itauq], &work[iu], &ldwrku, &work[nwork], &i__2, & + ierr); + +/* + Copy real matrix RWORK(IRVT) to complex matrix VT + Overwrite VT by right singular vectors of R + (CWorkspace: need 3*N, prefer 2*N+N*NB) + (RWorkspace: 0) +*/ + + clacp2_("F", n, n, &rwork[irvt], n, &vt[vt_offset], ldvt); + i__2 = *lwork - nwork + 1; + cunmbr_("P", "R", "C", n, n, n, &a[a_offset], lda, &work[ + itaup], &vt[vt_offset], ldvt, &work[nwork], &i__2, & + ierr); + +/* + Multiply Q in U by left singular vectors of R in + WORK(IU), storing result in A + (CWorkspace: need N*N) + (RWorkspace: 0) +*/ + + cgemm_("N", "N", m, n, n, &c_b56, &u[u_offset], ldu, &work[iu] + , &ldwrku, &c_b55, &a[a_offset], lda); + +/* Copy left singular vectors of A from A to U */ + + clacpy_("F", m, n, &a[a_offset], lda, &u[u_offset], ldu); + + } + + } else if (*m >= mnthr2) { + +/* + MNTHR2 <= M < MNTHR1 + + Path 5 (M much larger than N, but not as much as MNTHR1) + Reduce to bidiagonal form without QR decomposition, use + CUNGBR and matrix multiplication to compute singular vectors +*/ + + ie = 1; + nrwork = ie + *n; + itauq = 1; + itaup = itauq + *n; + nwork = itaup + *n; + +/* + Bidiagonalize A + (CWorkspace: need 2*N+M, prefer 2*N+(M+N)*NB) + (RWorkspace: need N) +*/ + + i__2 = *lwork - nwork + 1; + cgebrd_(m, n, &a[a_offset], lda, &s[1], &rwork[ie], &work[itauq], + &work[itaup], &work[nwork], &i__2, &ierr); + if (wntqn) { + +/* + Compute singular values only + (Cworkspace: 0) + (Rworkspace: need BDSPAC) +*/ + + sbdsdc_("U", "N", n, &s[1], &rwork[ie], dum, &c__1, dum, & + c__1, dum, idum, &rwork[nrwork], &iwork[1], info); + } else if (wntqo) { + iu = nwork; + iru = nrwork; + irvt = iru + *n * *n; + nrwork = irvt + *n * *n; + +/* + Copy A to VT, generate P**H + (Cworkspace: need 2*N, prefer N+N*NB) + (Rworkspace: 0) +*/ + + clacpy_("U", n, n, &a[a_offset], lda, &vt[vt_offset], ldvt); + i__2 = *lwork - nwork + 1; + cungbr_("P", n, n, n, &vt[vt_offset], ldvt, &work[itaup], & + work[nwork], &i__2, &ierr); + +/* + Generate Q in A + (CWorkspace: need 2*N, prefer N+N*NB) + (RWorkspace: 0) +*/ + + i__2 = *lwork - nwork + 1; + cungbr_("Q", m, n, n, &a[a_offset], lda, &work[itauq], &work[ + nwork], &i__2, &ierr); + + if (*lwork >= *m * *n + *n * 3) { + +/* WORK( IU ) is M by N */ + + ldwrku = *m; + } else { + +/* WORK(IU) is LDWRKU by N */ + + ldwrku = (*lwork - *n * 3) / *n; + } + nwork = iu + ldwrku * *n; + +/* + Perform bidiagonal SVD, computing left singular vectors + of bidiagonal matrix in RWORK(IRU) and computing right + singular vectors of bidiagonal matrix in RWORK(IRVT) + (CWorkspace: need 0) + (RWorkspace: need BDSPAC) +*/ + + sbdsdc_("U", "I", n, &s[1], &rwork[ie], &rwork[iru], n, & + rwork[irvt], n, dum, idum, &rwork[nrwork], &iwork[1], + info); + +/* + Multiply real matrix RWORK(IRVT) by P**H in VT, + storing the result in WORK(IU), copying to VT + (Cworkspace: need 0) + (Rworkspace: need 3*N*N) +*/ + + clarcm_(n, n, &rwork[irvt], n, &vt[vt_offset], ldvt, &work[iu] + , &ldwrku, &rwork[nrwork]); + clacpy_("F", n, n, &work[iu], &ldwrku, &vt[vt_offset], ldvt); + +/* + Multiply Q in A by real matrix RWORK(IRU), storing the + result in WORK(IU), copying to A + (CWorkspace: need N*N, prefer M*N) + (Rworkspace: need 3*N*N, prefer N*N+2*M*N) +*/ + + nrwork = irvt; + i__2 = *m; + i__1 = ldwrku; + for (i__ = 1; i__1 < 0 ? i__ >= i__2 : i__ <= i__2; i__ += + i__1) { +/* Computing MIN */ + i__3 = *m - i__ + 1; + chunk = min(i__3,ldwrku); + clacrm_(&chunk, n, &a[i__ + a_dim1], lda, &rwork[iru], n, + &work[iu], &ldwrku, &rwork[nrwork]); + clacpy_("F", &chunk, n, &work[iu], &ldwrku, &a[i__ + + a_dim1], lda); +/* L20: */ + } + + } else if (wntqs) { + +/* + Copy A to VT, generate P**H + (Cworkspace: need 2*N, prefer N+N*NB) + (Rworkspace: 0) +*/ + + clacpy_("U", n, n, &a[a_offset], lda, &vt[vt_offset], ldvt); + i__1 = *lwork - nwork + 1; + cungbr_("P", n, n, n, &vt[vt_offset], ldvt, &work[itaup], & + work[nwork], &i__1, &ierr); + +/* + Copy A to U, generate Q + (Cworkspace: need 2*N, prefer N+N*NB) + (Rworkspace: 0) +*/ + + clacpy_("L", m, n, &a[a_offset], lda, &u[u_offset], ldu); + i__1 = *lwork - nwork + 1; + cungbr_("Q", m, n, n, &u[u_offset], ldu, &work[itauq], &work[ + nwork], &i__1, &ierr); + +/* + Perform bidiagonal SVD, computing left singular vectors + of bidiagonal matrix in RWORK(IRU) and computing right + singular vectors of bidiagonal matrix in RWORK(IRVT) + (CWorkspace: need 0) + (RWorkspace: need BDSPAC) +*/ + + iru = nrwork; + irvt = iru + *n * *n; + nrwork = irvt + *n * *n; + sbdsdc_("U", "I", n, &s[1], &rwork[ie], &rwork[iru], n, & + rwork[irvt], n, dum, idum, &rwork[nrwork], &iwork[1], + info); + +/* + Multiply real matrix RWORK(IRVT) by P**H in VT, + storing the result in A, copying to VT + (Cworkspace: need 0) + (Rworkspace: need 3*N*N) +*/ + + clarcm_(n, n, &rwork[irvt], n, &vt[vt_offset], ldvt, &a[ + a_offset], lda, &rwork[nrwork]); + clacpy_("F", n, n, &a[a_offset], lda, &vt[vt_offset], ldvt); + +/* + Multiply Q in U by real matrix RWORK(IRU), storing the + result in A, copying to U + (CWorkspace: need 0) + (Rworkspace: need N*N+2*M*N) +*/ + + nrwork = irvt; + clacrm_(m, n, &u[u_offset], ldu, &rwork[iru], n, &a[a_offset], + lda, &rwork[nrwork]); + clacpy_("F", m, n, &a[a_offset], lda, &u[u_offset], ldu); + } else { + +/* + Copy A to VT, generate P**H + (Cworkspace: need 2*N, prefer N+N*NB) + (Rworkspace: 0) +*/ + + clacpy_("U", n, n, &a[a_offset], lda, &vt[vt_offset], ldvt); + i__1 = *lwork - nwork + 1; + cungbr_("P", n, n, n, &vt[vt_offset], ldvt, &work[itaup], & + work[nwork], &i__1, &ierr); + +/* + Copy A to U, generate Q + (Cworkspace: need 2*N, prefer N+N*NB) + (Rworkspace: 0) +*/ + + clacpy_("L", m, n, &a[a_offset], lda, &u[u_offset], ldu); + i__1 = *lwork - nwork + 1; + cungbr_("Q", m, m, n, &u[u_offset], ldu, &work[itauq], &work[ + nwork], &i__1, &ierr); + +/* + Perform bidiagonal SVD, computing left singular vectors + of bidiagonal matrix in RWORK(IRU) and computing right + singular vectors of bidiagonal matrix in RWORK(IRVT) + (CWorkspace: need 0) + (RWorkspace: need BDSPAC) +*/ + + iru = nrwork; + irvt = iru + *n * *n; + nrwork = irvt + *n * *n; + sbdsdc_("U", "I", n, &s[1], &rwork[ie], &rwork[iru], n, & + rwork[irvt], n, dum, idum, &rwork[nrwork], &iwork[1], + info); + +/* + Multiply real matrix RWORK(IRVT) by P**H in VT, + storing the result in A, copying to VT + (Cworkspace: need 0) + (Rworkspace: need 3*N*N) +*/ + + clarcm_(n, n, &rwork[irvt], n, &vt[vt_offset], ldvt, &a[ + a_offset], lda, &rwork[nrwork]); + clacpy_("F", n, n, &a[a_offset], lda, &vt[vt_offset], ldvt); + +/* + Multiply Q in U by real matrix RWORK(IRU), storing the + result in A, copying to U + (CWorkspace: 0) + (Rworkspace: need 3*N*N) +*/ + + nrwork = irvt; + clacrm_(m, n, &u[u_offset], ldu, &rwork[iru], n, &a[a_offset], + lda, &rwork[nrwork]); + clacpy_("F", m, n, &a[a_offset], lda, &u[u_offset], ldu); + } + + } else { + +/* + M .LT. MNTHR2 + + Path 6 (M at least N, but not much larger) + Reduce to bidiagonal form without QR decomposition + Use CUNMBR to compute singular vectors +*/ + + ie = 1; + nrwork = ie + *n; + itauq = 1; + itaup = itauq + *n; + nwork = itaup + *n; + +/* + Bidiagonalize A + (CWorkspace: need 2*N+M, prefer 2*N+(M+N)*NB) + (RWorkspace: need N) +*/ + + i__1 = *lwork - nwork + 1; + cgebrd_(m, n, &a[a_offset], lda, &s[1], &rwork[ie], &work[itauq], + &work[itaup], &work[nwork], &i__1, &ierr); + if (wntqn) { + +/* + Compute singular values only + (Cworkspace: 0) + (Rworkspace: need BDSPAC) +*/ + + sbdsdc_("U", "N", n, &s[1], &rwork[ie], dum, &c__1, dum, & + c__1, dum, idum, &rwork[nrwork], &iwork[1], info); + } else if (wntqo) { + iu = nwork; + iru = nrwork; + irvt = iru + *n * *n; + nrwork = irvt + *n * *n; + if (*lwork >= *m * *n + *n * 3) { + +/* WORK( IU ) is M by N */ + + ldwrku = *m; + } else { + +/* WORK( IU ) is LDWRKU by N */ + + ldwrku = (*lwork - *n * 3) / *n; + } + nwork = iu + ldwrku * *n; + +/* + Perform bidiagonal SVD, computing left singular vectors + of bidiagonal matrix in RWORK(IRU) and computing right + singular vectors of bidiagonal matrix in RWORK(IRVT) + (CWorkspace: need 0) + (RWorkspace: need BDSPAC) +*/ + + sbdsdc_("U", "I", n, &s[1], &rwork[ie], &rwork[iru], n, & + rwork[irvt], n, dum, idum, &rwork[nrwork], &iwork[1], + info); + +/* + Copy real matrix RWORK(IRVT) to complex matrix VT + Overwrite VT by right singular vectors of A + (Cworkspace: need 2*N, prefer N+N*NB) + (Rworkspace: need 0) +*/ + + clacp2_("F", n, n, &rwork[irvt], n, &vt[vt_offset], ldvt); + i__1 = *lwork - nwork + 1; + cunmbr_("P", "R", "C", n, n, n, &a[a_offset], lda, &work[ + itaup], &vt[vt_offset], ldvt, &work[nwork], &i__1, & + ierr); + + if (*lwork >= *m * *n + *n * 3) { + +/* + Copy real matrix RWORK(IRU) to complex matrix WORK(IU) + Overwrite WORK(IU) by left singular vectors of A, copying + to A + (Cworkspace: need M*N+2*N, prefer M*N+N+N*NB) + (Rworkspace: need 0) +*/ + + claset_("F", m, n, &c_b55, &c_b55, &work[iu], &ldwrku); + clacp2_("F", n, n, &rwork[iru], n, &work[iu], &ldwrku); + i__1 = *lwork - nwork + 1; + cunmbr_("Q", "L", "N", m, n, n, &a[a_offset], lda, &work[ + itauq], &work[iu], &ldwrku, &work[nwork], &i__1, & + ierr); + clacpy_("F", m, n, &work[iu], &ldwrku, &a[a_offset], lda); + } else { + +/* + Generate Q in A + (Cworkspace: need 2*N, prefer N+N*NB) + (Rworkspace: need 0) +*/ + + i__1 = *lwork - nwork + 1; + cungbr_("Q", m, n, n, &a[a_offset], lda, &work[itauq], & + work[nwork], &i__1, &ierr); + +/* + Multiply Q in A by real matrix RWORK(IRU), storing the + result in WORK(IU), copying to A + (CWorkspace: need N*N, prefer M*N) + (Rworkspace: need 3*N*N, prefer N*N+2*M*N) +*/ + + nrwork = irvt; + i__1 = *m; + i__2 = ldwrku; + for (i__ = 1; i__2 < 0 ? i__ >= i__1 : i__ <= i__1; i__ += + i__2) { +/* Computing MIN */ + i__3 = *m - i__ + 1; + chunk = min(i__3,ldwrku); + clacrm_(&chunk, n, &a[i__ + a_dim1], lda, &rwork[iru], + n, &work[iu], &ldwrku, &rwork[nrwork]); + clacpy_("F", &chunk, n, &work[iu], &ldwrku, &a[i__ + + a_dim1], lda); +/* L30: */ + } + } + + } else if (wntqs) { + +/* + Perform bidiagonal SVD, computing left singular vectors + of bidiagonal matrix in RWORK(IRU) and computing right + singular vectors of bidiagonal matrix in RWORK(IRVT) + (CWorkspace: need 0) + (RWorkspace: need BDSPAC) +*/ + + iru = nrwork; + irvt = iru + *n * *n; + nrwork = irvt + *n * *n; + sbdsdc_("U", "I", n, &s[1], &rwork[ie], &rwork[iru], n, & + rwork[irvt], n, dum, idum, &rwork[nrwork], &iwork[1], + info); + +/* + Copy real matrix RWORK(IRU) to complex matrix U + Overwrite U by left singular vectors of A + (CWorkspace: need 3*N, prefer 2*N+N*NB) + (RWorkspace: 0) +*/ + + claset_("F", m, n, &c_b55, &c_b55, &u[u_offset], ldu); + clacp2_("F", n, n, &rwork[iru], n, &u[u_offset], ldu); + i__2 = *lwork - nwork + 1; + cunmbr_("Q", "L", "N", m, n, n, &a[a_offset], lda, &work[ + itauq], &u[u_offset], ldu, &work[nwork], &i__2, &ierr); + +/* + Copy real matrix RWORK(IRVT) to complex matrix VT + Overwrite VT by right singular vectors of A + (CWorkspace: need 3*N, prefer 2*N+N*NB) + (RWorkspace: 0) +*/ + + clacp2_("F", n, n, &rwork[irvt], n, &vt[vt_offset], ldvt); + i__2 = *lwork - nwork + 1; + cunmbr_("P", "R", "C", n, n, n, &a[a_offset], lda, &work[ + itaup], &vt[vt_offset], ldvt, &work[nwork], &i__2, & + ierr); + } else { + +/* + Perform bidiagonal SVD, computing left singular vectors + of bidiagonal matrix in RWORK(IRU) and computing right + singular vectors of bidiagonal matrix in RWORK(IRVT) + (CWorkspace: need 0) + (RWorkspace: need BDSPAC) +*/ + + iru = nrwork; + irvt = iru + *n * *n; + nrwork = irvt + *n * *n; + sbdsdc_("U", "I", n, &s[1], &rwork[ie], &rwork[iru], n, & + rwork[irvt], n, dum, idum, &rwork[nrwork], &iwork[1], + info); + +/* Set the right corner of U to identity matrix */ + + claset_("F", m, m, &c_b55, &c_b55, &u[u_offset], ldu); + i__2 = *m - *n; + i__1 = *m - *n; + claset_("F", &i__2, &i__1, &c_b55, &c_b56, &u[*n + 1 + (*n + + 1) * u_dim1], ldu); + +/* + Copy real matrix RWORK(IRU) to complex matrix U + Overwrite U by left singular vectors of A + (CWorkspace: need 2*N+M, prefer 2*N+M*NB) + (RWorkspace: 0) +*/ + + clacp2_("F", n, n, &rwork[iru], n, &u[u_offset], ldu); + i__2 = *lwork - nwork + 1; + cunmbr_("Q", "L", "N", m, m, n, &a[a_offset], lda, &work[ + itauq], &u[u_offset], ldu, &work[nwork], &i__2, &ierr); + +/* + Copy real matrix RWORK(IRVT) to complex matrix VT + Overwrite VT by right singular vectors of A + (CWorkspace: need 3*N, prefer 2*N+N*NB) + (RWorkspace: 0) +*/ + + clacp2_("F", n, n, &rwork[irvt], n, &vt[vt_offset], ldvt); + i__2 = *lwork - nwork + 1; + cunmbr_("P", "R", "C", n, n, n, &a[a_offset], lda, &work[ + itaup], &vt[vt_offset], ldvt, &work[nwork], &i__2, & + ierr); + } + + } + + } else { + +/* + A has more columns than rows. If A has sufficiently more + columns than rows, first reduce using the LQ decomposition + (if sufficient workspace available) +*/ + + if (*n >= mnthr1) { + + if (wntqn) { + +/* + Path 1t (N much larger than M, JOBZ='N') + No singular vectors to be computed +*/ + + itau = 1; + nwork = itau + *m; + +/* + Compute A=L*Q + (CWorkspace: need 2*M, prefer M+M*NB) + (RWorkspace: 0) +*/ + + i__2 = *lwork - nwork + 1; + cgelqf_(m, n, &a[a_offset], lda, &work[itau], &work[nwork], & + i__2, &ierr); + +/* Zero out above L */ + + i__2 = *m - 1; + i__1 = *m - 1; + claset_("U", &i__2, &i__1, &c_b55, &c_b55, &a[(a_dim1 << 1) + + 1], lda); + ie = 1; + itauq = 1; + itaup = itauq + *m; + nwork = itaup + *m; + +/* + Bidiagonalize L in A + (CWorkspace: need 3*M, prefer 2*M+2*M*NB) + (RWorkspace: need M) +*/ + + i__2 = *lwork - nwork + 1; + cgebrd_(m, m, &a[a_offset], lda, &s[1], &rwork[ie], &work[ + itauq], &work[itaup], &work[nwork], &i__2, &ierr); + nrwork = ie + *m; + +/* + Perform bidiagonal SVD, compute singular values only + (CWorkspace: 0) + (RWorkspace: need BDSPAC) +*/ + + sbdsdc_("U", "N", m, &s[1], &rwork[ie], dum, &c__1, dum, & + c__1, dum, idum, &rwork[nrwork], &iwork[1], info); + + } else if (wntqo) { + +/* + Path 2t (N much larger than M, JOBZ='O') + M right singular vectors to be overwritten on A and + M left singular vectors to be computed in U +*/ + + ivt = 1; + ldwkvt = *m; + +/* WORK(IVT) is M by M */ + + il = ivt + ldwkvt * *m; + if (*lwork >= *m * *n + *m * *m + *m * 3) { + +/* WORK(IL) M by N */ + + ldwrkl = *m; + chunk = *n; + } else { + +/* WORK(IL) is M by CHUNK */ + + ldwrkl = *m; + chunk = (*lwork - *m * *m - *m * 3) / *m; + } + itau = il + ldwrkl * chunk; + nwork = itau + *m; + +/* + Compute A=L*Q + (CWorkspace: need 2*M, prefer M+M*NB) + (RWorkspace: 0) +*/ + + i__2 = *lwork - nwork + 1; + cgelqf_(m, n, &a[a_offset], lda, &work[itau], &work[nwork], & + i__2, &ierr); + +/* Copy L to WORK(IL), zeroing about above it */ + + clacpy_("L", m, m, &a[a_offset], lda, &work[il], &ldwrkl); + i__2 = *m - 1; + i__1 = *m - 1; + claset_("U", &i__2, &i__1, &c_b55, &c_b55, &work[il + ldwrkl], + &ldwrkl); + +/* + Generate Q in A + (CWorkspace: need M*M+2*M, prefer M*M+M+M*NB) + (RWorkspace: 0) +*/ + + i__2 = *lwork - nwork + 1; + cunglq_(m, n, m, &a[a_offset], lda, &work[itau], &work[nwork], + &i__2, &ierr); + ie = 1; + itauq = itau; + itaup = itauq + *m; + nwork = itaup + *m; + +/* + Bidiagonalize L in WORK(IL) + (CWorkspace: need M*M+3*M, prefer M*M+2*M+2*M*NB) + (RWorkspace: need M) +*/ + + i__2 = *lwork - nwork + 1; + cgebrd_(m, m, &work[il], &ldwrkl, &s[1], &rwork[ie], &work[ + itauq], &work[itaup], &work[nwork], &i__2, &ierr); + +/* + Perform bidiagonal SVD, computing left singular vectors + of bidiagonal matrix in RWORK(IRU) and computing right + singular vectors of bidiagonal matrix in RWORK(IRVT) + (CWorkspace: need 0) + (RWorkspace: need BDSPAC) +*/ + + iru = ie + *m; + irvt = iru + *m * *m; + nrwork = irvt + *m * *m; + sbdsdc_("U", "I", m, &s[1], &rwork[ie], &rwork[iru], m, & + rwork[irvt], m, dum, idum, &rwork[nrwork], &iwork[1], + info); + +/* + Copy real matrix RWORK(IRU) to complex matrix WORK(IU) + Overwrite WORK(IU) by the left singular vectors of L + (CWorkspace: need N*N+3*N, prefer M*N+2*N+N*NB) + (RWorkspace: 0) +*/ + + clacp2_("F", m, m, &rwork[iru], m, &u[u_offset], ldu); + i__2 = *lwork - nwork + 1; + cunmbr_("Q", "L", "N", m, m, m, &work[il], &ldwrkl, &work[ + itauq], &u[u_offset], ldu, &work[nwork], &i__2, &ierr); + +/* + Copy real matrix RWORK(IRVT) to complex matrix WORK(IVT) + Overwrite WORK(IVT) by the right singular vectors of L + (CWorkspace: need N*N+3*N, prefer M*N+2*N+N*NB) + (RWorkspace: 0) +*/ + + clacp2_("F", m, m, &rwork[irvt], m, &work[ivt], &ldwkvt); + i__2 = *lwork - nwork + 1; + cunmbr_("P", "R", "C", m, m, m, &work[il], &ldwrkl, &work[ + itaup], &work[ivt], &ldwkvt, &work[nwork], &i__2, & + ierr); + +/* + Multiply right singular vectors of L in WORK(IL) by Q + in A, storing result in WORK(IL) and copying to A + (CWorkspace: need 2*M*M, prefer M*M+M*N)) + (RWorkspace: 0) +*/ + + i__2 = *n; + i__1 = chunk; + for (i__ = 1; i__1 < 0 ? i__ >= i__2 : i__ <= i__2; i__ += + i__1) { +/* Computing MIN */ + i__3 = *n - i__ + 1; + blk = min(i__3,chunk); + cgemm_("N", "N", m, &blk, m, &c_b56, &work[ivt], m, &a[ + i__ * a_dim1 + 1], lda, &c_b55, &work[il], & + ldwrkl); + clacpy_("F", m, &blk, &work[il], &ldwrkl, &a[i__ * a_dim1 + + 1], lda); +/* L40: */ + } + + } else if (wntqs) { + +/* + Path 3t (N much larger than M, JOBZ='S') + M right singular vectors to be computed in VT and + M left singular vectors to be computed in U +*/ + + il = 1; + +/* WORK(IL) is M by M */ + + ldwrkl = *m; + itau = il + ldwrkl * *m; + nwork = itau + *m; + +/* + Compute A=L*Q + (CWorkspace: need 2*M, prefer M+M*NB) + (RWorkspace: 0) +*/ + + i__1 = *lwork - nwork + 1; + cgelqf_(m, n, &a[a_offset], lda, &work[itau], &work[nwork], & + i__1, &ierr); + +/* Copy L to WORK(IL), zeroing out above it */ + + clacpy_("L", m, m, &a[a_offset], lda, &work[il], &ldwrkl); + i__1 = *m - 1; + i__2 = *m - 1; + claset_("U", &i__1, &i__2, &c_b55, &c_b55, &work[il + ldwrkl], + &ldwrkl); + +/* + Generate Q in A + (CWorkspace: need M*M+2*M, prefer M*M+M+M*NB) + (RWorkspace: 0) +*/ + + i__1 = *lwork - nwork + 1; + cunglq_(m, n, m, &a[a_offset], lda, &work[itau], &work[nwork], + &i__1, &ierr); + ie = 1; + itauq = itau; + itaup = itauq + *m; + nwork = itaup + *m; + +/* + Bidiagonalize L in WORK(IL) + (CWorkspace: need M*M+3*M, prefer M*M+2*M+2*M*NB) + (RWorkspace: need M) +*/ + + i__1 = *lwork - nwork + 1; + cgebrd_(m, m, &work[il], &ldwrkl, &s[1], &rwork[ie], &work[ + itauq], &work[itaup], &work[nwork], &i__1, &ierr); + +/* + Perform bidiagonal SVD, computing left singular vectors + of bidiagonal matrix in RWORK(IRU) and computing right + singular vectors of bidiagonal matrix in RWORK(IRVT) + (CWorkspace: need 0) + (RWorkspace: need BDSPAC) +*/ + + iru = ie + *m; + irvt = iru + *m * *m; + nrwork = irvt + *m * *m; + sbdsdc_("U", "I", m, &s[1], &rwork[ie], &rwork[iru], m, & + rwork[irvt], m, dum, idum, &rwork[nrwork], &iwork[1], + info); + +/* + Copy real matrix RWORK(IRU) to complex matrix U + Overwrite U by left singular vectors of L + (CWorkspace: need M*M+3*M, prefer M*M+2*M+M*NB) + (RWorkspace: 0) +*/ + + clacp2_("F", m, m, &rwork[iru], m, &u[u_offset], ldu); + i__1 = *lwork - nwork + 1; + cunmbr_("Q", "L", "N", m, m, m, &work[il], &ldwrkl, &work[ + itauq], &u[u_offset], ldu, &work[nwork], &i__1, &ierr); + +/* + Copy real matrix RWORK(IRVT) to complex matrix VT + Overwrite VT by left singular vectors of L + (CWorkspace: need M*M+3*M, prefer M*M+2*M+M*NB) + (RWorkspace: 0) +*/ + + clacp2_("F", m, m, &rwork[irvt], m, &vt[vt_offset], ldvt); + i__1 = *lwork - nwork + 1; + cunmbr_("P", "R", "C", m, m, m, &work[il], &ldwrkl, &work[ + itaup], &vt[vt_offset], ldvt, &work[nwork], &i__1, & + ierr); + +/* + Copy VT to WORK(IL), multiply right singular vectors of L + in WORK(IL) by Q in A, storing result in VT + (CWorkspace: need M*M) + (RWorkspace: 0) +*/ + + clacpy_("F", m, m, &vt[vt_offset], ldvt, &work[il], &ldwrkl); + cgemm_("N", "N", m, n, m, &c_b56, &work[il], &ldwrkl, &a[ + a_offset], lda, &c_b55, &vt[vt_offset], ldvt); + + } else if (wntqa) { + +/* + Path 9t (N much larger than M, JOBZ='A') + N right singular vectors to be computed in VT and + M left singular vectors to be computed in U +*/ + + ivt = 1; + +/* WORK(IVT) is M by M */ + + ldwkvt = *m; + itau = ivt + ldwkvt * *m; + nwork = itau + *m; + +/* + Compute A=L*Q, copying result to VT + (CWorkspace: need 2*M, prefer M+M*NB) + (RWorkspace: 0) +*/ + + i__1 = *lwork - nwork + 1; + cgelqf_(m, n, &a[a_offset], lda, &work[itau], &work[nwork], & + i__1, &ierr); + clacpy_("U", m, n, &a[a_offset], lda, &vt[vt_offset], ldvt); + +/* + Generate Q in VT + (CWorkspace: need M+N, prefer M+N*NB) + (RWorkspace: 0) +*/ + + i__1 = *lwork - nwork + 1; + cunglq_(n, n, m, &vt[vt_offset], ldvt, &work[itau], &work[ + nwork], &i__1, &ierr); + +/* Produce L in A, zeroing out above it */ + + i__1 = *m - 1; + i__2 = *m - 1; + claset_("U", &i__1, &i__2, &c_b55, &c_b55, &a[(a_dim1 << 1) + + 1], lda); + ie = 1; + itauq = itau; + itaup = itauq + *m; + nwork = itaup + *m; + +/* + Bidiagonalize L in A + (CWorkspace: need M*M+3*M, prefer M*M+2*M+2*M*NB) + (RWorkspace: need M) +*/ + + i__1 = *lwork - nwork + 1; + cgebrd_(m, m, &a[a_offset], lda, &s[1], &rwork[ie], &work[ + itauq], &work[itaup], &work[nwork], &i__1, &ierr); + +/* + Perform bidiagonal SVD, computing left singular vectors + of bidiagonal matrix in RWORK(IRU) and computing right + singular vectors of bidiagonal matrix in RWORK(IRVT) + (CWorkspace: need 0) + (RWorkspace: need BDSPAC) +*/ + + iru = ie + *m; + irvt = iru + *m * *m; + nrwork = irvt + *m * *m; + sbdsdc_("U", "I", m, &s[1], &rwork[ie], &rwork[iru], m, & + rwork[irvt], m, dum, idum, &rwork[nrwork], &iwork[1], + info); + +/* + Copy real matrix RWORK(IRU) to complex matrix U + Overwrite U by left singular vectors of L + (CWorkspace: need 3*M, prefer 2*M+M*NB) + (RWorkspace: 0) +*/ + + clacp2_("F", m, m, &rwork[iru], m, &u[u_offset], ldu); + i__1 = *lwork - nwork + 1; + cunmbr_("Q", "L", "N", m, m, m, &a[a_offset], lda, &work[ + itauq], &u[u_offset], ldu, &work[nwork], &i__1, &ierr); + +/* + Copy real matrix RWORK(IRVT) to complex matrix WORK(IVT) + Overwrite WORK(IVT) by right singular vectors of L + (CWorkspace: need M*M+3*M, prefer M*M+2*M+M*NB) + (RWorkspace: 0) +*/ + + clacp2_("F", m, m, &rwork[irvt], m, &work[ivt], &ldwkvt); + i__1 = *lwork - nwork + 1; + cunmbr_("P", "R", "C", m, m, m, &a[a_offset], lda, &work[ + itaup], &work[ivt], &ldwkvt, &work[nwork], &i__1, & + ierr); + +/* + Multiply right singular vectors of L in WORK(IVT) by + Q in VT, storing result in A + (CWorkspace: need M*M) + (RWorkspace: 0) +*/ + + cgemm_("N", "N", m, n, m, &c_b56, &work[ivt], &ldwkvt, &vt[ + vt_offset], ldvt, &c_b55, &a[a_offset], lda); + +/* Copy right singular vectors of A from A to VT */ + + clacpy_("F", m, n, &a[a_offset], lda, &vt[vt_offset], ldvt); + + } + + } else if (*n >= mnthr2) { + +/* + MNTHR2 <= N < MNTHR1 + + Path 5t (N much larger than M, but not as much as MNTHR1) + Reduce to bidiagonal form without QR decomposition, use + CUNGBR and matrix multiplication to compute singular vectors +*/ + + + ie = 1; + nrwork = ie + *m; + itauq = 1; + itaup = itauq + *m; + nwork = itaup + *m; + +/* + Bidiagonalize A + (CWorkspace: need 2*M+N, prefer 2*M+(M+N)*NB) + (RWorkspace: M) +*/ + + i__1 = *lwork - nwork + 1; + cgebrd_(m, n, &a[a_offset], lda, &s[1], &rwork[ie], &work[itauq], + &work[itaup], &work[nwork], &i__1, &ierr); + + if (wntqn) { + +/* + Compute singular values only + (Cworkspace: 0) + (Rworkspace: need BDSPAC) +*/ + + sbdsdc_("L", "N", m, &s[1], &rwork[ie], dum, &c__1, dum, & + c__1, dum, idum, &rwork[nrwork], &iwork[1], info); + } else if (wntqo) { + irvt = nrwork; + iru = irvt + *m * *m; + nrwork = iru + *m * *m; + ivt = nwork; + +/* + Copy A to U, generate Q + (Cworkspace: need 2*M, prefer M+M*NB) + (Rworkspace: 0) +*/ + + clacpy_("L", m, m, &a[a_offset], lda, &u[u_offset], ldu); + i__1 = *lwork - nwork + 1; + cungbr_("Q", m, m, n, &u[u_offset], ldu, &work[itauq], &work[ + nwork], &i__1, &ierr); + +/* + Generate P**H in A + (Cworkspace: need 2*M, prefer M+M*NB) + (Rworkspace: 0) +*/ + + i__1 = *lwork - nwork + 1; + cungbr_("P", m, n, m, &a[a_offset], lda, &work[itaup], &work[ + nwork], &i__1, &ierr); + + ldwkvt = *m; + if (*lwork >= *m * *n + *m * 3) { + +/* WORK( IVT ) is M by N */ + + nwork = ivt + ldwkvt * *n; + chunk = *n; + } else { + +/* WORK( IVT ) is M by CHUNK */ + + chunk = (*lwork - *m * 3) / *m; + nwork = ivt + ldwkvt * chunk; + } + +/* + Perform bidiagonal SVD, computing left singular vectors + of bidiagonal matrix in RWORK(IRU) and computing right + singular vectors of bidiagonal matrix in RWORK(IRVT) + (CWorkspace: need 0) + (RWorkspace: need BDSPAC) +*/ + + sbdsdc_("L", "I", m, &s[1], &rwork[ie], &rwork[iru], m, & + rwork[irvt], m, dum, idum, &rwork[nrwork], &iwork[1], + info); + +/* + Multiply Q in U by real matrix RWORK(IRVT) + storing the result in WORK(IVT), copying to U + (Cworkspace: need 0) + (Rworkspace: need 2*M*M) +*/ + + clacrm_(m, m, &u[u_offset], ldu, &rwork[iru], m, &work[ivt], & + ldwkvt, &rwork[nrwork]); + clacpy_("F", m, m, &work[ivt], &ldwkvt, &u[u_offset], ldu); + +/* + Multiply RWORK(IRVT) by P**H in A, storing the + result in WORK(IVT), copying to A + (CWorkspace: need M*M, prefer M*N) + (Rworkspace: need 2*M*M, prefer 2*M*N) +*/ + + nrwork = iru; + i__1 = *n; + i__2 = chunk; + for (i__ = 1; i__2 < 0 ? i__ >= i__1 : i__ <= i__1; i__ += + i__2) { +/* Computing MIN */ + i__3 = *n - i__ + 1; + blk = min(i__3,chunk); + clarcm_(m, &blk, &rwork[irvt], m, &a[i__ * a_dim1 + 1], + lda, &work[ivt], &ldwkvt, &rwork[nrwork]); + clacpy_("F", m, &blk, &work[ivt], &ldwkvt, &a[i__ * + a_dim1 + 1], lda); +/* L50: */ + } + } else if (wntqs) { + +/* + Copy A to U, generate Q + (Cworkspace: need 2*M, prefer M+M*NB) + (Rworkspace: 0) +*/ + + clacpy_("L", m, m, &a[a_offset], lda, &u[u_offset], ldu); + i__2 = *lwork - nwork + 1; + cungbr_("Q", m, m, n, &u[u_offset], ldu, &work[itauq], &work[ + nwork], &i__2, &ierr); + +/* + Copy A to VT, generate P**H + (Cworkspace: need 2*M, prefer M+M*NB) + (Rworkspace: 0) +*/ + + clacpy_("U", m, n, &a[a_offset], lda, &vt[vt_offset], ldvt); + i__2 = *lwork - nwork + 1; + cungbr_("P", m, n, m, &vt[vt_offset], ldvt, &work[itaup], & + work[nwork], &i__2, &ierr); + +/* + Perform bidiagonal SVD, computing left singular vectors + of bidiagonal matrix in RWORK(IRU) and computing right + singular vectors of bidiagonal matrix in RWORK(IRVT) + (CWorkspace: need 0) + (RWorkspace: need BDSPAC) +*/ + + irvt = nrwork; + iru = irvt + *m * *m; + nrwork = iru + *m * *m; + sbdsdc_("L", "I", m, &s[1], &rwork[ie], &rwork[iru], m, & + rwork[irvt], m, dum, idum, &rwork[nrwork], &iwork[1], + info); + +/* + Multiply Q in U by real matrix RWORK(IRU), storing the + result in A, copying to U + (CWorkspace: need 0) + (Rworkspace: need 3*M*M) +*/ + + clacrm_(m, m, &u[u_offset], ldu, &rwork[iru], m, &a[a_offset], + lda, &rwork[nrwork]); + clacpy_("F", m, m, &a[a_offset], lda, &u[u_offset], ldu); + +/* + Multiply real matrix RWORK(IRVT) by P**H in VT, + storing the result in A, copying to VT + (Cworkspace: need 0) + (Rworkspace: need M*M+2*M*N) +*/ + + nrwork = iru; + clarcm_(m, n, &rwork[irvt], m, &vt[vt_offset], ldvt, &a[ + a_offset], lda, &rwork[nrwork]); + clacpy_("F", m, n, &a[a_offset], lda, &vt[vt_offset], ldvt); + } else { + +/* + Copy A to U, generate Q + (Cworkspace: need 2*M, prefer M+M*NB) + (Rworkspace: 0) +*/ + + clacpy_("L", m, m, &a[a_offset], lda, &u[u_offset], ldu); + i__2 = *lwork - nwork + 1; + cungbr_("Q", m, m, n, &u[u_offset], ldu, &work[itauq], &work[ + nwork], &i__2, &ierr); + +/* + Copy A to VT, generate P**H + (Cworkspace: need 2*M, prefer M+M*NB) + (Rworkspace: 0) +*/ + + clacpy_("U", m, n, &a[a_offset], lda, &vt[vt_offset], ldvt); + i__2 = *lwork - nwork + 1; + cungbr_("P", n, n, m, &vt[vt_offset], ldvt, &work[itaup], & + work[nwork], &i__2, &ierr); + +/* + Perform bidiagonal SVD, computing left singular vectors + of bidiagonal matrix in RWORK(IRU) and computing right + singular vectors of bidiagonal matrix in RWORK(IRVT) + (CWorkspace: need 0) + (RWorkspace: need BDSPAC) +*/ + + irvt = nrwork; + iru = irvt + *m * *m; + nrwork = iru + *m * *m; + sbdsdc_("L", "I", m, &s[1], &rwork[ie], &rwork[iru], m, & + rwork[irvt], m, dum, idum, &rwork[nrwork], &iwork[1], + info); + +/* + Multiply Q in U by real matrix RWORK(IRU), storing the + result in A, copying to U + (CWorkspace: need 0) + (Rworkspace: need 3*M*M) +*/ + + clacrm_(m, m, &u[u_offset], ldu, &rwork[iru], m, &a[a_offset], + lda, &rwork[nrwork]); + clacpy_("F", m, m, &a[a_offset], lda, &u[u_offset], ldu); + +/* + Multiply real matrix RWORK(IRVT) by P**H in VT, + storing the result in A, copying to VT + (Cworkspace: need 0) + (Rworkspace: need M*M+2*M*N) +*/ + + clarcm_(m, n, &rwork[irvt], m, &vt[vt_offset], ldvt, &a[ + a_offset], lda, &rwork[nrwork]); + clacpy_("F", m, n, &a[a_offset], lda, &vt[vt_offset], ldvt); + } + + } else { + +/* + N .LT. MNTHR2 + + Path 6t (N greater than M, but not much larger) + Reduce to bidiagonal form without LQ decomposition + Use CUNMBR to compute singular vectors +*/ + + ie = 1; + nrwork = ie + *m; + itauq = 1; + itaup = itauq + *m; + nwork = itaup + *m; + +/* + Bidiagonalize A + (CWorkspace: need 2*M+N, prefer 2*M+(M+N)*NB) + (RWorkspace: M) +*/ + + i__2 = *lwork - nwork + 1; + cgebrd_(m, n, &a[a_offset], lda, &s[1], &rwork[ie], &work[itauq], + &work[itaup], &work[nwork], &i__2, &ierr); + if (wntqn) { + +/* + Compute singular values only + (Cworkspace: 0) + (Rworkspace: need BDSPAC) +*/ + + sbdsdc_("L", "N", m, &s[1], &rwork[ie], dum, &c__1, dum, & + c__1, dum, idum, &rwork[nrwork], &iwork[1], info); + } else if (wntqo) { + ldwkvt = *m; + ivt = nwork; + if (*lwork >= *m * *n + *m * 3) { + +/* WORK( IVT ) is M by N */ + + claset_("F", m, n, &c_b55, &c_b55, &work[ivt], &ldwkvt); + nwork = ivt + ldwkvt * *n; + } else { + +/* WORK( IVT ) is M by CHUNK */ + + chunk = (*lwork - *m * 3) / *m; + nwork = ivt + ldwkvt * chunk; + } + +/* + Perform bidiagonal SVD, computing left singular vectors + of bidiagonal matrix in RWORK(IRU) and computing right + singular vectors of bidiagonal matrix in RWORK(IRVT) + (CWorkspace: need 0) + (RWorkspace: need BDSPAC) +*/ + + irvt = nrwork; + iru = irvt + *m * *m; + nrwork = iru + *m * *m; + sbdsdc_("L", "I", m, &s[1], &rwork[ie], &rwork[iru], m, & + rwork[irvt], m, dum, idum, &rwork[nrwork], &iwork[1], + info); + +/* + Copy real matrix RWORK(IRU) to complex matrix U + Overwrite U by left singular vectors of A + (Cworkspace: need 2*M, prefer M+M*NB) + (Rworkspace: need 0) +*/ + + clacp2_("F", m, m, &rwork[iru], m, &u[u_offset], ldu); + i__2 = *lwork - nwork + 1; + cunmbr_("Q", "L", "N", m, m, n, &a[a_offset], lda, &work[ + itauq], &u[u_offset], ldu, &work[nwork], &i__2, &ierr); + + if (*lwork >= *m * *n + *m * 3) { + +/* + Copy real matrix RWORK(IRVT) to complex matrix WORK(IVT) + Overwrite WORK(IVT) by right singular vectors of A, + copying to A + (Cworkspace: need M*N+2*M, prefer M*N+M+M*NB) + (Rworkspace: need 0) +*/ + + clacp2_("F", m, m, &rwork[irvt], m, &work[ivt], &ldwkvt); + i__2 = *lwork - nwork + 1; + cunmbr_("P", "R", "C", m, n, m, &a[a_offset], lda, &work[ + itaup], &work[ivt], &ldwkvt, &work[nwork], &i__2, + &ierr); + clacpy_("F", m, n, &work[ivt], &ldwkvt, &a[a_offset], lda); + } else { + +/* + Generate P**H in A + (Cworkspace: need 2*M, prefer M+M*NB) + (Rworkspace: need 0) +*/ + + i__2 = *lwork - nwork + 1; + cungbr_("P", m, n, m, &a[a_offset], lda, &work[itaup], & + work[nwork], &i__2, &ierr); + +/* + Multiply Q in A by real matrix RWORK(IRU), storing the + result in WORK(IU), copying to A + (CWorkspace: need M*M, prefer M*N) + (Rworkspace: need 3*M*M, prefer M*M+2*M*N) +*/ + + nrwork = iru; + i__2 = *n; + i__1 = chunk; + for (i__ = 1; i__1 < 0 ? i__ >= i__2 : i__ <= i__2; i__ += + i__1) { +/* Computing MIN */ + i__3 = *n - i__ + 1; + blk = min(i__3,chunk); + clarcm_(m, &blk, &rwork[irvt], m, &a[i__ * a_dim1 + 1] + , lda, &work[ivt], &ldwkvt, &rwork[nrwork]); + clacpy_("F", m, &blk, &work[ivt], &ldwkvt, &a[i__ * + a_dim1 + 1], lda); +/* L60: */ + } + } + } else if (wntqs) { + +/* + Perform bidiagonal SVD, computing left singular vectors + of bidiagonal matrix in RWORK(IRU) and computing right + singular vectors of bidiagonal matrix in RWORK(IRVT) + (CWorkspace: need 0) + (RWorkspace: need BDSPAC) +*/ + + irvt = nrwork; + iru = irvt + *m * *m; + nrwork = iru + *m * *m; + sbdsdc_("L", "I", m, &s[1], &rwork[ie], &rwork[iru], m, & + rwork[irvt], m, dum, idum, &rwork[nrwork], &iwork[1], + info); + +/* + Copy real matrix RWORK(IRU) to complex matrix U + Overwrite U by left singular vectors of A + (CWorkspace: need 3*M, prefer 2*M+M*NB) + (RWorkspace: M*M) +*/ + + clacp2_("F", m, m, &rwork[iru], m, &u[u_offset], ldu); + i__1 = *lwork - nwork + 1; + cunmbr_("Q", "L", "N", m, m, n, &a[a_offset], lda, &work[ + itauq], &u[u_offset], ldu, &work[nwork], &i__1, &ierr); + +/* + Copy real matrix RWORK(IRVT) to complex matrix VT + Overwrite VT by right singular vectors of A + (CWorkspace: need 3*M, prefer 2*M+M*NB) + (RWorkspace: M*M) +*/ + + claset_("F", m, n, &c_b55, &c_b55, &vt[vt_offset], ldvt); + clacp2_("F", m, m, &rwork[irvt], m, &vt[vt_offset], ldvt); + i__1 = *lwork - nwork + 1; + cunmbr_("P", "R", "C", m, n, m, &a[a_offset], lda, &work[ + itaup], &vt[vt_offset], ldvt, &work[nwork], &i__1, & + ierr); + } else { + +/* + Perform bidiagonal SVD, computing left singular vectors + of bidiagonal matrix in RWORK(IRU) and computing right + singular vectors of bidiagonal matrix in RWORK(IRVT) + (CWorkspace: need 0) + (RWorkspace: need BDSPAC) +*/ + + irvt = nrwork; + iru = irvt + *m * *m; + nrwork = iru + *m * *m; + + sbdsdc_("L", "I", m, &s[1], &rwork[ie], &rwork[iru], m, & + rwork[irvt], m, dum, idum, &rwork[nrwork], &iwork[1], + info); + +/* + Copy real matrix RWORK(IRU) to complex matrix U + Overwrite U by left singular vectors of A + (CWorkspace: need 3*M, prefer 2*M+M*NB) + (RWorkspace: M*M) +*/ + + clacp2_("F", m, m, &rwork[iru], m, &u[u_offset], ldu); + i__1 = *lwork - nwork + 1; + cunmbr_("Q", "L", "N", m, m, n, &a[a_offset], lda, &work[ + itauq], &u[u_offset], ldu, &work[nwork], &i__1, &ierr); + +/* Set the right corner of VT to identity matrix */ + + i__1 = *n - *m; + i__2 = *n - *m; + claset_("F", &i__1, &i__2, &c_b55, &c_b56, &vt[*m + 1 + (*m + + 1) * vt_dim1], ldvt); + +/* + Copy real matrix RWORK(IRVT) to complex matrix VT + Overwrite VT by right singular vectors of A + (CWorkspace: need 2*M+N, prefer 2*M+N*NB) + (RWorkspace: M*M) +*/ + + claset_("F", n, n, &c_b55, &c_b55, &vt[vt_offset], ldvt); + clacp2_("F", m, m, &rwork[irvt], m, &vt[vt_offset], ldvt); + i__1 = *lwork - nwork + 1; + cunmbr_("P", "R", "C", n, n, m, &a[a_offset], lda, &work[ + itaup], &vt[vt_offset], ldvt, &work[nwork], &i__1, & + ierr); + } + + } + + } + +/* Undo scaling if necessary */ + + if (iscl == 1) { + if (anrm > bignum) { + slascl_("G", &c__0, &c__0, &bignum, &anrm, &minmn, &c__1, &s[1], & + minmn, &ierr); + } + if (anrm < smlnum) { + slascl_("G", &c__0, &c__0, &smlnum, &anrm, &minmn, &c__1, &s[1], & + minmn, &ierr); + } + } + +/* Return optimal workspace in WORK(1) */ + + work[1].r = (real) maxwrk, work[1].i = 0.f; + + return 0; + +/* End of CGESDD */ + +} /* cgesdd_ */ + +/* Subroutine */ int cgesv_(integer *n, integer *nrhs, complex *a, integer * + lda, integer *ipiv, complex *b, integer *ldb, integer *info) +{ + /* System generated locals */ + integer a_dim1, a_offset, b_dim1, b_offset, i__1; + + /* Local variables */ + extern /* Subroutine */ int cgetrf_(integer *, integer *, complex *, + integer *, integer *, integer *), xerbla_(char *, integer *), cgetrs_(char *, integer *, integer *, complex *, integer + *, integer *, complex *, integer *, integer *); + + +/* + -- LAPACK driver routine (version 3.0) -- + Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd., + Courant Institute, Argonne National Lab, and Rice University + March 31, 1993 + + + Purpose + ======= + + CGESV computes the solution to a complex system of linear equations + A * X = B, + where A is an N-by-N matrix and X and B are N-by-NRHS matrices. + + The LU decomposition with partial pivoting and row interchanges is + used to factor A as + A = P * L * U, + where P is a permutation matrix, L is unit lower triangular, and U is + upper triangular. The factored form of A is then used to solve the + system of equations A * X = B. + + Arguments + ========= + + N (input) INTEGER + The number of linear equations, i.e., the order of the + matrix A. N >= 0. + + NRHS (input) INTEGER + The number of right hand sides, i.e., the number of columns + of the matrix B. NRHS >= 0. + + A (input/output) COMPLEX array, dimension (LDA,N) + On entry, the N-by-N coefficient matrix A. + On exit, the factors L and U from the factorization + A = P*L*U; the unit diagonal elements of L are not stored. + + LDA (input) INTEGER + The leading dimension of the array A. LDA >= max(1,N). + + IPIV (output) INTEGER array, dimension (N) + The pivot indices that define the permutation matrix P; + row i of the matrix was interchanged with row IPIV(i). + + B (input/output) COMPLEX array, dimension (LDB,NRHS) + On entry, the N-by-NRHS matrix of right hand side matrix B. + On exit, if INFO = 0, the N-by-NRHS solution matrix X. + + LDB (input) INTEGER + The leading dimension of the array B. LDB >= max(1,N). + + INFO (output) INTEGER + = 0: successful exit + < 0: if INFO = -i, the i-th argument had an illegal value + > 0: if INFO = i, U(i,i) is exactly zero. The factorization + has been completed, but the factor U is exactly + singular, so the solution could not be computed. + + ===================================================================== + + + Test the input parameters. +*/ + + /* Parameter adjustments */ + a_dim1 = *lda; + a_offset = 1 + a_dim1; + a -= a_offset; + --ipiv; + b_dim1 = *ldb; + b_offset = 1 + b_dim1; + b -= b_offset; + + /* Function Body */ + *info = 0; + if (*n < 0) { + *info = -1; + } else if (*nrhs < 0) { + *info = -2; + } else if (*lda < max(1,*n)) { + *info = -4; + } else if (*ldb < max(1,*n)) { + *info = -7; + } + if (*info != 0) { + i__1 = -(*info); + xerbla_("CGESV ", &i__1); + return 0; + } + +/* Compute the LU factorization of A. */ + + cgetrf_(n, n, &a[a_offset], lda, &ipiv[1], info); + if (*info == 0) { + +/* Solve the system A*X = B, overwriting B with X. */ + + cgetrs_("No transpose", n, nrhs, &a[a_offset], lda, &ipiv[1], &b[ + b_offset], ldb, info); + } + return 0; + +/* End of CGESV */ + +} /* cgesv_ */ + +/* Subroutine */ int cgetf2_(integer *m, integer *n, complex *a, integer *lda, + integer *ipiv, integer *info) +{ + /* System generated locals */ + integer a_dim1, a_offset, i__1, i__2, i__3; + complex q__1; + + /* Builtin functions */ + void c_div(complex *, complex *, complex *); + + /* Local variables */ + static integer j, jp; + extern /* Subroutine */ int cscal_(integer *, complex *, complex *, + integer *), cgeru_(integer *, integer *, complex *, complex *, + integer *, complex *, integer *, complex *, integer *), cswap_( + integer *, complex *, integer *, complex *, integer *); + extern integer icamax_(integer *, complex *, integer *); + extern /* Subroutine */ int xerbla_(char *, integer *); + + +/* + -- LAPACK routine (version 3.0) -- + Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd., + Courant Institute, Argonne National Lab, and Rice University + September 30, 1994 + + + Purpose + ======= + + CGETF2 computes an LU factorization of a general m-by-n matrix A + using partial pivoting with row interchanges. + + The factorization has the form + A = P * L * U + where P is a permutation matrix, L is lower triangular with unit + diagonal elements (lower trapezoidal if m > n), and U is upper + triangular (upper trapezoidal if m < n). + + This is the right-looking Level 2 BLAS version of the algorithm. + + Arguments + ========= + + M (input) INTEGER + The number of rows of the matrix A. M >= 0. + + N (input) INTEGER + The number of columns of the matrix A. N >= 0. + + A (input/output) COMPLEX array, dimension (LDA,N) + On entry, the m by n matrix to be factored. + On exit, the factors L and U from the factorization + A = P*L*U; the unit diagonal elements of L are not stored. + + LDA (input) INTEGER + The leading dimension of the array A. LDA >= max(1,M). + + IPIV (output) INTEGER array, dimension (min(M,N)) + The pivot indices; for 1 <= i <= min(M,N), row i of the + matrix was interchanged with row IPIV(i). + + INFO (output) INTEGER + = 0: successful exit + < 0: if INFO = -k, the k-th argument had an illegal value + > 0: if INFO = k, U(k,k) is exactly zero. The factorization + has been completed, but the factor U is exactly + singular, and division by zero will occur if it is used + to solve a system of equations. + + ===================================================================== + + + Test the input parameters. +*/ + + /* Parameter adjustments */ + a_dim1 = *lda; + a_offset = 1 + a_dim1; + a -= a_offset; + --ipiv; + + /* Function Body */ + *info = 0; + if (*m < 0) { + *info = -1; + } else if (*n < 0) { + *info = -2; + } else if (*lda < max(1,*m)) { + *info = -4; + } + if (*info != 0) { + i__1 = -(*info); + xerbla_("CGETF2", &i__1); + return 0; + } + +/* Quick return if possible */ + + if (*m == 0 || *n == 0) { + return 0; + } + + i__1 = min(*m,*n); + for (j = 1; j <= i__1; ++j) { + +/* Find pivot and test for singularity. */ + + i__2 = *m - j + 1; + jp = j - 1 + icamax_(&i__2, &a[j + j * a_dim1], &c__1); + ipiv[j] = jp; + i__2 = jp + j * a_dim1; + if (a[i__2].r != 0.f || a[i__2].i != 0.f) { + +/* Apply the interchange to columns 1:N. */ + + if (jp != j) { + cswap_(n, &a[j + a_dim1], lda, &a[jp + a_dim1], lda); + } + +/* Compute elements J+1:M of J-th column. */ + + if (j < *m) { + i__2 = *m - j; + c_div(&q__1, &c_b56, &a[j + j * a_dim1]); + cscal_(&i__2, &q__1, &a[j + 1 + j * a_dim1], &c__1); + } + + } else if (*info == 0) { + + *info = j; + } + + if (j < min(*m,*n)) { + +/* Update trailing submatrix. */ + + i__2 = *m - j; + i__3 = *n - j; + q__1.r = -1.f, q__1.i = -0.f; + cgeru_(&i__2, &i__3, &q__1, &a[j + 1 + j * a_dim1], &c__1, &a[j + + (j + 1) * a_dim1], lda, &a[j + 1 + (j + 1) * a_dim1], lda) + ; + } +/* L10: */ + } + return 0; + +/* End of CGETF2 */ + +} /* cgetf2_ */ + +/* Subroutine */ int cgetrf_(integer *m, integer *n, complex *a, integer *lda, + integer *ipiv, integer *info) +{ + /* System generated locals */ + integer a_dim1, a_offset, i__1, i__2, i__3, i__4, i__5; + complex q__1; + + /* Local variables */ + static integer i__, j, jb, nb; + extern /* Subroutine */ int cgemm_(char *, char *, integer *, integer *, + integer *, complex *, complex *, integer *, complex *, integer *, + complex *, complex *, integer *); + static integer iinfo; + extern /* Subroutine */ int ctrsm_(char *, char *, char *, char *, + integer *, integer *, complex *, complex *, integer *, complex *, + integer *), cgetf2_(integer *, + integer *, complex *, integer *, integer *, integer *), xerbla_( + char *, integer *); + extern integer ilaenv_(integer *, char *, char *, integer *, integer *, + integer *, integer *, ftnlen, ftnlen); + extern /* Subroutine */ int claswp_(integer *, complex *, integer *, + integer *, integer *, integer *, integer *); + + +/* + -- LAPACK routine (version 3.0) -- + Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd., + Courant Institute, Argonne National Lab, and Rice University + September 30, 1994 + + + Purpose + ======= + + CGETRF computes an LU factorization of a general M-by-N matrix A + using partial pivoting with row interchanges. + + The factorization has the form + A = P * L * U + where P is a permutation matrix, L is lower triangular with unit + diagonal elements (lower trapezoidal if m > n), and U is upper + triangular (upper trapezoidal if m < n). + + This is the right-looking Level 3 BLAS version of the algorithm. + + Arguments + ========= + + M (input) INTEGER + The number of rows of the matrix A. M >= 0. + + N (input) INTEGER + The number of columns of the matrix A. N >= 0. + + A (input/output) COMPLEX array, dimension (LDA,N) + On entry, the M-by-N matrix to be factored. + On exit, the factors L and U from the factorization + A = P*L*U; the unit diagonal elements of L are not stored. + + LDA (input) INTEGER + The leading dimension of the array A. LDA >= max(1,M). + + IPIV (output) INTEGER array, dimension (min(M,N)) + The pivot indices; for 1 <= i <= min(M,N), row i of the + matrix was interchanged with row IPIV(i). + + INFO (output) INTEGER + = 0: successful exit + < 0: if INFO = -i, the i-th argument had an illegal value + > 0: if INFO = i, U(i,i) is exactly zero. The factorization + has been completed, but the factor U is exactly + singular, and division by zero will occur if it is used + to solve a system of equations. + + ===================================================================== + + + Test the input parameters. +*/ + + /* Parameter adjustments */ + a_dim1 = *lda; + a_offset = 1 + a_dim1; + a -= a_offset; + --ipiv; + + /* Function Body */ + *info = 0; + if (*m < 0) { + *info = -1; + } else if (*n < 0) { + *info = -2; + } else if (*lda < max(1,*m)) { + *info = -4; + } + if (*info != 0) { + i__1 = -(*info); + xerbla_("CGETRF", &i__1); + return 0; + } + +/* Quick return if possible */ + + if (*m == 0 || *n == 0) { + return 0; + } + +/* Determine the block size for this environment. */ + + nb = ilaenv_(&c__1, "CGETRF", " ", m, n, &c_n1, &c_n1, (ftnlen)6, (ftnlen) + 1); + if (nb <= 1 || nb >= min(*m,*n)) { + +/* Use unblocked code. */ + + cgetf2_(m, n, &a[a_offset], lda, &ipiv[1], info); + } else { + +/* Use blocked code. */ + + i__1 = min(*m,*n); + i__2 = nb; + for (j = 1; i__2 < 0 ? j >= i__1 : j <= i__1; j += i__2) { +/* Computing MIN */ + i__3 = min(*m,*n) - j + 1; + jb = min(i__3,nb); + +/* + Factor diagonal and subdiagonal blocks and test for exact + singularity. +*/ + + i__3 = *m - j + 1; + cgetf2_(&i__3, &jb, &a[j + j * a_dim1], lda, &ipiv[j], &iinfo); + +/* Adjust INFO and the pivot indices. */ + + if (*info == 0 && iinfo > 0) { + *info = iinfo + j - 1; + } +/* Computing MIN */ + i__4 = *m, i__5 = j + jb - 1; + i__3 = min(i__4,i__5); + for (i__ = j; i__ <= i__3; ++i__) { + ipiv[i__] = j - 1 + ipiv[i__]; +/* L10: */ + } + +/* Apply interchanges to columns 1:J-1. */ + + i__3 = j - 1; + i__4 = j + jb - 1; + claswp_(&i__3, &a[a_offset], lda, &j, &i__4, &ipiv[1], &c__1); + + if (j + jb <= *n) { + +/* Apply interchanges to columns J+JB:N. */ + + i__3 = *n - j - jb + 1; + i__4 = j + jb - 1; + claswp_(&i__3, &a[(j + jb) * a_dim1 + 1], lda, &j, &i__4, & + ipiv[1], &c__1); + +/* Compute block row of U. */ + + i__3 = *n - j - jb + 1; + ctrsm_("Left", "Lower", "No transpose", "Unit", &jb, &i__3, & + c_b56, &a[j + j * a_dim1], lda, &a[j + (j + jb) * + a_dim1], lda); + if (j + jb <= *m) { + +/* Update trailing submatrix. */ + + i__3 = *m - j - jb + 1; + i__4 = *n - j - jb + 1; + q__1.r = -1.f, q__1.i = -0.f; + cgemm_("No transpose", "No transpose", &i__3, &i__4, &jb, + &q__1, &a[j + jb + j * a_dim1], lda, &a[j + (j + + jb) * a_dim1], lda, &c_b56, &a[j + jb + (j + jb) * + a_dim1], lda); + } + } +/* L20: */ + } + } + return 0; + +/* End of CGETRF */ + +} /* cgetrf_ */ + +/* Subroutine */ int cgetrs_(char *trans, integer *n, integer *nrhs, complex * + a, integer *lda, integer *ipiv, complex *b, integer *ldb, integer * + info) +{ + /* System generated locals */ + integer a_dim1, a_offset, b_dim1, b_offset, i__1; + + /* Local variables */ + extern logical lsame_(char *, char *); + extern /* Subroutine */ int ctrsm_(char *, char *, char *, char *, + integer *, integer *, complex *, complex *, integer *, complex *, + integer *), xerbla_(char *, + integer *), claswp_(integer *, complex *, integer *, + integer *, integer *, integer *, integer *); + static logical notran; + + +/* + -- LAPACK routine (version 3.0) -- + Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd., + Courant Institute, Argonne National Lab, and Rice University + September 30, 1994 + + + Purpose + ======= + + CGETRS solves a system of linear equations + A * X = B, A**T * X = B, or A**H * X = B + with a general N-by-N matrix A using the LU factorization computed + by CGETRF. + + Arguments + ========= + + TRANS (input) CHARACTER*1 + Specifies the form of the system of equations: + = 'N': A * X = B (No transpose) + = 'T': A**T * X = B (Transpose) + = 'C': A**H * X = B (Conjugate transpose) + + N (input) INTEGER + The order of the matrix A. N >= 0. + + NRHS (input) INTEGER + The number of right hand sides, i.e., the number of columns + of the matrix B. NRHS >= 0. + + A (input) COMPLEX array, dimension (LDA,N) + The factors L and U from the factorization A = P*L*U + as computed by CGETRF. + + LDA (input) INTEGER + The leading dimension of the array A. LDA >= max(1,N). + + IPIV (input) INTEGER array, dimension (N) + The pivot indices from CGETRF; for 1<=i<=N, row i of the + matrix was interchanged with row IPIV(i). + + B (input/output) COMPLEX array, dimension (LDB,NRHS) + On entry, the right hand side matrix B. + On exit, the solution matrix X. + + LDB (input) INTEGER + The leading dimension of the array B. LDB >= max(1,N). + + INFO (output) INTEGER + = 0: successful exit + < 0: if INFO = -i, the i-th argument had an illegal value + + ===================================================================== + + + Test the input parameters. +*/ + + /* Parameter adjustments */ + a_dim1 = *lda; + a_offset = 1 + a_dim1; + a -= a_offset; + --ipiv; + b_dim1 = *ldb; + b_offset = 1 + b_dim1; + b -= b_offset; + + /* Function Body */ + *info = 0; + notran = lsame_(trans, "N"); + if (! notran && ! lsame_(trans, "T") && ! lsame_( + trans, "C")) { + *info = -1; + } else if (*n < 0) { + *info = -2; + } else if (*nrhs < 0) { + *info = -3; + } else if (*lda < max(1,*n)) { + *info = -5; + } else if (*ldb < max(1,*n)) { + *info = -8; + } + if (*info != 0) { + i__1 = -(*info); + xerbla_("CGETRS", &i__1); + return 0; + } + +/* Quick return if possible */ + + if (*n == 0 || *nrhs == 0) { + return 0; + } + + if (notran) { + +/* + Solve A * X = B. + + Apply row interchanges to the right hand sides. +*/ + + claswp_(nrhs, &b[b_offset], ldb, &c__1, n, &ipiv[1], &c__1); + +/* Solve L*X = B, overwriting B with X. */ + + ctrsm_("Left", "Lower", "No transpose", "Unit", n, nrhs, &c_b56, &a[ + a_offset], lda, &b[b_offset], ldb); + +/* Solve U*X = B, overwriting B with X. */ + + ctrsm_("Left", "Upper", "No transpose", "Non-unit", n, nrhs, &c_b56, & + a[a_offset], lda, &b[b_offset], ldb); + } else { + +/* + Solve A**T * X = B or A**H * X = B. + + Solve U'*X = B, overwriting B with X. +*/ + + ctrsm_("Left", "Upper", trans, "Non-unit", n, nrhs, &c_b56, &a[ + a_offset], lda, &b[b_offset], ldb); + +/* Solve L'*X = B, overwriting B with X. */ + + ctrsm_("Left", "Lower", trans, "Unit", n, nrhs, &c_b56, &a[a_offset], + lda, &b[b_offset], ldb); + +/* Apply row interchanges to the solution vectors. */ + + claswp_(nrhs, &b[b_offset], ldb, &c__1, n, &ipiv[1], &c_n1); + } + + return 0; + +/* End of CGETRS */ + +} /* cgetrs_ */ + +/* Subroutine */ int cheevd_(char *jobz, char *uplo, integer *n, complex *a, + integer *lda, real *w, complex *work, integer *lwork, real *rwork, + integer *lrwork, integer *iwork, integer *liwork, integer *info) +{ + /* System generated locals */ + integer a_dim1, a_offset, i__1, i__2, i__3, i__4; + real r__1, r__2; + + /* Builtin functions */ + double sqrt(doublereal); + + /* Local variables */ + static real eps; + static integer inde; + static real anrm; + static integer imax; + static real rmin, rmax; + static integer lopt; + static real sigma; + extern logical lsame_(char *, char *); + static integer iinfo; + extern /* Subroutine */ int sscal_(integer *, real *, real *, integer *); + static integer lwmin, liopt; + static logical lower; + static integer llrwk, lropt; + static logical wantz; + static integer indwk2, llwrk2; + extern doublereal clanhe_(char *, char *, integer *, complex *, integer *, + real *); + static integer iscale; + extern /* Subroutine */ int clascl_(char *, integer *, integer *, real *, + real *, integer *, integer *, complex *, integer *, integer *), cstedc_(char *, integer *, real *, real *, complex *, + integer *, complex *, integer *, real *, integer *, integer *, + integer *, integer *); + extern doublereal slamch_(char *); + extern /* Subroutine */ int chetrd_(char *, integer *, complex *, integer + *, real *, real *, complex *, complex *, integer *, integer *), clacpy_(char *, integer *, integer *, complex *, integer + *, complex *, integer *); + static real safmin; + extern /* Subroutine */ int xerbla_(char *, integer *); + static real bignum; + static integer indtau, indrwk, indwrk, liwmin; + extern /* Subroutine */ int ssterf_(integer *, real *, real *, integer *); + static integer lrwmin; + extern /* Subroutine */ int cunmtr_(char *, char *, char *, integer *, + integer *, complex *, integer *, complex *, complex *, integer *, + complex *, integer *, integer *); + static integer llwork; + static real smlnum; + static logical lquery; + + +/* + -- LAPACK driver routine (version 3.0) -- + Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd., + Courant Institute, Argonne National Lab, and Rice University + June 30, 1999 + + + Purpose + ======= + + CHEEVD computes all eigenvalues and, optionally, eigenvectors of a + complex Hermitian matrix A. If eigenvectors are desired, it uses a + divide and conquer algorithm. + + The divide and conquer algorithm makes very mild assumptions about + floating point arithmetic. It will work on machines with a guard + digit in add/subtract, or on those binary machines without guard + digits which subtract like the Cray X-MP, Cray Y-MP, Cray C-90, or + Cray-2. It could conceivably fail on hexadecimal or decimal machines + without guard digits, but we know of none. + + Arguments + ========= + + JOBZ (input) CHARACTER*1 + = 'N': Compute eigenvalues only; + = 'V': Compute eigenvalues and eigenvectors. + + UPLO (input) CHARACTER*1 + = 'U': Upper triangle of A is stored; + = 'L': Lower triangle of A is stored. + + N (input) INTEGER + The order of the matrix A. N >= 0. + + A (input/output) COMPLEX array, dimension (LDA, N) + On entry, the Hermitian matrix A. If UPLO = 'U', the + leading N-by-N upper triangular part of A contains the + upper triangular part of the matrix A. If UPLO = 'L', + the leading N-by-N lower triangular part of A contains + the lower triangular part of the matrix A. + On exit, if JOBZ = 'V', then if INFO = 0, A contains the + orthonormal eigenvectors of the matrix A. + If JOBZ = 'N', then on exit the lower triangle (if UPLO='L') + or the upper triangle (if UPLO='U') of A, including the + diagonal, is destroyed. + + LDA (input) INTEGER + The leading dimension of the array A. LDA >= max(1,N). + + W (output) REAL array, dimension (N) + If INFO = 0, the eigenvalues in ascending order. + + WORK (workspace/output) COMPLEX array, dimension (LWORK) + On exit, if INFO = 0, WORK(1) returns the optimal LWORK. + + LWORK (input) INTEGER + The length of the array WORK. + If N <= 1, LWORK must be at least 1. + If JOBZ = 'N' and N > 1, LWORK must be at least N + 1. + If JOBZ = 'V' and N > 1, LWORK must be at least 2*N + N**2. + + If LWORK = -1, then a workspace query is assumed; the routine + only calculates the optimal size of the WORK array, returns + this value as the first entry of the WORK array, and no error + message related to LWORK is issued by XERBLA. + + RWORK (workspace/output) REAL array, + dimension (LRWORK) + On exit, if INFO = 0, RWORK(1) returns the optimal LRWORK. + + LRWORK (input) INTEGER + The dimension of the array RWORK. + If N <= 1, LRWORK must be at least 1. + If JOBZ = 'N' and N > 1, LRWORK must be at least N. + If JOBZ = 'V' and N > 1, LRWORK must be at least + 1 + 5*N + 2*N**2. + + If LRWORK = -1, then a workspace query is assumed; the + routine only calculates the optimal size of the RWORK array, + returns this value as the first entry of the RWORK array, and + no error message related to LRWORK is issued by XERBLA. + + IWORK (workspace/output) INTEGER array, dimension (LIWORK) + On exit, if INFO = 0, IWORK(1) returns the optimal LIWORK. + + LIWORK (input) INTEGER + The dimension of the array IWORK. + If N <= 1, LIWORK must be at least 1. + If JOBZ = 'N' and N > 1, LIWORK must be at least 1. + If JOBZ = 'V' and N > 1, LIWORK must be at least 3 + 5*N. + + If LIWORK = -1, then a workspace query is assumed; the + routine only calculates the optimal size of the IWORK array, + returns this value as the first entry of the IWORK array, and + no error message related to LIWORK is issued by XERBLA. + + INFO (output) INTEGER + = 0: successful exit + < 0: if INFO = -i, the i-th argument had an illegal value + > 0: if INFO = i, the algorithm failed to converge; i + off-diagonal elements of an intermediate tridiagonal + form did not converge to zero. + + Further Details + =============== + + Based on contributions by + Jeff Rutter, Computer Science Division, University of California + at Berkeley, USA + + ===================================================================== + + + Test the input parameters. +*/ + + /* Parameter adjustments */ + a_dim1 = *lda; + a_offset = 1 + a_dim1; + a -= a_offset; + --w; + --work; + --rwork; + --iwork; + + /* Function Body */ + wantz = lsame_(jobz, "V"); + lower = lsame_(uplo, "L"); + lquery = *lwork == -1 || *lrwork == -1 || *liwork == -1; + + *info = 0; + if (*n <= 1) { + lwmin = 1; + lrwmin = 1; + liwmin = 1; + lopt = lwmin; + lropt = lrwmin; + liopt = liwmin; + } else { + if (wantz) { + lwmin = (*n << 1) + *n * *n; +/* Computing 2nd power */ + i__1 = *n; + lrwmin = *n * 5 + 1 + (i__1 * i__1 << 1); + liwmin = *n * 5 + 3; + } else { + lwmin = *n + 1; + lrwmin = *n; + liwmin = 1; + } + lopt = lwmin; + lropt = lrwmin; + liopt = liwmin; + } + if (! (wantz || lsame_(jobz, "N"))) { + *info = -1; + } else if (! (lower || lsame_(uplo, "U"))) { + *info = -2; + } else if (*n < 0) { + *info = -3; + } else if (*lda < max(1,*n)) { + *info = -5; + } else if (*lwork < lwmin && ! lquery) { + *info = -8; + } else if (*lrwork < lrwmin && ! lquery) { + *info = -10; + } else if (*liwork < liwmin && ! lquery) { + *info = -12; + } + + if (*info == 0) { + work[1].r = (real) lopt, work[1].i = 0.f; + rwork[1] = (real) lropt; + iwork[1] = liopt; + } + + if (*info != 0) { + i__1 = -(*info); + xerbla_("CHEEVD", &i__1); + return 0; + } else if (lquery) { + return 0; + } + +/* Quick return if possible */ + + if (*n == 0) { + return 0; + } + + if (*n == 1) { + i__1 = a_dim1 + 1; + w[1] = a[i__1].r; + if (wantz) { + i__1 = a_dim1 + 1; + a[i__1].r = 1.f, a[i__1].i = 0.f; + } + return 0; + } + +/* Get machine constants. */ + + safmin = slamch_("Safe minimum"); + eps = slamch_("Precision"); + smlnum = safmin / eps; + bignum = 1.f / smlnum; + rmin = sqrt(smlnum); + rmax = sqrt(bignum); + +/* Scale matrix to allowable range, if necessary. */ + + anrm = clanhe_("M", uplo, n, &a[a_offset], lda, &rwork[1]); + iscale = 0; + if (anrm > 0.f && anrm < rmin) { + iscale = 1; + sigma = rmin / anrm; + } else if (anrm > rmax) { + iscale = 1; + sigma = rmax / anrm; + } + if (iscale == 1) { + clascl_(uplo, &c__0, &c__0, &c_b871, &sigma, n, n, &a[a_offset], lda, + info); + } + +/* Call CHETRD to reduce Hermitian matrix to tridiagonal form. */ + + inde = 1; + indtau = 1; + indwrk = indtau + *n; + indrwk = inde + *n; + indwk2 = indwrk + *n * *n; + llwork = *lwork - indwrk + 1; + llwrk2 = *lwork - indwk2 + 1; + llrwk = *lrwork - indrwk + 1; + chetrd_(uplo, n, &a[a_offset], lda, &w[1], &rwork[inde], &work[indtau], & + work[indwrk], &llwork, &iinfo); +/* Computing MAX */ + i__1 = indwrk; + r__1 = (real) lopt, r__2 = (real) (*n) + work[i__1].r; + lopt = dmax(r__1,r__2); + +/* + For eigenvalues only, call SSTERF. For eigenvectors, first call + CSTEDC to generate the eigenvector matrix, WORK(INDWRK), of the + tridiagonal matrix, then call CUNMTR to multiply it to the + Householder transformations represented as Householder vectors in + A. +*/ + + if (! wantz) { + ssterf_(n, &w[1], &rwork[inde], info); + } else { + cstedc_("I", n, &w[1], &rwork[inde], &work[indwrk], n, &work[indwk2], + &llwrk2, &rwork[indrwk], &llrwk, &iwork[1], liwork, info); + cunmtr_("L", uplo, "N", n, n, &a[a_offset], lda, &work[indtau], &work[ + indwrk], n, &work[indwk2], &llwrk2, &iinfo); + clacpy_("A", n, n, &work[indwrk], n, &a[a_offset], lda); +/* + Computing MAX + Computing 2nd power +*/ + i__3 = *n; + i__4 = indwk2; + i__1 = lopt, i__2 = *n + i__3 * i__3 + (integer) work[i__4].r; + lopt = max(i__1,i__2); + } + +/* If matrix was scaled, then rescale eigenvalues appropriately. */ + + if (iscale == 1) { + if (*info == 0) { + imax = *n; + } else { + imax = *info - 1; + } + r__1 = 1.f / sigma; + sscal_(&imax, &r__1, &w[1], &c__1); + } + + work[1].r = (real) lopt, work[1].i = 0.f; + rwork[1] = (real) lropt; + iwork[1] = liopt; + + return 0; + +/* End of CHEEVD */ + +} /* cheevd_ */ + +/* Subroutine */ int chetd2_(char *uplo, integer *n, complex *a, integer *lda, + real *d__, real *e, complex *tau, integer *info) +{ + /* System generated locals */ + integer a_dim1, a_offset, i__1, i__2, i__3; + real r__1; + complex q__1, q__2, q__3, q__4; + + /* Local variables */ + static integer i__; + static complex taui; + extern /* Subroutine */ int cher2_(char *, integer *, complex *, complex * + , integer *, complex *, integer *, complex *, integer *); + static complex alpha; + extern /* Complex */ VOID cdotc_(complex *, integer *, complex *, integer + *, complex *, integer *); + extern logical lsame_(char *, char *); + extern /* Subroutine */ int chemv_(char *, integer *, complex *, complex * + , integer *, complex *, integer *, complex *, complex *, integer * + ), caxpy_(integer *, complex *, complex *, integer *, + complex *, integer *); + static logical upper; + extern /* Subroutine */ int clarfg_(integer *, complex *, complex *, + integer *, complex *), xerbla_(char *, integer *); + + +/* + -- LAPACK routine (version 3.0) -- + Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd., + Courant Institute, Argonne National Lab, and Rice University + October 31, 1999 + + + Purpose + ======= + + CHETD2 reduces a complex Hermitian matrix A to real symmetric + tridiagonal form T by a unitary similarity transformation: + Q' * A * Q = T. + + Arguments + ========= + + UPLO (input) CHARACTER*1 + Specifies whether the upper or lower triangular part of the + Hermitian matrix A is stored: + = 'U': Upper triangular + = 'L': Lower triangular + + N (input) INTEGER + The order of the matrix A. N >= 0. + + A (input/output) COMPLEX array, dimension (LDA,N) + On entry, the Hermitian matrix A. If UPLO = 'U', the leading + n-by-n upper triangular part of A contains the upper + triangular part of the matrix A, and the strictly lower + triangular part of A is not referenced. If UPLO = 'L', the + leading n-by-n lower triangular part of A contains the lower + triangular part of the matrix A, and the strictly upper + triangular part of A is not referenced. + On exit, if UPLO = 'U', the diagonal and first superdiagonal + of A are overwritten by the corresponding elements of the + tridiagonal matrix T, and the elements above the first + superdiagonal, with the array TAU, represent the unitary + matrix Q as a product of elementary reflectors; if UPLO + = 'L', the diagonal and first subdiagonal of A are over- + written by the corresponding elements of the tridiagonal + matrix T, and the elements below the first subdiagonal, with + the array TAU, represent the unitary matrix Q as a product + of elementary reflectors. See Further Details. + + LDA (input) INTEGER + The leading dimension of the array A. LDA >= max(1,N). + + D (output) REAL array, dimension (N) + The diagonal elements of the tridiagonal matrix T: + D(i) = A(i,i). + + E (output) REAL array, dimension (N-1) + The off-diagonal elements of the tridiagonal matrix T: + E(i) = A(i,i+1) if UPLO = 'U', E(i) = A(i+1,i) if UPLO = 'L'. + + TAU (output) COMPLEX array, dimension (N-1) + The scalar factors of the elementary reflectors (see Further + Details). + + INFO (output) INTEGER + = 0: successful exit + < 0: if INFO = -i, the i-th argument had an illegal value. + + Further Details + =============== + + If UPLO = 'U', the matrix Q is represented as a product of elementary + reflectors + + Q = H(n-1) . . . H(2) H(1). + + Each H(i) has the form + + H(i) = I - tau * v * v' + + where tau is a complex scalar, and v is a complex vector with + v(i+1:n) = 0 and v(i) = 1; v(1:i-1) is stored on exit in + A(1:i-1,i+1), and tau in TAU(i). + + If UPLO = 'L', the matrix Q is represented as a product of elementary + reflectors + + Q = H(1) H(2) . . . H(n-1). + + Each H(i) has the form + + H(i) = I - tau * v * v' + + where tau is a complex scalar, and v is a complex vector with + v(1:i) = 0 and v(i+1) = 1; v(i+2:n) is stored on exit in A(i+2:n,i), + and tau in TAU(i). + + The contents of A on exit are illustrated by the following examples + with n = 5: + + if UPLO = 'U': if UPLO = 'L': + + ( d e v2 v3 v4 ) ( d ) + ( d e v3 v4 ) ( e d ) + ( d e v4 ) ( v1 e d ) + ( d e ) ( v1 v2 e d ) + ( d ) ( v1 v2 v3 e d ) + + where d and e denote diagonal and off-diagonal elements of T, and vi + denotes an element of the vector defining H(i). + + ===================================================================== + + + Test the input parameters +*/ + + /* Parameter adjustments */ + a_dim1 = *lda; + a_offset = 1 + a_dim1; + a -= a_offset; + --d__; + --e; + --tau; + + /* Function Body */ + *info = 0; + upper = lsame_(uplo, "U"); + if (! upper && ! lsame_(uplo, "L")) { + *info = -1; + } else if (*n < 0) { + *info = -2; + } else if (*lda < max(1,*n)) { + *info = -4; + } + if (*info != 0) { + i__1 = -(*info); + xerbla_("CHETD2", &i__1); + return 0; + } + +/* Quick return if possible */ + + if (*n <= 0) { + return 0; + } + + if (upper) { + +/* Reduce the upper triangle of A */ + + i__1 = *n + *n * a_dim1; + i__2 = *n + *n * a_dim1; + r__1 = a[i__2].r; + a[i__1].r = r__1, a[i__1].i = 0.f; + for (i__ = *n - 1; i__ >= 1; --i__) { + +/* + Generate elementary reflector H(i) = I - tau * v * v' + to annihilate A(1:i-1,i+1) +*/ + + i__1 = i__ + (i__ + 1) * a_dim1; + alpha.r = a[i__1].r, alpha.i = a[i__1].i; + clarfg_(&i__, &alpha, &a[(i__ + 1) * a_dim1 + 1], &c__1, &taui); + i__1 = i__; + e[i__1] = alpha.r; + + if (taui.r != 0.f || taui.i != 0.f) { + +/* Apply H(i) from both sides to A(1:i,1:i) */ + + i__1 = i__ + (i__ + 1) * a_dim1; + a[i__1].r = 1.f, a[i__1].i = 0.f; + +/* Compute x := tau * A * v storing x in TAU(1:i) */ + + chemv_(uplo, &i__, &taui, &a[a_offset], lda, &a[(i__ + 1) * + a_dim1 + 1], &c__1, &c_b55, &tau[1], &c__1) + ; + +/* Compute w := x - 1/2 * tau * (x'*v) * v */ + + q__3.r = -.5f, q__3.i = -0.f; + q__2.r = q__3.r * taui.r - q__3.i * taui.i, q__2.i = q__3.r * + taui.i + q__3.i * taui.r; + cdotc_(&q__4, &i__, &tau[1], &c__1, &a[(i__ + 1) * a_dim1 + 1] + , &c__1); + q__1.r = q__2.r * q__4.r - q__2.i * q__4.i, q__1.i = q__2.r * + q__4.i + q__2.i * q__4.r; + alpha.r = q__1.r, alpha.i = q__1.i; + caxpy_(&i__, &alpha, &a[(i__ + 1) * a_dim1 + 1], &c__1, &tau[ + 1], &c__1); + +/* + Apply the transformation as a rank-2 update: + A := A - v * w' - w * v' +*/ + + q__1.r = -1.f, q__1.i = -0.f; + cher2_(uplo, &i__, &q__1, &a[(i__ + 1) * a_dim1 + 1], &c__1, & + tau[1], &c__1, &a[a_offset], lda); + + } else { + i__1 = i__ + i__ * a_dim1; + i__2 = i__ + i__ * a_dim1; + r__1 = a[i__2].r; + a[i__1].r = r__1, a[i__1].i = 0.f; + } + i__1 = i__ + (i__ + 1) * a_dim1; + i__2 = i__; + a[i__1].r = e[i__2], a[i__1].i = 0.f; + i__1 = i__ + 1; + i__2 = i__ + 1 + (i__ + 1) * a_dim1; + d__[i__1] = a[i__2].r; + i__1 = i__; + tau[i__1].r = taui.r, tau[i__1].i = taui.i; +/* L10: */ + } + i__1 = a_dim1 + 1; + d__[1] = a[i__1].r; + } else { + +/* Reduce the lower triangle of A */ + + i__1 = a_dim1 + 1; + i__2 = a_dim1 + 1; + r__1 = a[i__2].r; + a[i__1].r = r__1, a[i__1].i = 0.f; + i__1 = *n - 1; + for (i__ = 1; i__ <= i__1; ++i__) { + +/* + Generate elementary reflector H(i) = I - tau * v * v' + to annihilate A(i+2:n,i) +*/ + + i__2 = i__ + 1 + i__ * a_dim1; + alpha.r = a[i__2].r, alpha.i = a[i__2].i; + i__2 = *n - i__; +/* Computing MIN */ + i__3 = i__ + 2; + clarfg_(&i__2, &alpha, &a[min(i__3,*n) + i__ * a_dim1], &c__1, & + taui); + i__2 = i__; + e[i__2] = alpha.r; + + if (taui.r != 0.f || taui.i != 0.f) { + +/* Apply H(i) from both sides to A(i+1:n,i+1:n) */ + + i__2 = i__ + 1 + i__ * a_dim1; + a[i__2].r = 1.f, a[i__2].i = 0.f; + +/* Compute x := tau * A * v storing y in TAU(i:n-1) */ + + i__2 = *n - i__; + chemv_(uplo, &i__2, &taui, &a[i__ + 1 + (i__ + 1) * a_dim1], + lda, &a[i__ + 1 + i__ * a_dim1], &c__1, &c_b55, &tau[ + i__], &c__1); + +/* Compute w := x - 1/2 * tau * (x'*v) * v */ + + q__3.r = -.5f, q__3.i = -0.f; + q__2.r = q__3.r * taui.r - q__3.i * taui.i, q__2.i = q__3.r * + taui.i + q__3.i * taui.r; + i__2 = *n - i__; + cdotc_(&q__4, &i__2, &tau[i__], &c__1, &a[i__ + 1 + i__ * + a_dim1], &c__1); + q__1.r = q__2.r * q__4.r - q__2.i * q__4.i, q__1.i = q__2.r * + q__4.i + q__2.i * q__4.r; + alpha.r = q__1.r, alpha.i = q__1.i; + i__2 = *n - i__; + caxpy_(&i__2, &alpha, &a[i__ + 1 + i__ * a_dim1], &c__1, &tau[ + i__], &c__1); + +/* + Apply the transformation as a rank-2 update: + A := A - v * w' - w * v' +*/ + + i__2 = *n - i__; + q__1.r = -1.f, q__1.i = -0.f; + cher2_(uplo, &i__2, &q__1, &a[i__ + 1 + i__ * a_dim1], &c__1, + &tau[i__], &c__1, &a[i__ + 1 + (i__ + 1) * a_dim1], + lda); + + } else { + i__2 = i__ + 1 + (i__ + 1) * a_dim1; + i__3 = i__ + 1 + (i__ + 1) * a_dim1; + r__1 = a[i__3].r; + a[i__2].r = r__1, a[i__2].i = 0.f; + } + i__2 = i__ + 1 + i__ * a_dim1; + i__3 = i__; + a[i__2].r = e[i__3], a[i__2].i = 0.f; + i__2 = i__; + i__3 = i__ + i__ * a_dim1; + d__[i__2] = a[i__3].r; + i__2 = i__; + tau[i__2].r = taui.r, tau[i__2].i = taui.i; +/* L20: */ + } + i__1 = *n; + i__2 = *n + *n * a_dim1; + d__[i__1] = a[i__2].r; + } + + return 0; + +/* End of CHETD2 */ + +} /* chetd2_ */ + +/* Subroutine */ int chetrd_(char *uplo, integer *n, complex *a, integer *lda, + real *d__, real *e, complex *tau, complex *work, integer *lwork, + integer *info) +{ + /* System generated locals */ + integer a_dim1, a_offset, i__1, i__2, i__3, i__4, i__5; + complex q__1; + + /* Local variables */ + static integer i__, j, nb, kk, nx, iws; + extern logical lsame_(char *, char *); + static integer nbmin, iinfo; + static logical upper; + extern /* Subroutine */ int chetd2_(char *, integer *, complex *, integer + *, real *, real *, complex *, integer *), cher2k_(char *, + char *, integer *, integer *, complex *, complex *, integer *, + complex *, integer *, real *, complex *, integer *), clatrd_(char *, integer *, integer *, complex *, integer + *, real *, complex *, complex *, integer *), xerbla_(char + *, integer *); + extern integer ilaenv_(integer *, char *, char *, integer *, integer *, + integer *, integer *, ftnlen, ftnlen); + static integer ldwork, lwkopt; + static logical lquery; + + +/* + -- LAPACK routine (version 3.0) -- + Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd., + Courant Institute, Argonne National Lab, and Rice University + June 30, 1999 + + + Purpose + ======= + + CHETRD reduces a complex Hermitian matrix A to real symmetric + tridiagonal form T by a unitary similarity transformation: + Q**H * A * Q = T. + + Arguments + ========= + + UPLO (input) CHARACTER*1 + = 'U': Upper triangle of A is stored; + = 'L': Lower triangle of A is stored. + + N (input) INTEGER + The order of the matrix A. N >= 0. + + A (input/output) COMPLEX array, dimension (LDA,N) + On entry, the Hermitian matrix A. If UPLO = 'U', the leading + N-by-N upper triangular part of A contains the upper + triangular part of the matrix A, and the strictly lower + triangular part of A is not referenced. If UPLO = 'L', the + leading N-by-N lower triangular part of A contains the lower + triangular part of the matrix A, and the strictly upper + triangular part of A is not referenced. + On exit, if UPLO = 'U', the diagonal and first superdiagonal + of A are overwritten by the corresponding elements of the + tridiagonal matrix T, and the elements above the first + superdiagonal, with the array TAU, represent the unitary + matrix Q as a product of elementary reflectors; if UPLO + = 'L', the diagonal and first subdiagonal of A are over- + written by the corresponding elements of the tridiagonal + matrix T, and the elements below the first subdiagonal, with + the array TAU, represent the unitary matrix Q as a product + of elementary reflectors. See Further Details. + + LDA (input) INTEGER + The leading dimension of the array A. LDA >= max(1,N). + + D (output) REAL array, dimension (N) + The diagonal elements of the tridiagonal matrix T: + D(i) = A(i,i). + + E (output) REAL array, dimension (N-1) + The off-diagonal elements of the tridiagonal matrix T: + E(i) = A(i,i+1) if UPLO = 'U', E(i) = A(i+1,i) if UPLO = 'L'. + + TAU (output) COMPLEX array, dimension (N-1) + The scalar factors of the elementary reflectors (see Further + Details). + + WORK (workspace/output) COMPLEX array, dimension (LWORK) + On exit, if INFO = 0, WORK(1) returns the optimal LWORK. + + LWORK (input) INTEGER + The dimension of the array WORK. LWORK >= 1. + For optimum performance LWORK >= N*NB, where NB is the + optimal blocksize. + + If LWORK = -1, then a workspace query is assumed; the routine + only calculates the optimal size of the WORK array, returns + this value as the first entry of the WORK array, and no error + message related to LWORK is issued by XERBLA. + + INFO (output) INTEGER + = 0: successful exit + < 0: if INFO = -i, the i-th argument had an illegal value + + Further Details + =============== + + If UPLO = 'U', the matrix Q is represented as a product of elementary + reflectors + + Q = H(n-1) . . . H(2) H(1). + + Each H(i) has the form + + H(i) = I - tau * v * v' + + where tau is a complex scalar, and v is a complex vector with + v(i+1:n) = 0 and v(i) = 1; v(1:i-1) is stored on exit in + A(1:i-1,i+1), and tau in TAU(i). + + If UPLO = 'L', the matrix Q is represented as a product of elementary + reflectors + + Q = H(1) H(2) . . . H(n-1). + + Each H(i) has the form + + H(i) = I - tau * v * v' + + where tau is a complex scalar, and v is a complex vector with + v(1:i) = 0 and v(i+1) = 1; v(i+2:n) is stored on exit in A(i+2:n,i), + and tau in TAU(i). + + The contents of A on exit are illustrated by the following examples + with n = 5: + + if UPLO = 'U': if UPLO = 'L': + + ( d e v2 v3 v4 ) ( d ) + ( d e v3 v4 ) ( e d ) + ( d e v4 ) ( v1 e d ) + ( d e ) ( v1 v2 e d ) + ( d ) ( v1 v2 v3 e d ) + + where d and e denote diagonal and off-diagonal elements of T, and vi + denotes an element of the vector defining H(i). + + ===================================================================== + + + Test the input parameters +*/ + + /* Parameter adjustments */ + a_dim1 = *lda; + a_offset = 1 + a_dim1; + a -= a_offset; + --d__; + --e; + --tau; + --work; + + /* Function Body */ + *info = 0; + upper = lsame_(uplo, "U"); + lquery = *lwork == -1; + if (! upper && ! lsame_(uplo, "L")) { + *info = -1; + } else if (*n < 0) { + *info = -2; + } else if (*lda < max(1,*n)) { + *info = -4; + } else if (*lwork < 1 && ! lquery) { + *info = -9; + } + + if (*info == 0) { + +/* Determine the block size. */ + + nb = ilaenv_(&c__1, "CHETRD", uplo, n, &c_n1, &c_n1, &c_n1, (ftnlen)6, + (ftnlen)1); + lwkopt = *n * nb; + work[1].r = (real) lwkopt, work[1].i = 0.f; + } + + if (*info != 0) { + i__1 = -(*info); + xerbla_("CHETRD", &i__1); + return 0; + } else if (lquery) { + return 0; + } + +/* Quick return if possible */ + + if (*n == 0) { + work[1].r = 1.f, work[1].i = 0.f; + return 0; + } + + nx = *n; + iws = 1; + if (nb > 1 && nb < *n) { + +/* + Determine when to cross over from blocked to unblocked code + (last block is always handled by unblocked code). + + Computing MAX +*/ + i__1 = nb, i__2 = ilaenv_(&c__3, "CHETRD", uplo, n, &c_n1, &c_n1, & + c_n1, (ftnlen)6, (ftnlen)1); + nx = max(i__1,i__2); + if (nx < *n) { + +/* Determine if workspace is large enough for blocked code. */ + + ldwork = *n; + iws = ldwork * nb; + if (*lwork < iws) { + +/* + Not enough workspace to use optimal NB: determine the + minimum value of NB, and reduce NB or force use of + unblocked code by setting NX = N. + + Computing MAX +*/ + i__1 = *lwork / ldwork; + nb = max(i__1,1); + nbmin = ilaenv_(&c__2, "CHETRD", uplo, n, &c_n1, &c_n1, &c_n1, + (ftnlen)6, (ftnlen)1); + if (nb < nbmin) { + nx = *n; + } + } + } else { + nx = *n; + } + } else { + nb = 1; + } + + if (upper) { + +/* + Reduce the upper triangle of A. + Columns 1:kk are handled by the unblocked method. +*/ + + kk = *n - (*n - nx + nb - 1) / nb * nb; + i__1 = kk + 1; + i__2 = -nb; + for (i__ = *n - nb + 1; i__2 < 0 ? i__ >= i__1 : i__ <= i__1; i__ += + i__2) { + +/* + Reduce columns i:i+nb-1 to tridiagonal form and form the + matrix W which is needed to update the unreduced part of + the matrix +*/ + + i__3 = i__ + nb - 1; + clatrd_(uplo, &i__3, &nb, &a[a_offset], lda, &e[1], &tau[1], & + work[1], &ldwork); + +/* + Update the unreduced submatrix A(1:i-1,1:i-1), using an + update of the form: A := A - V*W' - W*V' +*/ + + i__3 = i__ - 1; + q__1.r = -1.f, q__1.i = -0.f; + cher2k_(uplo, "No transpose", &i__3, &nb, &q__1, &a[i__ * a_dim1 + + 1], lda, &work[1], &ldwork, &c_b871, &a[a_offset], lda); + +/* + Copy superdiagonal elements back into A, and diagonal + elements into D +*/ + + i__3 = i__ + nb - 1; + for (j = i__; j <= i__3; ++j) { + i__4 = j - 1 + j * a_dim1; + i__5 = j - 1; + a[i__4].r = e[i__5], a[i__4].i = 0.f; + i__4 = j; + i__5 = j + j * a_dim1; + d__[i__4] = a[i__5].r; +/* L10: */ + } +/* L20: */ + } + +/* Use unblocked code to reduce the last or only block */ + + chetd2_(uplo, &kk, &a[a_offset], lda, &d__[1], &e[1], &tau[1], &iinfo); + } else { + +/* Reduce the lower triangle of A */ + + i__2 = *n - nx; + i__1 = nb; + for (i__ = 1; i__1 < 0 ? i__ >= i__2 : i__ <= i__2; i__ += i__1) { + +/* + Reduce columns i:i+nb-1 to tridiagonal form and form the + matrix W which is needed to update the unreduced part of + the matrix +*/ + + i__3 = *n - i__ + 1; + clatrd_(uplo, &i__3, &nb, &a[i__ + i__ * a_dim1], lda, &e[i__], & + tau[i__], &work[1], &ldwork); + +/* + Update the unreduced submatrix A(i+nb:n,i+nb:n), using + an update of the form: A := A - V*W' - W*V' +*/ + + i__3 = *n - i__ - nb + 1; + q__1.r = -1.f, q__1.i = -0.f; + cher2k_(uplo, "No transpose", &i__3, &nb, &q__1, &a[i__ + nb + + i__ * a_dim1], lda, &work[nb + 1], &ldwork, &c_b871, &a[ + i__ + nb + (i__ + nb) * a_dim1], lda); + +/* + Copy subdiagonal elements back into A, and diagonal + elements into D +*/ + + i__3 = i__ + nb - 1; + for (j = i__; j <= i__3; ++j) { + i__4 = j + 1 + j * a_dim1; + i__5 = j; + a[i__4].r = e[i__5], a[i__4].i = 0.f; + i__4 = j; + i__5 = j + j * a_dim1; + d__[i__4] = a[i__5].r; +/* L30: */ + } +/* L40: */ + } + +/* Use unblocked code to reduce the last or only block */ + + i__1 = *n - i__ + 1; + chetd2_(uplo, &i__1, &a[i__ + i__ * a_dim1], lda, &d__[i__], &e[i__], + &tau[i__], &iinfo); + } + + work[1].r = (real) lwkopt, work[1].i = 0.f; + return 0; + +/* End of CHETRD */ + +} /* chetrd_ */ + +/* Subroutine */ int chseqr_(char *job, char *compz, integer *n, integer *ilo, + integer *ihi, complex *h__, integer *ldh, complex *w, complex *z__, + integer *ldz, complex *work, integer *lwork, integer *info) +{ + /* System generated locals */ + address a__1[2]; + integer h_dim1, h_offset, z_dim1, z_offset, i__1, i__2, i__3, i__4[2], + i__5, i__6; + real r__1, r__2, r__3, r__4; + complex q__1; + char ch__1[2]; + + /* Builtin functions */ + double r_imag(complex *); + void r_cnjg(complex *, complex *); + /* Subroutine */ int s_cat(char *, char **, integer *, integer *, ftnlen); + + /* Local variables */ + static integer i__, j, k, l; + static complex s[225] /* was [15][15] */, v[16]; + static integer i1, i2, ii, nh, nr, ns, nv; + static complex vv[16]; + static integer itn; + static complex tau; + static integer its; + static real ulp, tst1; + static integer maxb, ierr; + static real unfl; + static complex temp; + static real ovfl; + extern /* Subroutine */ int cscal_(integer *, complex *, complex *, + integer *); + extern logical lsame_(char *, char *); + extern /* Subroutine */ int cgemv_(char *, integer *, integer *, complex * + , complex *, integer *, complex *, integer *, complex *, complex * + , integer *), ccopy_(integer *, complex *, integer *, + complex *, integer *); + static integer itemp; + static real rtemp; + static logical initz, wantt, wantz; + static real rwork[1]; + extern doublereal slapy2_(real *, real *); + extern /* Subroutine */ int slabad_(real *, real *), clarfg_(integer *, + complex *, complex *, integer *, complex *); + extern integer icamax_(integer *, complex *, integer *); + extern doublereal slamch_(char *), clanhs_(char *, integer *, + complex *, integer *, real *); + extern /* Subroutine */ int csscal_(integer *, real *, complex *, integer + *), clahqr_(logical *, logical *, integer *, integer *, integer *, + complex *, integer *, complex *, integer *, integer *, complex *, + integer *, integer *), clacpy_(char *, integer *, integer *, + complex *, integer *, complex *, integer *), claset_(char + *, integer *, integer *, complex *, complex *, complex *, integer + *), xerbla_(char *, integer *); + extern integer ilaenv_(integer *, char *, char *, integer *, integer *, + integer *, integer *, ftnlen, ftnlen); + extern /* Subroutine */ int clarfx_(char *, integer *, integer *, complex + *, complex *, complex *, integer *, complex *); + static real smlnum; + static logical lquery; + + +/* + -- LAPACK routine (version 3.0) -- + Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd., + Courant Institute, Argonne National Lab, and Rice University + June 30, 1999 + + + Purpose + ======= + + CHSEQR computes the eigenvalues of a complex upper Hessenberg + matrix H, and, optionally, the matrices T and Z from the Schur + decomposition H = Z T Z**H, where T is an upper triangular matrix + (the Schur form), and Z is the unitary matrix of Schur vectors. + + Optionally Z may be postmultiplied into an input unitary matrix Q, + so that this routine can give the Schur factorization of a matrix A + which has been reduced to the Hessenberg form H by the unitary + matrix Q: A = Q*H*Q**H = (QZ)*T*(QZ)**H. + + Arguments + ========= + + JOB (input) CHARACTER*1 + = 'E': compute eigenvalues only; + = 'S': compute eigenvalues and the Schur form T. + + COMPZ (input) CHARACTER*1 + = 'N': no Schur vectors are computed; + = 'I': Z is initialized to the unit matrix and the matrix Z + of Schur vectors of H is returned; + = 'V': Z must contain an unitary matrix Q on entry, and + the product Q*Z is returned. + + N (input) INTEGER + The order of the matrix H. N >= 0. + + ILO (input) INTEGER + IHI (input) INTEGER + It is assumed that H is already upper triangular in rows + and columns 1:ILO-1 and IHI+1:N. ILO and IHI are normally + set by a previous call to CGEBAL, and then passed to CGEHRD + when the matrix output by CGEBAL is reduced to Hessenberg + form. Otherwise ILO and IHI should be set to 1 and N + respectively. + 1 <= ILO <= IHI <= N, if N > 0; ILO=1 and IHI=0, if N=0. + + H (input/output) COMPLEX array, dimension (LDH,N) + On entry, the upper Hessenberg matrix H. + On exit, if JOB = 'S', H contains the upper triangular matrix + T from the Schur decomposition (the Schur form). If + JOB = 'E', the contents of H are unspecified on exit. + + LDH (input) INTEGER + The leading dimension of the array H. LDH >= max(1,N). + + W (output) COMPLEX array, dimension (N) + The computed eigenvalues. If JOB = 'S', the eigenvalues are + stored in the same order as on the diagonal of the Schur form + returned in H, with W(i) = H(i,i). + + Z (input/output) COMPLEX array, dimension (LDZ,N) + If COMPZ = 'N': Z is not referenced. + If COMPZ = 'I': on entry, Z need not be set, and on exit, Z + contains the unitary matrix Z of the Schur vectors of H. + If COMPZ = 'V': on entry Z must contain an N-by-N matrix Q, + which is assumed to be equal to the unit matrix except for + the submatrix Z(ILO:IHI,ILO:IHI); on exit Z contains Q*Z. + Normally Q is the unitary matrix generated by CUNGHR after + the call to CGEHRD which formed the Hessenberg matrix H. + + LDZ (input) INTEGER + The leading dimension of the array Z. + LDZ >= max(1,N) if COMPZ = 'I' or 'V'; LDZ >= 1 otherwise. + + WORK (workspace/output) COMPLEX array, dimension (LWORK) + On exit, if INFO = 0, WORK(1) returns the optimal LWORK. + + LWORK (input) INTEGER + The dimension of the array WORK. LWORK >= max(1,N). + + If LWORK = -1, then a workspace query is assumed; the routine + only calculates the optimal size of the WORK array, returns + this value as the first entry of the WORK array, and no error + message related to LWORK is issued by XERBLA. + + INFO (output) INTEGER + = 0: successful exit + < 0: if INFO = -i, the i-th argument had an illegal value + > 0: if INFO = i, CHSEQR failed to compute all the + eigenvalues in a total of 30*(IHI-ILO+1) iterations; + elements 1:ilo-1 and i+1:n of W contain those + eigenvalues which have been successfully computed. + + ===================================================================== + + + Decode and test the input parameters +*/ + + /* Parameter adjustments */ + h_dim1 = *ldh; + h_offset = 1 + h_dim1; + h__ -= h_offset; + --w; + z_dim1 = *ldz; + z_offset = 1 + z_dim1; + z__ -= z_offset; + --work; + + /* Function Body */ + wantt = lsame_(job, "S"); + initz = lsame_(compz, "I"); + wantz = initz || lsame_(compz, "V"); + + *info = 0; + i__1 = max(1,*n); + work[1].r = (real) i__1, work[1].i = 0.f; + lquery = *lwork == -1; + if (! lsame_(job, "E") && ! wantt) { + *info = -1; + } else if (! lsame_(compz, "N") && ! wantz) { + *info = -2; + } else if (*n < 0) { + *info = -3; + } else if (*ilo < 1 || *ilo > max(1,*n)) { + *info = -4; + } else if (*ihi < min(*ilo,*n) || *ihi > *n) { + *info = -5; + } else if (*ldh < max(1,*n)) { + *info = -7; + } else if (*ldz < 1 || wantz && *ldz < max(1,*n)) { + *info = -10; + } else if (*lwork < max(1,*n) && ! lquery) { + *info = -12; + } + if (*info != 0) { + i__1 = -(*info); + xerbla_("CHSEQR", &i__1); + return 0; + } else if (lquery) { + return 0; + } + +/* Initialize Z, if necessary */ + + if (initz) { + claset_("Full", n, n, &c_b55, &c_b56, &z__[z_offset], ldz); + } + +/* Store the eigenvalues isolated by CGEBAL. */ + + i__1 = *ilo - 1; + for (i__ = 1; i__ <= i__1; ++i__) { + i__2 = i__; + i__3 = i__ + i__ * h_dim1; + w[i__2].r = h__[i__3].r, w[i__2].i = h__[i__3].i; +/* L10: */ + } + i__1 = *n; + for (i__ = *ihi + 1; i__ <= i__1; ++i__) { + i__2 = i__; + i__3 = i__ + i__ * h_dim1; + w[i__2].r = h__[i__3].r, w[i__2].i = h__[i__3].i; +/* L20: */ + } + +/* Quick return if possible. */ + + if (*n == 0) { + return 0; + } + if (*ilo == *ihi) { + i__1 = *ilo; + i__2 = *ilo + *ilo * h_dim1; + w[i__1].r = h__[i__2].r, w[i__1].i = h__[i__2].i; + return 0; + } + +/* + Set rows and columns ILO to IHI to zero below the first + subdiagonal. +*/ + + i__1 = *ihi - 2; + for (j = *ilo; j <= i__1; ++j) { + i__2 = *n; + for (i__ = j + 2; i__ <= i__2; ++i__) { + i__3 = i__ + j * h_dim1; + h__[i__3].r = 0.f, h__[i__3].i = 0.f; +/* L30: */ + } +/* L40: */ + } + nh = *ihi - *ilo + 1; + +/* + I1 and I2 are the indices of the first row and last column of H + to which transformations must be applied. If eigenvalues only are + being computed, I1 and I2 are re-set inside the main loop. +*/ + + if (wantt) { + i1 = 1; + i2 = *n; + } else { + i1 = *ilo; + i2 = *ihi; + } + +/* Ensure that the subdiagonal elements are real. */ + + i__1 = *ihi; + for (i__ = *ilo + 1; i__ <= i__1; ++i__) { + i__2 = i__ + (i__ - 1) * h_dim1; + temp.r = h__[i__2].r, temp.i = h__[i__2].i; + if (r_imag(&temp) != 0.f) { + r__1 = temp.r; + r__2 = r_imag(&temp); + rtemp = slapy2_(&r__1, &r__2); + i__2 = i__ + (i__ - 1) * h_dim1; + h__[i__2].r = rtemp, h__[i__2].i = 0.f; + q__1.r = temp.r / rtemp, q__1.i = temp.i / rtemp; + temp.r = q__1.r, temp.i = q__1.i; + if (i2 > i__) { + i__2 = i2 - i__; + r_cnjg(&q__1, &temp); + cscal_(&i__2, &q__1, &h__[i__ + (i__ + 1) * h_dim1], ldh); + } + i__2 = i__ - i1; + cscal_(&i__2, &temp, &h__[i1 + i__ * h_dim1], &c__1); + if (i__ < *ihi) { + i__2 = i__ + 1 + i__ * h_dim1; + i__3 = i__ + 1 + i__ * h_dim1; + q__1.r = temp.r * h__[i__3].r - temp.i * h__[i__3].i, q__1.i = + temp.r * h__[i__3].i + temp.i * h__[i__3].r; + h__[i__2].r = q__1.r, h__[i__2].i = q__1.i; + } + if (wantz) { + cscal_(&nh, &temp, &z__[*ilo + i__ * z_dim1], &c__1); + } + } +/* L50: */ + } + +/* + Determine the order of the multi-shift QR algorithm to be used. + + Writing concatenation +*/ + i__4[0] = 1, a__1[0] = job; + i__4[1] = 1, a__1[1] = compz; + s_cat(ch__1, a__1, i__4, &c__2, (ftnlen)2); + ns = ilaenv_(&c__4, "CHSEQR", ch__1, n, ilo, ihi, &c_n1, (ftnlen)6, ( + ftnlen)2); +/* Writing concatenation */ + i__4[0] = 1, a__1[0] = job; + i__4[1] = 1, a__1[1] = compz; + s_cat(ch__1, a__1, i__4, &c__2, (ftnlen)2); + maxb = ilaenv_(&c__8, "CHSEQR", ch__1, n, ilo, ihi, &c_n1, (ftnlen)6, ( + ftnlen)2); + if (ns <= 1 || ns > nh || maxb >= nh) { + +/* Use the standard double-shift algorithm */ + + clahqr_(&wantt, &wantz, n, ilo, ihi, &h__[h_offset], ldh, &w[1], ilo, + ihi, &z__[z_offset], ldz, info); + return 0; + } + maxb = max(2,maxb); +/* Computing MIN */ + i__1 = min(ns,maxb); + ns = min(i__1,15); + +/* + Now 1 < NS <= MAXB < NH. + + Set machine-dependent constants for the stopping criterion. + If norm(H) <= sqrt(OVFL), overflow should not occur. +*/ + + unfl = slamch_("Safe minimum"); + ovfl = 1.f / unfl; + slabad_(&unfl, &ovfl); + ulp = slamch_("Precision"); + smlnum = unfl * (nh / ulp); + +/* ITN is the total number of multiple-shift QR iterations allowed. */ + + itn = nh * 30; + +/* + The main loop begins here. I is the loop index and decreases from + IHI to ILO in steps of at most MAXB. Each iteration of the loop + works with the active submatrix in rows and columns L to I. + Eigenvalues I+1 to IHI have already converged. Either L = ILO, or + H(L,L-1) is negligible so that the matrix splits. +*/ + + i__ = *ihi; +L60: + if (i__ < *ilo) { + goto L180; + } + +/* + Perform multiple-shift QR iterations on rows and columns ILO to I + until a submatrix of order at most MAXB splits off at the bottom + because a subdiagonal element has become negligible. +*/ + + l = *ilo; + i__1 = itn; + for (its = 0; its <= i__1; ++its) { + +/* Look for a single small subdiagonal element. */ + + i__2 = l + 1; + for (k = i__; k >= i__2; --k) { + i__3 = k - 1 + (k - 1) * h_dim1; + i__5 = k + k * h_dim1; + tst1 = (r__1 = h__[i__3].r, dabs(r__1)) + (r__2 = r_imag(&h__[k - + 1 + (k - 1) * h_dim1]), dabs(r__2)) + ((r__3 = h__[i__5] + .r, dabs(r__3)) + (r__4 = r_imag(&h__[k + k * h_dim1]), + dabs(r__4))); + if (tst1 == 0.f) { + i__3 = i__ - l + 1; + tst1 = clanhs_("1", &i__3, &h__[l + l * h_dim1], ldh, rwork); + } + i__3 = k + (k - 1) * h_dim1; +/* Computing MAX */ + r__2 = ulp * tst1; + if ((r__1 = h__[i__3].r, dabs(r__1)) <= dmax(r__2,smlnum)) { + goto L80; + } +/* L70: */ + } +L80: + l = k; + if (l > *ilo) { + +/* H(L,L-1) is negligible. */ + + i__2 = l + (l - 1) * h_dim1; + h__[i__2].r = 0.f, h__[i__2].i = 0.f; + } + +/* Exit from loop if a submatrix of order <= MAXB has split off. */ + + if (l >= i__ - maxb + 1) { + goto L170; + } + +/* + Now the active submatrix is in rows and columns L to I. If + eigenvalues only are being computed, only the active submatrix + need be transformed. +*/ + + if (! wantt) { + i1 = l; + i2 = i__; + } + + if (its == 20 || its == 30) { + +/* Exceptional shifts. */ + + i__2 = i__; + for (ii = i__ - ns + 1; ii <= i__2; ++ii) { + i__3 = ii; + i__5 = ii + (ii - 1) * h_dim1; + i__6 = ii + ii * h_dim1; + r__3 = ((r__1 = h__[i__5].r, dabs(r__1)) + (r__2 = h__[i__6] + .r, dabs(r__2))) * 1.5f; + w[i__3].r = r__3, w[i__3].i = 0.f; +/* L90: */ + } + } else { + +/* Use eigenvalues of trailing submatrix of order NS as shifts. */ + + clacpy_("Full", &ns, &ns, &h__[i__ - ns + 1 + (i__ - ns + 1) * + h_dim1], ldh, s, &c__15); + clahqr_(&c_false, &c_false, &ns, &c__1, &ns, s, &c__15, &w[i__ - + ns + 1], &c__1, &ns, &z__[z_offset], ldz, &ierr); + if (ierr > 0) { + +/* + If CLAHQR failed to compute all NS eigenvalues, use the + unconverged diagonal elements as the remaining shifts. +*/ + + i__2 = ierr; + for (ii = 1; ii <= i__2; ++ii) { + i__3 = i__ - ns + ii; + i__5 = ii + ii * 15 - 16; + w[i__3].r = s[i__5].r, w[i__3].i = s[i__5].i; +/* L100: */ + } + } + } + +/* + Form the first column of (G-w(1)) (G-w(2)) . . . (G-w(ns)) + where G is the Hessenberg submatrix H(L:I,L:I) and w is + the vector of shifts (stored in W). The result is + stored in the local array V. +*/ + + v[0].r = 1.f, v[0].i = 0.f; + i__2 = ns + 1; + for (ii = 2; ii <= i__2; ++ii) { + i__3 = ii - 1; + v[i__3].r = 0.f, v[i__3].i = 0.f; +/* L110: */ + } + nv = 1; + i__2 = i__; + for (j = i__ - ns + 1; j <= i__2; ++j) { + i__3 = nv + 1; + ccopy_(&i__3, v, &c__1, vv, &c__1); + i__3 = nv + 1; + i__5 = j; + q__1.r = -w[i__5].r, q__1.i = -w[i__5].i; + cgemv_("No transpose", &i__3, &nv, &c_b56, &h__[l + l * h_dim1], + ldh, vv, &c__1, &q__1, v, &c__1); + ++nv; + +/* + Scale V(1:NV) so that max(abs(V(i))) = 1. If V is zero, + reset it to the unit vector. +*/ + + itemp = icamax_(&nv, v, &c__1); + i__3 = itemp - 1; + rtemp = (r__1 = v[i__3].r, dabs(r__1)) + (r__2 = r_imag(&v[itemp + - 1]), dabs(r__2)); + if (rtemp == 0.f) { + v[0].r = 1.f, v[0].i = 0.f; + i__3 = nv; + for (ii = 2; ii <= i__3; ++ii) { + i__5 = ii - 1; + v[i__5].r = 0.f, v[i__5].i = 0.f; +/* L120: */ + } + } else { + rtemp = dmax(rtemp,smlnum); + r__1 = 1.f / rtemp; + csscal_(&nv, &r__1, v, &c__1); + } +/* L130: */ + } + +/* Multiple-shift QR step */ + + i__2 = i__ - 1; + for (k = l; k <= i__2; ++k) { + +/* + The first iteration of this loop determines a reflection G + from the vector V and applies it from left and right to H, + thus creating a nonzero bulge below the subdiagonal. + + Each subsequent iteration determines a reflection G to + restore the Hessenberg form in the (K-1)th column, and thus + chases the bulge one step toward the bottom of the active + submatrix. NR is the order of G. + + Computing MIN +*/ + i__3 = ns + 1, i__5 = i__ - k + 1; + nr = min(i__3,i__5); + if (k > l) { + ccopy_(&nr, &h__[k + (k - 1) * h_dim1], &c__1, v, &c__1); + } + clarfg_(&nr, v, &v[1], &c__1, &tau); + if (k > l) { + i__3 = k + (k - 1) * h_dim1; + h__[i__3].r = v[0].r, h__[i__3].i = v[0].i; + i__3 = i__; + for (ii = k + 1; ii <= i__3; ++ii) { + i__5 = ii + (k - 1) * h_dim1; + h__[i__5].r = 0.f, h__[i__5].i = 0.f; +/* L140: */ + } + } + v[0].r = 1.f, v[0].i = 0.f; + +/* + Apply G' from the left to transform the rows of the matrix + in columns K to I2. +*/ + + i__3 = i2 - k + 1; + r_cnjg(&q__1, &tau); + clarfx_("Left", &nr, &i__3, v, &q__1, &h__[k + k * h_dim1], ldh, & + work[1]); + +/* + Apply G from the right to transform the columns of the + matrix in rows I1 to min(K+NR,I). + + Computing MIN +*/ + i__5 = k + nr; + i__3 = min(i__5,i__) - i1 + 1; + clarfx_("Right", &i__3, &nr, v, &tau, &h__[i1 + k * h_dim1], ldh, + &work[1]); + + if (wantz) { + +/* Accumulate transformations in the matrix Z */ + + clarfx_("Right", &nh, &nr, v, &tau, &z__[*ilo + k * z_dim1], + ldz, &work[1]); + } +/* L150: */ + } + +/* Ensure that H(I,I-1) is real. */ + + i__2 = i__ + (i__ - 1) * h_dim1; + temp.r = h__[i__2].r, temp.i = h__[i__2].i; + if (r_imag(&temp) != 0.f) { + r__1 = temp.r; + r__2 = r_imag(&temp); + rtemp = slapy2_(&r__1, &r__2); + i__2 = i__ + (i__ - 1) * h_dim1; + h__[i__2].r = rtemp, h__[i__2].i = 0.f; + q__1.r = temp.r / rtemp, q__1.i = temp.i / rtemp; + temp.r = q__1.r, temp.i = q__1.i; + if (i2 > i__) { + i__2 = i2 - i__; + r_cnjg(&q__1, &temp); + cscal_(&i__2, &q__1, &h__[i__ + (i__ + 1) * h_dim1], ldh); + } + i__2 = i__ - i1; + cscal_(&i__2, &temp, &h__[i1 + i__ * h_dim1], &c__1); + if (wantz) { + cscal_(&nh, &temp, &z__[*ilo + i__ * z_dim1], &c__1); + } + } + +/* L160: */ + } + +/* Failure to converge in remaining number of iterations */ + + *info = i__; + return 0; + +L170: + +/* + A submatrix of order <= MAXB in rows and columns L to I has split + off. Use the double-shift QR algorithm to handle it. +*/ + + clahqr_(&wantt, &wantz, n, &l, &i__, &h__[h_offset], ldh, &w[1], ilo, ihi, + &z__[z_offset], ldz, info); + if (*info > 0) { + return 0; + } + +/* + Decrement number of remaining iterations, and return to start of + the main loop with a new value of I. +*/ + + itn -= its; + i__ = l - 1; + goto L60; + +L180: + i__1 = max(1,*n); + work[1].r = (real) i__1, work[1].i = 0.f; + return 0; + +/* End of CHSEQR */ + +} /* chseqr_ */ + +/* Subroutine */ int clabrd_(integer *m, integer *n, integer *nb, complex *a, + integer *lda, real *d__, real *e, complex *tauq, complex *taup, + complex *x, integer *ldx, complex *y, integer *ldy) +{ + /* System generated locals */ + integer a_dim1, a_offset, x_dim1, x_offset, y_dim1, y_offset, i__1, i__2, + i__3; + complex q__1; + + /* Local variables */ + static integer i__; + static complex alpha; + extern /* Subroutine */ int cscal_(integer *, complex *, complex *, + integer *), cgemv_(char *, integer *, integer *, complex *, + complex *, integer *, complex *, integer *, complex *, complex *, + integer *), clarfg_(integer *, complex *, complex *, + integer *, complex *), clacgv_(integer *, complex *, integer *); + + +/* + -- LAPACK auxiliary routine (version 3.0) -- + Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd., + Courant Institute, Argonne National Lab, and Rice University + September 30, 1994 + + + Purpose + ======= + + CLABRD reduces the first NB rows and columns of a complex general + m by n matrix A to upper or lower real bidiagonal form by a unitary + transformation Q' * A * P, and returns the matrices X and Y which + are needed to apply the transformation to the unreduced part of A. + + If m >= n, A is reduced to upper bidiagonal form; if m < n, to lower + bidiagonal form. + + This is an auxiliary routine called by CGEBRD + + Arguments + ========= + + M (input) INTEGER + The number of rows in the matrix A. + + N (input) INTEGER + The number of columns in the matrix A. + + NB (input) INTEGER + The number of leading rows and columns of A to be reduced. + + A (input/output) COMPLEX array, dimension (LDA,N) + On entry, the m by n general matrix to be reduced. + On exit, the first NB rows and columns of the matrix are + overwritten; the rest of the array is unchanged. + If m >= n, elements on and below the diagonal in the first NB + columns, with the array TAUQ, represent the unitary + matrix Q as a product of elementary reflectors; and + elements above the diagonal in the first NB rows, with the + array TAUP, represent the unitary matrix P as a product + of elementary reflectors. + If m < n, elements below the diagonal in the first NB + columns, with the array TAUQ, represent the unitary + matrix Q as a product of elementary reflectors, and + elements on and above the diagonal in the first NB rows, + with the array TAUP, represent the unitary matrix P as + a product of elementary reflectors. + See Further Details. + + LDA (input) INTEGER + The leading dimension of the array A. LDA >= max(1,M). + + D (output) REAL array, dimension (NB) + The diagonal elements of the first NB rows and columns of + the reduced matrix. D(i) = A(i,i). + + E (output) REAL array, dimension (NB) + The off-diagonal elements of the first NB rows and columns of + the reduced matrix. + + TAUQ (output) COMPLEX array dimension (NB) + The scalar factors of the elementary reflectors which + represent the unitary matrix Q. See Further Details. + + TAUP (output) COMPLEX array, dimension (NB) + The scalar factors of the elementary reflectors which + represent the unitary matrix P. See Further Details. + + X (output) COMPLEX array, dimension (LDX,NB) + The m-by-nb matrix X required to update the unreduced part + of A. + + LDX (input) INTEGER + The leading dimension of the array X. LDX >= max(1,M). + + Y (output) COMPLEX array, dimension (LDY,NB) + The n-by-nb matrix Y required to update the unreduced part + of A. + + LDY (output) INTEGER + The leading dimension of the array Y. LDY >= max(1,N). + + Further Details + =============== + + The matrices Q and P are represented as products of elementary + reflectors: + + Q = H(1) H(2) . . . H(nb) and P = G(1) G(2) . . . G(nb) + + Each H(i) and G(i) has the form: + + H(i) = I - tauq * v * v' and G(i) = I - taup * u * u' + + where tauq and taup are complex scalars, and v and u are complex + vectors. + + If m >= n, v(1:i-1) = 0, v(i) = 1, and v(i:m) is stored on exit in + A(i:m,i); u(1:i) = 0, u(i+1) = 1, and u(i+1:n) is stored on exit in + A(i,i+1:n); tauq is stored in TAUQ(i) and taup in TAUP(i). + + If m < n, v(1:i) = 0, v(i+1) = 1, and v(i+1:m) is stored on exit in + A(i+2:m,i); u(1:i-1) = 0, u(i) = 1, and u(i:n) is stored on exit in + A(i,i+1:n); tauq is stored in TAUQ(i) and taup in TAUP(i). + + The elements of the vectors v and u together form the m-by-nb matrix + V and the nb-by-n matrix U' which are needed, with X and Y, to apply + the transformation to the unreduced part of the matrix, using a block + update of the form: A := A - V*Y' - X*U'. + + The contents of A on exit are illustrated by the following examples + with nb = 2: + + m = 6 and n = 5 (m > n): m = 5 and n = 6 (m < n): + + ( 1 1 u1 u1 u1 ) ( 1 u1 u1 u1 u1 u1 ) + ( v1 1 1 u2 u2 ) ( 1 1 u2 u2 u2 u2 ) + ( v1 v2 a a a ) ( v1 1 a a a a ) + ( v1 v2 a a a ) ( v1 v2 a a a a ) + ( v1 v2 a a a ) ( v1 v2 a a a a ) + ( v1 v2 a a a ) + + where a denotes an element of the original matrix which is unchanged, + vi denotes an element of the vector defining H(i), and ui an element + of the vector defining G(i). + + ===================================================================== + + + Quick return if possible +*/ + + /* Parameter adjustments */ + a_dim1 = *lda; + a_offset = 1 + a_dim1; + a -= a_offset; + --d__; + --e; + --tauq; + --taup; + x_dim1 = *ldx; + x_offset = 1 + x_dim1; + x -= x_offset; + y_dim1 = *ldy; + y_offset = 1 + y_dim1; + y -= y_offset; + + /* Function Body */ + if (*m <= 0 || *n <= 0) { + return 0; + } + + if (*m >= *n) { + +/* Reduce to upper bidiagonal form */ + + i__1 = *nb; + for (i__ = 1; i__ <= i__1; ++i__) { + +/* Update A(i:m,i) */ + + i__2 = i__ - 1; + clacgv_(&i__2, &y[i__ + y_dim1], ldy); + i__2 = *m - i__ + 1; + i__3 = i__ - 1; + q__1.r = -1.f, q__1.i = -0.f; + cgemv_("No transpose", &i__2, &i__3, &q__1, &a[i__ + a_dim1], lda, + &y[i__ + y_dim1], ldy, &c_b56, &a[i__ + i__ * a_dim1], & + c__1); + i__2 = i__ - 1; + clacgv_(&i__2, &y[i__ + y_dim1], ldy); + i__2 = *m - i__ + 1; + i__3 = i__ - 1; + q__1.r = -1.f, q__1.i = -0.f; + cgemv_("No transpose", &i__2, &i__3, &q__1, &x[i__ + x_dim1], ldx, + &a[i__ * a_dim1 + 1], &c__1, &c_b56, &a[i__ + i__ * + a_dim1], &c__1); + +/* Generate reflection Q(i) to annihilate A(i+1:m,i) */ + + i__2 = i__ + i__ * a_dim1; + alpha.r = a[i__2].r, alpha.i = a[i__2].i; + i__2 = *m - i__ + 1; +/* Computing MIN */ + i__3 = i__ + 1; + clarfg_(&i__2, &alpha, &a[min(i__3,*m) + i__ * a_dim1], &c__1, & + tauq[i__]); + i__2 = i__; + d__[i__2] = alpha.r; + if (i__ < *n) { + i__2 = i__ + i__ * a_dim1; + a[i__2].r = 1.f, a[i__2].i = 0.f; + +/* Compute Y(i+1:n,i) */ + + i__2 = *m - i__ + 1; + i__3 = *n - i__; + cgemv_("Conjugate transpose", &i__2, &i__3, &c_b56, &a[i__ + ( + i__ + 1) * a_dim1], lda, &a[i__ + i__ * a_dim1], & + c__1, &c_b55, &y[i__ + 1 + i__ * y_dim1], &c__1); + i__2 = *m - i__ + 1; + i__3 = i__ - 1; + cgemv_("Conjugate transpose", &i__2, &i__3, &c_b56, &a[i__ + + a_dim1], lda, &a[i__ + i__ * a_dim1], &c__1, &c_b55, & + y[i__ * y_dim1 + 1], &c__1); + i__2 = *n - i__; + i__3 = i__ - 1; + q__1.r = -1.f, q__1.i = -0.f; + cgemv_("No transpose", &i__2, &i__3, &q__1, &y[i__ + 1 + + y_dim1], ldy, &y[i__ * y_dim1 + 1], &c__1, &c_b56, &y[ + i__ + 1 + i__ * y_dim1], &c__1); + i__2 = *m - i__ + 1; + i__3 = i__ - 1; + cgemv_("Conjugate transpose", &i__2, &i__3, &c_b56, &x[i__ + + x_dim1], ldx, &a[i__ + i__ * a_dim1], &c__1, &c_b55, & + y[i__ * y_dim1 + 1], &c__1); + i__2 = i__ - 1; + i__3 = *n - i__; + q__1.r = -1.f, q__1.i = -0.f; + cgemv_("Conjugate transpose", &i__2, &i__3, &q__1, &a[(i__ + + 1) * a_dim1 + 1], lda, &y[i__ * y_dim1 + 1], &c__1, & + c_b56, &y[i__ + 1 + i__ * y_dim1], &c__1); + i__2 = *n - i__; + cscal_(&i__2, &tauq[i__], &y[i__ + 1 + i__ * y_dim1], &c__1); + +/* Update A(i,i+1:n) */ + + i__2 = *n - i__; + clacgv_(&i__2, &a[i__ + (i__ + 1) * a_dim1], lda); + clacgv_(&i__, &a[i__ + a_dim1], lda); + i__2 = *n - i__; + q__1.r = -1.f, q__1.i = -0.f; + cgemv_("No transpose", &i__2, &i__, &q__1, &y[i__ + 1 + + y_dim1], ldy, &a[i__ + a_dim1], lda, &c_b56, &a[i__ + + (i__ + 1) * a_dim1], lda); + clacgv_(&i__, &a[i__ + a_dim1], lda); + i__2 = i__ - 1; + clacgv_(&i__2, &x[i__ + x_dim1], ldx); + i__2 = i__ - 1; + i__3 = *n - i__; + q__1.r = -1.f, q__1.i = -0.f; + cgemv_("Conjugate transpose", &i__2, &i__3, &q__1, &a[(i__ + + 1) * a_dim1 + 1], lda, &x[i__ + x_dim1], ldx, &c_b56, + &a[i__ + (i__ + 1) * a_dim1], lda); + i__2 = i__ - 1; + clacgv_(&i__2, &x[i__ + x_dim1], ldx); + +/* Generate reflection P(i) to annihilate A(i,i+2:n) */ + + i__2 = i__ + (i__ + 1) * a_dim1; + alpha.r = a[i__2].r, alpha.i = a[i__2].i; + i__2 = *n - i__; +/* Computing MIN */ + i__3 = i__ + 2; + clarfg_(&i__2, &alpha, &a[i__ + min(i__3,*n) * a_dim1], lda, & + taup[i__]); + i__2 = i__; + e[i__2] = alpha.r; + i__2 = i__ + (i__ + 1) * a_dim1; + a[i__2].r = 1.f, a[i__2].i = 0.f; + +/* Compute X(i+1:m,i) */ + + i__2 = *m - i__; + i__3 = *n - i__; + cgemv_("No transpose", &i__2, &i__3, &c_b56, &a[i__ + 1 + ( + i__ + 1) * a_dim1], lda, &a[i__ + (i__ + 1) * a_dim1], + lda, &c_b55, &x[i__ + 1 + i__ * x_dim1], &c__1); + i__2 = *n - i__; + cgemv_("Conjugate transpose", &i__2, &i__, &c_b56, &y[i__ + 1 + + y_dim1], ldy, &a[i__ + (i__ + 1) * a_dim1], lda, & + c_b55, &x[i__ * x_dim1 + 1], &c__1); + i__2 = *m - i__; + q__1.r = -1.f, q__1.i = -0.f; + cgemv_("No transpose", &i__2, &i__, &q__1, &a[i__ + 1 + + a_dim1], lda, &x[i__ * x_dim1 + 1], &c__1, &c_b56, &x[ + i__ + 1 + i__ * x_dim1], &c__1); + i__2 = i__ - 1; + i__3 = *n - i__; + cgemv_("No transpose", &i__2, &i__3, &c_b56, &a[(i__ + 1) * + a_dim1 + 1], lda, &a[i__ + (i__ + 1) * a_dim1], lda, & + c_b55, &x[i__ * x_dim1 + 1], &c__1); + i__2 = *m - i__; + i__3 = i__ - 1; + q__1.r = -1.f, q__1.i = -0.f; + cgemv_("No transpose", &i__2, &i__3, &q__1, &x[i__ + 1 + + x_dim1], ldx, &x[i__ * x_dim1 + 1], &c__1, &c_b56, &x[ + i__ + 1 + i__ * x_dim1], &c__1); + i__2 = *m - i__; + cscal_(&i__2, &taup[i__], &x[i__ + 1 + i__ * x_dim1], &c__1); + i__2 = *n - i__; + clacgv_(&i__2, &a[i__ + (i__ + 1) * a_dim1], lda); + } +/* L10: */ + } + } else { + +/* Reduce to lower bidiagonal form */ + + i__1 = *nb; + for (i__ = 1; i__ <= i__1; ++i__) { + +/* Update A(i,i:n) */ + + i__2 = *n - i__ + 1; + clacgv_(&i__2, &a[i__ + i__ * a_dim1], lda); + i__2 = i__ - 1; + clacgv_(&i__2, &a[i__ + a_dim1], lda); + i__2 = *n - i__ + 1; + i__3 = i__ - 1; + q__1.r = -1.f, q__1.i = -0.f; + cgemv_("No transpose", &i__2, &i__3, &q__1, &y[i__ + y_dim1], ldy, + &a[i__ + a_dim1], lda, &c_b56, &a[i__ + i__ * a_dim1], + lda); + i__2 = i__ - 1; + clacgv_(&i__2, &a[i__ + a_dim1], lda); + i__2 = i__ - 1; + clacgv_(&i__2, &x[i__ + x_dim1], ldx); + i__2 = i__ - 1; + i__3 = *n - i__ + 1; + q__1.r = -1.f, q__1.i = -0.f; + cgemv_("Conjugate transpose", &i__2, &i__3, &q__1, &a[i__ * + a_dim1 + 1], lda, &x[i__ + x_dim1], ldx, &c_b56, &a[i__ + + i__ * a_dim1], lda); + i__2 = i__ - 1; + clacgv_(&i__2, &x[i__ + x_dim1], ldx); + +/* Generate reflection P(i) to annihilate A(i,i+1:n) */ + + i__2 = i__ + i__ * a_dim1; + alpha.r = a[i__2].r, alpha.i = a[i__2].i; + i__2 = *n - i__ + 1; +/* Computing MIN */ + i__3 = i__ + 1; + clarfg_(&i__2, &alpha, &a[i__ + min(i__3,*n) * a_dim1], lda, & + taup[i__]); + i__2 = i__; + d__[i__2] = alpha.r; + if (i__ < *m) { + i__2 = i__ + i__ * a_dim1; + a[i__2].r = 1.f, a[i__2].i = 0.f; + +/* Compute X(i+1:m,i) */ + + i__2 = *m - i__; + i__3 = *n - i__ + 1; + cgemv_("No transpose", &i__2, &i__3, &c_b56, &a[i__ + 1 + i__ + * a_dim1], lda, &a[i__ + i__ * a_dim1], lda, &c_b55, & + x[i__ + 1 + i__ * x_dim1], &c__1); + i__2 = *n - i__ + 1; + i__3 = i__ - 1; + cgemv_("Conjugate transpose", &i__2, &i__3, &c_b56, &y[i__ + + y_dim1], ldy, &a[i__ + i__ * a_dim1], lda, &c_b55, &x[ + i__ * x_dim1 + 1], &c__1); + i__2 = *m - i__; + i__3 = i__ - 1; + q__1.r = -1.f, q__1.i = -0.f; + cgemv_("No transpose", &i__2, &i__3, &q__1, &a[i__ + 1 + + a_dim1], lda, &x[i__ * x_dim1 + 1], &c__1, &c_b56, &x[ + i__ + 1 + i__ * x_dim1], &c__1); + i__2 = i__ - 1; + i__3 = *n - i__ + 1; + cgemv_("No transpose", &i__2, &i__3, &c_b56, &a[i__ * a_dim1 + + 1], lda, &a[i__ + i__ * a_dim1], lda, &c_b55, &x[ + i__ * x_dim1 + 1], &c__1); + i__2 = *m - i__; + i__3 = i__ - 1; + q__1.r = -1.f, q__1.i = -0.f; + cgemv_("No transpose", &i__2, &i__3, &q__1, &x[i__ + 1 + + x_dim1], ldx, &x[i__ * x_dim1 + 1], &c__1, &c_b56, &x[ + i__ + 1 + i__ * x_dim1], &c__1); + i__2 = *m - i__; + cscal_(&i__2, &taup[i__], &x[i__ + 1 + i__ * x_dim1], &c__1); + i__2 = *n - i__ + 1; + clacgv_(&i__2, &a[i__ + i__ * a_dim1], lda); + +/* Update A(i+1:m,i) */ + + i__2 = i__ - 1; + clacgv_(&i__2, &y[i__ + y_dim1], ldy); + i__2 = *m - i__; + i__3 = i__ - 1; + q__1.r = -1.f, q__1.i = -0.f; + cgemv_("No transpose", &i__2, &i__3, &q__1, &a[i__ + 1 + + a_dim1], lda, &y[i__ + y_dim1], ldy, &c_b56, &a[i__ + + 1 + i__ * a_dim1], &c__1); + i__2 = i__ - 1; + clacgv_(&i__2, &y[i__ + y_dim1], ldy); + i__2 = *m - i__; + q__1.r = -1.f, q__1.i = -0.f; + cgemv_("No transpose", &i__2, &i__, &q__1, &x[i__ + 1 + + x_dim1], ldx, &a[i__ * a_dim1 + 1], &c__1, &c_b56, &a[ + i__ + 1 + i__ * a_dim1], &c__1); + +/* Generate reflection Q(i) to annihilate A(i+2:m,i) */ + + i__2 = i__ + 1 + i__ * a_dim1; + alpha.r = a[i__2].r, alpha.i = a[i__2].i; + i__2 = *m - i__; +/* Computing MIN */ + i__3 = i__ + 2; + clarfg_(&i__2, &alpha, &a[min(i__3,*m) + i__ * a_dim1], &c__1, + &tauq[i__]); + i__2 = i__; + e[i__2] = alpha.r; + i__2 = i__ + 1 + i__ * a_dim1; + a[i__2].r = 1.f, a[i__2].i = 0.f; + +/* Compute Y(i+1:n,i) */ + + i__2 = *m - i__; + i__3 = *n - i__; + cgemv_("Conjugate transpose", &i__2, &i__3, &c_b56, &a[i__ + + 1 + (i__ + 1) * a_dim1], lda, &a[i__ + 1 + i__ * + a_dim1], &c__1, &c_b55, &y[i__ + 1 + i__ * y_dim1], & + c__1); + i__2 = *m - i__; + i__3 = i__ - 1; + cgemv_("Conjugate transpose", &i__2, &i__3, &c_b56, &a[i__ + + 1 + a_dim1], lda, &a[i__ + 1 + i__ * a_dim1], &c__1, & + c_b55, &y[i__ * y_dim1 + 1], &c__1); + i__2 = *n - i__; + i__3 = i__ - 1; + q__1.r = -1.f, q__1.i = -0.f; + cgemv_("No transpose", &i__2, &i__3, &q__1, &y[i__ + 1 + + y_dim1], ldy, &y[i__ * y_dim1 + 1], &c__1, &c_b56, &y[ + i__ + 1 + i__ * y_dim1], &c__1); + i__2 = *m - i__; + cgemv_("Conjugate transpose", &i__2, &i__, &c_b56, &x[i__ + 1 + + x_dim1], ldx, &a[i__ + 1 + i__ * a_dim1], &c__1, & + c_b55, &y[i__ * y_dim1 + 1], &c__1); + i__2 = *n - i__; + q__1.r = -1.f, q__1.i = -0.f; + cgemv_("Conjugate transpose", &i__, &i__2, &q__1, &a[(i__ + 1) + * a_dim1 + 1], lda, &y[i__ * y_dim1 + 1], &c__1, & + c_b56, &y[i__ + 1 + i__ * y_dim1], &c__1); + i__2 = *n - i__; + cscal_(&i__2, &tauq[i__], &y[i__ + 1 + i__ * y_dim1], &c__1); + } else { + i__2 = *n - i__ + 1; + clacgv_(&i__2, &a[i__ + i__ * a_dim1], lda); + } +/* L20: */ + } + } + return 0; + +/* End of CLABRD */ + +} /* clabrd_ */ + +/* Subroutine */ int clacgv_(integer *n, complex *x, integer *incx) +{ + /* System generated locals */ + integer i__1, i__2; + complex q__1; + + /* Builtin functions */ + void r_cnjg(complex *, complex *); + + /* Local variables */ + static integer i__, ioff; + + +/* + -- LAPACK auxiliary routine (version 3.0) -- + Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd., + Courant Institute, Argonne National Lab, and Rice University + October 31, 1992 + + + Purpose + ======= + + CLACGV conjugates a complex vector of length N. + + Arguments + ========= + + N (input) INTEGER + The length of the vector X. N >= 0. + + X (input/output) COMPLEX array, dimension + (1+(N-1)*abs(INCX)) + On entry, the vector of length N to be conjugated. + On exit, X is overwritten with conjg(X). + + INCX (input) INTEGER + The spacing between successive elements of X. + + ===================================================================== +*/ + + + /* Parameter adjustments */ + --x; + + /* Function Body */ + if (*incx == 1) { + i__1 = *n; + for (i__ = 1; i__ <= i__1; ++i__) { + i__2 = i__; + r_cnjg(&q__1, &x[i__]); + x[i__2].r = q__1.r, x[i__2].i = q__1.i; +/* L10: */ + } + } else { + ioff = 1; + if (*incx < 0) { + ioff = 1 - (*n - 1) * *incx; + } + i__1 = *n; + for (i__ = 1; i__ <= i__1; ++i__) { + i__2 = ioff; + r_cnjg(&q__1, &x[ioff]); + x[i__2].r = q__1.r, x[i__2].i = q__1.i; + ioff += *incx; +/* L20: */ + } + } + return 0; + +/* End of CLACGV */ + +} /* clacgv_ */ + +/* Subroutine */ int clacp2_(char *uplo, integer *m, integer *n, real *a, + integer *lda, complex *b, integer *ldb) +{ + /* System generated locals */ + integer a_dim1, a_offset, b_dim1, b_offset, i__1, i__2, i__3, i__4; + + /* Local variables */ + static integer i__, j; + extern logical lsame_(char *, char *); + + +/* + -- LAPACK auxiliary routine (version 3.0) -- + Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd., + Courant Institute, Argonne National Lab, and Rice University + June 30, 1999 + + + Purpose + ======= + + CLACP2 copies all or part of a real two-dimensional matrix A to a + complex matrix B. + + Arguments + ========= + + UPLO (input) CHARACTER*1 + Specifies the part of the matrix A to be copied to B. + = 'U': Upper triangular part + = 'L': Lower triangular part + Otherwise: All of the matrix A + + M (input) INTEGER + The number of rows of the matrix A. M >= 0. + + N (input) INTEGER + The number of columns of the matrix A. N >= 0. + + A (input) REAL array, dimension (LDA,N) + The m by n matrix A. If UPLO = 'U', only the upper trapezium + is accessed; if UPLO = 'L', only the lower trapezium is + accessed. + + LDA (input) INTEGER + The leading dimension of the array A. LDA >= max(1,M). + + B (output) COMPLEX array, dimension (LDB,N) + On exit, B = A in the locations specified by UPLO. + + LDB (input) INTEGER + The leading dimension of the array B. LDB >= max(1,M). + + ===================================================================== +*/ + + + /* Parameter adjustments */ + a_dim1 = *lda; + a_offset = 1 + a_dim1; + a -= a_offset; + b_dim1 = *ldb; + b_offset = 1 + b_dim1; + b -= b_offset; + + /* Function Body */ + if (lsame_(uplo, "U")) { + i__1 = *n; + for (j = 1; j <= i__1; ++j) { + i__2 = min(j,*m); + for (i__ = 1; i__ <= i__2; ++i__) { + i__3 = i__ + j * b_dim1; + i__4 = i__ + j * a_dim1; + b[i__3].r = a[i__4], b[i__3].i = 0.f; +/* L10: */ + } +/* L20: */ + } + + } else if (lsame_(uplo, "L")) { + i__1 = *n; + for (j = 1; j <= i__1; ++j) { + i__2 = *m; + for (i__ = j; i__ <= i__2; ++i__) { + i__3 = i__ + j * b_dim1; + i__4 = i__ + j * a_dim1; + b[i__3].r = a[i__4], b[i__3].i = 0.f; +/* L30: */ + } +/* L40: */ + } + + } else { + i__1 = *n; + for (j = 1; j <= i__1; ++j) { + i__2 = *m; + for (i__ = 1; i__ <= i__2; ++i__) { + i__3 = i__ + j * b_dim1; + i__4 = i__ + j * a_dim1; + b[i__3].r = a[i__4], b[i__3].i = 0.f; +/* L50: */ + } +/* L60: */ + } + } + + return 0; + +/* End of CLACP2 */ + +} /* clacp2_ */ + +/* Subroutine */ int clacpy_(char *uplo, integer *m, integer *n, complex *a, + integer *lda, complex *b, integer *ldb) +{ + /* System generated locals */ + integer a_dim1, a_offset, b_dim1, b_offset, i__1, i__2, i__3, i__4; + + /* Local variables */ + static integer i__, j; + extern logical lsame_(char *, char *); + + +/* + -- LAPACK auxiliary routine (version 3.0) -- + Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd., + Courant Institute, Argonne National Lab, and Rice University + February 29, 1992 + + + Purpose + ======= + + CLACPY copies all or part of a two-dimensional matrix A to another + matrix B. + + Arguments + ========= + + UPLO (input) CHARACTER*1 + Specifies the part of the matrix A to be copied to B. + = 'U': Upper triangular part + = 'L': Lower triangular part + Otherwise: All of the matrix A + + M (input) INTEGER + The number of rows of the matrix A. M >= 0. + + N (input) INTEGER + The number of columns of the matrix A. N >= 0. + + A (input) COMPLEX array, dimension (LDA,N) + The m by n matrix A. If UPLO = 'U', only the upper trapezium + is accessed; if UPLO = 'L', only the lower trapezium is + accessed. + + LDA (input) INTEGER + The leading dimension of the array A. LDA >= max(1,M). + + B (output) COMPLEX array, dimension (LDB,N) + On exit, B = A in the locations specified by UPLO. + + LDB (input) INTEGER + The leading dimension of the array B. LDB >= max(1,M). + + ===================================================================== +*/ + + + /* Parameter adjustments */ + a_dim1 = *lda; + a_offset = 1 + a_dim1; + a -= a_offset; + b_dim1 = *ldb; + b_offset = 1 + b_dim1; + b -= b_offset; + + /* Function Body */ + if (lsame_(uplo, "U")) { + i__1 = *n; + for (j = 1; j <= i__1; ++j) { + i__2 = min(j,*m); + for (i__ = 1; i__ <= i__2; ++i__) { + i__3 = i__ + j * b_dim1; + i__4 = i__ + j * a_dim1; + b[i__3].r = a[i__4].r, b[i__3].i = a[i__4].i; +/* L10: */ + } +/* L20: */ + } + + } else if (lsame_(uplo, "L")) { + i__1 = *n; + for (j = 1; j <= i__1; ++j) { + i__2 = *m; + for (i__ = j; i__ <= i__2; ++i__) { + i__3 = i__ + j * b_dim1; + i__4 = i__ + j * a_dim1; + b[i__3].r = a[i__4].r, b[i__3].i = a[i__4].i; +/* L30: */ + } +/* L40: */ + } + + } else { + i__1 = *n; + for (j = 1; j <= i__1; ++j) { + i__2 = *m; + for (i__ = 1; i__ <= i__2; ++i__) { + i__3 = i__ + j * b_dim1; + i__4 = i__ + j * a_dim1; + b[i__3].r = a[i__4].r, b[i__3].i = a[i__4].i; +/* L50: */ + } +/* L60: */ + } + } + + return 0; + +/* End of CLACPY */ + +} /* clacpy_ */ + +/* Subroutine */ int clacrm_(integer *m, integer *n, complex *a, integer *lda, + real *b, integer *ldb, complex *c__, integer *ldc, real *rwork) +{ + /* System generated locals */ + integer b_dim1, b_offset, a_dim1, a_offset, c_dim1, c_offset, i__1, i__2, + i__3, i__4, i__5; + real r__1; + complex q__1; + + /* Builtin functions */ + double r_imag(complex *); + + /* Local variables */ + static integer i__, j, l; + extern /* Subroutine */ int sgemm_(char *, char *, integer *, integer *, + integer *, real *, real *, integer *, real *, integer *, real *, + real *, integer *); + + +/* + -- LAPACK auxiliary routine (version 3.0) -- + Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd., + Courant Institute, Argonne National Lab, and Rice University + September 30, 1994 + + + Purpose + ======= + + CLACRM performs a very simple matrix-matrix multiplication: + C := A * B, + where A is M by N and complex; B is N by N and real; + C is M by N and complex. + + Arguments + ========= + + M (input) INTEGER + The number of rows of the matrix A and of the matrix C. + M >= 0. + + N (input) INTEGER + The number of columns and rows of the matrix B and + the number of columns of the matrix C. + N >= 0. + + A (input) COMPLEX array, dimension (LDA, N) + A contains the M by N matrix A. + + LDA (input) INTEGER + The leading dimension of the array A. LDA >=max(1,M). + + B (input) REAL array, dimension (LDB, N) + B contains the N by N matrix B. + + LDB (input) INTEGER + The leading dimension of the array B. LDB >=max(1,N). + + C (input) COMPLEX array, dimension (LDC, N) + C contains the M by N matrix C. + + LDC (input) INTEGER + The leading dimension of the array C. LDC >=max(1,N). + + RWORK (workspace) REAL array, dimension (2*M*N) + + ===================================================================== + + + Quick return if possible. +*/ + + /* Parameter adjustments */ + a_dim1 = *lda; + a_offset = 1 + a_dim1; + a -= a_offset; + b_dim1 = *ldb; + b_offset = 1 + b_dim1; + b -= b_offset; + c_dim1 = *ldc; + c_offset = 1 + c_dim1; + c__ -= c_offset; + --rwork; + + /* Function Body */ + if (*m == 0 || *n == 0) { + return 0; + } + + i__1 = *n; + for (j = 1; j <= i__1; ++j) { + i__2 = *m; + for (i__ = 1; i__ <= i__2; ++i__) { + i__3 = i__ + j * a_dim1; + rwork[(j - 1) * *m + i__] = a[i__3].r; +/* L10: */ + } +/* L20: */ + } + + l = *m * *n + 1; + sgemm_("N", "N", m, n, n, &c_b871, &rwork[1], m, &b[b_offset], ldb, & + c_b1101, &rwork[l], m); + i__1 = *n; + for (j = 1; j <= i__1; ++j) { + i__2 = *m; + for (i__ = 1; i__ <= i__2; ++i__) { + i__3 = i__ + j * c_dim1; + i__4 = l + (j - 1) * *m + i__ - 1; + c__[i__3].r = rwork[i__4], c__[i__3].i = 0.f; +/* L30: */ + } +/* L40: */ + } + + i__1 = *n; + for (j = 1; j <= i__1; ++j) { + i__2 = *m; + for (i__ = 1; i__ <= i__2; ++i__) { + rwork[(j - 1) * *m + i__] = r_imag(&a[i__ + j * a_dim1]); +/* L50: */ + } +/* L60: */ + } + sgemm_("N", "N", m, n, n, &c_b871, &rwork[1], m, &b[b_offset], ldb, & + c_b1101, &rwork[l], m); + i__1 = *n; + for (j = 1; j <= i__1; ++j) { + i__2 = *m; + for (i__ = 1; i__ <= i__2; ++i__) { + i__3 = i__ + j * c_dim1; + i__4 = i__ + j * c_dim1; + r__1 = c__[i__4].r; + i__5 = l + (j - 1) * *m + i__ - 1; + q__1.r = r__1, q__1.i = rwork[i__5]; + c__[i__3].r = q__1.r, c__[i__3].i = q__1.i; +/* L70: */ + } +/* L80: */ + } + + return 0; + +/* End of CLACRM */ + +} /* clacrm_ */ + +/* Complex */ VOID cladiv_(complex * ret_val, complex *x, complex *y) +{ + /* System generated locals */ + real r__1, r__2, r__3, r__4; + complex q__1; + + /* Builtin functions */ + double r_imag(complex *); + + /* Local variables */ + static real zi, zr; + extern /* Subroutine */ int sladiv_(real *, real *, real *, real *, real * + , real *); + + +/* + -- LAPACK auxiliary routine (version 3.0) -- + Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd., + Courant Institute, Argonne National Lab, and Rice University + October 31, 1992 + + + Purpose + ======= + + CLADIV := X / Y, where X and Y are complex. The computation of X / Y + will not overflow on an intermediary step unless the results + overflows. + + Arguments + ========= + + X (input) COMPLEX + Y (input) COMPLEX + The complex scalars X and Y. + + ===================================================================== +*/ + + + r__1 = x->r; + r__2 = r_imag(x); + r__3 = y->r; + r__4 = r_imag(y); + sladiv_(&r__1, &r__2, &r__3, &r__4, &zr, &zi); + q__1.r = zr, q__1.i = zi; + ret_val->r = q__1.r, ret_val->i = q__1.i; + + return ; + +/* End of CLADIV */ + +} /* cladiv_ */ + +/* Subroutine */ int claed0_(integer *qsiz, integer *n, real *d__, real *e, + complex *q, integer *ldq, complex *qstore, integer *ldqs, real *rwork, + integer *iwork, integer *info) +{ + /* System generated locals */ + integer q_dim1, q_offset, qstore_dim1, qstore_offset, i__1, i__2; + real r__1; + + /* Builtin functions */ + double log(doublereal); + integer pow_ii(integer *, integer *); + + /* Local variables */ + static integer i__, j, k, ll, iq, lgn, msd2, smm1, spm1, spm2; + static real temp; + static integer curr, iperm; + extern /* Subroutine */ int ccopy_(integer *, complex *, integer *, + complex *, integer *); + static integer indxq, iwrem; + extern /* Subroutine */ int scopy_(integer *, real *, integer *, real *, + integer *); + static integer iqptr; + extern /* Subroutine */ int claed7_(integer *, integer *, integer *, + integer *, integer *, integer *, real *, complex *, integer *, + real *, integer *, real *, integer *, integer *, integer *, + integer *, integer *, real *, complex *, real *, integer *, + integer *); + static integer tlvls; + extern /* Subroutine */ int clacrm_(integer *, integer *, complex *, + integer *, real *, integer *, complex *, integer *, real *); + static integer igivcl; + extern /* Subroutine */ int xerbla_(char *, integer *); + extern integer ilaenv_(integer *, char *, char *, integer *, integer *, + integer *, integer *, ftnlen, ftnlen); + static integer igivnm, submat, curprb, subpbs, igivpt, curlvl, matsiz, + iprmpt, smlsiz; + extern /* Subroutine */ int ssteqr_(char *, integer *, real *, real *, + real *, integer *, real *, integer *); + + +/* + -- LAPACK routine (version 3.0) -- + Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd., + Courant Institute, Argonne National Lab, and Rice University + September 30, 1994 + + + Purpose + ======= + + Using the divide and conquer method, CLAED0 computes all eigenvalues + of a symmetric tridiagonal matrix which is one diagonal block of + those from reducing a dense or band Hermitian matrix and + corresponding eigenvectors of the dense or band matrix. + + Arguments + ========= + + QSIZ (input) INTEGER + The dimension of the unitary matrix used to reduce + the full matrix to tridiagonal form. QSIZ >= N if ICOMPQ = 1. + + N (input) INTEGER + The dimension of the symmetric tridiagonal matrix. N >= 0. + + D (input/output) REAL array, dimension (N) + On entry, the diagonal elements of the tridiagonal matrix. + On exit, the eigenvalues in ascending order. + + E (input/output) REAL array, dimension (N-1) + On entry, the off-diagonal elements of the tridiagonal matrix. + On exit, E has been destroyed. + + Q (input/output) COMPLEX array, dimension (LDQ,N) + On entry, Q must contain an QSIZ x N matrix whose columns + unitarily orthonormal. It is a part of the unitary matrix + that reduces the full dense Hermitian matrix to a + (reducible) symmetric tridiagonal matrix. + + LDQ (input) INTEGER + The leading dimension of the array Q. LDQ >= max(1,N). + + IWORK (workspace) INTEGER array, + the dimension of IWORK must be at least + 6 + 6*N + 5*N*lg N + ( lg( N ) = smallest integer k + such that 2^k >= N ) + + RWORK (workspace) REAL array, + dimension (1 + 3*N + 2*N*lg N + 3*N**2) + ( lg( N ) = smallest integer k + such that 2^k >= N ) + + QSTORE (workspace) COMPLEX array, dimension (LDQS, N) + Used to store parts of + the eigenvector matrix when the updating matrix multiplies + take place. + + LDQS (input) INTEGER + The leading dimension of the array QSTORE. + LDQS >= max(1,N). + + INFO (output) INTEGER + = 0: successful exit. + < 0: if INFO = -i, the i-th argument had an illegal value. + > 0: The algorithm failed to compute an eigenvalue while + working on the submatrix lying in rows and columns + INFO/(N+1) through mod(INFO,N+1). + + ===================================================================== + + Warning: N could be as big as QSIZ! + + + Test the input parameters. +*/ + + /* Parameter adjustments */ + --d__; + --e; + q_dim1 = *ldq; + q_offset = 1 + q_dim1; + q -= q_offset; + qstore_dim1 = *ldqs; + qstore_offset = 1 + qstore_dim1; + qstore -= qstore_offset; + --rwork; + --iwork; + + /* Function Body */ + *info = 0; + +/* + IF( ICOMPQ .LT. 0 .OR. ICOMPQ .GT. 2 ) THEN + INFO = -1 + ELSE IF( ( ICOMPQ .EQ. 1 ) .AND. ( QSIZ .LT. MAX( 0, N ) ) ) + $ THEN +*/ + if (*qsiz < max(0,*n)) { + *info = -1; + } else if (*n < 0) { + *info = -2; + } else if (*ldq < max(1,*n)) { + *info = -6; + } else if (*ldqs < max(1,*n)) { + *info = -8; + } + if (*info != 0) { + i__1 = -(*info); + xerbla_("CLAED0", &i__1); + return 0; + } + +/* Quick return if possible */ + + if (*n == 0) { + return 0; + } + + smlsiz = ilaenv_(&c__9, "CLAED0", " ", &c__0, &c__0, &c__0, &c__0, ( + ftnlen)6, (ftnlen)1); + +/* + Determine the size and placement of the submatrices, and save in + the leading elements of IWORK. +*/ + + iwork[1] = *n; + subpbs = 1; + tlvls = 0; +L10: + if (iwork[subpbs] > smlsiz) { + for (j = subpbs; j >= 1; --j) { + iwork[j * 2] = (iwork[j] + 1) / 2; + iwork[(j << 1) - 1] = iwork[j] / 2; +/* L20: */ + } + ++tlvls; + subpbs <<= 1; + goto L10; + } + i__1 = subpbs; + for (j = 2; j <= i__1; ++j) { + iwork[j] += iwork[j - 1]; +/* L30: */ + } + +/* + Divide the matrix into SUBPBS submatrices of size at most SMLSIZ+1 + using rank-1 modifications (cuts). +*/ + + spm1 = subpbs - 1; + i__1 = spm1; + for (i__ = 1; i__ <= i__1; ++i__) { + submat = iwork[i__] + 1; + smm1 = submat - 1; + d__[smm1] -= (r__1 = e[smm1], dabs(r__1)); + d__[submat] -= (r__1 = e[smm1], dabs(r__1)); +/* L40: */ + } + + indxq = (*n << 2) + 3; + +/* + Set up workspaces for eigenvalues only/accumulate new vectors + routine +*/ + + temp = log((real) (*n)) / log(2.f); + lgn = (integer) temp; + if (pow_ii(&c__2, &lgn) < *n) { + ++lgn; + } + if (pow_ii(&c__2, &lgn) < *n) { + ++lgn; + } + iprmpt = indxq + *n + 1; + iperm = iprmpt + *n * lgn; + iqptr = iperm + *n * lgn; + igivpt = iqptr + *n + 2; + igivcl = igivpt + *n * lgn; + + igivnm = 1; + iq = igivnm + (*n << 1) * lgn; +/* Computing 2nd power */ + i__1 = *n; + iwrem = iq + i__1 * i__1 + 1; +/* Initialize pointers */ + i__1 = subpbs; + for (i__ = 0; i__ <= i__1; ++i__) { + iwork[iprmpt + i__] = 1; + iwork[igivpt + i__] = 1; +/* L50: */ + } + iwork[iqptr] = 1; + +/* + Solve each submatrix eigenproblem at the bottom of the divide and + conquer tree. +*/ + + curr = 0; + i__1 = spm1; + for (i__ = 0; i__ <= i__1; ++i__) { + if (i__ == 0) { + submat = 1; + matsiz = iwork[1]; + } else { + submat = iwork[i__] + 1; + matsiz = iwork[i__ + 1] - iwork[i__]; + } + ll = iq - 1 + iwork[iqptr + curr]; + ssteqr_("I", &matsiz, &d__[submat], &e[submat], &rwork[ll], &matsiz, & + rwork[1], info); + clacrm_(qsiz, &matsiz, &q[submat * q_dim1 + 1], ldq, &rwork[ll], & + matsiz, &qstore[submat * qstore_dim1 + 1], ldqs, &rwork[iwrem] + ); +/* Computing 2nd power */ + i__2 = matsiz; + iwork[iqptr + curr + 1] = iwork[iqptr + curr] + i__2 * i__2; + ++curr; + if (*info > 0) { + *info = submat * (*n + 1) + submat + matsiz - 1; + return 0; + } + k = 1; + i__2 = iwork[i__ + 1]; + for (j = submat; j <= i__2; ++j) { + iwork[indxq + j] = k; + ++k; +/* L60: */ + } +/* L70: */ + } + +/* + Successively merge eigensystems of adjacent submatrices + into eigensystem for the corresponding larger matrix. + + while ( SUBPBS > 1 ) +*/ + + curlvl = 1; +L80: + if (subpbs > 1) { + spm2 = subpbs - 2; + i__1 = spm2; + for (i__ = 0; i__ <= i__1; i__ += 2) { + if (i__ == 0) { + submat = 1; + matsiz = iwork[2]; + msd2 = iwork[1]; + curprb = 0; + } else { + submat = iwork[i__] + 1; + matsiz = iwork[i__ + 2] - iwork[i__]; + msd2 = matsiz / 2; + ++curprb; + } + +/* + Merge lower order eigensystems (of size MSD2 and MATSIZ - MSD2) + into an eigensystem of size MATSIZ. CLAED7 handles the case + when the eigenvectors of a full or band Hermitian matrix (which + was reduced to tridiagonal form) are desired. + + I am free to use Q as a valuable working space until Loop 150. +*/ + + claed7_(&matsiz, &msd2, qsiz, &tlvls, &curlvl, &curprb, &d__[ + submat], &qstore[submat * qstore_dim1 + 1], ldqs, &e[ + submat + msd2 - 1], &iwork[indxq + submat], &rwork[iq], & + iwork[iqptr], &iwork[iprmpt], &iwork[iperm], &iwork[ + igivpt], &iwork[igivcl], &rwork[igivnm], &q[submat * + q_dim1 + 1], &rwork[iwrem], &iwork[subpbs + 1], info); + if (*info > 0) { + *info = submat * (*n + 1) + submat + matsiz - 1; + return 0; + } + iwork[i__ / 2 + 1] = iwork[i__ + 2]; +/* L90: */ + } + subpbs /= 2; + ++curlvl; + goto L80; + } + +/* + end while + + Re-merge the eigenvalues/vectors which were deflated at the final + merge step. +*/ + + i__1 = *n; + for (i__ = 1; i__ <= i__1; ++i__) { + j = iwork[indxq + i__]; + rwork[i__] = d__[j]; + ccopy_(qsiz, &qstore[j * qstore_dim1 + 1], &c__1, &q[i__ * q_dim1 + 1] + , &c__1); +/* L100: */ + } + scopy_(n, &rwork[1], &c__1, &d__[1], &c__1); + + return 0; + +/* End of CLAED0 */ + +} /* claed0_ */ + +/* Subroutine */ int claed7_(integer *n, integer *cutpnt, integer *qsiz, + integer *tlvls, integer *curlvl, integer *curpbm, real *d__, complex * + q, integer *ldq, real *rho, integer *indxq, real *qstore, integer * + qptr, integer *prmptr, integer *perm, integer *givptr, integer * + givcol, real *givnum, complex *work, real *rwork, integer *iwork, + integer *info) +{ + /* System generated locals */ + integer q_dim1, q_offset, i__1, i__2; + + /* Builtin functions */ + integer pow_ii(integer *, integer *); + + /* Local variables */ + static integer i__, k, n1, n2, iq, iw, iz, ptr, ind1, ind2, indx, curr, + indxc, indxp; + extern /* Subroutine */ int claed8_(integer *, integer *, integer *, + complex *, integer *, real *, real *, integer *, real *, real *, + complex *, integer *, real *, integer *, integer *, integer *, + integer *, integer *, integer *, real *, integer *), slaed9_( + integer *, integer *, integer *, integer *, real *, real *, + integer *, real *, real *, real *, real *, integer *, integer *), + slaeda_(integer *, integer *, integer *, integer *, integer *, + integer *, integer *, integer *, real *, real *, integer *, real * + , real *, integer *); + static integer idlmda; + extern /* Subroutine */ int clacrm_(integer *, integer *, complex *, + integer *, real *, integer *, complex *, integer *, real *), + xerbla_(char *, integer *), slamrg_(integer *, integer *, + real *, integer *, integer *, integer *); + static integer coltyp; + + +/* + -- LAPACK routine (version 3.0) -- + Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd., + Courant Institute, Argonne National Lab, and Rice University + September 30, 1994 + + + Purpose + ======= + + CLAED7 computes the updated eigensystem of a diagonal + matrix after modification by a rank-one symmetric matrix. This + routine is used only for the eigenproblem which requires all + eigenvalues and optionally eigenvectors of a dense or banded + Hermitian matrix that has been reduced to tridiagonal form. + + T = Q(in) ( D(in) + RHO * Z*Z' ) Q'(in) = Q(out) * D(out) * Q'(out) + + where Z = Q'u, u is a vector of length N with ones in the + CUTPNT and CUTPNT + 1 th elements and zeros elsewhere. + + The eigenvectors of the original matrix are stored in Q, and the + eigenvalues are in D. The algorithm consists of three stages: + + The first stage consists of deflating the size of the problem + when there are multiple eigenvalues or if there is a zero in + the Z vector. For each such occurence the dimension of the + secular equation problem is reduced by one. This stage is + performed by the routine SLAED2. + + The second stage consists of calculating the updated + eigenvalues. This is done by finding the roots of the secular + equation via the routine SLAED4 (as called by SLAED3). + This routine also calculates the eigenvectors of the current + problem. + + The final stage consists of computing the updated eigenvectors + directly using the updated eigenvalues. The eigenvectors for + the current problem are multiplied with the eigenvectors from + the overall problem. + + Arguments + ========= + + N (input) INTEGER + The dimension of the symmetric tridiagonal matrix. N >= 0. + + CUTPNT (input) INTEGER + Contains the location of the last eigenvalue in the leading + sub-matrix. min(1,N) <= CUTPNT <= N. + + QSIZ (input) INTEGER + The dimension of the unitary matrix used to reduce + the full matrix to tridiagonal form. QSIZ >= N. + + TLVLS (input) INTEGER + The total number of merging levels in the overall divide and + conquer tree. + + CURLVL (input) INTEGER + The current level in the overall merge routine, + 0 <= curlvl <= tlvls. + + CURPBM (input) INTEGER + The current problem in the current level in the overall + merge routine (counting from upper left to lower right). + + D (input/output) REAL array, dimension (N) + On entry, the eigenvalues of the rank-1-perturbed matrix. + On exit, the eigenvalues of the repaired matrix. + + Q (input/output) COMPLEX array, dimension (LDQ,N) + On entry, the eigenvectors of the rank-1-perturbed matrix. + On exit, the eigenvectors of the repaired tridiagonal matrix. + + LDQ (input) INTEGER + The leading dimension of the array Q. LDQ >= max(1,N). + + RHO (input) REAL + Contains the subdiagonal element used to create the rank-1 + modification. + + INDXQ (output) INTEGER array, dimension (N) + This contains the permutation which will reintegrate the + subproblem just solved back into sorted order, + ie. D( INDXQ( I = 1, N ) ) will be in ascending order. + + IWORK (workspace) INTEGER array, dimension (4*N) + + RWORK (workspace) REAL array, + dimension (3*N+2*QSIZ*N) + + WORK (workspace) COMPLEX array, dimension (QSIZ*N) + + QSTORE (input/output) REAL array, dimension (N**2+1) + Stores eigenvectors of submatrices encountered during + divide and conquer, packed together. QPTR points to + beginning of the submatrices. + + QPTR (input/output) INTEGER array, dimension (N+2) + List of indices pointing to beginning of submatrices stored + in QSTORE. The submatrices are numbered starting at the + bottom left of the divide and conquer tree, from left to + right and bottom to top. + + PRMPTR (input) INTEGER array, dimension (N lg N) + Contains a list of pointers which indicate where in PERM a + level's permutation is stored. PRMPTR(i+1) - PRMPTR(i) + indicates the size of the permutation and also the size of + the full, non-deflated problem. + + PERM (input) INTEGER array, dimension (N lg N) + Contains the permutations (from deflation and sorting) to be + applied to each eigenblock. + + GIVPTR (input) INTEGER array, dimension (N lg N) + Contains a list of pointers which indicate where in GIVCOL a + level's Givens rotations are stored. GIVPTR(i+1) - GIVPTR(i) + indicates the number of Givens rotations. + + GIVCOL (input) INTEGER array, dimension (2, N lg N) + Each pair of numbers indicates a pair of columns to take place + in a Givens rotation. + + GIVNUM (input) REAL array, dimension (2, N lg N) + Each number indicates the S value to be used in the + corresponding Givens rotation. + + INFO (output) INTEGER + = 0: successful exit. + < 0: if INFO = -i, the i-th argument had an illegal value. + > 0: if INFO = 1, an eigenvalue did not converge + + ===================================================================== + + + Test the input parameters. +*/ + + /* Parameter adjustments */ + --d__; + q_dim1 = *ldq; + q_offset = 1 + q_dim1; + q -= q_offset; + --indxq; + --qstore; + --qptr; + --prmptr; + --perm; + --givptr; + givcol -= 3; + givnum -= 3; + --work; + --rwork; + --iwork; + + /* Function Body */ + *info = 0; + +/* + IF( ICOMPQ.LT.0 .OR. ICOMPQ.GT.1 ) THEN + INFO = -1 + ELSE IF( N.LT.0 ) THEN +*/ + if (*n < 0) { + *info = -1; + } else if (min(1,*n) > *cutpnt || *n < *cutpnt) { + *info = -2; + } else if (*qsiz < *n) { + *info = -3; + } else if (*ldq < max(1,*n)) { + *info = -9; + } + if (*info != 0) { + i__1 = -(*info); + xerbla_("CLAED7", &i__1); + return 0; + } + +/* Quick return if possible */ + + if (*n == 0) { + return 0; + } + +/* + The following values are for bookkeeping purposes only. They are + integer pointers which indicate the portion of the workspace + used by a particular array in SLAED2 and SLAED3. +*/ + + iz = 1; + idlmda = iz + *n; + iw = idlmda + *n; + iq = iw + *n; + + indx = 1; + indxc = indx + *n; + coltyp = indxc + *n; + indxp = coltyp + *n; + +/* + Form the z-vector which consists of the last row of Q_1 and the + first row of Q_2. +*/ + + ptr = pow_ii(&c__2, tlvls) + 1; + i__1 = *curlvl - 1; + for (i__ = 1; i__ <= i__1; ++i__) { + i__2 = *tlvls - i__; + ptr += pow_ii(&c__2, &i__2); +/* L10: */ + } + curr = ptr + *curpbm; + slaeda_(n, tlvls, curlvl, curpbm, &prmptr[1], &perm[1], &givptr[1], & + givcol[3], &givnum[3], &qstore[1], &qptr[1], &rwork[iz], &rwork[ + iz + *n], info); + +/* + When solving the final problem, we no longer need the stored data, + so we will overwrite the data from this level onto the previously + used storage space. +*/ + + if (*curlvl == *tlvls) { + qptr[curr] = 1; + prmptr[curr] = 1; + givptr[curr] = 1; + } + +/* Sort and Deflate eigenvalues. */ + + claed8_(&k, n, qsiz, &q[q_offset], ldq, &d__[1], rho, cutpnt, &rwork[iz], + &rwork[idlmda], &work[1], qsiz, &rwork[iw], &iwork[indxp], &iwork[ + indx], &indxq[1], &perm[prmptr[curr]], &givptr[curr + 1], &givcol[ + (givptr[curr] << 1) + 1], &givnum[(givptr[curr] << 1) + 1], info); + prmptr[curr + 1] = prmptr[curr] + *n; + givptr[curr + 1] += givptr[curr]; + +/* Solve Secular Equation. */ + + if (k != 0) { + slaed9_(&k, &c__1, &k, n, &d__[1], &rwork[iq], &k, rho, &rwork[idlmda] + , &rwork[iw], &qstore[qptr[curr]], &k, info); + clacrm_(qsiz, &k, &work[1], qsiz, &qstore[qptr[curr]], &k, &q[ + q_offset], ldq, &rwork[iq]); +/* Computing 2nd power */ + i__1 = k; + qptr[curr + 1] = qptr[curr] + i__1 * i__1; + if (*info != 0) { + return 0; + } + +/* Prepare the INDXQ sorting premutation. */ + + n1 = k; + n2 = *n - k; + ind1 = 1; + ind2 = *n; + slamrg_(&n1, &n2, &d__[1], &c__1, &c_n1, &indxq[1]); + } else { + qptr[curr + 1] = qptr[curr]; + i__1 = *n; + for (i__ = 1; i__ <= i__1; ++i__) { + indxq[i__] = i__; +/* L20: */ + } + } + + return 0; + +/* End of CLAED7 */ + +} /* claed7_ */ + +/* Subroutine */ int claed8_(integer *k, integer *n, integer *qsiz, complex * + q, integer *ldq, real *d__, real *rho, integer *cutpnt, real *z__, + real *dlamda, complex *q2, integer *ldq2, real *w, integer *indxp, + integer *indx, integer *indxq, integer *perm, integer *givptr, + integer *givcol, real *givnum, integer *info) +{ + /* System generated locals */ + integer q_dim1, q_offset, q2_dim1, q2_offset, i__1; + real r__1; + + /* Builtin functions */ + double sqrt(doublereal); + + /* Local variables */ + static real c__; + static integer i__, j; + static real s, t; + static integer k2, n1, n2, jp, n1p1; + static real eps, tau, tol; + static integer jlam, imax, jmax; + extern /* Subroutine */ int sscal_(integer *, real *, real *, integer *), + ccopy_(integer *, complex *, integer *, complex *, integer *), + csrot_(integer *, complex *, integer *, complex *, integer *, + real *, real *), scopy_(integer *, real *, integer *, real *, + integer *); + extern doublereal slapy2_(real *, real *), slamch_(char *); + extern /* Subroutine */ int clacpy_(char *, integer *, integer *, complex + *, integer *, complex *, integer *), xerbla_(char *, + integer *); + extern integer isamax_(integer *, real *, integer *); + extern /* Subroutine */ int slamrg_(integer *, integer *, real *, integer + *, integer *, integer *); + + +/* + -- LAPACK routine (version 3.0) -- + Univ. of Tennessee, Oak Ridge National Lab, Argonne National Lab, + Courant Institute, NAG Ltd., and Rice University + September 30, 1994 + + + Purpose + ======= + + CLAED8 merges the two sets of eigenvalues together into a single + sorted set. Then it tries to deflate the size of the problem. + There are two ways in which deflation can occur: when two or more + eigenvalues are close together or if there is a tiny element in the + Z vector. For each such occurrence the order of the related secular + equation problem is reduced by one. + + Arguments + ========= + + K (output) INTEGER + Contains the number of non-deflated eigenvalues. + This is the order of the related secular equation. + + N (input) INTEGER + The dimension of the symmetric tridiagonal matrix. N >= 0. + + QSIZ (input) INTEGER + The dimension of the unitary matrix used to reduce + the dense or band matrix to tridiagonal form. + QSIZ >= N if ICOMPQ = 1. + + Q (input/output) COMPLEX array, dimension (LDQ,N) + On entry, Q contains the eigenvectors of the partially solved + system which has been previously updated in matrix + multiplies with other partially solved eigensystems. + On exit, Q contains the trailing (N-K) updated eigenvectors + (those which were deflated) in its last N-K columns. + + LDQ (input) INTEGER + The leading dimension of the array Q. LDQ >= max( 1, N ). + + D (input/output) REAL array, dimension (N) + On entry, D contains the eigenvalues of the two submatrices to + be combined. On exit, D contains the trailing (N-K) updated + eigenvalues (those which were deflated) sorted into increasing + order. + + RHO (input/output) REAL + Contains the off diagonal element associated with the rank-1 + cut which originally split the two submatrices which are now + being recombined. RHO is modified during the computation to + the value required by SLAED3. + + CUTPNT (input) INTEGER + Contains the location of the last eigenvalue in the leading + sub-matrix. MIN(1,N) <= CUTPNT <= N. + + Z (input) REAL array, dimension (N) + On input this vector contains the updating vector (the last + row of the first sub-eigenvector matrix and the first row of + the second sub-eigenvector matrix). The contents of Z are + destroyed during the updating process. + + DLAMDA (output) REAL array, dimension (N) + Contains a copy of the first K eigenvalues which will be used + by SLAED3 to form the secular equation. + + Q2 (output) COMPLEX array, dimension (LDQ2,N) + If ICOMPQ = 0, Q2 is not referenced. Otherwise, + Contains a copy of the first K eigenvectors which will be used + by SLAED7 in a matrix multiply (SGEMM) to update the new + eigenvectors. + + LDQ2 (input) INTEGER + The leading dimension of the array Q2. LDQ2 >= max( 1, N ). + + W (output) REAL array, dimension (N) + This will hold the first k values of the final + deflation-altered z-vector and will be passed to SLAED3. + + INDXP (workspace) INTEGER array, dimension (N) + This will contain the permutation used to place deflated + values of D at the end of the array. On output INDXP(1:K) + points to the nondeflated D-values and INDXP(K+1:N) + points to the deflated eigenvalues. + + INDX (workspace) INTEGER array, dimension (N) + This will contain the permutation used to sort the contents of + D into ascending order. + + INDXQ (input) INTEGER array, dimension (N) + This contains the permutation which separately sorts the two + sub-problems in D into ascending order. Note that elements in + the second half of this permutation must first have CUTPNT + added to their values in order to be accurate. + + PERM (output) INTEGER array, dimension (N) + Contains the permutations (from deflation and sorting) to be + applied to each eigenblock. + + GIVPTR (output) INTEGER + Contains the number of Givens rotations which took place in + this subproblem. + + GIVCOL (output) INTEGER array, dimension (2, N) + Each pair of numbers indicates a pair of columns to take place + in a Givens rotation. + + GIVNUM (output) REAL array, dimension (2, N) + Each number indicates the S value to be used in the + corresponding Givens rotation. + + INFO (output) INTEGER + = 0: successful exit. + < 0: if INFO = -i, the i-th argument had an illegal value. + + ===================================================================== + + + Test the input parameters. +*/ + + /* Parameter adjustments */ + q_dim1 = *ldq; + q_offset = 1 + q_dim1; + q -= q_offset; + --d__; + --z__; + --dlamda; + q2_dim1 = *ldq2; + q2_offset = 1 + q2_dim1; + q2 -= q2_offset; + --w; + --indxp; + --indx; + --indxq; + --perm; + givcol -= 3; + givnum -= 3; + + /* Function Body */ + *info = 0; + + if (*n < 0) { + *info = -2; + } else if (*qsiz < *n) { + *info = -3; + } else if (*ldq < max(1,*n)) { + *info = -5; + } else if (*cutpnt < min(1,*n) || *cutpnt > *n) { + *info = -8; + } else if (*ldq2 < max(1,*n)) { + *info = -12; + } + if (*info != 0) { + i__1 = -(*info); + xerbla_("CLAED8", &i__1); + return 0; + } + +/* Quick return if possible */ + + if (*n == 0) { + return 0; + } + + n1 = *cutpnt; + n2 = *n - n1; + n1p1 = n1 + 1; + + if (*rho < 0.f) { + sscal_(&n2, &c_b1150, &z__[n1p1], &c__1); + } + +/* Normalize z so that norm(z) = 1 */ + + t = 1.f / sqrt(2.f); + i__1 = *n; + for (j = 1; j <= i__1; ++j) { + indx[j] = j; +/* L10: */ + } + sscal_(n, &t, &z__[1], &c__1); + *rho = (r__1 = *rho * 2.f, dabs(r__1)); + +/* Sort the eigenvalues into increasing order */ + + i__1 = *n; + for (i__ = *cutpnt + 1; i__ <= i__1; ++i__) { + indxq[i__] += *cutpnt; +/* L20: */ + } + i__1 = *n; + for (i__ = 1; i__ <= i__1; ++i__) { + dlamda[i__] = d__[indxq[i__]]; + w[i__] = z__[indxq[i__]]; +/* L30: */ + } + i__ = 1; + j = *cutpnt + 1; + slamrg_(&n1, &n2, &dlamda[1], &c__1, &c__1, &indx[1]); + i__1 = *n; + for (i__ = 1; i__ <= i__1; ++i__) { + d__[i__] = dlamda[indx[i__]]; + z__[i__] = w[indx[i__]]; +/* L40: */ + } + +/* Calculate the allowable deflation tolerance */ + + imax = isamax_(n, &z__[1], &c__1); + jmax = isamax_(n, &d__[1], &c__1); + eps = slamch_("Epsilon"); + tol = eps * 8.f * (r__1 = d__[jmax], dabs(r__1)); + +/* + If the rank-1 modifier is small enough, no more needs to be done + -- except to reorganize Q so that its columns correspond with the + elements in D. +*/ + + if (*rho * (r__1 = z__[imax], dabs(r__1)) <= tol) { + *k = 0; + i__1 = *n; + for (j = 1; j <= i__1; ++j) { + perm[j] = indxq[indx[j]]; + ccopy_(qsiz, &q[perm[j] * q_dim1 + 1], &c__1, &q2[j * q2_dim1 + 1] + , &c__1); +/* L50: */ + } + clacpy_("A", qsiz, n, &q2[q2_dim1 + 1], ldq2, &q[q_dim1 + 1], ldq); + return 0; + } + +/* + If there are multiple eigenvalues then the problem deflates. Here + the number of equal eigenvalues are found. As each equal + eigenvalue is found, an elementary reflector is computed to rotate + the corresponding eigensubspace so that the corresponding + components of Z are zero in this new basis. +*/ + + *k = 0; + *givptr = 0; + k2 = *n + 1; + i__1 = *n; + for (j = 1; j <= i__1; ++j) { + if (*rho * (r__1 = z__[j], dabs(r__1)) <= tol) { + +/* Deflate due to small z component. */ + + --k2; + indxp[k2] = j; + if (j == *n) { + goto L100; + } + } else { + jlam = j; + goto L70; + } +/* L60: */ + } +L70: + ++j; + if (j > *n) { + goto L90; + } + if (*rho * (r__1 = z__[j], dabs(r__1)) <= tol) { + +/* Deflate due to small z component. */ + + --k2; + indxp[k2] = j; + } else { + +/* Check if eigenvalues are close enough to allow deflation. */ + + s = z__[jlam]; + c__ = z__[j]; + +/* + Find sqrt(a**2+b**2) without overflow or + destructive underflow. +*/ + + tau = slapy2_(&c__, &s); + t = d__[j] - d__[jlam]; + c__ /= tau; + s = -s / tau; + if ((r__1 = t * c__ * s, dabs(r__1)) <= tol) { + +/* Deflation is possible. */ + + z__[j] = tau; + z__[jlam] = 0.f; + +/* Record the appropriate Givens rotation */ + + ++(*givptr); + givcol[(*givptr << 1) + 1] = indxq[indx[jlam]]; + givcol[(*givptr << 1) + 2] = indxq[indx[j]]; + givnum[(*givptr << 1) + 1] = c__; + givnum[(*givptr << 1) + 2] = s; + csrot_(qsiz, &q[indxq[indx[jlam]] * q_dim1 + 1], &c__1, &q[indxq[ + indx[j]] * q_dim1 + 1], &c__1, &c__, &s); + t = d__[jlam] * c__ * c__ + d__[j] * s * s; + d__[j] = d__[jlam] * s * s + d__[j] * c__ * c__; + d__[jlam] = t; + --k2; + i__ = 1; +L80: + if (k2 + i__ <= *n) { + if (d__[jlam] < d__[indxp[k2 + i__]]) { + indxp[k2 + i__ - 1] = indxp[k2 + i__]; + indxp[k2 + i__] = jlam; + ++i__; + goto L80; + } else { + indxp[k2 + i__ - 1] = jlam; + } + } else { + indxp[k2 + i__ - 1] = jlam; + } + jlam = j; + } else { + ++(*k); + w[*k] = z__[jlam]; + dlamda[*k] = d__[jlam]; + indxp[*k] = jlam; + jlam = j; + } + } + goto L70; +L90: + +/* Record the last eigenvalue. */ + + ++(*k); + w[*k] = z__[jlam]; + dlamda[*k] = d__[jlam]; + indxp[*k] = jlam; + +L100: + +/* + Sort the eigenvalues and corresponding eigenvectors into DLAMDA + and Q2 respectively. The eigenvalues/vectors which were not + deflated go into the first K slots of DLAMDA and Q2 respectively, + while those which were deflated go into the last N - K slots. +*/ + + i__1 = *n; + for (j = 1; j <= i__1; ++j) { + jp = indxp[j]; + dlamda[j] = d__[jp]; + perm[j] = indxq[indx[jp]]; + ccopy_(qsiz, &q[perm[j] * q_dim1 + 1], &c__1, &q2[j * q2_dim1 + 1], & + c__1); +/* L110: */ + } + +/* + The deflated eigenvalues and their corresponding vectors go back + into the last N - K slots of D and Q respectively. +*/ + + if (*k < *n) { + i__1 = *n - *k; + scopy_(&i__1, &dlamda[*k + 1], &c__1, &d__[*k + 1], &c__1); + i__1 = *n - *k; + clacpy_("A", qsiz, &i__1, &q2[(*k + 1) * q2_dim1 + 1], ldq2, &q[(*k + + 1) * q_dim1 + 1], ldq); + } + + return 0; + +/* End of CLAED8 */ + +} /* claed8_ */ + +/* Subroutine */ int clahqr_(logical *wantt, logical *wantz, integer *n, + integer *ilo, integer *ihi, complex *h__, integer *ldh, complex *w, + integer *iloz, integer *ihiz, complex *z__, integer *ldz, integer * + info) +{ + /* System generated locals */ + integer h_dim1, h_offset, z_dim1, z_offset, i__1, i__2, i__3, i__4, i__5; + real r__1, r__2, r__3, r__4, r__5, r__6; + complex q__1, q__2, q__3, q__4; + + /* Builtin functions */ + double r_imag(complex *); + void c_sqrt(complex *, complex *), r_cnjg(complex *, complex *); + double c_abs(complex *); + + /* Local variables */ + static integer i__, j, k, l, m; + static real s; + static complex t, u, v[2], x, y; + static integer i1, i2; + static complex t1; + static real t2; + static complex v2; + static real h10; + static complex h11; + static real h21; + static complex h22; + static integer nh, nz; + static complex h11s; + static integer itn, its; + static real ulp; + static complex sum; + static real tst1; + static complex temp; + extern /* Subroutine */ int cscal_(integer *, complex *, complex *, + integer *), ccopy_(integer *, complex *, integer *, complex *, + integer *); + static real rtemp, rwork[1]; + extern /* Subroutine */ int clarfg_(integer *, complex *, complex *, + integer *, complex *); + extern /* Complex */ VOID cladiv_(complex *, complex *, complex *); + extern doublereal slamch_(char *), clanhs_(char *, integer *, + complex *, integer *, real *); + static real smlnum; + + +/* + -- LAPACK auxiliary routine (version 3.0) -- + Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd., + Courant Institute, Argonne National Lab, and Rice University + June 30, 1999 + + + Purpose + ======= + + CLAHQR is an auxiliary routine called by CHSEQR to update the + eigenvalues and Schur decomposition already computed by CHSEQR, by + dealing with the Hessenberg submatrix in rows and columns ILO to IHI. + + Arguments + ========= + + WANTT (input) LOGICAL + = .TRUE. : the full Schur form T is required; + = .FALSE.: only eigenvalues are required. + + WANTZ (input) LOGICAL + = .TRUE. : the matrix of Schur vectors Z is required; + = .FALSE.: Schur vectors are not required. + + N (input) INTEGER + The order of the matrix H. N >= 0. + + ILO (input) INTEGER + IHI (input) INTEGER + It is assumed that H is already upper triangular in rows and + columns IHI+1:N, and that H(ILO,ILO-1) = 0 (unless ILO = 1). + CLAHQR works primarily with the Hessenberg submatrix in rows + and columns ILO to IHI, but applies transformations to all of + H if WANTT is .TRUE.. + 1 <= ILO <= max(1,IHI); IHI <= N. + + H (input/output) COMPLEX array, dimension (LDH,N) + On entry, the upper Hessenberg matrix H. + On exit, if WANTT is .TRUE., H is upper triangular in rows + and columns ILO:IHI, with any 2-by-2 diagonal blocks in + standard form. If WANTT is .FALSE., the contents of H are + unspecified on exit. + + LDH (input) INTEGER + The leading dimension of the array H. LDH >= max(1,N). + + W (output) COMPLEX array, dimension (N) + The computed eigenvalues ILO to IHI are stored in the + corresponding elements of W. If WANTT is .TRUE., the + eigenvalues are stored in the same order as on the diagonal + of the Schur form returned in H, with W(i) = H(i,i). + + ILOZ (input) INTEGER + IHIZ (input) INTEGER + Specify the rows of Z to which transformations must be + applied if WANTZ is .TRUE.. + 1 <= ILOZ <= ILO; IHI <= IHIZ <= N. + + Z (input/output) COMPLEX array, dimension (LDZ,N) + If WANTZ is .TRUE., on entry Z must contain the current + matrix Z of transformations accumulated by CHSEQR, and on + exit Z has been updated; transformations are applied only to + the submatrix Z(ILOZ:IHIZ,ILO:IHI). + If WANTZ is .FALSE., Z is not referenced. + + LDZ (input) INTEGER + The leading dimension of the array Z. LDZ >= max(1,N). + + INFO (output) INTEGER + = 0: successful exit + > 0: if INFO = i, CLAHQR failed to compute all the + eigenvalues ILO to IHI in a total of 30*(IHI-ILO+1) + iterations; elements i+1:ihi of W contain those + eigenvalues which have been successfully computed. + + ===================================================================== +*/ + + + /* Parameter adjustments */ + h_dim1 = *ldh; + h_offset = 1 + h_dim1; + h__ -= h_offset; + --w; + z_dim1 = *ldz; + z_offset = 1 + z_dim1; + z__ -= z_offset; + + /* Function Body */ + *info = 0; + +/* Quick return if possible */ + + if (*n == 0) { + return 0; + } + if (*ilo == *ihi) { + i__1 = *ilo; + i__2 = *ilo + *ilo * h_dim1; + w[i__1].r = h__[i__2].r, w[i__1].i = h__[i__2].i; + return 0; + } + + nh = *ihi - *ilo + 1; + nz = *ihiz - *iloz + 1; + +/* + Set machine-dependent constants for the stopping criterion. + If norm(H) <= sqrt(OVFL), overflow should not occur. +*/ + + ulp = slamch_("Precision"); + smlnum = slamch_("Safe minimum") / ulp; + +/* + I1 and I2 are the indices of the first row and last column of H + to which transformations must be applied. If eigenvalues only are + being computed, I1 and I2 are set inside the main loop. +*/ + + if (*wantt) { + i1 = 1; + i2 = *n; + } + +/* ITN is the total number of QR iterations allowed. */ + + itn = nh * 30; + +/* + The main loop begins here. I is the loop index and decreases from + IHI to ILO in steps of 1. Each iteration of the loop works + with the active submatrix in rows and columns L to I. + Eigenvalues I+1 to IHI have already converged. Either L = ILO, or + H(L,L-1) is negligible so that the matrix splits. +*/ + + i__ = *ihi; +L10: + if (i__ < *ilo) { + goto L130; + } + +/* + Perform QR iterations on rows and columns ILO to I until a + submatrix of order 1 splits off at the bottom because a + subdiagonal element has become negligible. +*/ + + l = *ilo; + i__1 = itn; + for (its = 0; its <= i__1; ++its) { + +/* Look for a single small subdiagonal element. */ + + i__2 = l + 1; + for (k = i__; k >= i__2; --k) { + i__3 = k - 1 + (k - 1) * h_dim1; + i__4 = k + k * h_dim1; + tst1 = (r__1 = h__[i__3].r, dabs(r__1)) + (r__2 = r_imag(&h__[k - + 1 + (k - 1) * h_dim1]), dabs(r__2)) + ((r__3 = h__[i__4] + .r, dabs(r__3)) + (r__4 = r_imag(&h__[k + k * h_dim1]), + dabs(r__4))); + if (tst1 == 0.f) { + i__3 = i__ - l + 1; + tst1 = clanhs_("1", &i__3, &h__[l + l * h_dim1], ldh, rwork); + } + i__3 = k + (k - 1) * h_dim1; +/* Computing MAX */ + r__2 = ulp * tst1; + if ((r__1 = h__[i__3].r, dabs(r__1)) <= dmax(r__2,smlnum)) { + goto L30; + } +/* L20: */ + } +L30: + l = k; + if (l > *ilo) { + +/* H(L,L-1) is negligible */ + + i__2 = l + (l - 1) * h_dim1; + h__[i__2].r = 0.f, h__[i__2].i = 0.f; + } + +/* Exit from loop if a submatrix of order 1 has split off. */ + + if (l >= i__) { + goto L120; + } + +/* + Now the active submatrix is in rows and columns L to I. If + eigenvalues only are being computed, only the active submatrix + need be transformed. +*/ + + if (! (*wantt)) { + i1 = l; + i2 = i__; + } + + if (its == 10 || its == 20) { + +/* Exceptional shift. */ + + i__2 = i__ + (i__ - 1) * h_dim1; + s = (r__1 = h__[i__2].r, dabs(r__1)) * .75f; + i__2 = i__ + i__ * h_dim1; + q__1.r = s + h__[i__2].r, q__1.i = h__[i__2].i; + t.r = q__1.r, t.i = q__1.i; + } else { + +/* Wilkinson's shift. */ + + i__2 = i__ + i__ * h_dim1; + t.r = h__[i__2].r, t.i = h__[i__2].i; + i__2 = i__ - 1 + i__ * h_dim1; + i__3 = i__ + (i__ - 1) * h_dim1; + r__1 = h__[i__3].r; + q__1.r = r__1 * h__[i__2].r, q__1.i = r__1 * h__[i__2].i; + u.r = q__1.r, u.i = q__1.i; + if (u.r != 0.f || u.i != 0.f) { + i__2 = i__ - 1 + (i__ - 1) * h_dim1; + q__2.r = h__[i__2].r - t.r, q__2.i = h__[i__2].i - t.i; + q__1.r = q__2.r * .5f, q__1.i = q__2.i * .5f; + x.r = q__1.r, x.i = q__1.i; + q__3.r = x.r * x.r - x.i * x.i, q__3.i = x.r * x.i + x.i * + x.r; + q__2.r = q__3.r + u.r, q__2.i = q__3.i + u.i; + c_sqrt(&q__1, &q__2); + y.r = q__1.r, y.i = q__1.i; + if (x.r * y.r + r_imag(&x) * r_imag(&y) < 0.f) { + q__1.r = -y.r, q__1.i = -y.i; + y.r = q__1.r, y.i = q__1.i; + } + q__3.r = x.r + y.r, q__3.i = x.i + y.i; + cladiv_(&q__2, &u, &q__3); + q__1.r = t.r - q__2.r, q__1.i = t.i - q__2.i; + t.r = q__1.r, t.i = q__1.i; + } + } + +/* Look for two consecutive small subdiagonal elements. */ + + i__2 = l + 1; + for (m = i__ - 1; m >= i__2; --m) { + +/* + Determine the effect of starting the single-shift QR + iteration at row M, and see if this would make H(M,M-1) + negligible. +*/ + + i__3 = m + m * h_dim1; + h11.r = h__[i__3].r, h11.i = h__[i__3].i; + i__3 = m + 1 + (m + 1) * h_dim1; + h22.r = h__[i__3].r, h22.i = h__[i__3].i; + q__1.r = h11.r - t.r, q__1.i = h11.i - t.i; + h11s.r = q__1.r, h11s.i = q__1.i; + i__3 = m + 1 + m * h_dim1; + h21 = h__[i__3].r; + s = (r__1 = h11s.r, dabs(r__1)) + (r__2 = r_imag(&h11s), dabs( + r__2)) + dabs(h21); + q__1.r = h11s.r / s, q__1.i = h11s.i / s; + h11s.r = q__1.r, h11s.i = q__1.i; + h21 /= s; + v[0].r = h11s.r, v[0].i = h11s.i; + v[1].r = h21, v[1].i = 0.f; + i__3 = m + (m - 1) * h_dim1; + h10 = h__[i__3].r; + tst1 = ((r__1 = h11s.r, dabs(r__1)) + (r__2 = r_imag(&h11s), dabs( + r__2))) * ((r__3 = h11.r, dabs(r__3)) + (r__4 = r_imag(& + h11), dabs(r__4)) + ((r__5 = h22.r, dabs(r__5)) + (r__6 = + r_imag(&h22), dabs(r__6)))); + if ((r__1 = h10 * h21, dabs(r__1)) <= ulp * tst1) { + goto L50; + } +/* L40: */ + } + i__2 = l + l * h_dim1; + h11.r = h__[i__2].r, h11.i = h__[i__2].i; + i__2 = l + 1 + (l + 1) * h_dim1; + h22.r = h__[i__2].r, h22.i = h__[i__2].i; + q__1.r = h11.r - t.r, q__1.i = h11.i - t.i; + h11s.r = q__1.r, h11s.i = q__1.i; + i__2 = l + 1 + l * h_dim1; + h21 = h__[i__2].r; + s = (r__1 = h11s.r, dabs(r__1)) + (r__2 = r_imag(&h11s), dabs(r__2)) + + dabs(h21); + q__1.r = h11s.r / s, q__1.i = h11s.i / s; + h11s.r = q__1.r, h11s.i = q__1.i; + h21 /= s; + v[0].r = h11s.r, v[0].i = h11s.i; + v[1].r = h21, v[1].i = 0.f; +L50: + +/* Single-shift QR step */ + + i__2 = i__ - 1; + for (k = m; k <= i__2; ++k) { + +/* + The first iteration of this loop determines a reflection G + from the vector V and applies it from left and right to H, + thus creating a nonzero bulge below the subdiagonal. + + Each subsequent iteration determines a reflection G to + restore the Hessenberg form in the (K-1)th column, and thus + chases the bulge one step toward the bottom of the active + submatrix. + + V(2) is always real before the call to CLARFG, and hence + after the call T2 ( = T1*V(2) ) is also real. +*/ + + if (k > m) { + ccopy_(&c__2, &h__[k + (k - 1) * h_dim1], &c__1, v, &c__1); + } + clarfg_(&c__2, v, &v[1], &c__1, &t1); + if (k > m) { + i__3 = k + (k - 1) * h_dim1; + h__[i__3].r = v[0].r, h__[i__3].i = v[0].i; + i__3 = k + 1 + (k - 1) * h_dim1; + h__[i__3].r = 0.f, h__[i__3].i = 0.f; + } + v2.r = v[1].r, v2.i = v[1].i; + q__1.r = t1.r * v2.r - t1.i * v2.i, q__1.i = t1.r * v2.i + t1.i * + v2.r; + t2 = q__1.r; + +/* + Apply G from the left to transform the rows of the matrix + in columns K to I2. +*/ + + i__3 = i2; + for (j = k; j <= i__3; ++j) { + r_cnjg(&q__3, &t1); + i__4 = k + j * h_dim1; + q__2.r = q__3.r * h__[i__4].r - q__3.i * h__[i__4].i, q__2.i = + q__3.r * h__[i__4].i + q__3.i * h__[i__4].r; + i__5 = k + 1 + j * h_dim1; + q__4.r = t2 * h__[i__5].r, q__4.i = t2 * h__[i__5].i; + q__1.r = q__2.r + q__4.r, q__1.i = q__2.i + q__4.i; + sum.r = q__1.r, sum.i = q__1.i; + i__4 = k + j * h_dim1; + i__5 = k + j * h_dim1; + q__1.r = h__[i__5].r - sum.r, q__1.i = h__[i__5].i - sum.i; + h__[i__4].r = q__1.r, h__[i__4].i = q__1.i; + i__4 = k + 1 + j * h_dim1; + i__5 = k + 1 + j * h_dim1; + q__2.r = sum.r * v2.r - sum.i * v2.i, q__2.i = sum.r * v2.i + + sum.i * v2.r; + q__1.r = h__[i__5].r - q__2.r, q__1.i = h__[i__5].i - q__2.i; + h__[i__4].r = q__1.r, h__[i__4].i = q__1.i; +/* L60: */ + } + +/* + Apply G from the right to transform the columns of the + matrix in rows I1 to min(K+2,I). + + Computing MIN +*/ + i__4 = k + 2; + i__3 = min(i__4,i__); + for (j = i1; j <= i__3; ++j) { + i__4 = j + k * h_dim1; + q__2.r = t1.r * h__[i__4].r - t1.i * h__[i__4].i, q__2.i = + t1.r * h__[i__4].i + t1.i * h__[i__4].r; + i__5 = j + (k + 1) * h_dim1; + q__3.r = t2 * h__[i__5].r, q__3.i = t2 * h__[i__5].i; + q__1.r = q__2.r + q__3.r, q__1.i = q__2.i + q__3.i; + sum.r = q__1.r, sum.i = q__1.i; + i__4 = j + k * h_dim1; + i__5 = j + k * h_dim1; + q__1.r = h__[i__5].r - sum.r, q__1.i = h__[i__5].i - sum.i; + h__[i__4].r = q__1.r, h__[i__4].i = q__1.i; + i__4 = j + (k + 1) * h_dim1; + i__5 = j + (k + 1) * h_dim1; + r_cnjg(&q__3, &v2); + q__2.r = sum.r * q__3.r - sum.i * q__3.i, q__2.i = sum.r * + q__3.i + sum.i * q__3.r; + q__1.r = h__[i__5].r - q__2.r, q__1.i = h__[i__5].i - q__2.i; + h__[i__4].r = q__1.r, h__[i__4].i = q__1.i; +/* L70: */ + } + + if (*wantz) { + +/* Accumulate transformations in the matrix Z */ + + i__3 = *ihiz; + for (j = *iloz; j <= i__3; ++j) { + i__4 = j + k * z_dim1; + q__2.r = t1.r * z__[i__4].r - t1.i * z__[i__4].i, q__2.i = + t1.r * z__[i__4].i + t1.i * z__[i__4].r; + i__5 = j + (k + 1) * z_dim1; + q__3.r = t2 * z__[i__5].r, q__3.i = t2 * z__[i__5].i; + q__1.r = q__2.r + q__3.r, q__1.i = q__2.i + q__3.i; + sum.r = q__1.r, sum.i = q__1.i; + i__4 = j + k * z_dim1; + i__5 = j + k * z_dim1; + q__1.r = z__[i__5].r - sum.r, q__1.i = z__[i__5].i - + sum.i; + z__[i__4].r = q__1.r, z__[i__4].i = q__1.i; + i__4 = j + (k + 1) * z_dim1; + i__5 = j + (k + 1) * z_dim1; + r_cnjg(&q__3, &v2); + q__2.r = sum.r * q__3.r - sum.i * q__3.i, q__2.i = sum.r * + q__3.i + sum.i * q__3.r; + q__1.r = z__[i__5].r - q__2.r, q__1.i = z__[i__5].i - + q__2.i; + z__[i__4].r = q__1.r, z__[i__4].i = q__1.i; +/* L80: */ + } + } + + if (k == m && m > l) { + +/* + If the QR step was started at row M > L because two + consecutive small subdiagonals were found, then extra + scaling must be performed to ensure that H(M,M-1) remains + real. +*/ + + q__1.r = 1.f - t1.r, q__1.i = 0.f - t1.i; + temp.r = q__1.r, temp.i = q__1.i; + r__1 = c_abs(&temp); + q__1.r = temp.r / r__1, q__1.i = temp.i / r__1; + temp.r = q__1.r, temp.i = q__1.i; + i__3 = m + 1 + m * h_dim1; + i__4 = m + 1 + m * h_dim1; + r_cnjg(&q__2, &temp); + q__1.r = h__[i__4].r * q__2.r - h__[i__4].i * q__2.i, q__1.i = + h__[i__4].r * q__2.i + h__[i__4].i * q__2.r; + h__[i__3].r = q__1.r, h__[i__3].i = q__1.i; + if (m + 2 <= i__) { + i__3 = m + 2 + (m + 1) * h_dim1; + i__4 = m + 2 + (m + 1) * h_dim1; + q__1.r = h__[i__4].r * temp.r - h__[i__4].i * temp.i, + q__1.i = h__[i__4].r * temp.i + h__[i__4].i * + temp.r; + h__[i__3].r = q__1.r, h__[i__3].i = q__1.i; + } + i__3 = i__; + for (j = m; j <= i__3; ++j) { + if (j != m + 1) { + if (i2 > j) { + i__4 = i2 - j; + cscal_(&i__4, &temp, &h__[j + (j + 1) * h_dim1], + ldh); + } + i__4 = j - i1; + r_cnjg(&q__1, &temp); + cscal_(&i__4, &q__1, &h__[i1 + j * h_dim1], &c__1); + if (*wantz) { + r_cnjg(&q__1, &temp); + cscal_(&nz, &q__1, &z__[*iloz + j * z_dim1], & + c__1); + } + } +/* L90: */ + } + } +/* L100: */ + } + +/* Ensure that H(I,I-1) is real. */ + + i__2 = i__ + (i__ - 1) * h_dim1; + temp.r = h__[i__2].r, temp.i = h__[i__2].i; + if (r_imag(&temp) != 0.f) { + rtemp = c_abs(&temp); + i__2 = i__ + (i__ - 1) * h_dim1; + h__[i__2].r = rtemp, h__[i__2].i = 0.f; + q__1.r = temp.r / rtemp, q__1.i = temp.i / rtemp; + temp.r = q__1.r, temp.i = q__1.i; + if (i2 > i__) { + i__2 = i2 - i__; + r_cnjg(&q__1, &temp); + cscal_(&i__2, &q__1, &h__[i__ + (i__ + 1) * h_dim1], ldh); + } + i__2 = i__ - i1; + cscal_(&i__2, &temp, &h__[i1 + i__ * h_dim1], &c__1); + if (*wantz) { + cscal_(&nz, &temp, &z__[*iloz + i__ * z_dim1], &c__1); + } + } + +/* L110: */ + } + +/* Failure to converge in remaining number of iterations */ + + *info = i__; + return 0; + +L120: + +/* H(I,I-1) is negligible: one eigenvalue has converged. */ + + i__1 = i__; + i__2 = i__ + i__ * h_dim1; + w[i__1].r = h__[i__2].r, w[i__1].i = h__[i__2].i; + +/* + Decrement number of remaining iterations, and return to start of + the main loop with new value of I. +*/ + + itn -= its; + i__ = l - 1; + goto L10; + +L130: + return 0; + +/* End of CLAHQR */ + +} /* clahqr_ */ + +/* Subroutine */ int clahrd_(integer *n, integer *k, integer *nb, complex *a, + integer *lda, complex *tau, complex *t, integer *ldt, complex *y, + integer *ldy) +{ + /* System generated locals */ + integer a_dim1, a_offset, t_dim1, t_offset, y_dim1, y_offset, i__1, i__2, + i__3; + complex q__1; + + /* Local variables */ + static integer i__; + static complex ei; + extern /* Subroutine */ int cscal_(integer *, complex *, complex *, + integer *), cgemv_(char *, integer *, integer *, complex *, + complex *, integer *, complex *, integer *, complex *, complex *, + integer *), ccopy_(integer *, complex *, integer *, + complex *, integer *), caxpy_(integer *, complex *, complex *, + integer *, complex *, integer *), ctrmv_(char *, char *, char *, + integer *, complex *, integer *, complex *, integer *), clarfg_(integer *, complex *, complex *, integer + *, complex *), clacgv_(integer *, complex *, integer *); + + +/* + -- LAPACK auxiliary routine (version 3.0) -- + Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd., + Courant Institute, Argonne National Lab, and Rice University + June 30, 1999 + + + Purpose + ======= + + CLAHRD reduces the first NB columns of a complex general n-by-(n-k+1) + matrix A so that elements below the k-th subdiagonal are zero. The + reduction is performed by a unitary similarity transformation + Q' * A * Q. The routine returns the matrices V and T which determine + Q as a block reflector I - V*T*V', and also the matrix Y = A * V * T. + + This is an auxiliary routine called by CGEHRD. + + Arguments + ========= + + N (input) INTEGER + The order of the matrix A. + + K (input) INTEGER + The offset for the reduction. Elements below the k-th + subdiagonal in the first NB columns are reduced to zero. + + NB (input) INTEGER + The number of columns to be reduced. + + A (input/output) COMPLEX array, dimension (LDA,N-K+1) + On entry, the n-by-(n-k+1) general matrix A. + On exit, the elements on and above the k-th subdiagonal in + the first NB columns are overwritten with the corresponding + elements of the reduced matrix; the elements below the k-th + subdiagonal, with the array TAU, represent the matrix Q as a + product of elementary reflectors. The other columns of A are + unchanged. See Further Details. + + LDA (input) INTEGER + The leading dimension of the array A. LDA >= max(1,N). + + TAU (output) COMPLEX array, dimension (NB) + The scalar factors of the elementary reflectors. See Further + Details. + + T (output) COMPLEX array, dimension (LDT,NB) + The upper triangular matrix T. + + LDT (input) INTEGER + The leading dimension of the array T. LDT >= NB. + + Y (output) COMPLEX array, dimension (LDY,NB) + The n-by-nb matrix Y. + + LDY (input) INTEGER + The leading dimension of the array Y. LDY >= max(1,N). + + Further Details + =============== + + The matrix Q is represented as a product of nb elementary reflectors + + Q = H(1) H(2) . . . H(nb). + + Each H(i) has the form + + H(i) = I - tau * v * v' + + where tau is a complex scalar, and v is a complex vector with + v(1:i+k-1) = 0, v(i+k) = 1; v(i+k+1:n) is stored on exit in + A(i+k+1:n,i), and tau in TAU(i). + + The elements of the vectors v together form the (n-k+1)-by-nb matrix + V which is needed, with T and Y, to apply the transformation to the + unreduced part of the matrix, using an update of the form: + A := (I - V*T*V') * (A - Y*V'). + + The contents of A on exit are illustrated by the following example + with n = 7, k = 3 and nb = 2: + + ( a h a a a ) + ( a h a a a ) + ( a h a a a ) + ( h h a a a ) + ( v1 h a a a ) + ( v1 v2 a a a ) + ( v1 v2 a a a ) + + where a denotes an element of the original matrix A, h denotes a + modified element of the upper Hessenberg matrix H, and vi denotes an + element of the vector defining H(i). + + ===================================================================== + + + Quick return if possible +*/ + + /* Parameter adjustments */ + --tau; + a_dim1 = *lda; + a_offset = 1 + a_dim1; + a -= a_offset; + t_dim1 = *ldt; + t_offset = 1 + t_dim1; + t -= t_offset; + y_dim1 = *ldy; + y_offset = 1 + y_dim1; + y -= y_offset; + + /* Function Body */ + if (*n <= 1) { + return 0; + } + + i__1 = *nb; + for (i__ = 1; i__ <= i__1; ++i__) { + if (i__ > 1) { + +/* + Update A(1:n,i) + + Compute i-th column of A - Y * V' +*/ + + i__2 = i__ - 1; + clacgv_(&i__2, &a[*k + i__ - 1 + a_dim1], lda); + i__2 = i__ - 1; + q__1.r = -1.f, q__1.i = -0.f; + cgemv_("No transpose", n, &i__2, &q__1, &y[y_offset], ldy, &a[*k + + i__ - 1 + a_dim1], lda, &c_b56, &a[i__ * a_dim1 + 1], & + c__1); + i__2 = i__ - 1; + clacgv_(&i__2, &a[*k + i__ - 1 + a_dim1], lda); + +/* + Apply I - V * T' * V' to this column (call it b) from the + left, using the last column of T as workspace + + Let V = ( V1 ) and b = ( b1 ) (first I-1 rows) + ( V2 ) ( b2 ) + + where V1 is unit lower triangular + + w := V1' * b1 +*/ + + i__2 = i__ - 1; + ccopy_(&i__2, &a[*k + 1 + i__ * a_dim1], &c__1, &t[*nb * t_dim1 + + 1], &c__1); + i__2 = i__ - 1; + ctrmv_("Lower", "Conjugate transpose", "Unit", &i__2, &a[*k + 1 + + a_dim1], lda, &t[*nb * t_dim1 + 1], &c__1); + +/* w := w + V2'*b2 */ + + i__2 = *n - *k - i__ + 1; + i__3 = i__ - 1; + cgemv_("Conjugate transpose", &i__2, &i__3, &c_b56, &a[*k + i__ + + a_dim1], lda, &a[*k + i__ + i__ * a_dim1], &c__1, &c_b56, + &t[*nb * t_dim1 + 1], &c__1); + +/* w := T'*w */ + + i__2 = i__ - 1; + ctrmv_("Upper", "Conjugate transpose", "Non-unit", &i__2, &t[ + t_offset], ldt, &t[*nb * t_dim1 + 1], &c__1); + +/* b2 := b2 - V2*w */ + + i__2 = *n - *k - i__ + 1; + i__3 = i__ - 1; + q__1.r = -1.f, q__1.i = -0.f; + cgemv_("No transpose", &i__2, &i__3, &q__1, &a[*k + i__ + a_dim1], + lda, &t[*nb * t_dim1 + 1], &c__1, &c_b56, &a[*k + i__ + + i__ * a_dim1], &c__1); + +/* b1 := b1 - V1*w */ + + i__2 = i__ - 1; + ctrmv_("Lower", "No transpose", "Unit", &i__2, &a[*k + 1 + a_dim1] + , lda, &t[*nb * t_dim1 + 1], &c__1); + i__2 = i__ - 1; + q__1.r = -1.f, q__1.i = -0.f; + caxpy_(&i__2, &q__1, &t[*nb * t_dim1 + 1], &c__1, &a[*k + 1 + i__ + * a_dim1], &c__1); + + i__2 = *k + i__ - 1 + (i__ - 1) * a_dim1; + a[i__2].r = ei.r, a[i__2].i = ei.i; + } + +/* + Generate the elementary reflector H(i) to annihilate + A(k+i+1:n,i) +*/ + + i__2 = *k + i__ + i__ * a_dim1; + ei.r = a[i__2].r, ei.i = a[i__2].i; + i__2 = *n - *k - i__ + 1; +/* Computing MIN */ + i__3 = *k + i__ + 1; + clarfg_(&i__2, &ei, &a[min(i__3,*n) + i__ * a_dim1], &c__1, &tau[i__]) + ; + i__2 = *k + i__ + i__ * a_dim1; + a[i__2].r = 1.f, a[i__2].i = 0.f; + +/* Compute Y(1:n,i) */ + + i__2 = *n - *k - i__ + 1; + cgemv_("No transpose", n, &i__2, &c_b56, &a[(i__ + 1) * a_dim1 + 1], + lda, &a[*k + i__ + i__ * a_dim1], &c__1, &c_b55, &y[i__ * + y_dim1 + 1], &c__1); + i__2 = *n - *k - i__ + 1; + i__3 = i__ - 1; + cgemv_("Conjugate transpose", &i__2, &i__3, &c_b56, &a[*k + i__ + + a_dim1], lda, &a[*k + i__ + i__ * a_dim1], &c__1, &c_b55, &t[ + i__ * t_dim1 + 1], &c__1); + i__2 = i__ - 1; + q__1.r = -1.f, q__1.i = -0.f; + cgemv_("No transpose", n, &i__2, &q__1, &y[y_offset], ldy, &t[i__ * + t_dim1 + 1], &c__1, &c_b56, &y[i__ * y_dim1 + 1], &c__1); + cscal_(n, &tau[i__], &y[i__ * y_dim1 + 1], &c__1); + +/* Compute T(1:i,i) */ + + i__2 = i__ - 1; + i__3 = i__; + q__1.r = -tau[i__3].r, q__1.i = -tau[i__3].i; + cscal_(&i__2, &q__1, &t[i__ * t_dim1 + 1], &c__1); + i__2 = i__ - 1; + ctrmv_("Upper", "No transpose", "Non-unit", &i__2, &t[t_offset], ldt, + &t[i__ * t_dim1 + 1], &c__1) + ; + i__2 = i__ + i__ * t_dim1; + i__3 = i__; + t[i__2].r = tau[i__3].r, t[i__2].i = tau[i__3].i; + +/* L10: */ + } + i__1 = *k + *nb + *nb * a_dim1; + a[i__1].r = ei.r, a[i__1].i = ei.i; + + return 0; + +/* End of CLAHRD */ + +} /* clahrd_ */ + +doublereal clange_(char *norm, integer *m, integer *n, complex *a, integer * + lda, real *work) +{ + /* System generated locals */ + integer a_dim1, a_offset, i__1, i__2; + real ret_val, r__1, r__2; + + /* Builtin functions */ + double c_abs(complex *), sqrt(doublereal); + + /* Local variables */ + static integer i__, j; + static real sum, scale; + extern logical lsame_(char *, char *); + static real value; + extern /* Subroutine */ int classq_(integer *, complex *, integer *, real + *, real *); + + +/* + -- LAPACK auxiliary routine (version 3.0) -- + Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd., + Courant Institute, Argonne National Lab, and Rice University + October 31, 1992 + + + Purpose + ======= + + CLANGE returns the value of the one norm, or the Frobenius norm, or + the infinity norm, or the element of largest absolute value of a + complex matrix A. + + Description + =========== + + CLANGE returns the value + + CLANGE = ( max(abs(A(i,j))), NORM = 'M' or 'm' + ( + ( norm1(A), NORM = '1', 'O' or 'o' + ( + ( normI(A), NORM = 'I' or 'i' + ( + ( normF(A), NORM = 'F', 'f', 'E' or 'e' + + where norm1 denotes the one norm of a matrix (maximum column sum), + normI denotes the infinity norm of a matrix (maximum row sum) and + normF denotes the Frobenius norm of a matrix (square root of sum of + squares). Note that max(abs(A(i,j))) is not a matrix norm. + + Arguments + ========= + + NORM (input) CHARACTER*1 + Specifies the value to be returned in CLANGE as described + above. + + M (input) INTEGER + The number of rows of the matrix A. M >= 0. When M = 0, + CLANGE is set to zero. + + N (input) INTEGER + The number of columns of the matrix A. N >= 0. When N = 0, + CLANGE is set to zero. + + A (input) COMPLEX array, dimension (LDA,N) + The m by n matrix A. + + LDA (input) INTEGER + The leading dimension of the array A. LDA >= max(M,1). + + WORK (workspace) REAL array, dimension (LWORK), + where LWORK >= M when NORM = 'I'; otherwise, WORK is not + referenced. + + ===================================================================== +*/ + + + /* Parameter adjustments */ + a_dim1 = *lda; + a_offset = 1 + a_dim1; + a -= a_offset; + --work; + + /* Function Body */ + if (min(*m,*n) == 0) { + value = 0.f; + } else if (lsame_(norm, "M")) { + +/* Find max(abs(A(i,j))). */ + + value = 0.f; + i__1 = *n; + for (j = 1; j <= i__1; ++j) { + i__2 = *m; + for (i__ = 1; i__ <= i__2; ++i__) { +/* Computing MAX */ + r__1 = value, r__2 = c_abs(&a[i__ + j * a_dim1]); + value = dmax(r__1,r__2); +/* L10: */ + } +/* L20: */ + } + } else if (lsame_(norm, "O") || *(unsigned char *) + norm == '1') { + +/* Find norm1(A). */ + + value = 0.f; + i__1 = *n; + for (j = 1; j <= i__1; ++j) { + sum = 0.f; + i__2 = *m; + for (i__ = 1; i__ <= i__2; ++i__) { + sum += c_abs(&a[i__ + j * a_dim1]); +/* L30: */ + } + value = dmax(value,sum); +/* L40: */ + } + } else if (lsame_(norm, "I")) { + +/* Find normI(A). */ + + i__1 = *m; + for (i__ = 1; i__ <= i__1; ++i__) { + work[i__] = 0.f; +/* L50: */ + } + i__1 = *n; + for (j = 1; j <= i__1; ++j) { + i__2 = *m; + for (i__ = 1; i__ <= i__2; ++i__) { + work[i__] += c_abs(&a[i__ + j * a_dim1]); +/* L60: */ + } +/* L70: */ + } + value = 0.f; + i__1 = *m; + for (i__ = 1; i__ <= i__1; ++i__) { +/* Computing MAX */ + r__1 = value, r__2 = work[i__]; + value = dmax(r__1,r__2); +/* L80: */ + } + } else if (lsame_(norm, "F") || lsame_(norm, "E")) { + +/* Find normF(A). */ + + scale = 0.f; + sum = 1.f; + i__1 = *n; + for (j = 1; j <= i__1; ++j) { + classq_(m, &a[j * a_dim1 + 1], &c__1, &scale, &sum); +/* L90: */ + } + value = scale * sqrt(sum); + } + + ret_val = value; + return ret_val; + +/* End of CLANGE */ + +} /* clange_ */ + +doublereal clanhe_(char *norm, char *uplo, integer *n, complex *a, integer * + lda, real *work) +{ + /* System generated locals */ + integer a_dim1, a_offset, i__1, i__2; + real ret_val, r__1, r__2, r__3; + + /* Builtin functions */ + double c_abs(complex *), sqrt(doublereal); + + /* Local variables */ + static integer i__, j; + static real sum, absa, scale; + extern logical lsame_(char *, char *); + static real value; + extern /* Subroutine */ int classq_(integer *, complex *, integer *, real + *, real *); + + +/* + -- LAPACK auxiliary routine (version 3.0) -- + Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd., + Courant Institute, Argonne National Lab, and Rice University + October 31, 1992 + + + Purpose + ======= + + CLANHE returns the value of the one norm, or the Frobenius norm, or + the infinity norm, or the element of largest absolute value of a + complex hermitian matrix A. + + Description + =========== + + CLANHE returns the value + + CLANHE = ( max(abs(A(i,j))), NORM = 'M' or 'm' + ( + ( norm1(A), NORM = '1', 'O' or 'o' + ( + ( normI(A), NORM = 'I' or 'i' + ( + ( normF(A), NORM = 'F', 'f', 'E' or 'e' + + where norm1 denotes the one norm of a matrix (maximum column sum), + normI denotes the infinity norm of a matrix (maximum row sum) and + normF denotes the Frobenius norm of a matrix (square root of sum of + squares). Note that max(abs(A(i,j))) is not a matrix norm. + + Arguments + ========= + + NORM (input) CHARACTER*1 + Specifies the value to be returned in CLANHE as described + above. + + UPLO (input) CHARACTER*1 + Specifies whether the upper or lower triangular part of the + hermitian matrix A is to be referenced. + = 'U': Upper triangular part of A is referenced + = 'L': Lower triangular part of A is referenced + + N (input) INTEGER + The order of the matrix A. N >= 0. When N = 0, CLANHE is + set to zero. + + A (input) COMPLEX array, dimension (LDA,N) + The hermitian matrix A. If UPLO = 'U', the leading n by n + upper triangular part of A contains the upper triangular part + of the matrix A, and the strictly lower triangular part of A + is not referenced. If UPLO = 'L', the leading n by n lower + triangular part of A contains the lower triangular part of + the matrix A, and the strictly upper triangular part of A is + not referenced. Note that the imaginary parts of the diagonal + elements need not be set and are assumed to be zero. + + LDA (input) INTEGER + The leading dimension of the array A. LDA >= max(N,1). + + WORK (workspace) REAL array, dimension (LWORK), + where LWORK >= N when NORM = 'I' or '1' or 'O'; otherwise, + WORK is not referenced. + + ===================================================================== +*/ + + + /* Parameter adjustments */ + a_dim1 = *lda; + a_offset = 1 + a_dim1; + a -= a_offset; + --work; + + /* Function Body */ + if (*n == 0) { + value = 0.f; + } else if (lsame_(norm, "M")) { + +/* Find max(abs(A(i,j))). */ + + value = 0.f; + if (lsame_(uplo, "U")) { + i__1 = *n; + for (j = 1; j <= i__1; ++j) { + i__2 = j - 1; + for (i__ = 1; i__ <= i__2; ++i__) { +/* Computing MAX */ + r__1 = value, r__2 = c_abs(&a[i__ + j * a_dim1]); + value = dmax(r__1,r__2); +/* L10: */ + } +/* Computing MAX */ + i__2 = j + j * a_dim1; + r__2 = value, r__3 = (r__1 = a[i__2].r, dabs(r__1)); + value = dmax(r__2,r__3); +/* L20: */ + } + } else { + i__1 = *n; + for (j = 1; j <= i__1; ++j) { +/* Computing MAX */ + i__2 = j + j * a_dim1; + r__2 = value, r__3 = (r__1 = a[i__2].r, dabs(r__1)); + value = dmax(r__2,r__3); + i__2 = *n; + for (i__ = j + 1; i__ <= i__2; ++i__) { +/* Computing MAX */ + r__1 = value, r__2 = c_abs(&a[i__ + j * a_dim1]); + value = dmax(r__1,r__2); +/* L30: */ + } +/* L40: */ + } + } + } else if (lsame_(norm, "I") || lsame_(norm, "O") || *(unsigned char *)norm == '1') { + +/* Find normI(A) ( = norm1(A), since A is hermitian). */ + + value = 0.f; + if (lsame_(uplo, "U")) { + i__1 = *n; + for (j = 1; j <= i__1; ++j) { + sum = 0.f; + i__2 = j - 1; + for (i__ = 1; i__ <= i__2; ++i__) { + absa = c_abs(&a[i__ + j * a_dim1]); + sum += absa; + work[i__] += absa; +/* L50: */ + } + i__2 = j + j * a_dim1; + work[j] = sum + (r__1 = a[i__2].r, dabs(r__1)); +/* L60: */ + } + i__1 = *n; + for (i__ = 1; i__ <= i__1; ++i__) { +/* Computing MAX */ + r__1 = value, r__2 = work[i__]; + value = dmax(r__1,r__2); +/* L70: */ + } + } else { + i__1 = *n; + for (i__ = 1; i__ <= i__1; ++i__) { + work[i__] = 0.f; +/* L80: */ + } + i__1 = *n; + for (j = 1; j <= i__1; ++j) { + i__2 = j + j * a_dim1; + sum = work[j] + (r__1 = a[i__2].r, dabs(r__1)); + i__2 = *n; + for (i__ = j + 1; i__ <= i__2; ++i__) { + absa = c_abs(&a[i__ + j * a_dim1]); + sum += absa; + work[i__] += absa; +/* L90: */ + } + value = dmax(value,sum); +/* L100: */ + } + } + } else if (lsame_(norm, "F") || lsame_(norm, "E")) { + +/* Find normF(A). */ + + scale = 0.f; + sum = 1.f; + if (lsame_(uplo, "U")) { + i__1 = *n; + for (j = 2; j <= i__1; ++j) { + i__2 = j - 1; + classq_(&i__2, &a[j * a_dim1 + 1], &c__1, &scale, &sum); +/* L110: */ + } + } else { + i__1 = *n - 1; + for (j = 1; j <= i__1; ++j) { + i__2 = *n - j; + classq_(&i__2, &a[j + 1 + j * a_dim1], &c__1, &scale, &sum); +/* L120: */ + } + } + sum *= 2; + i__1 = *n; + for (i__ = 1; i__ <= i__1; ++i__) { + i__2 = i__ + i__ * a_dim1; + if (a[i__2].r != 0.f) { + i__2 = i__ + i__ * a_dim1; + absa = (r__1 = a[i__2].r, dabs(r__1)); + if (scale < absa) { +/* Computing 2nd power */ + r__1 = scale / absa; + sum = sum * (r__1 * r__1) + 1.f; + scale = absa; + } else { +/* Computing 2nd power */ + r__1 = absa / scale; + sum += r__1 * r__1; + } + } +/* L130: */ + } + value = scale * sqrt(sum); + } + + ret_val = value; + return ret_val; + +/* End of CLANHE */ + +} /* clanhe_ */ + +doublereal clanhs_(char *norm, integer *n, complex *a, integer *lda, real * + work) +{ + /* System generated locals */ + integer a_dim1, a_offset, i__1, i__2, i__3, i__4; + real ret_val, r__1, r__2; + + /* Builtin functions */ + double c_abs(complex *), sqrt(doublereal); + + /* Local variables */ + static integer i__, j; + static real sum, scale; + extern logical lsame_(char *, char *); + static real value; + extern /* Subroutine */ int classq_(integer *, complex *, integer *, real + *, real *); + + +/* + -- LAPACK auxiliary routine (version 3.0) -- + Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd., + Courant Institute, Argonne National Lab, and Rice University + October 31, 1992 + + + Purpose + ======= + + CLANHS returns the value of the one norm, or the Frobenius norm, or + the infinity norm, or the element of largest absolute value of a + Hessenberg matrix A. + + Description + =========== + + CLANHS returns the value + + CLANHS = ( max(abs(A(i,j))), NORM = 'M' or 'm' + ( + ( norm1(A), NORM = '1', 'O' or 'o' + ( + ( normI(A), NORM = 'I' or 'i' + ( + ( normF(A), NORM = 'F', 'f', 'E' or 'e' + + where norm1 denotes the one norm of a matrix (maximum column sum), + normI denotes the infinity norm of a matrix (maximum row sum) and + normF denotes the Frobenius norm of a matrix (square root of sum of + squares). Note that max(abs(A(i,j))) is not a matrix norm. + + Arguments + ========= + + NORM (input) CHARACTER*1 + Specifies the value to be returned in CLANHS as described + above. + + N (input) INTEGER + The order of the matrix A. N >= 0. When N = 0, CLANHS is + set to zero. + + A (input) COMPLEX array, dimension (LDA,N) + The n by n upper Hessenberg matrix A; the part of A below the + first sub-diagonal is not referenced. + + LDA (input) INTEGER + The leading dimension of the array A. LDA >= max(N,1). + + WORK (workspace) REAL array, dimension (LWORK), + where LWORK >= N when NORM = 'I'; otherwise, WORK is not + referenced. + + ===================================================================== +*/ + + + /* Parameter adjustments */ + a_dim1 = *lda; + a_offset = 1 + a_dim1; + a -= a_offset; + --work; + + /* Function Body */ + if (*n == 0) { + value = 0.f; + } else if (lsame_(norm, "M")) { + +/* Find max(abs(A(i,j))). */ + + value = 0.f; + i__1 = *n; + for (j = 1; j <= i__1; ++j) { +/* Computing MIN */ + i__3 = *n, i__4 = j + 1; + i__2 = min(i__3,i__4); + for (i__ = 1; i__ <= i__2; ++i__) { +/* Computing MAX */ + r__1 = value, r__2 = c_abs(&a[i__ + j * a_dim1]); + value = dmax(r__1,r__2); +/* L10: */ + } +/* L20: */ + } + } else if (lsame_(norm, "O") || *(unsigned char *) + norm == '1') { + +/* Find norm1(A). */ + + value = 0.f; + i__1 = *n; + for (j = 1; j <= i__1; ++j) { + sum = 0.f; +/* Computing MIN */ + i__3 = *n, i__4 = j + 1; + i__2 = min(i__3,i__4); + for (i__ = 1; i__ <= i__2; ++i__) { + sum += c_abs(&a[i__ + j * a_dim1]); +/* L30: */ + } + value = dmax(value,sum); +/* L40: */ + } + } else if (lsame_(norm, "I")) { + +/* Find normI(A). */ + + i__1 = *n; + for (i__ = 1; i__ <= i__1; ++i__) { + work[i__] = 0.f; +/* L50: */ + } + i__1 = *n; + for (j = 1; j <= i__1; ++j) { +/* Computing MIN */ + i__3 = *n, i__4 = j + 1; + i__2 = min(i__3,i__4); + for (i__ = 1; i__ <= i__2; ++i__) { + work[i__] += c_abs(&a[i__ + j * a_dim1]); +/* L60: */ + } +/* L70: */ + } + value = 0.f; + i__1 = *n; + for (i__ = 1; i__ <= i__1; ++i__) { +/* Computing MAX */ + r__1 = value, r__2 = work[i__]; + value = dmax(r__1,r__2); +/* L80: */ + } + } else if (lsame_(norm, "F") || lsame_(norm, "E")) { + +/* Find normF(A). */ + + scale = 0.f; + sum = 1.f; + i__1 = *n; + for (j = 1; j <= i__1; ++j) { +/* Computing MIN */ + i__3 = *n, i__4 = j + 1; + i__2 = min(i__3,i__4); + classq_(&i__2, &a[j * a_dim1 + 1], &c__1, &scale, &sum); +/* L90: */ + } + value = scale * sqrt(sum); + } + + ret_val = value; + return ret_val; + +/* End of CLANHS */ + +} /* clanhs_ */ + +/* Subroutine */ int clarcm_(integer *m, integer *n, real *a, integer *lda, + complex *b, integer *ldb, complex *c__, integer *ldc, real *rwork) +{ + /* System generated locals */ + integer a_dim1, a_offset, b_dim1, b_offset, c_dim1, c_offset, i__1, i__2, + i__3, i__4, i__5; + real r__1; + complex q__1; + + /* Builtin functions */ + double r_imag(complex *); + + /* Local variables */ + static integer i__, j, l; + extern /* Subroutine */ int sgemm_(char *, char *, integer *, integer *, + integer *, real *, real *, integer *, real *, integer *, real *, + real *, integer *); + + +/* + -- LAPACK auxiliary routine (version 3.0) -- + Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd., + Courant Institute, Argonne National Lab, and Rice University + June 30, 1999 + + + Purpose + ======= + + CLARCM performs a very simple matrix-matrix multiplication: + C := A * B, + where A is M by M and real; B is M by N and complex; + C is M by N and complex. + + Arguments + ========= + + M (input) INTEGER + The number of rows of the matrix A and of the matrix C. + M >= 0. + + N (input) INTEGER + The number of columns and rows of the matrix B and + the number of columns of the matrix C. + N >= 0. + + A (input) REAL array, dimension (LDA, M) + A contains the M by M matrix A. + + LDA (input) INTEGER + The leading dimension of the array A. LDA >=max(1,M). + + B (input) REAL array, dimension (LDB, N) + B contains the M by N matrix B. + + LDB (input) INTEGER + The leading dimension of the array B. LDB >=max(1,M). + + C (input) COMPLEX array, dimension (LDC, N) + C contains the M by N matrix C. + + LDC (input) INTEGER + The leading dimension of the array C. LDC >=max(1,M). + + RWORK (workspace) REAL array, dimension (2*M*N) + + ===================================================================== + + + Quick return if possible. +*/ + + /* Parameter adjustments */ + a_dim1 = *lda; + a_offset = 1 + a_dim1; + a -= a_offset; + b_dim1 = *ldb; + b_offset = 1 + b_dim1; + b -= b_offset; + c_dim1 = *ldc; + c_offset = 1 + c_dim1; + c__ -= c_offset; + --rwork; + + /* Function Body */ + if (*m == 0 || *n == 0) { + return 0; + } + + i__1 = *n; + for (j = 1; j <= i__1; ++j) { + i__2 = *m; + for (i__ = 1; i__ <= i__2; ++i__) { + i__3 = i__ + j * b_dim1; + rwork[(j - 1) * *m + i__] = b[i__3].r; +/* L10: */ + } +/* L20: */ + } + + l = *m * *n + 1; + sgemm_("N", "N", m, n, m, &c_b871, &a[a_offset], lda, &rwork[1], m, & + c_b1101, &rwork[l], m); + i__1 = *n; + for (j = 1; j <= i__1; ++j) { + i__2 = *m; + for (i__ = 1; i__ <= i__2; ++i__) { + i__3 = i__ + j * c_dim1; + i__4 = l + (j - 1) * *m + i__ - 1; + c__[i__3].r = rwork[i__4], c__[i__3].i = 0.f; +/* L30: */ + } +/* L40: */ + } + + i__1 = *n; + for (j = 1; j <= i__1; ++j) { + i__2 = *m; + for (i__ = 1; i__ <= i__2; ++i__) { + rwork[(j - 1) * *m + i__] = r_imag(&b[i__ + j * b_dim1]); +/* L50: */ + } +/* L60: */ + } + sgemm_("N", "N", m, n, m, &c_b871, &a[a_offset], lda, &rwork[1], m, & + c_b1101, &rwork[l], m); + i__1 = *n; + for (j = 1; j <= i__1; ++j) { + i__2 = *m; + for (i__ = 1; i__ <= i__2; ++i__) { + i__3 = i__ + j * c_dim1; + i__4 = i__ + j * c_dim1; + r__1 = c__[i__4].r; + i__5 = l + (j - 1) * *m + i__ - 1; + q__1.r = r__1, q__1.i = rwork[i__5]; + c__[i__3].r = q__1.r, c__[i__3].i = q__1.i; +/* L70: */ + } +/* L80: */ + } + + return 0; + +/* End of CLARCM */ + +} /* clarcm_ */ + +/* Subroutine */ int clarf_(char *side, integer *m, integer *n, complex *v, + integer *incv, complex *tau, complex *c__, integer *ldc, complex * + work) +{ + /* System generated locals */ + integer c_dim1, c_offset; + complex q__1; + + /* Local variables */ + extern /* Subroutine */ int cgerc_(integer *, integer *, complex *, + complex *, integer *, complex *, integer *, complex *, integer *), + cgemv_(char *, integer *, integer *, complex *, complex *, + integer *, complex *, integer *, complex *, complex *, integer *); + extern logical lsame_(char *, char *); + + +/* + -- LAPACK auxiliary routine (version 3.0) -- + Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd., + Courant Institute, Argonne National Lab, and Rice University + September 30, 1994 + + + Purpose + ======= + + CLARF applies a complex elementary reflector H to a complex M-by-N + matrix C, from either the left or the right. H is represented in the + form + + H = I - tau * v * v' + + where tau is a complex scalar and v is a complex vector. + + If tau = 0, then H is taken to be the unit matrix. + + To apply H' (the conjugate transpose of H), supply conjg(tau) instead + tau. + + Arguments + ========= + + SIDE (input) CHARACTER*1 + = 'L': form H * C + = 'R': form C * H + + M (input) INTEGER + The number of rows of the matrix C. + + N (input) INTEGER + The number of columns of the matrix C. + + V (input) COMPLEX array, dimension + (1 + (M-1)*abs(INCV)) if SIDE = 'L' + or (1 + (N-1)*abs(INCV)) if SIDE = 'R' + The vector v in the representation of H. V is not used if + TAU = 0. + + INCV (input) INTEGER + The increment between elements of v. INCV <> 0. + + TAU (input) COMPLEX + The value tau in the representation of H. + + C (input/output) COMPLEX array, dimension (LDC,N) + On entry, the M-by-N matrix C. + On exit, C is overwritten by the matrix H * C if SIDE = 'L', + or C * H if SIDE = 'R'. + + LDC (input) INTEGER + The leading dimension of the array C. LDC >= max(1,M). + + WORK (workspace) COMPLEX array, dimension + (N) if SIDE = 'L' + or (M) if SIDE = 'R' + + ===================================================================== +*/ + + + /* Parameter adjustments */ + --v; + c_dim1 = *ldc; + c_offset = 1 + c_dim1; + c__ -= c_offset; + --work; + + /* Function Body */ + if (lsame_(side, "L")) { + +/* Form H * C */ + + if (tau->r != 0.f || tau->i != 0.f) { + +/* w := C' * v */ + + cgemv_("Conjugate transpose", m, n, &c_b56, &c__[c_offset], ldc, & + v[1], incv, &c_b55, &work[1], &c__1); + +/* C := C - v * w' */ + + q__1.r = -tau->r, q__1.i = -tau->i; + cgerc_(m, n, &q__1, &v[1], incv, &work[1], &c__1, &c__[c_offset], + ldc); + } + } else { + +/* Form C * H */ + + if (tau->r != 0.f || tau->i != 0.f) { + +/* w := C * v */ + + cgemv_("No transpose", m, n, &c_b56, &c__[c_offset], ldc, &v[1], + incv, &c_b55, &work[1], &c__1); + +/* C := C - w * v' */ + + q__1.r = -tau->r, q__1.i = -tau->i; + cgerc_(m, n, &q__1, &work[1], &c__1, &v[1], incv, &c__[c_offset], + ldc); + } + } + return 0; + +/* End of CLARF */ + +} /* clarf_ */ + +/* Subroutine */ int clarfb_(char *side, char *trans, char *direct, char * + storev, integer *m, integer *n, integer *k, complex *v, integer *ldv, + complex *t, integer *ldt, complex *c__, integer *ldc, complex *work, + integer *ldwork) +{ + /* System generated locals */ + integer c_dim1, c_offset, t_dim1, t_offset, v_dim1, v_offset, work_dim1, + work_offset, i__1, i__2, i__3, i__4, i__5; + complex q__1, q__2; + + /* Builtin functions */ + void r_cnjg(complex *, complex *); + + /* Local variables */ + static integer i__, j; + extern /* Subroutine */ int cgemm_(char *, char *, integer *, integer *, + integer *, complex *, complex *, integer *, complex *, integer *, + complex *, complex *, integer *); + extern logical lsame_(char *, char *); + extern /* Subroutine */ int ccopy_(integer *, complex *, integer *, + complex *, integer *), ctrmm_(char *, char *, char *, char *, + integer *, integer *, complex *, complex *, integer *, complex *, + integer *), clacgv_(integer *, + complex *, integer *); + static char transt[1]; + + +/* + -- LAPACK auxiliary routine (version 3.0) -- + Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd., + Courant Institute, Argonne National Lab, and Rice University + September 30, 1994 + + + Purpose + ======= + + CLARFB applies a complex block reflector H or its transpose H' to a + complex M-by-N matrix C, from either the left or the right. + + Arguments + ========= + + SIDE (input) CHARACTER*1 + = 'L': apply H or H' from the Left + = 'R': apply H or H' from the Right + + TRANS (input) CHARACTER*1 + = 'N': apply H (No transpose) + = 'C': apply H' (Conjugate transpose) + + DIRECT (input) CHARACTER*1 + Indicates how H is formed from a product of elementary + reflectors + = 'F': H = H(1) H(2) . . . H(k) (Forward) + = 'B': H = H(k) . . . H(2) H(1) (Backward) + + STOREV (input) CHARACTER*1 + Indicates how the vectors which define the elementary + reflectors are stored: + = 'C': Columnwise + = 'R': Rowwise + + M (input) INTEGER + The number of rows of the matrix C. + + N (input) INTEGER + The number of columns of the matrix C. + + K (input) INTEGER + The order of the matrix T (= the number of elementary + reflectors whose product defines the block reflector). + + V (input) COMPLEX array, dimension + (LDV,K) if STOREV = 'C' + (LDV,M) if STOREV = 'R' and SIDE = 'L' + (LDV,N) if STOREV = 'R' and SIDE = 'R' + The matrix V. See further details. + + LDV (input) INTEGER + The leading dimension of the array V. + If STOREV = 'C' and SIDE = 'L', LDV >= max(1,M); + if STOREV = 'C' and SIDE = 'R', LDV >= max(1,N); + if STOREV = 'R', LDV >= K. + + T (input) COMPLEX array, dimension (LDT,K) + The triangular K-by-K matrix T in the representation of the + block reflector. + + LDT (input) INTEGER + The leading dimension of the array T. LDT >= K. + + C (input/output) COMPLEX array, dimension (LDC,N) + On entry, the M-by-N matrix C. + On exit, C is overwritten by H*C or H'*C or C*H or C*H'. + + LDC (input) INTEGER + The leading dimension of the array C. LDC >= max(1,M). + + WORK (workspace) COMPLEX array, dimension (LDWORK,K) + + LDWORK (input) INTEGER + The leading dimension of the array WORK. + If SIDE = 'L', LDWORK >= max(1,N); + if SIDE = 'R', LDWORK >= max(1,M). + + ===================================================================== + + + Quick return if possible +*/ + + /* Parameter adjustments */ + v_dim1 = *ldv; + v_offset = 1 + v_dim1; + v -= v_offset; + t_dim1 = *ldt; + t_offset = 1 + t_dim1; + t -= t_offset; + c_dim1 = *ldc; + c_offset = 1 + c_dim1; + c__ -= c_offset; + work_dim1 = *ldwork; + work_offset = 1 + work_dim1; + work -= work_offset; + + /* Function Body */ + if (*m <= 0 || *n <= 0) { + return 0; + } + + if (lsame_(trans, "N")) { + *(unsigned char *)transt = 'C'; + } else { + *(unsigned char *)transt = 'N'; + } + + if (lsame_(storev, "C")) { + + if (lsame_(direct, "F")) { + +/* + Let V = ( V1 ) (first K rows) + ( V2 ) + where V1 is unit lower triangular. +*/ + + if (lsame_(side, "L")) { + +/* + Form H * C or H' * C where C = ( C1 ) + ( C2 ) + + W := C' * V = (C1'*V1 + C2'*V2) (stored in WORK) + + W := C1' +*/ + + i__1 = *k; + for (j = 1; j <= i__1; ++j) { + ccopy_(n, &c__[j + c_dim1], ldc, &work[j * work_dim1 + 1], + &c__1); + clacgv_(n, &work[j * work_dim1 + 1], &c__1); +/* L10: */ + } + +/* W := W * V1 */ + + ctrmm_("Right", "Lower", "No transpose", "Unit", n, k, &c_b56, + &v[v_offset], ldv, &work[work_offset], ldwork); + if (*m > *k) { + +/* W := W + C2'*V2 */ + + i__1 = *m - *k; + cgemm_("Conjugate transpose", "No transpose", n, k, &i__1, + &c_b56, &c__[*k + 1 + c_dim1], ldc, &v[*k + 1 + + v_dim1], ldv, &c_b56, &work[work_offset], ldwork); + } + +/* W := W * T' or W * T */ + + ctrmm_("Right", "Upper", transt, "Non-unit", n, k, &c_b56, &t[ + t_offset], ldt, &work[work_offset], ldwork); + +/* C := C - V * W' */ + + if (*m > *k) { + +/* C2 := C2 - V2 * W' */ + + i__1 = *m - *k; + q__1.r = -1.f, q__1.i = -0.f; + cgemm_("No transpose", "Conjugate transpose", &i__1, n, k, + &q__1, &v[*k + 1 + v_dim1], ldv, &work[ + work_offset], ldwork, &c_b56, &c__[*k + 1 + + c_dim1], ldc); + } + +/* W := W * V1' */ + + ctrmm_("Right", "Lower", "Conjugate transpose", "Unit", n, k, + &c_b56, &v[v_offset], ldv, &work[work_offset], ldwork); + +/* C1 := C1 - W' */ + + i__1 = *k; + for (j = 1; j <= i__1; ++j) { + i__2 = *n; + for (i__ = 1; i__ <= i__2; ++i__) { + i__3 = j + i__ * c_dim1; + i__4 = j + i__ * c_dim1; + r_cnjg(&q__2, &work[i__ + j * work_dim1]); + q__1.r = c__[i__4].r - q__2.r, q__1.i = c__[i__4].i - + q__2.i; + c__[i__3].r = q__1.r, c__[i__3].i = q__1.i; +/* L20: */ + } +/* L30: */ + } + + } else if (lsame_(side, "R")) { + +/* + Form C * H or C * H' where C = ( C1 C2 ) + + W := C * V = (C1*V1 + C2*V2) (stored in WORK) + + W := C1 +*/ + + i__1 = *k; + for (j = 1; j <= i__1; ++j) { + ccopy_(m, &c__[j * c_dim1 + 1], &c__1, &work[j * + work_dim1 + 1], &c__1); +/* L40: */ + } + +/* W := W * V1 */ + + ctrmm_("Right", "Lower", "No transpose", "Unit", m, k, &c_b56, + &v[v_offset], ldv, &work[work_offset], ldwork); + if (*n > *k) { + +/* W := W + C2 * V2 */ + + i__1 = *n - *k; + cgemm_("No transpose", "No transpose", m, k, &i__1, & + c_b56, &c__[(*k + 1) * c_dim1 + 1], ldc, &v[*k + + 1 + v_dim1], ldv, &c_b56, &work[work_offset], + ldwork); + } + +/* W := W * T or W * T' */ + + ctrmm_("Right", "Upper", trans, "Non-unit", m, k, &c_b56, &t[ + t_offset], ldt, &work[work_offset], ldwork); + +/* C := C - W * V' */ + + if (*n > *k) { + +/* C2 := C2 - W * V2' */ + + i__1 = *n - *k; + q__1.r = -1.f, q__1.i = -0.f; + cgemm_("No transpose", "Conjugate transpose", m, &i__1, k, + &q__1, &work[work_offset], ldwork, &v[*k + 1 + + v_dim1], ldv, &c_b56, &c__[(*k + 1) * c_dim1 + 1], + ldc); + } + +/* W := W * V1' */ + + ctrmm_("Right", "Lower", "Conjugate transpose", "Unit", m, k, + &c_b56, &v[v_offset], ldv, &work[work_offset], ldwork); + +/* C1 := C1 - W */ + + i__1 = *k; + for (j = 1; j <= i__1; ++j) { + i__2 = *m; + for (i__ = 1; i__ <= i__2; ++i__) { + i__3 = i__ + j * c_dim1; + i__4 = i__ + j * c_dim1; + i__5 = i__ + j * work_dim1; + q__1.r = c__[i__4].r - work[i__5].r, q__1.i = c__[ + i__4].i - work[i__5].i; + c__[i__3].r = q__1.r, c__[i__3].i = q__1.i; +/* L50: */ + } +/* L60: */ + } + } + + } else { + +/* + Let V = ( V1 ) + ( V2 ) (last K rows) + where V2 is unit upper triangular. +*/ + + if (lsame_(side, "L")) { + +/* + Form H * C or H' * C where C = ( C1 ) + ( C2 ) + + W := C' * V = (C1'*V1 + C2'*V2) (stored in WORK) + + W := C2' +*/ + + i__1 = *k; + for (j = 1; j <= i__1; ++j) { + ccopy_(n, &c__[*m - *k + j + c_dim1], ldc, &work[j * + work_dim1 + 1], &c__1); + clacgv_(n, &work[j * work_dim1 + 1], &c__1); +/* L70: */ + } + +/* W := W * V2 */ + + ctrmm_("Right", "Upper", "No transpose", "Unit", n, k, &c_b56, + &v[*m - *k + 1 + v_dim1], ldv, &work[work_offset], + ldwork); + if (*m > *k) { + +/* W := W + C1'*V1 */ + + i__1 = *m - *k; + cgemm_("Conjugate transpose", "No transpose", n, k, &i__1, + &c_b56, &c__[c_offset], ldc, &v[v_offset], ldv, & + c_b56, &work[work_offset], ldwork); + } + +/* W := W * T' or W * T */ + + ctrmm_("Right", "Lower", transt, "Non-unit", n, k, &c_b56, &t[ + t_offset], ldt, &work[work_offset], ldwork); + +/* C := C - V * W' */ + + if (*m > *k) { + +/* C1 := C1 - V1 * W' */ + + i__1 = *m - *k; + q__1.r = -1.f, q__1.i = -0.f; + cgemm_("No transpose", "Conjugate transpose", &i__1, n, k, + &q__1, &v[v_offset], ldv, &work[work_offset], + ldwork, &c_b56, &c__[c_offset], ldc); + } + +/* W := W * V2' */ + + ctrmm_("Right", "Upper", "Conjugate transpose", "Unit", n, k, + &c_b56, &v[*m - *k + 1 + v_dim1], ldv, &work[ + work_offset], ldwork); + +/* C2 := C2 - W' */ + + i__1 = *k; + for (j = 1; j <= i__1; ++j) { + i__2 = *n; + for (i__ = 1; i__ <= i__2; ++i__) { + i__3 = *m - *k + j + i__ * c_dim1; + i__4 = *m - *k + j + i__ * c_dim1; + r_cnjg(&q__2, &work[i__ + j * work_dim1]); + q__1.r = c__[i__4].r - q__2.r, q__1.i = c__[i__4].i - + q__2.i; + c__[i__3].r = q__1.r, c__[i__3].i = q__1.i; +/* L80: */ + } +/* L90: */ + } + + } else if (lsame_(side, "R")) { + +/* + Form C * H or C * H' where C = ( C1 C2 ) + + W := C * V = (C1*V1 + C2*V2) (stored in WORK) + + W := C2 +*/ + + i__1 = *k; + for (j = 1; j <= i__1; ++j) { + ccopy_(m, &c__[(*n - *k + j) * c_dim1 + 1], &c__1, &work[ + j * work_dim1 + 1], &c__1); +/* L100: */ + } + +/* W := W * V2 */ + + ctrmm_("Right", "Upper", "No transpose", "Unit", m, k, &c_b56, + &v[*n - *k + 1 + v_dim1], ldv, &work[work_offset], + ldwork); + if (*n > *k) { + +/* W := W + C1 * V1 */ + + i__1 = *n - *k; + cgemm_("No transpose", "No transpose", m, k, &i__1, & + c_b56, &c__[c_offset], ldc, &v[v_offset], ldv, & + c_b56, &work[work_offset], ldwork); + } + +/* W := W * T or W * T' */ + + ctrmm_("Right", "Lower", trans, "Non-unit", m, k, &c_b56, &t[ + t_offset], ldt, &work[work_offset], ldwork); + +/* C := C - W * V' */ + + if (*n > *k) { + +/* C1 := C1 - W * V1' */ + + i__1 = *n - *k; + q__1.r = -1.f, q__1.i = -0.f; + cgemm_("No transpose", "Conjugate transpose", m, &i__1, k, + &q__1, &work[work_offset], ldwork, &v[v_offset], + ldv, &c_b56, &c__[c_offset], ldc); + } + +/* W := W * V2' */ + + ctrmm_("Right", "Upper", "Conjugate transpose", "Unit", m, k, + &c_b56, &v[*n - *k + 1 + v_dim1], ldv, &work[ + work_offset], ldwork); + +/* C2 := C2 - W */ + + i__1 = *k; + for (j = 1; j <= i__1; ++j) { + i__2 = *m; + for (i__ = 1; i__ <= i__2; ++i__) { + i__3 = i__ + (*n - *k + j) * c_dim1; + i__4 = i__ + (*n - *k + j) * c_dim1; + i__5 = i__ + j * work_dim1; + q__1.r = c__[i__4].r - work[i__5].r, q__1.i = c__[ + i__4].i - work[i__5].i; + c__[i__3].r = q__1.r, c__[i__3].i = q__1.i; +/* L110: */ + } +/* L120: */ + } + } + } + + } else if (lsame_(storev, "R")) { + + if (lsame_(direct, "F")) { + +/* + Let V = ( V1 V2 ) (V1: first K columns) + where V1 is unit upper triangular. +*/ + + if (lsame_(side, "L")) { + +/* + Form H * C or H' * C where C = ( C1 ) + ( C2 ) + + W := C' * V' = (C1'*V1' + C2'*V2') (stored in WORK) + + W := C1' +*/ + + i__1 = *k; + for (j = 1; j <= i__1; ++j) { + ccopy_(n, &c__[j + c_dim1], ldc, &work[j * work_dim1 + 1], + &c__1); + clacgv_(n, &work[j * work_dim1 + 1], &c__1); +/* L130: */ + } + +/* W := W * V1' */ + + ctrmm_("Right", "Upper", "Conjugate transpose", "Unit", n, k, + &c_b56, &v[v_offset], ldv, &work[work_offset], ldwork); + if (*m > *k) { + +/* W := W + C2'*V2' */ + + i__1 = *m - *k; + cgemm_("Conjugate transpose", "Conjugate transpose", n, k, + &i__1, &c_b56, &c__[*k + 1 + c_dim1], ldc, &v[(* + k + 1) * v_dim1 + 1], ldv, &c_b56, &work[ + work_offset], ldwork); + } + +/* W := W * T' or W * T */ + + ctrmm_("Right", "Upper", transt, "Non-unit", n, k, &c_b56, &t[ + t_offset], ldt, &work[work_offset], ldwork); + +/* C := C - V' * W' */ + + if (*m > *k) { + +/* C2 := C2 - V2' * W' */ + + i__1 = *m - *k; + q__1.r = -1.f, q__1.i = -0.f; + cgemm_("Conjugate transpose", "Conjugate transpose", & + i__1, n, k, &q__1, &v[(*k + 1) * v_dim1 + 1], ldv, + &work[work_offset], ldwork, &c_b56, &c__[*k + 1 + + c_dim1], ldc); + } + +/* W := W * V1 */ + + ctrmm_("Right", "Upper", "No transpose", "Unit", n, k, &c_b56, + &v[v_offset], ldv, &work[work_offset], ldwork); + +/* C1 := C1 - W' */ + + i__1 = *k; + for (j = 1; j <= i__1; ++j) { + i__2 = *n; + for (i__ = 1; i__ <= i__2; ++i__) { + i__3 = j + i__ * c_dim1; + i__4 = j + i__ * c_dim1; + r_cnjg(&q__2, &work[i__ + j * work_dim1]); + q__1.r = c__[i__4].r - q__2.r, q__1.i = c__[i__4].i - + q__2.i; + c__[i__3].r = q__1.r, c__[i__3].i = q__1.i; +/* L140: */ + } +/* L150: */ + } + + } else if (lsame_(side, "R")) { + +/* + Form C * H or C * H' where C = ( C1 C2 ) + + W := C * V' = (C1*V1' + C2*V2') (stored in WORK) + + W := C1 +*/ + + i__1 = *k; + for (j = 1; j <= i__1; ++j) { + ccopy_(m, &c__[j * c_dim1 + 1], &c__1, &work[j * + work_dim1 + 1], &c__1); +/* L160: */ + } + +/* W := W * V1' */ + + ctrmm_("Right", "Upper", "Conjugate transpose", "Unit", m, k, + &c_b56, &v[v_offset], ldv, &work[work_offset], ldwork); + if (*n > *k) { + +/* W := W + C2 * V2' */ + + i__1 = *n - *k; + cgemm_("No transpose", "Conjugate transpose", m, k, &i__1, + &c_b56, &c__[(*k + 1) * c_dim1 + 1], ldc, &v[(*k + + 1) * v_dim1 + 1], ldv, &c_b56, &work[ + work_offset], ldwork); + } + +/* W := W * T or W * T' */ + + ctrmm_("Right", "Upper", trans, "Non-unit", m, k, &c_b56, &t[ + t_offset], ldt, &work[work_offset], ldwork); + +/* C := C - W * V */ + + if (*n > *k) { + +/* C2 := C2 - W * V2 */ + + i__1 = *n - *k; + q__1.r = -1.f, q__1.i = -0.f; + cgemm_("No transpose", "No transpose", m, &i__1, k, &q__1, + &work[work_offset], ldwork, &v[(*k + 1) * v_dim1 + + 1], ldv, &c_b56, &c__[(*k + 1) * c_dim1 + 1], + ldc); + } + +/* W := W * V1 */ + + ctrmm_("Right", "Upper", "No transpose", "Unit", m, k, &c_b56, + &v[v_offset], ldv, &work[work_offset], ldwork); + +/* C1 := C1 - W */ + + i__1 = *k; + for (j = 1; j <= i__1; ++j) { + i__2 = *m; + for (i__ = 1; i__ <= i__2; ++i__) { + i__3 = i__ + j * c_dim1; + i__4 = i__ + j * c_dim1; + i__5 = i__ + j * work_dim1; + q__1.r = c__[i__4].r - work[i__5].r, q__1.i = c__[ + i__4].i - work[i__5].i; + c__[i__3].r = q__1.r, c__[i__3].i = q__1.i; +/* L170: */ + } +/* L180: */ + } + + } + + } else { + +/* + Let V = ( V1 V2 ) (V2: last K columns) + where V2 is unit lower triangular. +*/ + + if (lsame_(side, "L")) { + +/* + Form H * C or H' * C where C = ( C1 ) + ( C2 ) + + W := C' * V' = (C1'*V1' + C2'*V2') (stored in WORK) + + W := C2' +*/ + + i__1 = *k; + for (j = 1; j <= i__1; ++j) { + ccopy_(n, &c__[*m - *k + j + c_dim1], ldc, &work[j * + work_dim1 + 1], &c__1); + clacgv_(n, &work[j * work_dim1 + 1], &c__1); +/* L190: */ + } + +/* W := W * V2' */ + + ctrmm_("Right", "Lower", "Conjugate transpose", "Unit", n, k, + &c_b56, &v[(*m - *k + 1) * v_dim1 + 1], ldv, &work[ + work_offset], ldwork); + if (*m > *k) { + +/* W := W + C1'*V1' */ + + i__1 = *m - *k; + cgemm_("Conjugate transpose", "Conjugate transpose", n, k, + &i__1, &c_b56, &c__[c_offset], ldc, &v[v_offset], + ldv, &c_b56, &work[work_offset], ldwork); + } + +/* W := W * T' or W * T */ + + ctrmm_("Right", "Lower", transt, "Non-unit", n, k, &c_b56, &t[ + t_offset], ldt, &work[work_offset], ldwork); + +/* C := C - V' * W' */ + + if (*m > *k) { + +/* C1 := C1 - V1' * W' */ + + i__1 = *m - *k; + q__1.r = -1.f, q__1.i = -0.f; + cgemm_("Conjugate transpose", "Conjugate transpose", & + i__1, n, k, &q__1, &v[v_offset], ldv, &work[ + work_offset], ldwork, &c_b56, &c__[c_offset], ldc); + } + +/* W := W * V2 */ + + ctrmm_("Right", "Lower", "No transpose", "Unit", n, k, &c_b56, + &v[(*m - *k + 1) * v_dim1 + 1], ldv, &work[ + work_offset], ldwork); + +/* C2 := C2 - W' */ + + i__1 = *k; + for (j = 1; j <= i__1; ++j) { + i__2 = *n; + for (i__ = 1; i__ <= i__2; ++i__) { + i__3 = *m - *k + j + i__ * c_dim1; + i__4 = *m - *k + j + i__ * c_dim1; + r_cnjg(&q__2, &work[i__ + j * work_dim1]); + q__1.r = c__[i__4].r - q__2.r, q__1.i = c__[i__4].i - + q__2.i; + c__[i__3].r = q__1.r, c__[i__3].i = q__1.i; +/* L200: */ + } +/* L210: */ + } + + } else if (lsame_(side, "R")) { + +/* + Form C * H or C * H' where C = ( C1 C2 ) + + W := C * V' = (C1*V1' + C2*V2') (stored in WORK) + + W := C2 +*/ + + i__1 = *k; + for (j = 1; j <= i__1; ++j) { + ccopy_(m, &c__[(*n - *k + j) * c_dim1 + 1], &c__1, &work[ + j * work_dim1 + 1], &c__1); +/* L220: */ + } + +/* W := W * V2' */ + + ctrmm_("Right", "Lower", "Conjugate transpose", "Unit", m, k, + &c_b56, &v[(*n - *k + 1) * v_dim1 + 1], ldv, &work[ + work_offset], ldwork); + if (*n > *k) { + +/* W := W + C1 * V1' */ + + i__1 = *n - *k; + cgemm_("No transpose", "Conjugate transpose", m, k, &i__1, + &c_b56, &c__[c_offset], ldc, &v[v_offset], ldv, & + c_b56, &work[work_offset], ldwork); + } + +/* W := W * T or W * T' */ + + ctrmm_("Right", "Lower", trans, "Non-unit", m, k, &c_b56, &t[ + t_offset], ldt, &work[work_offset], ldwork); + +/* C := C - W * V */ + + if (*n > *k) { + +/* C1 := C1 - W * V1 */ + + i__1 = *n - *k; + q__1.r = -1.f, q__1.i = -0.f; + cgemm_("No transpose", "No transpose", m, &i__1, k, &q__1, + &work[work_offset], ldwork, &v[v_offset], ldv, & + c_b56, &c__[c_offset], ldc); + } + +/* W := W * V2 */ + + ctrmm_("Right", "Lower", "No transpose", "Unit", m, k, &c_b56, + &v[(*n - *k + 1) * v_dim1 + 1], ldv, &work[ + work_offset], ldwork); + +/* C1 := C1 - W */ + + i__1 = *k; + for (j = 1; j <= i__1; ++j) { + i__2 = *m; + for (i__ = 1; i__ <= i__2; ++i__) { + i__3 = i__ + (*n - *k + j) * c_dim1; + i__4 = i__ + (*n - *k + j) * c_dim1; + i__5 = i__ + j * work_dim1; + q__1.r = c__[i__4].r - work[i__5].r, q__1.i = c__[ + i__4].i - work[i__5].i; + c__[i__3].r = q__1.r, c__[i__3].i = q__1.i; +/* L230: */ + } +/* L240: */ + } + + } + + } + } + + return 0; + +/* End of CLARFB */ + +} /* clarfb_ */ + +/* Subroutine */ int clarfg_(integer *n, complex *alpha, complex *x, integer * + incx, complex *tau) +{ + /* System generated locals */ + integer i__1; + real r__1, r__2; + complex q__1, q__2; + + /* Builtin functions */ + double r_imag(complex *), r_sign(real *, real *); + + /* Local variables */ + static integer j, knt; + static real beta; + extern /* Subroutine */ int cscal_(integer *, complex *, complex *, + integer *); + static real alphi, alphr, xnorm; + extern doublereal scnrm2_(integer *, complex *, integer *), slapy3_(real * + , real *, real *); + extern /* Complex */ VOID cladiv_(complex *, complex *, complex *); + extern doublereal slamch_(char *); + extern /* Subroutine */ int csscal_(integer *, real *, complex *, integer + *); + static real safmin, rsafmn; + + +/* + -- LAPACK auxiliary routine (version 3.0) -- + Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd., + Courant Institute, Argonne National Lab, and Rice University + September 30, 1994 + + + Purpose + ======= + + CLARFG generates a complex elementary reflector H of order n, such + that + + H' * ( alpha ) = ( beta ), H' * H = I. + ( x ) ( 0 ) + + where alpha and beta are scalars, with beta real, and x is an + (n-1)-element complex vector. H is represented in the form + + H = I - tau * ( 1 ) * ( 1 v' ) , + ( v ) + + where tau is a complex scalar and v is a complex (n-1)-element + vector. Note that H is not hermitian. + + If the elements of x are all zero and alpha is real, then tau = 0 + and H is taken to be the unit matrix. + + Otherwise 1 <= real(tau) <= 2 and abs(tau-1) <= 1 . + + Arguments + ========= + + N (input) INTEGER + The order of the elementary reflector. + + ALPHA (input/output) COMPLEX + On entry, the value alpha. + On exit, it is overwritten with the value beta. + + X (input/output) COMPLEX array, dimension + (1+(N-2)*abs(INCX)) + On entry, the vector x. + On exit, it is overwritten with the vector v. + + INCX (input) INTEGER + The increment between elements of X. INCX > 0. + + TAU (output) COMPLEX + The value tau. + + ===================================================================== +*/ + + + /* Parameter adjustments */ + --x; + + /* Function Body */ + if (*n <= 0) { + tau->r = 0.f, tau->i = 0.f; + return 0; + } + + i__1 = *n - 1; + xnorm = scnrm2_(&i__1, &x[1], incx); + alphr = alpha->r; + alphi = r_imag(alpha); + + if (xnorm == 0.f && alphi == 0.f) { + +/* H = I */ + + tau->r = 0.f, tau->i = 0.f; + } else { + +/* general case */ + + r__1 = slapy3_(&alphr, &alphi, &xnorm); + beta = -r_sign(&r__1, &alphr); + safmin = slamch_("S") / slamch_("E"); + rsafmn = 1.f / safmin; + + if (dabs(beta) < safmin) { + +/* XNORM, BETA may be inaccurate; scale X and recompute them */ + + knt = 0; +L10: + ++knt; + i__1 = *n - 1; + csscal_(&i__1, &rsafmn, &x[1], incx); + beta *= rsafmn; + alphi *= rsafmn; + alphr *= rsafmn; + if (dabs(beta) < safmin) { + goto L10; + } + +/* New BETA is at most 1, at least SAFMIN */ + + i__1 = *n - 1; + xnorm = scnrm2_(&i__1, &x[1], incx); + q__1.r = alphr, q__1.i = alphi; + alpha->r = q__1.r, alpha->i = q__1.i; + r__1 = slapy3_(&alphr, &alphi, &xnorm); + beta = -r_sign(&r__1, &alphr); + r__1 = (beta - alphr) / beta; + r__2 = -alphi / beta; + q__1.r = r__1, q__1.i = r__2; + tau->r = q__1.r, tau->i = q__1.i; + q__2.r = alpha->r - beta, q__2.i = alpha->i; + cladiv_(&q__1, &c_b56, &q__2); + alpha->r = q__1.r, alpha->i = q__1.i; + i__1 = *n - 1; + cscal_(&i__1, alpha, &x[1], incx); + +/* If ALPHA is subnormal, it may lose relative accuracy */ + + alpha->r = beta, alpha->i = 0.f; + i__1 = knt; + for (j = 1; j <= i__1; ++j) { + q__1.r = safmin * alpha->r, q__1.i = safmin * alpha->i; + alpha->r = q__1.r, alpha->i = q__1.i; +/* L20: */ + } + } else { + r__1 = (beta - alphr) / beta; + r__2 = -alphi / beta; + q__1.r = r__1, q__1.i = r__2; + tau->r = q__1.r, tau->i = q__1.i; + q__2.r = alpha->r - beta, q__2.i = alpha->i; + cladiv_(&q__1, &c_b56, &q__2); + alpha->r = q__1.r, alpha->i = q__1.i; + i__1 = *n - 1; + cscal_(&i__1, alpha, &x[1], incx); + alpha->r = beta, alpha->i = 0.f; + } + } + + return 0; + +/* End of CLARFG */ + +} /* clarfg_ */ + +/* Subroutine */ int clarft_(char *direct, char *storev, integer *n, integer * + k, complex *v, integer *ldv, complex *tau, complex *t, integer *ldt) +{ + /* System generated locals */ + integer t_dim1, t_offset, v_dim1, v_offset, i__1, i__2, i__3, i__4; + complex q__1; + + /* Local variables */ + static integer i__, j; + static complex vii; + extern /* Subroutine */ int cgemv_(char *, integer *, integer *, complex * + , complex *, integer *, complex *, integer *, complex *, complex * + , integer *); + extern logical lsame_(char *, char *); + extern /* Subroutine */ int ctrmv_(char *, char *, char *, integer *, + complex *, integer *, complex *, integer *), clacgv_(integer *, complex *, integer *); + + +/* + -- LAPACK auxiliary routine (version 3.0) -- + Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd., + Courant Institute, Argonne National Lab, and Rice University + September 30, 1994 + + + Purpose + ======= + + CLARFT forms the triangular factor T of a complex block reflector H + of order n, which is defined as a product of k elementary reflectors. + + If DIRECT = 'F', H = H(1) H(2) . . . H(k) and T is upper triangular; + + If DIRECT = 'B', H = H(k) . . . H(2) H(1) and T is lower triangular. + + If STOREV = 'C', the vector which defines the elementary reflector + H(i) is stored in the i-th column of the array V, and + + H = I - V * T * V' + + If STOREV = 'R', the vector which defines the elementary reflector + H(i) is stored in the i-th row of the array V, and + + H = I - V' * T * V + + Arguments + ========= + + DIRECT (input) CHARACTER*1 + Specifies the order in which the elementary reflectors are + multiplied to form the block reflector: + = 'F': H = H(1) H(2) . . . H(k) (Forward) + = 'B': H = H(k) . . . H(2) H(1) (Backward) + + STOREV (input) CHARACTER*1 + Specifies how the vectors which define the elementary + reflectors are stored (see also Further Details): + = 'C': columnwise + = 'R': rowwise + + N (input) INTEGER + The order of the block reflector H. N >= 0. + + K (input) INTEGER + The order of the triangular factor T (= the number of + elementary reflectors). K >= 1. + + V (input/output) COMPLEX array, dimension + (LDV,K) if STOREV = 'C' + (LDV,N) if STOREV = 'R' + The matrix V. See further details. + + LDV (input) INTEGER + The leading dimension of the array V. + If STOREV = 'C', LDV >= max(1,N); if STOREV = 'R', LDV >= K. + + TAU (input) COMPLEX array, dimension (K) + TAU(i) must contain the scalar factor of the elementary + reflector H(i). + + T (output) COMPLEX array, dimension (LDT,K) + The k by k triangular factor T of the block reflector. + If DIRECT = 'F', T is upper triangular; if DIRECT = 'B', T is + lower triangular. The rest of the array is not used. + + LDT (input) INTEGER + The leading dimension of the array T. LDT >= K. + + Further Details + =============== + + The shape of the matrix V and the storage of the vectors which define + the H(i) is best illustrated by the following example with n = 5 and + k = 3. The elements equal to 1 are not stored; the corresponding + array elements are modified but restored on exit. The rest of the + array is not used. + + DIRECT = 'F' and STOREV = 'C': DIRECT = 'F' and STOREV = 'R': + + V = ( 1 ) V = ( 1 v1 v1 v1 v1 ) + ( v1 1 ) ( 1 v2 v2 v2 ) + ( v1 v2 1 ) ( 1 v3 v3 ) + ( v1 v2 v3 ) + ( v1 v2 v3 ) + + DIRECT = 'B' and STOREV = 'C': DIRECT = 'B' and STOREV = 'R': + + V = ( v1 v2 v3 ) V = ( v1 v1 1 ) + ( v1 v2 v3 ) ( v2 v2 v2 1 ) + ( 1 v2 v3 ) ( v3 v3 v3 v3 1 ) + ( 1 v3 ) + ( 1 ) + + ===================================================================== + + + Quick return if possible +*/ + + /* Parameter adjustments */ + v_dim1 = *ldv; + v_offset = 1 + v_dim1; + v -= v_offset; + --tau; + t_dim1 = *ldt; + t_offset = 1 + t_dim1; + t -= t_offset; + + /* Function Body */ + if (*n == 0) { + return 0; + } + + if (lsame_(direct, "F")) { + i__1 = *k; + for (i__ = 1; i__ <= i__1; ++i__) { + i__2 = i__; + if (tau[i__2].r == 0.f && tau[i__2].i == 0.f) { + +/* H(i) = I */ + + i__2 = i__; + for (j = 1; j <= i__2; ++j) { + i__3 = j + i__ * t_dim1; + t[i__3].r = 0.f, t[i__3].i = 0.f; +/* L10: */ + } + } else { + +/* general case */ + + i__2 = i__ + i__ * v_dim1; + vii.r = v[i__2].r, vii.i = v[i__2].i; + i__2 = i__ + i__ * v_dim1; + v[i__2].r = 1.f, v[i__2].i = 0.f; + if (lsame_(storev, "C")) { + +/* T(1:i-1,i) := - tau(i) * V(i:n,1:i-1)' * V(i:n,i) */ + + i__2 = *n - i__ + 1; + i__3 = i__ - 1; + i__4 = i__; + q__1.r = -tau[i__4].r, q__1.i = -tau[i__4].i; + cgemv_("Conjugate transpose", &i__2, &i__3, &q__1, &v[i__ + + v_dim1], ldv, &v[i__ + i__ * v_dim1], &c__1, & + c_b55, &t[i__ * t_dim1 + 1], &c__1); + } else { + +/* T(1:i-1,i) := - tau(i) * V(1:i-1,i:n) * V(i,i:n)' */ + + if (i__ < *n) { + i__2 = *n - i__; + clacgv_(&i__2, &v[i__ + (i__ + 1) * v_dim1], ldv); + } + i__2 = i__ - 1; + i__3 = *n - i__ + 1; + i__4 = i__; + q__1.r = -tau[i__4].r, q__1.i = -tau[i__4].i; + cgemv_("No transpose", &i__2, &i__3, &q__1, &v[i__ * + v_dim1 + 1], ldv, &v[i__ + i__ * v_dim1], ldv, & + c_b55, &t[i__ * t_dim1 + 1], &c__1); + if (i__ < *n) { + i__2 = *n - i__; + clacgv_(&i__2, &v[i__ + (i__ + 1) * v_dim1], ldv); + } + } + i__2 = i__ + i__ * v_dim1; + v[i__2].r = vii.r, v[i__2].i = vii.i; + +/* T(1:i-1,i) := T(1:i-1,1:i-1) * T(1:i-1,i) */ + + i__2 = i__ - 1; + ctrmv_("Upper", "No transpose", "Non-unit", &i__2, &t[ + t_offset], ldt, &t[i__ * t_dim1 + 1], &c__1); + i__2 = i__ + i__ * t_dim1; + i__3 = i__; + t[i__2].r = tau[i__3].r, t[i__2].i = tau[i__3].i; + } +/* L20: */ + } + } else { + for (i__ = *k; i__ >= 1; --i__) { + i__1 = i__; + if (tau[i__1].r == 0.f && tau[i__1].i == 0.f) { + +/* H(i) = I */ + + i__1 = *k; + for (j = i__; j <= i__1; ++j) { + i__2 = j + i__ * t_dim1; + t[i__2].r = 0.f, t[i__2].i = 0.f; +/* L30: */ + } + } else { + +/* general case */ + + if (i__ < *k) { + if (lsame_(storev, "C")) { + i__1 = *n - *k + i__ + i__ * v_dim1; + vii.r = v[i__1].r, vii.i = v[i__1].i; + i__1 = *n - *k + i__ + i__ * v_dim1; + v[i__1].r = 1.f, v[i__1].i = 0.f; + +/* + T(i+1:k,i) := + - tau(i) * V(1:n-k+i,i+1:k)' * V(1:n-k+i,i) +*/ + + i__1 = *n - *k + i__; + i__2 = *k - i__; + i__3 = i__; + q__1.r = -tau[i__3].r, q__1.i = -tau[i__3].i; + cgemv_("Conjugate transpose", &i__1, &i__2, &q__1, &v[ + (i__ + 1) * v_dim1 + 1], ldv, &v[i__ * v_dim1 + + 1], &c__1, &c_b55, &t[i__ + 1 + i__ * + t_dim1], &c__1); + i__1 = *n - *k + i__ + i__ * v_dim1; + v[i__1].r = vii.r, v[i__1].i = vii.i; + } else { + i__1 = i__ + (*n - *k + i__) * v_dim1; + vii.r = v[i__1].r, vii.i = v[i__1].i; + i__1 = i__ + (*n - *k + i__) * v_dim1; + v[i__1].r = 1.f, v[i__1].i = 0.f; + +/* + T(i+1:k,i) := + - tau(i) * V(i+1:k,1:n-k+i) * V(i,1:n-k+i)' +*/ + + i__1 = *n - *k + i__ - 1; + clacgv_(&i__1, &v[i__ + v_dim1], ldv); + i__1 = *k - i__; + i__2 = *n - *k + i__; + i__3 = i__; + q__1.r = -tau[i__3].r, q__1.i = -tau[i__3].i; + cgemv_("No transpose", &i__1, &i__2, &q__1, &v[i__ + + 1 + v_dim1], ldv, &v[i__ + v_dim1], ldv, & + c_b55, &t[i__ + 1 + i__ * t_dim1], &c__1); + i__1 = *n - *k + i__ - 1; + clacgv_(&i__1, &v[i__ + v_dim1], ldv); + i__1 = i__ + (*n - *k + i__) * v_dim1; + v[i__1].r = vii.r, v[i__1].i = vii.i; + } + +/* T(i+1:k,i) := T(i+1:k,i+1:k) * T(i+1:k,i) */ + + i__1 = *k - i__; + ctrmv_("Lower", "No transpose", "Non-unit", &i__1, &t[i__ + + 1 + (i__ + 1) * t_dim1], ldt, &t[i__ + 1 + i__ * + t_dim1], &c__1) + ; + } + i__1 = i__ + i__ * t_dim1; + i__2 = i__; + t[i__1].r = tau[i__2].r, t[i__1].i = tau[i__2].i; + } +/* L40: */ + } + } + return 0; + +/* End of CLARFT */ + +} /* clarft_ */ + +/* Subroutine */ int clarfx_(char *side, integer *m, integer *n, complex *v, + complex *tau, complex *c__, integer *ldc, complex *work) +{ + /* System generated locals */ + integer c_dim1, c_offset, i__1, i__2, i__3, i__4, i__5, i__6, i__7, i__8, + i__9, i__10, i__11; + complex q__1, q__2, q__3, q__4, q__5, q__6, q__7, q__8, q__9, q__10, + q__11, q__12, q__13, q__14, q__15, q__16, q__17, q__18, q__19; + + /* Builtin functions */ + void r_cnjg(complex *, complex *); + + /* Local variables */ + static integer j; + static complex t1, t2, t3, t4, t5, t6, t7, t8, t9, v1, v2, v3, v4, v5, v6, + v7, v8, v9, t10, v10, sum; + extern /* Subroutine */ int cgerc_(integer *, integer *, complex *, + complex *, integer *, complex *, integer *, complex *, integer *); + extern logical lsame_(char *, char *); + extern /* Subroutine */ int cgemv_(char *, integer *, integer *, complex * + , complex *, integer *, complex *, integer *, complex *, complex * + , integer *); + + +/* + -- LAPACK auxiliary routine (version 3.0) -- + Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd., + Courant Institute, Argonne National Lab, and Rice University + September 30, 1994 + + + Purpose + ======= + + CLARFX applies a complex elementary reflector H to a complex m by n + matrix C, from either the left or the right. H is represented in the + form + + H = I - tau * v * v' + + where tau is a complex scalar and v is a complex vector. + + If tau = 0, then H is taken to be the unit matrix + + This version uses inline code if H has order < 11. + + Arguments + ========= + + SIDE (input) CHARACTER*1 + = 'L': form H * C + = 'R': form C * H + + M (input) INTEGER + The number of rows of the matrix C. + + N (input) INTEGER + The number of columns of the matrix C. + + V (input) COMPLEX array, dimension (M) if SIDE = 'L' + or (N) if SIDE = 'R' + The vector v in the representation of H. + + TAU (input) COMPLEX + The value tau in the representation of H. + + C (input/output) COMPLEX array, dimension (LDC,N) + On entry, the m by n matrix C. + On exit, C is overwritten by the matrix H * C if SIDE = 'L', + or C * H if SIDE = 'R'. + + LDC (input) INTEGER + The leading dimension of the array C. LDA >= max(1,M). + + WORK (workspace) COMPLEX array, dimension (N) if SIDE = 'L' + or (M) if SIDE = 'R' + WORK is not referenced if H has order < 11. + + ===================================================================== +*/ + + + /* Parameter adjustments */ + --v; + c_dim1 = *ldc; + c_offset = 1 + c_dim1; + c__ -= c_offset; + --work; + + /* Function Body */ + if (tau->r == 0.f && tau->i == 0.f) { + return 0; + } + if (lsame_(side, "L")) { + +/* Form H * C, where H has order m. */ + + switch (*m) { + case 1: goto L10; + case 2: goto L30; + case 3: goto L50; + case 4: goto L70; + case 5: goto L90; + case 6: goto L110; + case 7: goto L130; + case 8: goto L150; + case 9: goto L170; + case 10: goto L190; + } + +/* + Code for general M + + w := C'*v +*/ + + cgemv_("Conjugate transpose", m, n, &c_b56, &c__[c_offset], ldc, &v[1] + , &c__1, &c_b55, &work[1], &c__1); + +/* C := C - tau * v * w' */ + + q__1.r = -tau->r, q__1.i = -tau->i; + cgerc_(m, n, &q__1, &v[1], &c__1, &work[1], &c__1, &c__[c_offset], + ldc); + goto L410; +L10: + +/* Special code for 1 x 1 Householder */ + + q__3.r = tau->r * v[1].r - tau->i * v[1].i, q__3.i = tau->r * v[1].i + + tau->i * v[1].r; + r_cnjg(&q__4, &v[1]); + q__2.r = q__3.r * q__4.r - q__3.i * q__4.i, q__2.i = q__3.r * q__4.i + + q__3.i * q__4.r; + q__1.r = 1.f - q__2.r, q__1.i = 0.f - q__2.i; + t1.r = q__1.r, t1.i = q__1.i; + i__1 = *n; + for (j = 1; j <= i__1; ++j) { + i__2 = j * c_dim1 + 1; + i__3 = j * c_dim1 + 1; + q__1.r = t1.r * c__[i__3].r - t1.i * c__[i__3].i, q__1.i = t1.r * + c__[i__3].i + t1.i * c__[i__3].r; + c__[i__2].r = q__1.r, c__[i__2].i = q__1.i; +/* L20: */ + } + goto L410; +L30: + +/* Special code for 2 x 2 Householder */ + + r_cnjg(&q__1, &v[1]); + v1.r = q__1.r, v1.i = q__1.i; + r_cnjg(&q__2, &v1); + q__1.r = tau->r * q__2.r - tau->i * q__2.i, q__1.i = tau->r * q__2.i + + tau->i * q__2.r; + t1.r = q__1.r, t1.i = q__1.i; + r_cnjg(&q__1, &v[2]); + v2.r = q__1.r, v2.i = q__1.i; + r_cnjg(&q__2, &v2); + q__1.r = tau->r * q__2.r - tau->i * q__2.i, q__1.i = tau->r * q__2.i + + tau->i * q__2.r; + t2.r = q__1.r, t2.i = q__1.i; + i__1 = *n; + for (j = 1; j <= i__1; ++j) { + i__2 = j * c_dim1 + 1; + q__2.r = v1.r * c__[i__2].r - v1.i * c__[i__2].i, q__2.i = v1.r * + c__[i__2].i + v1.i * c__[i__2].r; + i__3 = j * c_dim1 + 2; + q__3.r = v2.r * c__[i__3].r - v2.i * c__[i__3].i, q__3.i = v2.r * + c__[i__3].i + v2.i * c__[i__3].r; + q__1.r = q__2.r + q__3.r, q__1.i = q__2.i + q__3.i; + sum.r = q__1.r, sum.i = q__1.i; + i__2 = j * c_dim1 + 1; + i__3 = j * c_dim1 + 1; + q__2.r = sum.r * t1.r - sum.i * t1.i, q__2.i = sum.r * t1.i + + sum.i * t1.r; + q__1.r = c__[i__3].r - q__2.r, q__1.i = c__[i__3].i - q__2.i; + c__[i__2].r = q__1.r, c__[i__2].i = q__1.i; + i__2 = j * c_dim1 + 2; + i__3 = j * c_dim1 + 2; + q__2.r = sum.r * t2.r - sum.i * t2.i, q__2.i = sum.r * t2.i + + sum.i * t2.r; + q__1.r = c__[i__3].r - q__2.r, q__1.i = c__[i__3].i - q__2.i; + c__[i__2].r = q__1.r, c__[i__2].i = q__1.i; +/* L40: */ + } + goto L410; +L50: + +/* Special code for 3 x 3 Householder */ + + r_cnjg(&q__1, &v[1]); + v1.r = q__1.r, v1.i = q__1.i; + r_cnjg(&q__2, &v1); + q__1.r = tau->r * q__2.r - tau->i * q__2.i, q__1.i = tau->r * q__2.i + + tau->i * q__2.r; + t1.r = q__1.r, t1.i = q__1.i; + r_cnjg(&q__1, &v[2]); + v2.r = q__1.r, v2.i = q__1.i; + r_cnjg(&q__2, &v2); + q__1.r = tau->r * q__2.r - tau->i * q__2.i, q__1.i = tau->r * q__2.i + + tau->i * q__2.r; + t2.r = q__1.r, t2.i = q__1.i; + r_cnjg(&q__1, &v[3]); + v3.r = q__1.r, v3.i = q__1.i; + r_cnjg(&q__2, &v3); + q__1.r = tau->r * q__2.r - tau->i * q__2.i, q__1.i = tau->r * q__2.i + + tau->i * q__2.r; + t3.r = q__1.r, t3.i = q__1.i; + i__1 = *n; + for (j = 1; j <= i__1; ++j) { + i__2 = j * c_dim1 + 1; + q__3.r = v1.r * c__[i__2].r - v1.i * c__[i__2].i, q__3.i = v1.r * + c__[i__2].i + v1.i * c__[i__2].r; + i__3 = j * c_dim1 + 2; + q__4.r = v2.r * c__[i__3].r - v2.i * c__[i__3].i, q__4.i = v2.r * + c__[i__3].i + v2.i * c__[i__3].r; + q__2.r = q__3.r + q__4.r, q__2.i = q__3.i + q__4.i; + i__4 = j * c_dim1 + 3; + q__5.r = v3.r * c__[i__4].r - v3.i * c__[i__4].i, q__5.i = v3.r * + c__[i__4].i + v3.i * c__[i__4].r; + q__1.r = q__2.r + q__5.r, q__1.i = q__2.i + q__5.i; + sum.r = q__1.r, sum.i = q__1.i; + i__2 = j * c_dim1 + 1; + i__3 = j * c_dim1 + 1; + q__2.r = sum.r * t1.r - sum.i * t1.i, q__2.i = sum.r * t1.i + + sum.i * t1.r; + q__1.r = c__[i__3].r - q__2.r, q__1.i = c__[i__3].i - q__2.i; + c__[i__2].r = q__1.r, c__[i__2].i = q__1.i; + i__2 = j * c_dim1 + 2; + i__3 = j * c_dim1 + 2; + q__2.r = sum.r * t2.r - sum.i * t2.i, q__2.i = sum.r * t2.i + + sum.i * t2.r; + q__1.r = c__[i__3].r - q__2.r, q__1.i = c__[i__3].i - q__2.i; + c__[i__2].r = q__1.r, c__[i__2].i = q__1.i; + i__2 = j * c_dim1 + 3; + i__3 = j * c_dim1 + 3; + q__2.r = sum.r * t3.r - sum.i * t3.i, q__2.i = sum.r * t3.i + + sum.i * t3.r; + q__1.r = c__[i__3].r - q__2.r, q__1.i = c__[i__3].i - q__2.i; + c__[i__2].r = q__1.r, c__[i__2].i = q__1.i; +/* L60: */ + } + goto L410; +L70: + +/* Special code for 4 x 4 Householder */ + + r_cnjg(&q__1, &v[1]); + v1.r = q__1.r, v1.i = q__1.i; + r_cnjg(&q__2, &v1); + q__1.r = tau->r * q__2.r - tau->i * q__2.i, q__1.i = tau->r * q__2.i + + tau->i * q__2.r; + t1.r = q__1.r, t1.i = q__1.i; + r_cnjg(&q__1, &v[2]); + v2.r = q__1.r, v2.i = q__1.i; + r_cnjg(&q__2, &v2); + q__1.r = tau->r * q__2.r - tau->i * q__2.i, q__1.i = tau->r * q__2.i + + tau->i * q__2.r; + t2.r = q__1.r, t2.i = q__1.i; + r_cnjg(&q__1, &v[3]); + v3.r = q__1.r, v3.i = q__1.i; + r_cnjg(&q__2, &v3); + q__1.r = tau->r * q__2.r - tau->i * q__2.i, q__1.i = tau->r * q__2.i + + tau->i * q__2.r; + t3.r = q__1.r, t3.i = q__1.i; + r_cnjg(&q__1, &v[4]); + v4.r = q__1.r, v4.i = q__1.i; + r_cnjg(&q__2, &v4); + q__1.r = tau->r * q__2.r - tau->i * q__2.i, q__1.i = tau->r * q__2.i + + tau->i * q__2.r; + t4.r = q__1.r, t4.i = q__1.i; + i__1 = *n; + for (j = 1; j <= i__1; ++j) { + i__2 = j * c_dim1 + 1; + q__4.r = v1.r * c__[i__2].r - v1.i * c__[i__2].i, q__4.i = v1.r * + c__[i__2].i + v1.i * c__[i__2].r; + i__3 = j * c_dim1 + 2; + q__5.r = v2.r * c__[i__3].r - v2.i * c__[i__3].i, q__5.i = v2.r * + c__[i__3].i + v2.i * c__[i__3].r; + q__3.r = q__4.r + q__5.r, q__3.i = q__4.i + q__5.i; + i__4 = j * c_dim1 + 3; + q__6.r = v3.r * c__[i__4].r - v3.i * c__[i__4].i, q__6.i = v3.r * + c__[i__4].i + v3.i * c__[i__4].r; + q__2.r = q__3.r + q__6.r, q__2.i = q__3.i + q__6.i; + i__5 = j * c_dim1 + 4; + q__7.r = v4.r * c__[i__5].r - v4.i * c__[i__5].i, q__7.i = v4.r * + c__[i__5].i + v4.i * c__[i__5].r; + q__1.r = q__2.r + q__7.r, q__1.i = q__2.i + q__7.i; + sum.r = q__1.r, sum.i = q__1.i; + i__2 = j * c_dim1 + 1; + i__3 = j * c_dim1 + 1; + q__2.r = sum.r * t1.r - sum.i * t1.i, q__2.i = sum.r * t1.i + + sum.i * t1.r; + q__1.r = c__[i__3].r - q__2.r, q__1.i = c__[i__3].i - q__2.i; + c__[i__2].r = q__1.r, c__[i__2].i = q__1.i; + i__2 = j * c_dim1 + 2; + i__3 = j * c_dim1 + 2; + q__2.r = sum.r * t2.r - sum.i * t2.i, q__2.i = sum.r * t2.i + + sum.i * t2.r; + q__1.r = c__[i__3].r - q__2.r, q__1.i = c__[i__3].i - q__2.i; + c__[i__2].r = q__1.r, c__[i__2].i = q__1.i; + i__2 = j * c_dim1 + 3; + i__3 = j * c_dim1 + 3; + q__2.r = sum.r * t3.r - sum.i * t3.i, q__2.i = sum.r * t3.i + + sum.i * t3.r; + q__1.r = c__[i__3].r - q__2.r, q__1.i = c__[i__3].i - q__2.i; + c__[i__2].r = q__1.r, c__[i__2].i = q__1.i; + i__2 = j * c_dim1 + 4; + i__3 = j * c_dim1 + 4; + q__2.r = sum.r * t4.r - sum.i * t4.i, q__2.i = sum.r * t4.i + + sum.i * t4.r; + q__1.r = c__[i__3].r - q__2.r, q__1.i = c__[i__3].i - q__2.i; + c__[i__2].r = q__1.r, c__[i__2].i = q__1.i; +/* L80: */ + } + goto L410; +L90: + +/* Special code for 5 x 5 Householder */ + + r_cnjg(&q__1, &v[1]); + v1.r = q__1.r, v1.i = q__1.i; + r_cnjg(&q__2, &v1); + q__1.r = tau->r * q__2.r - tau->i * q__2.i, q__1.i = tau->r * q__2.i + + tau->i * q__2.r; + t1.r = q__1.r, t1.i = q__1.i; + r_cnjg(&q__1, &v[2]); + v2.r = q__1.r, v2.i = q__1.i; + r_cnjg(&q__2, &v2); + q__1.r = tau->r * q__2.r - tau->i * q__2.i, q__1.i = tau->r * q__2.i + + tau->i * q__2.r; + t2.r = q__1.r, t2.i = q__1.i; + r_cnjg(&q__1, &v[3]); + v3.r = q__1.r, v3.i = q__1.i; + r_cnjg(&q__2, &v3); + q__1.r = tau->r * q__2.r - tau->i * q__2.i, q__1.i = tau->r * q__2.i + + tau->i * q__2.r; + t3.r = q__1.r, t3.i = q__1.i; + r_cnjg(&q__1, &v[4]); + v4.r = q__1.r, v4.i = q__1.i; + r_cnjg(&q__2, &v4); + q__1.r = tau->r * q__2.r - tau->i * q__2.i, q__1.i = tau->r * q__2.i + + tau->i * q__2.r; + t4.r = q__1.r, t4.i = q__1.i; + r_cnjg(&q__1, &v[5]); + v5.r = q__1.r, v5.i = q__1.i; + r_cnjg(&q__2, &v5); + q__1.r = tau->r * q__2.r - tau->i * q__2.i, q__1.i = tau->r * q__2.i + + tau->i * q__2.r; + t5.r = q__1.r, t5.i = q__1.i; + i__1 = *n; + for (j = 1; j <= i__1; ++j) { + i__2 = j * c_dim1 + 1; + q__5.r = v1.r * c__[i__2].r - v1.i * c__[i__2].i, q__5.i = v1.r * + c__[i__2].i + v1.i * c__[i__2].r; + i__3 = j * c_dim1 + 2; + q__6.r = v2.r * c__[i__3].r - v2.i * c__[i__3].i, q__6.i = v2.r * + c__[i__3].i + v2.i * c__[i__3].r; + q__4.r = q__5.r + q__6.r, q__4.i = q__5.i + q__6.i; + i__4 = j * c_dim1 + 3; + q__7.r = v3.r * c__[i__4].r - v3.i * c__[i__4].i, q__7.i = v3.r * + c__[i__4].i + v3.i * c__[i__4].r; + q__3.r = q__4.r + q__7.r, q__3.i = q__4.i + q__7.i; + i__5 = j * c_dim1 + 4; + q__8.r = v4.r * c__[i__5].r - v4.i * c__[i__5].i, q__8.i = v4.r * + c__[i__5].i + v4.i * c__[i__5].r; + q__2.r = q__3.r + q__8.r, q__2.i = q__3.i + q__8.i; + i__6 = j * c_dim1 + 5; + q__9.r = v5.r * c__[i__6].r - v5.i * c__[i__6].i, q__9.i = v5.r * + c__[i__6].i + v5.i * c__[i__6].r; + q__1.r = q__2.r + q__9.r, q__1.i = q__2.i + q__9.i; + sum.r = q__1.r, sum.i = q__1.i; + i__2 = j * c_dim1 + 1; + i__3 = j * c_dim1 + 1; + q__2.r = sum.r * t1.r - sum.i * t1.i, q__2.i = sum.r * t1.i + + sum.i * t1.r; + q__1.r = c__[i__3].r - q__2.r, q__1.i = c__[i__3].i - q__2.i; + c__[i__2].r = q__1.r, c__[i__2].i = q__1.i; + i__2 = j * c_dim1 + 2; + i__3 = j * c_dim1 + 2; + q__2.r = sum.r * t2.r - sum.i * t2.i, q__2.i = sum.r * t2.i + + sum.i * t2.r; + q__1.r = c__[i__3].r - q__2.r, q__1.i = c__[i__3].i - q__2.i; + c__[i__2].r = q__1.r, c__[i__2].i = q__1.i; + i__2 = j * c_dim1 + 3; + i__3 = j * c_dim1 + 3; + q__2.r = sum.r * t3.r - sum.i * t3.i, q__2.i = sum.r * t3.i + + sum.i * t3.r; + q__1.r = c__[i__3].r - q__2.r, q__1.i = c__[i__3].i - q__2.i; + c__[i__2].r = q__1.r, c__[i__2].i = q__1.i; + i__2 = j * c_dim1 + 4; + i__3 = j * c_dim1 + 4; + q__2.r = sum.r * t4.r - sum.i * t4.i, q__2.i = sum.r * t4.i + + sum.i * t4.r; + q__1.r = c__[i__3].r - q__2.r, q__1.i = c__[i__3].i - q__2.i; + c__[i__2].r = q__1.r, c__[i__2].i = q__1.i; + i__2 = j * c_dim1 + 5; + i__3 = j * c_dim1 + 5; + q__2.r = sum.r * t5.r - sum.i * t5.i, q__2.i = sum.r * t5.i + + sum.i * t5.r; + q__1.r = c__[i__3].r - q__2.r, q__1.i = c__[i__3].i - q__2.i; + c__[i__2].r = q__1.r, c__[i__2].i = q__1.i; +/* L100: */ + } + goto L410; +L110: + +/* Special code for 6 x 6 Householder */ + + r_cnjg(&q__1, &v[1]); + v1.r = q__1.r, v1.i = q__1.i; + r_cnjg(&q__2, &v1); + q__1.r = tau->r * q__2.r - tau->i * q__2.i, q__1.i = tau->r * q__2.i + + tau->i * q__2.r; + t1.r = q__1.r, t1.i = q__1.i; + r_cnjg(&q__1, &v[2]); + v2.r = q__1.r, v2.i = q__1.i; + r_cnjg(&q__2, &v2); + q__1.r = tau->r * q__2.r - tau->i * q__2.i, q__1.i = tau->r * q__2.i + + tau->i * q__2.r; + t2.r = q__1.r, t2.i = q__1.i; + r_cnjg(&q__1, &v[3]); + v3.r = q__1.r, v3.i = q__1.i; + r_cnjg(&q__2, &v3); + q__1.r = tau->r * q__2.r - tau->i * q__2.i, q__1.i = tau->r * q__2.i + + tau->i * q__2.r; + t3.r = q__1.r, t3.i = q__1.i; + r_cnjg(&q__1, &v[4]); + v4.r = q__1.r, v4.i = q__1.i; + r_cnjg(&q__2, &v4); + q__1.r = tau->r * q__2.r - tau->i * q__2.i, q__1.i = tau->r * q__2.i + + tau->i * q__2.r; + t4.r = q__1.r, t4.i = q__1.i; + r_cnjg(&q__1, &v[5]); + v5.r = q__1.r, v5.i = q__1.i; + r_cnjg(&q__2, &v5); + q__1.r = tau->r * q__2.r - tau->i * q__2.i, q__1.i = tau->r * q__2.i + + tau->i * q__2.r; + t5.r = q__1.r, t5.i = q__1.i; + r_cnjg(&q__1, &v[6]); + v6.r = q__1.r, v6.i = q__1.i; + r_cnjg(&q__2, &v6); + q__1.r = tau->r * q__2.r - tau->i * q__2.i, q__1.i = tau->r * q__2.i + + tau->i * q__2.r; + t6.r = q__1.r, t6.i = q__1.i; + i__1 = *n; + for (j = 1; j <= i__1; ++j) { + i__2 = j * c_dim1 + 1; + q__6.r = v1.r * c__[i__2].r - v1.i * c__[i__2].i, q__6.i = v1.r * + c__[i__2].i + v1.i * c__[i__2].r; + i__3 = j * c_dim1 + 2; + q__7.r = v2.r * c__[i__3].r - v2.i * c__[i__3].i, q__7.i = v2.r * + c__[i__3].i + v2.i * c__[i__3].r; + q__5.r = q__6.r + q__7.r, q__5.i = q__6.i + q__7.i; + i__4 = j * c_dim1 + 3; + q__8.r = v3.r * c__[i__4].r - v3.i * c__[i__4].i, q__8.i = v3.r * + c__[i__4].i + v3.i * c__[i__4].r; + q__4.r = q__5.r + q__8.r, q__4.i = q__5.i + q__8.i; + i__5 = j * c_dim1 + 4; + q__9.r = v4.r * c__[i__5].r - v4.i * c__[i__5].i, q__9.i = v4.r * + c__[i__5].i + v4.i * c__[i__5].r; + q__3.r = q__4.r + q__9.r, q__3.i = q__4.i + q__9.i; + i__6 = j * c_dim1 + 5; + q__10.r = v5.r * c__[i__6].r - v5.i * c__[i__6].i, q__10.i = v5.r + * c__[i__6].i + v5.i * c__[i__6].r; + q__2.r = q__3.r + q__10.r, q__2.i = q__3.i + q__10.i; + i__7 = j * c_dim1 + 6; + q__11.r = v6.r * c__[i__7].r - v6.i * c__[i__7].i, q__11.i = v6.r + * c__[i__7].i + v6.i * c__[i__7].r; + q__1.r = q__2.r + q__11.r, q__1.i = q__2.i + q__11.i; + sum.r = q__1.r, sum.i = q__1.i; + i__2 = j * c_dim1 + 1; + i__3 = j * c_dim1 + 1; + q__2.r = sum.r * t1.r - sum.i * t1.i, q__2.i = sum.r * t1.i + + sum.i * t1.r; + q__1.r = c__[i__3].r - q__2.r, q__1.i = c__[i__3].i - q__2.i; + c__[i__2].r = q__1.r, c__[i__2].i = q__1.i; + i__2 = j * c_dim1 + 2; + i__3 = j * c_dim1 + 2; + q__2.r = sum.r * t2.r - sum.i * t2.i, q__2.i = sum.r * t2.i + + sum.i * t2.r; + q__1.r = c__[i__3].r - q__2.r, q__1.i = c__[i__3].i - q__2.i; + c__[i__2].r = q__1.r, c__[i__2].i = q__1.i; + i__2 = j * c_dim1 + 3; + i__3 = j * c_dim1 + 3; + q__2.r = sum.r * t3.r - sum.i * t3.i, q__2.i = sum.r * t3.i + + sum.i * t3.r; + q__1.r = c__[i__3].r - q__2.r, q__1.i = c__[i__3].i - q__2.i; + c__[i__2].r = q__1.r, c__[i__2].i = q__1.i; + i__2 = j * c_dim1 + 4; + i__3 = j * c_dim1 + 4; + q__2.r = sum.r * t4.r - sum.i * t4.i, q__2.i = sum.r * t4.i + + sum.i * t4.r; + q__1.r = c__[i__3].r - q__2.r, q__1.i = c__[i__3].i - q__2.i; + c__[i__2].r = q__1.r, c__[i__2].i = q__1.i; + i__2 = j * c_dim1 + 5; + i__3 = j * c_dim1 + 5; + q__2.r = sum.r * t5.r - sum.i * t5.i, q__2.i = sum.r * t5.i + + sum.i * t5.r; + q__1.r = c__[i__3].r - q__2.r, q__1.i = c__[i__3].i - q__2.i; + c__[i__2].r = q__1.r, c__[i__2].i = q__1.i; + i__2 = j * c_dim1 + 6; + i__3 = j * c_dim1 + 6; + q__2.r = sum.r * t6.r - sum.i * t6.i, q__2.i = sum.r * t6.i + + sum.i * t6.r; + q__1.r = c__[i__3].r - q__2.r, q__1.i = c__[i__3].i - q__2.i; + c__[i__2].r = q__1.r, c__[i__2].i = q__1.i; +/* L120: */ + } + goto L410; +L130: + +/* Special code for 7 x 7 Householder */ + + r_cnjg(&q__1, &v[1]); + v1.r = q__1.r, v1.i = q__1.i; + r_cnjg(&q__2, &v1); + q__1.r = tau->r * q__2.r - tau->i * q__2.i, q__1.i = tau->r * q__2.i + + tau->i * q__2.r; + t1.r = q__1.r, t1.i = q__1.i; + r_cnjg(&q__1, &v[2]); + v2.r = q__1.r, v2.i = q__1.i; + r_cnjg(&q__2, &v2); + q__1.r = tau->r * q__2.r - tau->i * q__2.i, q__1.i = tau->r * q__2.i + + tau->i * q__2.r; + t2.r = q__1.r, t2.i = q__1.i; + r_cnjg(&q__1, &v[3]); + v3.r = q__1.r, v3.i = q__1.i; + r_cnjg(&q__2, &v3); + q__1.r = tau->r * q__2.r - tau->i * q__2.i, q__1.i = tau->r * q__2.i + + tau->i * q__2.r; + t3.r = q__1.r, t3.i = q__1.i; + r_cnjg(&q__1, &v[4]); + v4.r = q__1.r, v4.i = q__1.i; + r_cnjg(&q__2, &v4); + q__1.r = tau->r * q__2.r - tau->i * q__2.i, q__1.i = tau->r * q__2.i + + tau->i * q__2.r; + t4.r = q__1.r, t4.i = q__1.i; + r_cnjg(&q__1, &v[5]); + v5.r = q__1.r, v5.i = q__1.i; + r_cnjg(&q__2, &v5); + q__1.r = tau->r * q__2.r - tau->i * q__2.i, q__1.i = tau->r * q__2.i + + tau->i * q__2.r; + t5.r = q__1.r, t5.i = q__1.i; + r_cnjg(&q__1, &v[6]); + v6.r = q__1.r, v6.i = q__1.i; + r_cnjg(&q__2, &v6); + q__1.r = tau->r * q__2.r - tau->i * q__2.i, q__1.i = tau->r * q__2.i + + tau->i * q__2.r; + t6.r = q__1.r, t6.i = q__1.i; + r_cnjg(&q__1, &v[7]); + v7.r = q__1.r, v7.i = q__1.i; + r_cnjg(&q__2, &v7); + q__1.r = tau->r * q__2.r - tau->i * q__2.i, q__1.i = tau->r * q__2.i + + tau->i * q__2.r; + t7.r = q__1.r, t7.i = q__1.i; + i__1 = *n; + for (j = 1; j <= i__1; ++j) { + i__2 = j * c_dim1 + 1; + q__7.r = v1.r * c__[i__2].r - v1.i * c__[i__2].i, q__7.i = v1.r * + c__[i__2].i + v1.i * c__[i__2].r; + i__3 = j * c_dim1 + 2; + q__8.r = v2.r * c__[i__3].r - v2.i * c__[i__3].i, q__8.i = v2.r * + c__[i__3].i + v2.i * c__[i__3].r; + q__6.r = q__7.r + q__8.r, q__6.i = q__7.i + q__8.i; + i__4 = j * c_dim1 + 3; + q__9.r = v3.r * c__[i__4].r - v3.i * c__[i__4].i, q__9.i = v3.r * + c__[i__4].i + v3.i * c__[i__4].r; + q__5.r = q__6.r + q__9.r, q__5.i = q__6.i + q__9.i; + i__5 = j * c_dim1 + 4; + q__10.r = v4.r * c__[i__5].r - v4.i * c__[i__5].i, q__10.i = v4.r + * c__[i__5].i + v4.i * c__[i__5].r; + q__4.r = q__5.r + q__10.r, q__4.i = q__5.i + q__10.i; + i__6 = j * c_dim1 + 5; + q__11.r = v5.r * c__[i__6].r - v5.i * c__[i__6].i, q__11.i = v5.r + * c__[i__6].i + v5.i * c__[i__6].r; + q__3.r = q__4.r + q__11.r, q__3.i = q__4.i + q__11.i; + i__7 = j * c_dim1 + 6; + q__12.r = v6.r * c__[i__7].r - v6.i * c__[i__7].i, q__12.i = v6.r + * c__[i__7].i + v6.i * c__[i__7].r; + q__2.r = q__3.r + q__12.r, q__2.i = q__3.i + q__12.i; + i__8 = j * c_dim1 + 7; + q__13.r = v7.r * c__[i__8].r - v7.i * c__[i__8].i, q__13.i = v7.r + * c__[i__8].i + v7.i * c__[i__8].r; + q__1.r = q__2.r + q__13.r, q__1.i = q__2.i + q__13.i; + sum.r = q__1.r, sum.i = q__1.i; + i__2 = j * c_dim1 + 1; + i__3 = j * c_dim1 + 1; + q__2.r = sum.r * t1.r - sum.i * t1.i, q__2.i = sum.r * t1.i + + sum.i * t1.r; + q__1.r = c__[i__3].r - q__2.r, q__1.i = c__[i__3].i - q__2.i; + c__[i__2].r = q__1.r, c__[i__2].i = q__1.i; + i__2 = j * c_dim1 + 2; + i__3 = j * c_dim1 + 2; + q__2.r = sum.r * t2.r - sum.i * t2.i, q__2.i = sum.r * t2.i + + sum.i * t2.r; + q__1.r = c__[i__3].r - q__2.r, q__1.i = c__[i__3].i - q__2.i; + c__[i__2].r = q__1.r, c__[i__2].i = q__1.i; + i__2 = j * c_dim1 + 3; + i__3 = j * c_dim1 + 3; + q__2.r = sum.r * t3.r - sum.i * t3.i, q__2.i = sum.r * t3.i + + sum.i * t3.r; + q__1.r = c__[i__3].r - q__2.r, q__1.i = c__[i__3].i - q__2.i; + c__[i__2].r = q__1.r, c__[i__2].i = q__1.i; + i__2 = j * c_dim1 + 4; + i__3 = j * c_dim1 + 4; + q__2.r = sum.r * t4.r - sum.i * t4.i, q__2.i = sum.r * t4.i + + sum.i * t4.r; + q__1.r = c__[i__3].r - q__2.r, q__1.i = c__[i__3].i - q__2.i; + c__[i__2].r = q__1.r, c__[i__2].i = q__1.i; + i__2 = j * c_dim1 + 5; + i__3 = j * c_dim1 + 5; + q__2.r = sum.r * t5.r - sum.i * t5.i, q__2.i = sum.r * t5.i + + sum.i * t5.r; + q__1.r = c__[i__3].r - q__2.r, q__1.i = c__[i__3].i - q__2.i; + c__[i__2].r = q__1.r, c__[i__2].i = q__1.i; + i__2 = j * c_dim1 + 6; + i__3 = j * c_dim1 + 6; + q__2.r = sum.r * t6.r - sum.i * t6.i, q__2.i = sum.r * t6.i + + sum.i * t6.r; + q__1.r = c__[i__3].r - q__2.r, q__1.i = c__[i__3].i - q__2.i; + c__[i__2].r = q__1.r, c__[i__2].i = q__1.i; + i__2 = j * c_dim1 + 7; + i__3 = j * c_dim1 + 7; + q__2.r = sum.r * t7.r - sum.i * t7.i, q__2.i = sum.r * t7.i + + sum.i * t7.r; + q__1.r = c__[i__3].r - q__2.r, q__1.i = c__[i__3].i - q__2.i; + c__[i__2].r = q__1.r, c__[i__2].i = q__1.i; +/* L140: */ + } + goto L410; +L150: + +/* Special code for 8 x 8 Householder */ + + r_cnjg(&q__1, &v[1]); + v1.r = q__1.r, v1.i = q__1.i; + r_cnjg(&q__2, &v1); + q__1.r = tau->r * q__2.r - tau->i * q__2.i, q__1.i = tau->r * q__2.i + + tau->i * q__2.r; + t1.r = q__1.r, t1.i = q__1.i; + r_cnjg(&q__1, &v[2]); + v2.r = q__1.r, v2.i = q__1.i; + r_cnjg(&q__2, &v2); + q__1.r = tau->r * q__2.r - tau->i * q__2.i, q__1.i = tau->r * q__2.i + + tau->i * q__2.r; + t2.r = q__1.r, t2.i = q__1.i; + r_cnjg(&q__1, &v[3]); + v3.r = q__1.r, v3.i = q__1.i; + r_cnjg(&q__2, &v3); + q__1.r = tau->r * q__2.r - tau->i * q__2.i, q__1.i = tau->r * q__2.i + + tau->i * q__2.r; + t3.r = q__1.r, t3.i = q__1.i; + r_cnjg(&q__1, &v[4]); + v4.r = q__1.r, v4.i = q__1.i; + r_cnjg(&q__2, &v4); + q__1.r = tau->r * q__2.r - tau->i * q__2.i, q__1.i = tau->r * q__2.i + + tau->i * q__2.r; + t4.r = q__1.r, t4.i = q__1.i; + r_cnjg(&q__1, &v[5]); + v5.r = q__1.r, v5.i = q__1.i; + r_cnjg(&q__2, &v5); + q__1.r = tau->r * q__2.r - tau->i * q__2.i, q__1.i = tau->r * q__2.i + + tau->i * q__2.r; + t5.r = q__1.r, t5.i = q__1.i; + r_cnjg(&q__1, &v[6]); + v6.r = q__1.r, v6.i = q__1.i; + r_cnjg(&q__2, &v6); + q__1.r = tau->r * q__2.r - tau->i * q__2.i, q__1.i = tau->r * q__2.i + + tau->i * q__2.r; + t6.r = q__1.r, t6.i = q__1.i; + r_cnjg(&q__1, &v[7]); + v7.r = q__1.r, v7.i = q__1.i; + r_cnjg(&q__2, &v7); + q__1.r = tau->r * q__2.r - tau->i * q__2.i, q__1.i = tau->r * q__2.i + + tau->i * q__2.r; + t7.r = q__1.r, t7.i = q__1.i; + r_cnjg(&q__1, &v[8]); + v8.r = q__1.r, v8.i = q__1.i; + r_cnjg(&q__2, &v8); + q__1.r = tau->r * q__2.r - tau->i * q__2.i, q__1.i = tau->r * q__2.i + + tau->i * q__2.r; + t8.r = q__1.r, t8.i = q__1.i; + i__1 = *n; + for (j = 1; j <= i__1; ++j) { + i__2 = j * c_dim1 + 1; + q__8.r = v1.r * c__[i__2].r - v1.i * c__[i__2].i, q__8.i = v1.r * + c__[i__2].i + v1.i * c__[i__2].r; + i__3 = j * c_dim1 + 2; + q__9.r = v2.r * c__[i__3].r - v2.i * c__[i__3].i, q__9.i = v2.r * + c__[i__3].i + v2.i * c__[i__3].r; + q__7.r = q__8.r + q__9.r, q__7.i = q__8.i + q__9.i; + i__4 = j * c_dim1 + 3; + q__10.r = v3.r * c__[i__4].r - v3.i * c__[i__4].i, q__10.i = v3.r + * c__[i__4].i + v3.i * c__[i__4].r; + q__6.r = q__7.r + q__10.r, q__6.i = q__7.i + q__10.i; + i__5 = j * c_dim1 + 4; + q__11.r = v4.r * c__[i__5].r - v4.i * c__[i__5].i, q__11.i = v4.r + * c__[i__5].i + v4.i * c__[i__5].r; + q__5.r = q__6.r + q__11.r, q__5.i = q__6.i + q__11.i; + i__6 = j * c_dim1 + 5; + q__12.r = v5.r * c__[i__6].r - v5.i * c__[i__6].i, q__12.i = v5.r + * c__[i__6].i + v5.i * c__[i__6].r; + q__4.r = q__5.r + q__12.r, q__4.i = q__5.i + q__12.i; + i__7 = j * c_dim1 + 6; + q__13.r = v6.r * c__[i__7].r - v6.i * c__[i__7].i, q__13.i = v6.r + * c__[i__7].i + v6.i * c__[i__7].r; + q__3.r = q__4.r + q__13.r, q__3.i = q__4.i + q__13.i; + i__8 = j * c_dim1 + 7; + q__14.r = v7.r * c__[i__8].r - v7.i * c__[i__8].i, q__14.i = v7.r + * c__[i__8].i + v7.i * c__[i__8].r; + q__2.r = q__3.r + q__14.r, q__2.i = q__3.i + q__14.i; + i__9 = j * c_dim1 + 8; + q__15.r = v8.r * c__[i__9].r - v8.i * c__[i__9].i, q__15.i = v8.r + * c__[i__9].i + v8.i * c__[i__9].r; + q__1.r = q__2.r + q__15.r, q__1.i = q__2.i + q__15.i; + sum.r = q__1.r, sum.i = q__1.i; + i__2 = j * c_dim1 + 1; + i__3 = j * c_dim1 + 1; + q__2.r = sum.r * t1.r - sum.i * t1.i, q__2.i = sum.r * t1.i + + sum.i * t1.r; + q__1.r = c__[i__3].r - q__2.r, q__1.i = c__[i__3].i - q__2.i; + c__[i__2].r = q__1.r, c__[i__2].i = q__1.i; + i__2 = j * c_dim1 + 2; + i__3 = j * c_dim1 + 2; + q__2.r = sum.r * t2.r - sum.i * t2.i, q__2.i = sum.r * t2.i + + sum.i * t2.r; + q__1.r = c__[i__3].r - q__2.r, q__1.i = c__[i__3].i - q__2.i; + c__[i__2].r = q__1.r, c__[i__2].i = q__1.i; + i__2 = j * c_dim1 + 3; + i__3 = j * c_dim1 + 3; + q__2.r = sum.r * t3.r - sum.i * t3.i, q__2.i = sum.r * t3.i + + sum.i * t3.r; + q__1.r = c__[i__3].r - q__2.r, q__1.i = c__[i__3].i - q__2.i; + c__[i__2].r = q__1.r, c__[i__2].i = q__1.i; + i__2 = j * c_dim1 + 4; + i__3 = j * c_dim1 + 4; + q__2.r = sum.r * t4.r - sum.i * t4.i, q__2.i = sum.r * t4.i + + sum.i * t4.r; + q__1.r = c__[i__3].r - q__2.r, q__1.i = c__[i__3].i - q__2.i; + c__[i__2].r = q__1.r, c__[i__2].i = q__1.i; + i__2 = j * c_dim1 + 5; + i__3 = j * c_dim1 + 5; + q__2.r = sum.r * t5.r - sum.i * t5.i, q__2.i = sum.r * t5.i + + sum.i * t5.r; + q__1.r = c__[i__3].r - q__2.r, q__1.i = c__[i__3].i - q__2.i; + c__[i__2].r = q__1.r, c__[i__2].i = q__1.i; + i__2 = j * c_dim1 + 6; + i__3 = j * c_dim1 + 6; + q__2.r = sum.r * t6.r - sum.i * t6.i, q__2.i = sum.r * t6.i + + sum.i * t6.r; + q__1.r = c__[i__3].r - q__2.r, q__1.i = c__[i__3].i - q__2.i; + c__[i__2].r = q__1.r, c__[i__2].i = q__1.i; + i__2 = j * c_dim1 + 7; + i__3 = j * c_dim1 + 7; + q__2.r = sum.r * t7.r - sum.i * t7.i, q__2.i = sum.r * t7.i + + sum.i * t7.r; + q__1.r = c__[i__3].r - q__2.r, q__1.i = c__[i__3].i - q__2.i; + c__[i__2].r = q__1.r, c__[i__2].i = q__1.i; + i__2 = j * c_dim1 + 8; + i__3 = j * c_dim1 + 8; + q__2.r = sum.r * t8.r - sum.i * t8.i, q__2.i = sum.r * t8.i + + sum.i * t8.r; + q__1.r = c__[i__3].r - q__2.r, q__1.i = c__[i__3].i - q__2.i; + c__[i__2].r = q__1.r, c__[i__2].i = q__1.i; +/* L160: */ + } + goto L410; +L170: + +/* Special code for 9 x 9 Householder */ + + r_cnjg(&q__1, &v[1]); + v1.r = q__1.r, v1.i = q__1.i; + r_cnjg(&q__2, &v1); + q__1.r = tau->r * q__2.r - tau->i * q__2.i, q__1.i = tau->r * q__2.i + + tau->i * q__2.r; + t1.r = q__1.r, t1.i = q__1.i; + r_cnjg(&q__1, &v[2]); + v2.r = q__1.r, v2.i = q__1.i; + r_cnjg(&q__2, &v2); + q__1.r = tau->r * q__2.r - tau->i * q__2.i, q__1.i = tau->r * q__2.i + + tau->i * q__2.r; + t2.r = q__1.r, t2.i = q__1.i; + r_cnjg(&q__1, &v[3]); + v3.r = q__1.r, v3.i = q__1.i; + r_cnjg(&q__2, &v3); + q__1.r = tau->r * q__2.r - tau->i * q__2.i, q__1.i = tau->r * q__2.i + + tau->i * q__2.r; + t3.r = q__1.r, t3.i = q__1.i; + r_cnjg(&q__1, &v[4]); + v4.r = q__1.r, v4.i = q__1.i; + r_cnjg(&q__2, &v4); + q__1.r = tau->r * q__2.r - tau->i * q__2.i, q__1.i = tau->r * q__2.i + + tau->i * q__2.r; + t4.r = q__1.r, t4.i = q__1.i; + r_cnjg(&q__1, &v[5]); + v5.r = q__1.r, v5.i = q__1.i; + r_cnjg(&q__2, &v5); + q__1.r = tau->r * q__2.r - tau->i * q__2.i, q__1.i = tau->r * q__2.i + + tau->i * q__2.r; + t5.r = q__1.r, t5.i = q__1.i; + r_cnjg(&q__1, &v[6]); + v6.r = q__1.r, v6.i = q__1.i; + r_cnjg(&q__2, &v6); + q__1.r = tau->r * q__2.r - tau->i * q__2.i, q__1.i = tau->r * q__2.i + + tau->i * q__2.r; + t6.r = q__1.r, t6.i = q__1.i; + r_cnjg(&q__1, &v[7]); + v7.r = q__1.r, v7.i = q__1.i; + r_cnjg(&q__2, &v7); + q__1.r = tau->r * q__2.r - tau->i * q__2.i, q__1.i = tau->r * q__2.i + + tau->i * q__2.r; + t7.r = q__1.r, t7.i = q__1.i; + r_cnjg(&q__1, &v[8]); + v8.r = q__1.r, v8.i = q__1.i; + r_cnjg(&q__2, &v8); + q__1.r = tau->r * q__2.r - tau->i * q__2.i, q__1.i = tau->r * q__2.i + + tau->i * q__2.r; + t8.r = q__1.r, t8.i = q__1.i; + r_cnjg(&q__1, &v[9]); + v9.r = q__1.r, v9.i = q__1.i; + r_cnjg(&q__2, &v9); + q__1.r = tau->r * q__2.r - tau->i * q__2.i, q__1.i = tau->r * q__2.i + + tau->i * q__2.r; + t9.r = q__1.r, t9.i = q__1.i; + i__1 = *n; + for (j = 1; j <= i__1; ++j) { + i__2 = j * c_dim1 + 1; + q__9.r = v1.r * c__[i__2].r - v1.i * c__[i__2].i, q__9.i = v1.r * + c__[i__2].i + v1.i * c__[i__2].r; + i__3 = j * c_dim1 + 2; + q__10.r = v2.r * c__[i__3].r - v2.i * c__[i__3].i, q__10.i = v2.r + * c__[i__3].i + v2.i * c__[i__3].r; + q__8.r = q__9.r + q__10.r, q__8.i = q__9.i + q__10.i; + i__4 = j * c_dim1 + 3; + q__11.r = v3.r * c__[i__4].r - v3.i * c__[i__4].i, q__11.i = v3.r + * c__[i__4].i + v3.i * c__[i__4].r; + q__7.r = q__8.r + q__11.r, q__7.i = q__8.i + q__11.i; + i__5 = j * c_dim1 + 4; + q__12.r = v4.r * c__[i__5].r - v4.i * c__[i__5].i, q__12.i = v4.r + * c__[i__5].i + v4.i * c__[i__5].r; + q__6.r = q__7.r + q__12.r, q__6.i = q__7.i + q__12.i; + i__6 = j * c_dim1 + 5; + q__13.r = v5.r * c__[i__6].r - v5.i * c__[i__6].i, q__13.i = v5.r + * c__[i__6].i + v5.i * c__[i__6].r; + q__5.r = q__6.r + q__13.r, q__5.i = q__6.i + q__13.i; + i__7 = j * c_dim1 + 6; + q__14.r = v6.r * c__[i__7].r - v6.i * c__[i__7].i, q__14.i = v6.r + * c__[i__7].i + v6.i * c__[i__7].r; + q__4.r = q__5.r + q__14.r, q__4.i = q__5.i + q__14.i; + i__8 = j * c_dim1 + 7; + q__15.r = v7.r * c__[i__8].r - v7.i * c__[i__8].i, q__15.i = v7.r + * c__[i__8].i + v7.i * c__[i__8].r; + q__3.r = q__4.r + q__15.r, q__3.i = q__4.i + q__15.i; + i__9 = j * c_dim1 + 8; + q__16.r = v8.r * c__[i__9].r - v8.i * c__[i__9].i, q__16.i = v8.r + * c__[i__9].i + v8.i * c__[i__9].r; + q__2.r = q__3.r + q__16.r, q__2.i = q__3.i + q__16.i; + i__10 = j * c_dim1 + 9; + q__17.r = v9.r * c__[i__10].r - v9.i * c__[i__10].i, q__17.i = + v9.r * c__[i__10].i + v9.i * c__[i__10].r; + q__1.r = q__2.r + q__17.r, q__1.i = q__2.i + q__17.i; + sum.r = q__1.r, sum.i = q__1.i; + i__2 = j * c_dim1 + 1; + i__3 = j * c_dim1 + 1; + q__2.r = sum.r * t1.r - sum.i * t1.i, q__2.i = sum.r * t1.i + + sum.i * t1.r; + q__1.r = c__[i__3].r - q__2.r, q__1.i = c__[i__3].i - q__2.i; + c__[i__2].r = q__1.r, c__[i__2].i = q__1.i; + i__2 = j * c_dim1 + 2; + i__3 = j * c_dim1 + 2; + q__2.r = sum.r * t2.r - sum.i * t2.i, q__2.i = sum.r * t2.i + + sum.i * t2.r; + q__1.r = c__[i__3].r - q__2.r, q__1.i = c__[i__3].i - q__2.i; + c__[i__2].r = q__1.r, c__[i__2].i = q__1.i; + i__2 = j * c_dim1 + 3; + i__3 = j * c_dim1 + 3; + q__2.r = sum.r * t3.r - sum.i * t3.i, q__2.i = sum.r * t3.i + + sum.i * t3.r; + q__1.r = c__[i__3].r - q__2.r, q__1.i = c__[i__3].i - q__2.i; + c__[i__2].r = q__1.r, c__[i__2].i = q__1.i; + i__2 = j * c_dim1 + 4; + i__3 = j * c_dim1 + 4; + q__2.r = sum.r * t4.r - sum.i * t4.i, q__2.i = sum.r * t4.i + + sum.i * t4.r; + q__1.r = c__[i__3].r - q__2.r, q__1.i = c__[i__3].i - q__2.i; + c__[i__2].r = q__1.r, c__[i__2].i = q__1.i; + i__2 = j * c_dim1 + 5; + i__3 = j * c_dim1 + 5; + q__2.r = sum.r * t5.r - sum.i * t5.i, q__2.i = sum.r * t5.i + + sum.i * t5.r; + q__1.r = c__[i__3].r - q__2.r, q__1.i = c__[i__3].i - q__2.i; + c__[i__2].r = q__1.r, c__[i__2].i = q__1.i; + i__2 = j * c_dim1 + 6; + i__3 = j * c_dim1 + 6; + q__2.r = sum.r * t6.r - sum.i * t6.i, q__2.i = sum.r * t6.i + + sum.i * t6.r; + q__1.r = c__[i__3].r - q__2.r, q__1.i = c__[i__3].i - q__2.i; + c__[i__2].r = q__1.r, c__[i__2].i = q__1.i; + i__2 = j * c_dim1 + 7; + i__3 = j * c_dim1 + 7; + q__2.r = sum.r * t7.r - sum.i * t7.i, q__2.i = sum.r * t7.i + + sum.i * t7.r; + q__1.r = c__[i__3].r - q__2.r, q__1.i = c__[i__3].i - q__2.i; + c__[i__2].r = q__1.r, c__[i__2].i = q__1.i; + i__2 = j * c_dim1 + 8; + i__3 = j * c_dim1 + 8; + q__2.r = sum.r * t8.r - sum.i * t8.i, q__2.i = sum.r * t8.i + + sum.i * t8.r; + q__1.r = c__[i__3].r - q__2.r, q__1.i = c__[i__3].i - q__2.i; + c__[i__2].r = q__1.r, c__[i__2].i = q__1.i; + i__2 = j * c_dim1 + 9; + i__3 = j * c_dim1 + 9; + q__2.r = sum.r * t9.r - sum.i * t9.i, q__2.i = sum.r * t9.i + + sum.i * t9.r; + q__1.r = c__[i__3].r - q__2.r, q__1.i = c__[i__3].i - q__2.i; + c__[i__2].r = q__1.r, c__[i__2].i = q__1.i; +/* L180: */ + } + goto L410; +L190: + +/* Special code for 10 x 10 Householder */ + + r_cnjg(&q__1, &v[1]); + v1.r = q__1.r, v1.i = q__1.i; + r_cnjg(&q__2, &v1); + q__1.r = tau->r * q__2.r - tau->i * q__2.i, q__1.i = tau->r * q__2.i + + tau->i * q__2.r; + t1.r = q__1.r, t1.i = q__1.i; + r_cnjg(&q__1, &v[2]); + v2.r = q__1.r, v2.i = q__1.i; + r_cnjg(&q__2, &v2); + q__1.r = tau->r * q__2.r - tau->i * q__2.i, q__1.i = tau->r * q__2.i + + tau->i * q__2.r; + t2.r = q__1.r, t2.i = q__1.i; + r_cnjg(&q__1, &v[3]); + v3.r = q__1.r, v3.i = q__1.i; + r_cnjg(&q__2, &v3); + q__1.r = tau->r * q__2.r - tau->i * q__2.i, q__1.i = tau->r * q__2.i + + tau->i * q__2.r; + t3.r = q__1.r, t3.i = q__1.i; + r_cnjg(&q__1, &v[4]); + v4.r = q__1.r, v4.i = q__1.i; + r_cnjg(&q__2, &v4); + q__1.r = tau->r * q__2.r - tau->i * q__2.i, q__1.i = tau->r * q__2.i + + tau->i * q__2.r; + t4.r = q__1.r, t4.i = q__1.i; + r_cnjg(&q__1, &v[5]); + v5.r = q__1.r, v5.i = q__1.i; + r_cnjg(&q__2, &v5); + q__1.r = tau->r * q__2.r - tau->i * q__2.i, q__1.i = tau->r * q__2.i + + tau->i * q__2.r; + t5.r = q__1.r, t5.i = q__1.i; + r_cnjg(&q__1, &v[6]); + v6.r = q__1.r, v6.i = q__1.i; + r_cnjg(&q__2, &v6); + q__1.r = tau->r * q__2.r - tau->i * q__2.i, q__1.i = tau->r * q__2.i + + tau->i * q__2.r; + t6.r = q__1.r, t6.i = q__1.i; + r_cnjg(&q__1, &v[7]); + v7.r = q__1.r, v7.i = q__1.i; + r_cnjg(&q__2, &v7); + q__1.r = tau->r * q__2.r - tau->i * q__2.i, q__1.i = tau->r * q__2.i + + tau->i * q__2.r; + t7.r = q__1.r, t7.i = q__1.i; + r_cnjg(&q__1, &v[8]); + v8.r = q__1.r, v8.i = q__1.i; + r_cnjg(&q__2, &v8); + q__1.r = tau->r * q__2.r - tau->i * q__2.i, q__1.i = tau->r * q__2.i + + tau->i * q__2.r; + t8.r = q__1.r, t8.i = q__1.i; + r_cnjg(&q__1, &v[9]); + v9.r = q__1.r, v9.i = q__1.i; + r_cnjg(&q__2, &v9); + q__1.r = tau->r * q__2.r - tau->i * q__2.i, q__1.i = tau->r * q__2.i + + tau->i * q__2.r; + t9.r = q__1.r, t9.i = q__1.i; + r_cnjg(&q__1, &v[10]); + v10.r = q__1.r, v10.i = q__1.i; + r_cnjg(&q__2, &v10); + q__1.r = tau->r * q__2.r - tau->i * q__2.i, q__1.i = tau->r * q__2.i + + tau->i * q__2.r; + t10.r = q__1.r, t10.i = q__1.i; + i__1 = *n; + for (j = 1; j <= i__1; ++j) { + i__2 = j * c_dim1 + 1; + q__10.r = v1.r * c__[i__2].r - v1.i * c__[i__2].i, q__10.i = v1.r + * c__[i__2].i + v1.i * c__[i__2].r; + i__3 = j * c_dim1 + 2; + q__11.r = v2.r * c__[i__3].r - v2.i * c__[i__3].i, q__11.i = v2.r + * c__[i__3].i + v2.i * c__[i__3].r; + q__9.r = q__10.r + q__11.r, q__9.i = q__10.i + q__11.i; + i__4 = j * c_dim1 + 3; + q__12.r = v3.r * c__[i__4].r - v3.i * c__[i__4].i, q__12.i = v3.r + * c__[i__4].i + v3.i * c__[i__4].r; + q__8.r = q__9.r + q__12.r, q__8.i = q__9.i + q__12.i; + i__5 = j * c_dim1 + 4; + q__13.r = v4.r * c__[i__5].r - v4.i * c__[i__5].i, q__13.i = v4.r + * c__[i__5].i + v4.i * c__[i__5].r; + q__7.r = q__8.r + q__13.r, q__7.i = q__8.i + q__13.i; + i__6 = j * c_dim1 + 5; + q__14.r = v5.r * c__[i__6].r - v5.i * c__[i__6].i, q__14.i = v5.r + * c__[i__6].i + v5.i * c__[i__6].r; + q__6.r = q__7.r + q__14.r, q__6.i = q__7.i + q__14.i; + i__7 = j * c_dim1 + 6; + q__15.r = v6.r * c__[i__7].r - v6.i * c__[i__7].i, q__15.i = v6.r + * c__[i__7].i + v6.i * c__[i__7].r; + q__5.r = q__6.r + q__15.r, q__5.i = q__6.i + q__15.i; + i__8 = j * c_dim1 + 7; + q__16.r = v7.r * c__[i__8].r - v7.i * c__[i__8].i, q__16.i = v7.r + * c__[i__8].i + v7.i * c__[i__8].r; + q__4.r = q__5.r + q__16.r, q__4.i = q__5.i + q__16.i; + i__9 = j * c_dim1 + 8; + q__17.r = v8.r * c__[i__9].r - v8.i * c__[i__9].i, q__17.i = v8.r + * c__[i__9].i + v8.i * c__[i__9].r; + q__3.r = q__4.r + q__17.r, q__3.i = q__4.i + q__17.i; + i__10 = j * c_dim1 + 9; + q__18.r = v9.r * c__[i__10].r - v9.i * c__[i__10].i, q__18.i = + v9.r * c__[i__10].i + v9.i * c__[i__10].r; + q__2.r = q__3.r + q__18.r, q__2.i = q__3.i + q__18.i; + i__11 = j * c_dim1 + 10; + q__19.r = v10.r * c__[i__11].r - v10.i * c__[i__11].i, q__19.i = + v10.r * c__[i__11].i + v10.i * c__[i__11].r; + q__1.r = q__2.r + q__19.r, q__1.i = q__2.i + q__19.i; + sum.r = q__1.r, sum.i = q__1.i; + i__2 = j * c_dim1 + 1; + i__3 = j * c_dim1 + 1; + q__2.r = sum.r * t1.r - sum.i * t1.i, q__2.i = sum.r * t1.i + + sum.i * t1.r; + q__1.r = c__[i__3].r - q__2.r, q__1.i = c__[i__3].i - q__2.i; + c__[i__2].r = q__1.r, c__[i__2].i = q__1.i; + i__2 = j * c_dim1 + 2; + i__3 = j * c_dim1 + 2; + q__2.r = sum.r * t2.r - sum.i * t2.i, q__2.i = sum.r * t2.i + + sum.i * t2.r; + q__1.r = c__[i__3].r - q__2.r, q__1.i = c__[i__3].i - q__2.i; + c__[i__2].r = q__1.r, c__[i__2].i = q__1.i; + i__2 = j * c_dim1 + 3; + i__3 = j * c_dim1 + 3; + q__2.r = sum.r * t3.r - sum.i * t3.i, q__2.i = sum.r * t3.i + + sum.i * t3.r; + q__1.r = c__[i__3].r - q__2.r, q__1.i = c__[i__3].i - q__2.i; + c__[i__2].r = q__1.r, c__[i__2].i = q__1.i; + i__2 = j * c_dim1 + 4; + i__3 = j * c_dim1 + 4; + q__2.r = sum.r * t4.r - sum.i * t4.i, q__2.i = sum.r * t4.i + + sum.i * t4.r; + q__1.r = c__[i__3].r - q__2.r, q__1.i = c__[i__3].i - q__2.i; + c__[i__2].r = q__1.r, c__[i__2].i = q__1.i; + i__2 = j * c_dim1 + 5; + i__3 = j * c_dim1 + 5; + q__2.r = sum.r * t5.r - sum.i * t5.i, q__2.i = sum.r * t5.i + + sum.i * t5.r; + q__1.r = c__[i__3].r - q__2.r, q__1.i = c__[i__3].i - q__2.i; + c__[i__2].r = q__1.r, c__[i__2].i = q__1.i; + i__2 = j * c_dim1 + 6; + i__3 = j * c_dim1 + 6; + q__2.r = sum.r * t6.r - sum.i * t6.i, q__2.i = sum.r * t6.i + + sum.i * t6.r; + q__1.r = c__[i__3].r - q__2.r, q__1.i = c__[i__3].i - q__2.i; + c__[i__2].r = q__1.r, c__[i__2].i = q__1.i; + i__2 = j * c_dim1 + 7; + i__3 = j * c_dim1 + 7; + q__2.r = sum.r * t7.r - sum.i * t7.i, q__2.i = sum.r * t7.i + + sum.i * t7.r; + q__1.r = c__[i__3].r - q__2.r, q__1.i = c__[i__3].i - q__2.i; + c__[i__2].r = q__1.r, c__[i__2].i = q__1.i; + i__2 = j * c_dim1 + 8; + i__3 = j * c_dim1 + 8; + q__2.r = sum.r * t8.r - sum.i * t8.i, q__2.i = sum.r * t8.i + + sum.i * t8.r; + q__1.r = c__[i__3].r - q__2.r, q__1.i = c__[i__3].i - q__2.i; + c__[i__2].r = q__1.r, c__[i__2].i = q__1.i; + i__2 = j * c_dim1 + 9; + i__3 = j * c_dim1 + 9; + q__2.r = sum.r * t9.r - sum.i * t9.i, q__2.i = sum.r * t9.i + + sum.i * t9.r; + q__1.r = c__[i__3].r - q__2.r, q__1.i = c__[i__3].i - q__2.i; + c__[i__2].r = q__1.r, c__[i__2].i = q__1.i; + i__2 = j * c_dim1 + 10; + i__3 = j * c_dim1 + 10; + q__2.r = sum.r * t10.r - sum.i * t10.i, q__2.i = sum.r * t10.i + + sum.i * t10.r; + q__1.r = c__[i__3].r - q__2.r, q__1.i = c__[i__3].i - q__2.i; + c__[i__2].r = q__1.r, c__[i__2].i = q__1.i; +/* L200: */ + } + goto L410; + } else { + +/* Form C * H, where H has order n. */ + + switch (*n) { + case 1: goto L210; + case 2: goto L230; + case 3: goto L250; + case 4: goto L270; + case 5: goto L290; + case 6: goto L310; + case 7: goto L330; + case 8: goto L350; + case 9: goto L370; + case 10: goto L390; + } + +/* + Code for general N + + w := C * v +*/ + + cgemv_("No transpose", m, n, &c_b56, &c__[c_offset], ldc, &v[1], & + c__1, &c_b55, &work[1], &c__1); + +/* C := C - tau * w * v' */ + + q__1.r = -tau->r, q__1.i = -tau->i; + cgerc_(m, n, &q__1, &work[1], &c__1, &v[1], &c__1, &c__[c_offset], + ldc); + goto L410; +L210: + +/* Special code for 1 x 1 Householder */ + + q__3.r = tau->r * v[1].r - tau->i * v[1].i, q__3.i = tau->r * v[1].i + + tau->i * v[1].r; + r_cnjg(&q__4, &v[1]); + q__2.r = q__3.r * q__4.r - q__3.i * q__4.i, q__2.i = q__3.r * q__4.i + + q__3.i * q__4.r; + q__1.r = 1.f - q__2.r, q__1.i = 0.f - q__2.i; + t1.r = q__1.r, t1.i = q__1.i; + i__1 = *m; + for (j = 1; j <= i__1; ++j) { + i__2 = j + c_dim1; + i__3 = j + c_dim1; + q__1.r = t1.r * c__[i__3].r - t1.i * c__[i__3].i, q__1.i = t1.r * + c__[i__3].i + t1.i * c__[i__3].r; + c__[i__2].r = q__1.r, c__[i__2].i = q__1.i; +/* L220: */ + } + goto L410; +L230: + +/* Special code for 2 x 2 Householder */ + + v1.r = v[1].r, v1.i = v[1].i; + r_cnjg(&q__2, &v1); + q__1.r = tau->r * q__2.r - tau->i * q__2.i, q__1.i = tau->r * q__2.i + + tau->i * q__2.r; + t1.r = q__1.r, t1.i = q__1.i; + v2.r = v[2].r, v2.i = v[2].i; + r_cnjg(&q__2, &v2); + q__1.r = tau->r * q__2.r - tau->i * q__2.i, q__1.i = tau->r * q__2.i + + tau->i * q__2.r; + t2.r = q__1.r, t2.i = q__1.i; + i__1 = *m; + for (j = 1; j <= i__1; ++j) { + i__2 = j + c_dim1; + q__2.r = v1.r * c__[i__2].r - v1.i * c__[i__2].i, q__2.i = v1.r * + c__[i__2].i + v1.i * c__[i__2].r; + i__3 = j + (c_dim1 << 1); + q__3.r = v2.r * c__[i__3].r - v2.i * c__[i__3].i, q__3.i = v2.r * + c__[i__3].i + v2.i * c__[i__3].r; + q__1.r = q__2.r + q__3.r, q__1.i = q__2.i + q__3.i; + sum.r = q__1.r, sum.i = q__1.i; + i__2 = j + c_dim1; + i__3 = j + c_dim1; + q__2.r = sum.r * t1.r - sum.i * t1.i, q__2.i = sum.r * t1.i + + sum.i * t1.r; + q__1.r = c__[i__3].r - q__2.r, q__1.i = c__[i__3].i - q__2.i; + c__[i__2].r = q__1.r, c__[i__2].i = q__1.i; + i__2 = j + (c_dim1 << 1); + i__3 = j + (c_dim1 << 1); + q__2.r = sum.r * t2.r - sum.i * t2.i, q__2.i = sum.r * t2.i + + sum.i * t2.r; + q__1.r = c__[i__3].r - q__2.r, q__1.i = c__[i__3].i - q__2.i; + c__[i__2].r = q__1.r, c__[i__2].i = q__1.i; +/* L240: */ + } + goto L410; +L250: + +/* Special code for 3 x 3 Householder */ + + v1.r = v[1].r, v1.i = v[1].i; + r_cnjg(&q__2, &v1); + q__1.r = tau->r * q__2.r - tau->i * q__2.i, q__1.i = tau->r * q__2.i + + tau->i * q__2.r; + t1.r = q__1.r, t1.i = q__1.i; + v2.r = v[2].r, v2.i = v[2].i; + r_cnjg(&q__2, &v2); + q__1.r = tau->r * q__2.r - tau->i * q__2.i, q__1.i = tau->r * q__2.i + + tau->i * q__2.r; + t2.r = q__1.r, t2.i = q__1.i; + v3.r = v[3].r, v3.i = v[3].i; + r_cnjg(&q__2, &v3); + q__1.r = tau->r * q__2.r - tau->i * q__2.i, q__1.i = tau->r * q__2.i + + tau->i * q__2.r; + t3.r = q__1.r, t3.i = q__1.i; + i__1 = *m; + for (j = 1; j <= i__1; ++j) { + i__2 = j + c_dim1; + q__3.r = v1.r * c__[i__2].r - v1.i * c__[i__2].i, q__3.i = v1.r * + c__[i__2].i + v1.i * c__[i__2].r; + i__3 = j + (c_dim1 << 1); + q__4.r = v2.r * c__[i__3].r - v2.i * c__[i__3].i, q__4.i = v2.r * + c__[i__3].i + v2.i * c__[i__3].r; + q__2.r = q__3.r + q__4.r, q__2.i = q__3.i + q__4.i; + i__4 = j + c_dim1 * 3; + q__5.r = v3.r * c__[i__4].r - v3.i * c__[i__4].i, q__5.i = v3.r * + c__[i__4].i + v3.i * c__[i__4].r; + q__1.r = q__2.r + q__5.r, q__1.i = q__2.i + q__5.i; + sum.r = q__1.r, sum.i = q__1.i; + i__2 = j + c_dim1; + i__3 = j + c_dim1; + q__2.r = sum.r * t1.r - sum.i * t1.i, q__2.i = sum.r * t1.i + + sum.i * t1.r; + q__1.r = c__[i__3].r - q__2.r, q__1.i = c__[i__3].i - q__2.i; + c__[i__2].r = q__1.r, c__[i__2].i = q__1.i; + i__2 = j + (c_dim1 << 1); + i__3 = j + (c_dim1 << 1); + q__2.r = sum.r * t2.r - sum.i * t2.i, q__2.i = sum.r * t2.i + + sum.i * t2.r; + q__1.r = c__[i__3].r - q__2.r, q__1.i = c__[i__3].i - q__2.i; + c__[i__2].r = q__1.r, c__[i__2].i = q__1.i; + i__2 = j + c_dim1 * 3; + i__3 = j + c_dim1 * 3; + q__2.r = sum.r * t3.r - sum.i * t3.i, q__2.i = sum.r * t3.i + + sum.i * t3.r; + q__1.r = c__[i__3].r - q__2.r, q__1.i = c__[i__3].i - q__2.i; + c__[i__2].r = q__1.r, c__[i__2].i = q__1.i; +/* L260: */ + } + goto L410; +L270: + +/* Special code for 4 x 4 Householder */ + + v1.r = v[1].r, v1.i = v[1].i; + r_cnjg(&q__2, &v1); + q__1.r = tau->r * q__2.r - tau->i * q__2.i, q__1.i = tau->r * q__2.i + + tau->i * q__2.r; + t1.r = q__1.r, t1.i = q__1.i; + v2.r = v[2].r, v2.i = v[2].i; + r_cnjg(&q__2, &v2); + q__1.r = tau->r * q__2.r - tau->i * q__2.i, q__1.i = tau->r * q__2.i + + tau->i * q__2.r; + t2.r = q__1.r, t2.i = q__1.i; + v3.r = v[3].r, v3.i = v[3].i; + r_cnjg(&q__2, &v3); + q__1.r = tau->r * q__2.r - tau->i * q__2.i, q__1.i = tau->r * q__2.i + + tau->i * q__2.r; + t3.r = q__1.r, t3.i = q__1.i; + v4.r = v[4].r, v4.i = v[4].i; + r_cnjg(&q__2, &v4); + q__1.r = tau->r * q__2.r - tau->i * q__2.i, q__1.i = tau->r * q__2.i + + tau->i * q__2.r; + t4.r = q__1.r, t4.i = q__1.i; + i__1 = *m; + for (j = 1; j <= i__1; ++j) { + i__2 = j + c_dim1; + q__4.r = v1.r * c__[i__2].r - v1.i * c__[i__2].i, q__4.i = v1.r * + c__[i__2].i + v1.i * c__[i__2].r; + i__3 = j + (c_dim1 << 1); + q__5.r = v2.r * c__[i__3].r - v2.i * c__[i__3].i, q__5.i = v2.r * + c__[i__3].i + v2.i * c__[i__3].r; + q__3.r = q__4.r + q__5.r, q__3.i = q__4.i + q__5.i; + i__4 = j + c_dim1 * 3; + q__6.r = v3.r * c__[i__4].r - v3.i * c__[i__4].i, q__6.i = v3.r * + c__[i__4].i + v3.i * c__[i__4].r; + q__2.r = q__3.r + q__6.r, q__2.i = q__3.i + q__6.i; + i__5 = j + (c_dim1 << 2); + q__7.r = v4.r * c__[i__5].r - v4.i * c__[i__5].i, q__7.i = v4.r * + c__[i__5].i + v4.i * c__[i__5].r; + q__1.r = q__2.r + q__7.r, q__1.i = q__2.i + q__7.i; + sum.r = q__1.r, sum.i = q__1.i; + i__2 = j + c_dim1; + i__3 = j + c_dim1; + q__2.r = sum.r * t1.r - sum.i * t1.i, q__2.i = sum.r * t1.i + + sum.i * t1.r; + q__1.r = c__[i__3].r - q__2.r, q__1.i = c__[i__3].i - q__2.i; + c__[i__2].r = q__1.r, c__[i__2].i = q__1.i; + i__2 = j + (c_dim1 << 1); + i__3 = j + (c_dim1 << 1); + q__2.r = sum.r * t2.r - sum.i * t2.i, q__2.i = sum.r * t2.i + + sum.i * t2.r; + q__1.r = c__[i__3].r - q__2.r, q__1.i = c__[i__3].i - q__2.i; + c__[i__2].r = q__1.r, c__[i__2].i = q__1.i; + i__2 = j + c_dim1 * 3; + i__3 = j + c_dim1 * 3; + q__2.r = sum.r * t3.r - sum.i * t3.i, q__2.i = sum.r * t3.i + + sum.i * t3.r; + q__1.r = c__[i__3].r - q__2.r, q__1.i = c__[i__3].i - q__2.i; + c__[i__2].r = q__1.r, c__[i__2].i = q__1.i; + i__2 = j + (c_dim1 << 2); + i__3 = j + (c_dim1 << 2); + q__2.r = sum.r * t4.r - sum.i * t4.i, q__2.i = sum.r * t4.i + + sum.i * t4.r; + q__1.r = c__[i__3].r - q__2.r, q__1.i = c__[i__3].i - q__2.i; + c__[i__2].r = q__1.r, c__[i__2].i = q__1.i; +/* L280: */ + } + goto L410; +L290: + +/* Special code for 5 x 5 Householder */ + + v1.r = v[1].r, v1.i = v[1].i; + r_cnjg(&q__2, &v1); + q__1.r = tau->r * q__2.r - tau->i * q__2.i, q__1.i = tau->r * q__2.i + + tau->i * q__2.r; + t1.r = q__1.r, t1.i = q__1.i; + v2.r = v[2].r, v2.i = v[2].i; + r_cnjg(&q__2, &v2); + q__1.r = tau->r * q__2.r - tau->i * q__2.i, q__1.i = tau->r * q__2.i + + tau->i * q__2.r; + t2.r = q__1.r, t2.i = q__1.i; + v3.r = v[3].r, v3.i = v[3].i; + r_cnjg(&q__2, &v3); + q__1.r = tau->r * q__2.r - tau->i * q__2.i, q__1.i = tau->r * q__2.i + + tau->i * q__2.r; + t3.r = q__1.r, t3.i = q__1.i; + v4.r = v[4].r, v4.i = v[4].i; + r_cnjg(&q__2, &v4); + q__1.r = tau->r * q__2.r - tau->i * q__2.i, q__1.i = tau->r * q__2.i + + tau->i * q__2.r; + t4.r = q__1.r, t4.i = q__1.i; + v5.r = v[5].r, v5.i = v[5].i; + r_cnjg(&q__2, &v5); + q__1.r = tau->r * q__2.r - tau->i * q__2.i, q__1.i = tau->r * q__2.i + + tau->i * q__2.r; + t5.r = q__1.r, t5.i = q__1.i; + i__1 = *m; + for (j = 1; j <= i__1; ++j) { + i__2 = j + c_dim1; + q__5.r = v1.r * c__[i__2].r - v1.i * c__[i__2].i, q__5.i = v1.r * + c__[i__2].i + v1.i * c__[i__2].r; + i__3 = j + (c_dim1 << 1); + q__6.r = v2.r * c__[i__3].r - v2.i * c__[i__3].i, q__6.i = v2.r * + c__[i__3].i + v2.i * c__[i__3].r; + q__4.r = q__5.r + q__6.r, q__4.i = q__5.i + q__6.i; + i__4 = j + c_dim1 * 3; + q__7.r = v3.r * c__[i__4].r - v3.i * c__[i__4].i, q__7.i = v3.r * + c__[i__4].i + v3.i * c__[i__4].r; + q__3.r = q__4.r + q__7.r, q__3.i = q__4.i + q__7.i; + i__5 = j + (c_dim1 << 2); + q__8.r = v4.r * c__[i__5].r - v4.i * c__[i__5].i, q__8.i = v4.r * + c__[i__5].i + v4.i * c__[i__5].r; + q__2.r = q__3.r + q__8.r, q__2.i = q__3.i + q__8.i; + i__6 = j + c_dim1 * 5; + q__9.r = v5.r * c__[i__6].r - v5.i * c__[i__6].i, q__9.i = v5.r * + c__[i__6].i + v5.i * c__[i__6].r; + q__1.r = q__2.r + q__9.r, q__1.i = q__2.i + q__9.i; + sum.r = q__1.r, sum.i = q__1.i; + i__2 = j + c_dim1; + i__3 = j + c_dim1; + q__2.r = sum.r * t1.r - sum.i * t1.i, q__2.i = sum.r * t1.i + + sum.i * t1.r; + q__1.r = c__[i__3].r - q__2.r, q__1.i = c__[i__3].i - q__2.i; + c__[i__2].r = q__1.r, c__[i__2].i = q__1.i; + i__2 = j + (c_dim1 << 1); + i__3 = j + (c_dim1 << 1); + q__2.r = sum.r * t2.r - sum.i * t2.i, q__2.i = sum.r * t2.i + + sum.i * t2.r; + q__1.r = c__[i__3].r - q__2.r, q__1.i = c__[i__3].i - q__2.i; + c__[i__2].r = q__1.r, c__[i__2].i = q__1.i; + i__2 = j + c_dim1 * 3; + i__3 = j + c_dim1 * 3; + q__2.r = sum.r * t3.r - sum.i * t3.i, q__2.i = sum.r * t3.i + + sum.i * t3.r; + q__1.r = c__[i__3].r - q__2.r, q__1.i = c__[i__3].i - q__2.i; + c__[i__2].r = q__1.r, c__[i__2].i = q__1.i; + i__2 = j + (c_dim1 << 2); + i__3 = j + (c_dim1 << 2); + q__2.r = sum.r * t4.r - sum.i * t4.i, q__2.i = sum.r * t4.i + + sum.i * t4.r; + q__1.r = c__[i__3].r - q__2.r, q__1.i = c__[i__3].i - q__2.i; + c__[i__2].r = q__1.r, c__[i__2].i = q__1.i; + i__2 = j + c_dim1 * 5; + i__3 = j + c_dim1 * 5; + q__2.r = sum.r * t5.r - sum.i * t5.i, q__2.i = sum.r * t5.i + + sum.i * t5.r; + q__1.r = c__[i__3].r - q__2.r, q__1.i = c__[i__3].i - q__2.i; + c__[i__2].r = q__1.r, c__[i__2].i = q__1.i; +/* L300: */ + } + goto L410; +L310: + +/* Special code for 6 x 6 Householder */ + + v1.r = v[1].r, v1.i = v[1].i; + r_cnjg(&q__2, &v1); + q__1.r = tau->r * q__2.r - tau->i * q__2.i, q__1.i = tau->r * q__2.i + + tau->i * q__2.r; + t1.r = q__1.r, t1.i = q__1.i; + v2.r = v[2].r, v2.i = v[2].i; + r_cnjg(&q__2, &v2); + q__1.r = tau->r * q__2.r - tau->i * q__2.i, q__1.i = tau->r * q__2.i + + tau->i * q__2.r; + t2.r = q__1.r, t2.i = q__1.i; + v3.r = v[3].r, v3.i = v[3].i; + r_cnjg(&q__2, &v3); + q__1.r = tau->r * q__2.r - tau->i * q__2.i, q__1.i = tau->r * q__2.i + + tau->i * q__2.r; + t3.r = q__1.r, t3.i = q__1.i; + v4.r = v[4].r, v4.i = v[4].i; + r_cnjg(&q__2, &v4); + q__1.r = tau->r * q__2.r - tau->i * q__2.i, q__1.i = tau->r * q__2.i + + tau->i * q__2.r; + t4.r = q__1.r, t4.i = q__1.i; + v5.r = v[5].r, v5.i = v[5].i; + r_cnjg(&q__2, &v5); + q__1.r = tau->r * q__2.r - tau->i * q__2.i, q__1.i = tau->r * q__2.i + + tau->i * q__2.r; + t5.r = q__1.r, t5.i = q__1.i; + v6.r = v[6].r, v6.i = v[6].i; + r_cnjg(&q__2, &v6); + q__1.r = tau->r * q__2.r - tau->i * q__2.i, q__1.i = tau->r * q__2.i + + tau->i * q__2.r; + t6.r = q__1.r, t6.i = q__1.i; + i__1 = *m; + for (j = 1; j <= i__1; ++j) { + i__2 = j + c_dim1; + q__6.r = v1.r * c__[i__2].r - v1.i * c__[i__2].i, q__6.i = v1.r * + c__[i__2].i + v1.i * c__[i__2].r; + i__3 = j + (c_dim1 << 1); + q__7.r = v2.r * c__[i__3].r - v2.i * c__[i__3].i, q__7.i = v2.r * + c__[i__3].i + v2.i * c__[i__3].r; + q__5.r = q__6.r + q__7.r, q__5.i = q__6.i + q__7.i; + i__4 = j + c_dim1 * 3; + q__8.r = v3.r * c__[i__4].r - v3.i * c__[i__4].i, q__8.i = v3.r * + c__[i__4].i + v3.i * c__[i__4].r; + q__4.r = q__5.r + q__8.r, q__4.i = q__5.i + q__8.i; + i__5 = j + (c_dim1 << 2); + q__9.r = v4.r * c__[i__5].r - v4.i * c__[i__5].i, q__9.i = v4.r * + c__[i__5].i + v4.i * c__[i__5].r; + q__3.r = q__4.r + q__9.r, q__3.i = q__4.i + q__9.i; + i__6 = j + c_dim1 * 5; + q__10.r = v5.r * c__[i__6].r - v5.i * c__[i__6].i, q__10.i = v5.r + * c__[i__6].i + v5.i * c__[i__6].r; + q__2.r = q__3.r + q__10.r, q__2.i = q__3.i + q__10.i; + i__7 = j + c_dim1 * 6; + q__11.r = v6.r * c__[i__7].r - v6.i * c__[i__7].i, q__11.i = v6.r + * c__[i__7].i + v6.i * c__[i__7].r; + q__1.r = q__2.r + q__11.r, q__1.i = q__2.i + q__11.i; + sum.r = q__1.r, sum.i = q__1.i; + i__2 = j + c_dim1; + i__3 = j + c_dim1; + q__2.r = sum.r * t1.r - sum.i * t1.i, q__2.i = sum.r * t1.i + + sum.i * t1.r; + q__1.r = c__[i__3].r - q__2.r, q__1.i = c__[i__3].i - q__2.i; + c__[i__2].r = q__1.r, c__[i__2].i = q__1.i; + i__2 = j + (c_dim1 << 1); + i__3 = j + (c_dim1 << 1); + q__2.r = sum.r * t2.r - sum.i * t2.i, q__2.i = sum.r * t2.i + + sum.i * t2.r; + q__1.r = c__[i__3].r - q__2.r, q__1.i = c__[i__3].i - q__2.i; + c__[i__2].r = q__1.r, c__[i__2].i = q__1.i; + i__2 = j + c_dim1 * 3; + i__3 = j + c_dim1 * 3; + q__2.r = sum.r * t3.r - sum.i * t3.i, q__2.i = sum.r * t3.i + + sum.i * t3.r; + q__1.r = c__[i__3].r - q__2.r, q__1.i = c__[i__3].i - q__2.i; + c__[i__2].r = q__1.r, c__[i__2].i = q__1.i; + i__2 = j + (c_dim1 << 2); + i__3 = j + (c_dim1 << 2); + q__2.r = sum.r * t4.r - sum.i * t4.i, q__2.i = sum.r * t4.i + + sum.i * t4.r; + q__1.r = c__[i__3].r - q__2.r, q__1.i = c__[i__3].i - q__2.i; + c__[i__2].r = q__1.r, c__[i__2].i = q__1.i; + i__2 = j + c_dim1 * 5; + i__3 = j + c_dim1 * 5; + q__2.r = sum.r * t5.r - sum.i * t5.i, q__2.i = sum.r * t5.i + + sum.i * t5.r; + q__1.r = c__[i__3].r - q__2.r, q__1.i = c__[i__3].i - q__2.i; + c__[i__2].r = q__1.r, c__[i__2].i = q__1.i; + i__2 = j + c_dim1 * 6; + i__3 = j + c_dim1 * 6; + q__2.r = sum.r * t6.r - sum.i * t6.i, q__2.i = sum.r * t6.i + + sum.i * t6.r; + q__1.r = c__[i__3].r - q__2.r, q__1.i = c__[i__3].i - q__2.i; + c__[i__2].r = q__1.r, c__[i__2].i = q__1.i; +/* L320: */ + } + goto L410; +L330: + +/* Special code for 7 x 7 Householder */ + + v1.r = v[1].r, v1.i = v[1].i; + r_cnjg(&q__2, &v1); + q__1.r = tau->r * q__2.r - tau->i * q__2.i, q__1.i = tau->r * q__2.i + + tau->i * q__2.r; + t1.r = q__1.r, t1.i = q__1.i; + v2.r = v[2].r, v2.i = v[2].i; + r_cnjg(&q__2, &v2); + q__1.r = tau->r * q__2.r - tau->i * q__2.i, q__1.i = tau->r * q__2.i + + tau->i * q__2.r; + t2.r = q__1.r, t2.i = q__1.i; + v3.r = v[3].r, v3.i = v[3].i; + r_cnjg(&q__2, &v3); + q__1.r = tau->r * q__2.r - tau->i * q__2.i, q__1.i = tau->r * q__2.i + + tau->i * q__2.r; + t3.r = q__1.r, t3.i = q__1.i; + v4.r = v[4].r, v4.i = v[4].i; + r_cnjg(&q__2, &v4); + q__1.r = tau->r * q__2.r - tau->i * q__2.i, q__1.i = tau->r * q__2.i + + tau->i * q__2.r; + t4.r = q__1.r, t4.i = q__1.i; + v5.r = v[5].r, v5.i = v[5].i; + r_cnjg(&q__2, &v5); + q__1.r = tau->r * q__2.r - tau->i * q__2.i, q__1.i = tau->r * q__2.i + + tau->i * q__2.r; + t5.r = q__1.r, t5.i = q__1.i; + v6.r = v[6].r, v6.i = v[6].i; + r_cnjg(&q__2, &v6); + q__1.r = tau->r * q__2.r - tau->i * q__2.i, q__1.i = tau->r * q__2.i + + tau->i * q__2.r; + t6.r = q__1.r, t6.i = q__1.i; + v7.r = v[7].r, v7.i = v[7].i; + r_cnjg(&q__2, &v7); + q__1.r = tau->r * q__2.r - tau->i * q__2.i, q__1.i = tau->r * q__2.i + + tau->i * q__2.r; + t7.r = q__1.r, t7.i = q__1.i; + i__1 = *m; + for (j = 1; j <= i__1; ++j) { + i__2 = j + c_dim1; + q__7.r = v1.r * c__[i__2].r - v1.i * c__[i__2].i, q__7.i = v1.r * + c__[i__2].i + v1.i * c__[i__2].r; + i__3 = j + (c_dim1 << 1); + q__8.r = v2.r * c__[i__3].r - v2.i * c__[i__3].i, q__8.i = v2.r * + c__[i__3].i + v2.i * c__[i__3].r; + q__6.r = q__7.r + q__8.r, q__6.i = q__7.i + q__8.i; + i__4 = j + c_dim1 * 3; + q__9.r = v3.r * c__[i__4].r - v3.i * c__[i__4].i, q__9.i = v3.r * + c__[i__4].i + v3.i * c__[i__4].r; + q__5.r = q__6.r + q__9.r, q__5.i = q__6.i + q__9.i; + i__5 = j + (c_dim1 << 2); + q__10.r = v4.r * c__[i__5].r - v4.i * c__[i__5].i, q__10.i = v4.r + * c__[i__5].i + v4.i * c__[i__5].r; + q__4.r = q__5.r + q__10.r, q__4.i = q__5.i + q__10.i; + i__6 = j + c_dim1 * 5; + q__11.r = v5.r * c__[i__6].r - v5.i * c__[i__6].i, q__11.i = v5.r + * c__[i__6].i + v5.i * c__[i__6].r; + q__3.r = q__4.r + q__11.r, q__3.i = q__4.i + q__11.i; + i__7 = j + c_dim1 * 6; + q__12.r = v6.r * c__[i__7].r - v6.i * c__[i__7].i, q__12.i = v6.r + * c__[i__7].i + v6.i * c__[i__7].r; + q__2.r = q__3.r + q__12.r, q__2.i = q__3.i + q__12.i; + i__8 = j + c_dim1 * 7; + q__13.r = v7.r * c__[i__8].r - v7.i * c__[i__8].i, q__13.i = v7.r + * c__[i__8].i + v7.i * c__[i__8].r; + q__1.r = q__2.r + q__13.r, q__1.i = q__2.i + q__13.i; + sum.r = q__1.r, sum.i = q__1.i; + i__2 = j + c_dim1; + i__3 = j + c_dim1; + q__2.r = sum.r * t1.r - sum.i * t1.i, q__2.i = sum.r * t1.i + + sum.i * t1.r; + q__1.r = c__[i__3].r - q__2.r, q__1.i = c__[i__3].i - q__2.i; + c__[i__2].r = q__1.r, c__[i__2].i = q__1.i; + i__2 = j + (c_dim1 << 1); + i__3 = j + (c_dim1 << 1); + q__2.r = sum.r * t2.r - sum.i * t2.i, q__2.i = sum.r * t2.i + + sum.i * t2.r; + q__1.r = c__[i__3].r - q__2.r, q__1.i = c__[i__3].i - q__2.i; + c__[i__2].r = q__1.r, c__[i__2].i = q__1.i; + i__2 = j + c_dim1 * 3; + i__3 = j + c_dim1 * 3; + q__2.r = sum.r * t3.r - sum.i * t3.i, q__2.i = sum.r * t3.i + + sum.i * t3.r; + q__1.r = c__[i__3].r - q__2.r, q__1.i = c__[i__3].i - q__2.i; + c__[i__2].r = q__1.r, c__[i__2].i = q__1.i; + i__2 = j + (c_dim1 << 2); + i__3 = j + (c_dim1 << 2); + q__2.r = sum.r * t4.r - sum.i * t4.i, q__2.i = sum.r * t4.i + + sum.i * t4.r; + q__1.r = c__[i__3].r - q__2.r, q__1.i = c__[i__3].i - q__2.i; + c__[i__2].r = q__1.r, c__[i__2].i = q__1.i; + i__2 = j + c_dim1 * 5; + i__3 = j + c_dim1 * 5; + q__2.r = sum.r * t5.r - sum.i * t5.i, q__2.i = sum.r * t5.i + + sum.i * t5.r; + q__1.r = c__[i__3].r - q__2.r, q__1.i = c__[i__3].i - q__2.i; + c__[i__2].r = q__1.r, c__[i__2].i = q__1.i; + i__2 = j + c_dim1 * 6; + i__3 = j + c_dim1 * 6; + q__2.r = sum.r * t6.r - sum.i * t6.i, q__2.i = sum.r * t6.i + + sum.i * t6.r; + q__1.r = c__[i__3].r - q__2.r, q__1.i = c__[i__3].i - q__2.i; + c__[i__2].r = q__1.r, c__[i__2].i = q__1.i; + i__2 = j + c_dim1 * 7; + i__3 = j + c_dim1 * 7; + q__2.r = sum.r * t7.r - sum.i * t7.i, q__2.i = sum.r * t7.i + + sum.i * t7.r; + q__1.r = c__[i__3].r - q__2.r, q__1.i = c__[i__3].i - q__2.i; + c__[i__2].r = q__1.r, c__[i__2].i = q__1.i; +/* L340: */ + } + goto L410; +L350: + +/* Special code for 8 x 8 Householder */ + + v1.r = v[1].r, v1.i = v[1].i; + r_cnjg(&q__2, &v1); + q__1.r = tau->r * q__2.r - tau->i * q__2.i, q__1.i = tau->r * q__2.i + + tau->i * q__2.r; + t1.r = q__1.r, t1.i = q__1.i; + v2.r = v[2].r, v2.i = v[2].i; + r_cnjg(&q__2, &v2); + q__1.r = tau->r * q__2.r - tau->i * q__2.i, q__1.i = tau->r * q__2.i + + tau->i * q__2.r; + t2.r = q__1.r, t2.i = q__1.i; + v3.r = v[3].r, v3.i = v[3].i; + r_cnjg(&q__2, &v3); + q__1.r = tau->r * q__2.r - tau->i * q__2.i, q__1.i = tau->r * q__2.i + + tau->i * q__2.r; + t3.r = q__1.r, t3.i = q__1.i; + v4.r = v[4].r, v4.i = v[4].i; + r_cnjg(&q__2, &v4); + q__1.r = tau->r * q__2.r - tau->i * q__2.i, q__1.i = tau->r * q__2.i + + tau->i * q__2.r; + t4.r = q__1.r, t4.i = q__1.i; + v5.r = v[5].r, v5.i = v[5].i; + r_cnjg(&q__2, &v5); + q__1.r = tau->r * q__2.r - tau->i * q__2.i, q__1.i = tau->r * q__2.i + + tau->i * q__2.r; + t5.r = q__1.r, t5.i = q__1.i; + v6.r = v[6].r, v6.i = v[6].i; + r_cnjg(&q__2, &v6); + q__1.r = tau->r * q__2.r - tau->i * q__2.i, q__1.i = tau->r * q__2.i + + tau->i * q__2.r; + t6.r = q__1.r, t6.i = q__1.i; + v7.r = v[7].r, v7.i = v[7].i; + r_cnjg(&q__2, &v7); + q__1.r = tau->r * q__2.r - tau->i * q__2.i, q__1.i = tau->r * q__2.i + + tau->i * q__2.r; + t7.r = q__1.r, t7.i = q__1.i; + v8.r = v[8].r, v8.i = v[8].i; + r_cnjg(&q__2, &v8); + q__1.r = tau->r * q__2.r - tau->i * q__2.i, q__1.i = tau->r * q__2.i + + tau->i * q__2.r; + t8.r = q__1.r, t8.i = q__1.i; + i__1 = *m; + for (j = 1; j <= i__1; ++j) { + i__2 = j + c_dim1; + q__8.r = v1.r * c__[i__2].r - v1.i * c__[i__2].i, q__8.i = v1.r * + c__[i__2].i + v1.i * c__[i__2].r; + i__3 = j + (c_dim1 << 1); + q__9.r = v2.r * c__[i__3].r - v2.i * c__[i__3].i, q__9.i = v2.r * + c__[i__3].i + v2.i * c__[i__3].r; + q__7.r = q__8.r + q__9.r, q__7.i = q__8.i + q__9.i; + i__4 = j + c_dim1 * 3; + q__10.r = v3.r * c__[i__4].r - v3.i * c__[i__4].i, q__10.i = v3.r + * c__[i__4].i + v3.i * c__[i__4].r; + q__6.r = q__7.r + q__10.r, q__6.i = q__7.i + q__10.i; + i__5 = j + (c_dim1 << 2); + q__11.r = v4.r * c__[i__5].r - v4.i * c__[i__5].i, q__11.i = v4.r + * c__[i__5].i + v4.i * c__[i__5].r; + q__5.r = q__6.r + q__11.r, q__5.i = q__6.i + q__11.i; + i__6 = j + c_dim1 * 5; + q__12.r = v5.r * c__[i__6].r - v5.i * c__[i__6].i, q__12.i = v5.r + * c__[i__6].i + v5.i * c__[i__6].r; + q__4.r = q__5.r + q__12.r, q__4.i = q__5.i + q__12.i; + i__7 = j + c_dim1 * 6; + q__13.r = v6.r * c__[i__7].r - v6.i * c__[i__7].i, q__13.i = v6.r + * c__[i__7].i + v6.i * c__[i__7].r; + q__3.r = q__4.r + q__13.r, q__3.i = q__4.i + q__13.i; + i__8 = j + c_dim1 * 7; + q__14.r = v7.r * c__[i__8].r - v7.i * c__[i__8].i, q__14.i = v7.r + * c__[i__8].i + v7.i * c__[i__8].r; + q__2.r = q__3.r + q__14.r, q__2.i = q__3.i + q__14.i; + i__9 = j + (c_dim1 << 3); + q__15.r = v8.r * c__[i__9].r - v8.i * c__[i__9].i, q__15.i = v8.r + * c__[i__9].i + v8.i * c__[i__9].r; + q__1.r = q__2.r + q__15.r, q__1.i = q__2.i + q__15.i; + sum.r = q__1.r, sum.i = q__1.i; + i__2 = j + c_dim1; + i__3 = j + c_dim1; + q__2.r = sum.r * t1.r - sum.i * t1.i, q__2.i = sum.r * t1.i + + sum.i * t1.r; + q__1.r = c__[i__3].r - q__2.r, q__1.i = c__[i__3].i - q__2.i; + c__[i__2].r = q__1.r, c__[i__2].i = q__1.i; + i__2 = j + (c_dim1 << 1); + i__3 = j + (c_dim1 << 1); + q__2.r = sum.r * t2.r - sum.i * t2.i, q__2.i = sum.r * t2.i + + sum.i * t2.r; + q__1.r = c__[i__3].r - q__2.r, q__1.i = c__[i__3].i - q__2.i; + c__[i__2].r = q__1.r, c__[i__2].i = q__1.i; + i__2 = j + c_dim1 * 3; + i__3 = j + c_dim1 * 3; + q__2.r = sum.r * t3.r - sum.i * t3.i, q__2.i = sum.r * t3.i + + sum.i * t3.r; + q__1.r = c__[i__3].r - q__2.r, q__1.i = c__[i__3].i - q__2.i; + c__[i__2].r = q__1.r, c__[i__2].i = q__1.i; + i__2 = j + (c_dim1 << 2); + i__3 = j + (c_dim1 << 2); + q__2.r = sum.r * t4.r - sum.i * t4.i, q__2.i = sum.r * t4.i + + sum.i * t4.r; + q__1.r = c__[i__3].r - q__2.r, q__1.i = c__[i__3].i - q__2.i; + c__[i__2].r = q__1.r, c__[i__2].i = q__1.i; + i__2 = j + c_dim1 * 5; + i__3 = j + c_dim1 * 5; + q__2.r = sum.r * t5.r - sum.i * t5.i, q__2.i = sum.r * t5.i + + sum.i * t5.r; + q__1.r = c__[i__3].r - q__2.r, q__1.i = c__[i__3].i - q__2.i; + c__[i__2].r = q__1.r, c__[i__2].i = q__1.i; + i__2 = j + c_dim1 * 6; + i__3 = j + c_dim1 * 6; + q__2.r = sum.r * t6.r - sum.i * t6.i, q__2.i = sum.r * t6.i + + sum.i * t6.r; + q__1.r = c__[i__3].r - q__2.r, q__1.i = c__[i__3].i - q__2.i; + c__[i__2].r = q__1.r, c__[i__2].i = q__1.i; + i__2 = j + c_dim1 * 7; + i__3 = j + c_dim1 * 7; + q__2.r = sum.r * t7.r - sum.i * t7.i, q__2.i = sum.r * t7.i + + sum.i * t7.r; + q__1.r = c__[i__3].r - q__2.r, q__1.i = c__[i__3].i - q__2.i; + c__[i__2].r = q__1.r, c__[i__2].i = q__1.i; + i__2 = j + (c_dim1 << 3); + i__3 = j + (c_dim1 << 3); + q__2.r = sum.r * t8.r - sum.i * t8.i, q__2.i = sum.r * t8.i + + sum.i * t8.r; + q__1.r = c__[i__3].r - q__2.r, q__1.i = c__[i__3].i - q__2.i; + c__[i__2].r = q__1.r, c__[i__2].i = q__1.i; +/* L360: */ + } + goto L410; +L370: + +/* Special code for 9 x 9 Householder */ + + v1.r = v[1].r, v1.i = v[1].i; + r_cnjg(&q__2, &v1); + q__1.r = tau->r * q__2.r - tau->i * q__2.i, q__1.i = tau->r * q__2.i + + tau->i * q__2.r; + t1.r = q__1.r, t1.i = q__1.i; + v2.r = v[2].r, v2.i = v[2].i; + r_cnjg(&q__2, &v2); + q__1.r = tau->r * q__2.r - tau->i * q__2.i, q__1.i = tau->r * q__2.i + + tau->i * q__2.r; + t2.r = q__1.r, t2.i = q__1.i; + v3.r = v[3].r, v3.i = v[3].i; + r_cnjg(&q__2, &v3); + q__1.r = tau->r * q__2.r - tau->i * q__2.i, q__1.i = tau->r * q__2.i + + tau->i * q__2.r; + t3.r = q__1.r, t3.i = q__1.i; + v4.r = v[4].r, v4.i = v[4].i; + r_cnjg(&q__2, &v4); + q__1.r = tau->r * q__2.r - tau->i * q__2.i, q__1.i = tau->r * q__2.i + + tau->i * q__2.r; + t4.r = q__1.r, t4.i = q__1.i; + v5.r = v[5].r, v5.i = v[5].i; + r_cnjg(&q__2, &v5); + q__1.r = tau->r * q__2.r - tau->i * q__2.i, q__1.i = tau->r * q__2.i + + tau->i * q__2.r; + t5.r = q__1.r, t5.i = q__1.i; + v6.r = v[6].r, v6.i = v[6].i; + r_cnjg(&q__2, &v6); + q__1.r = tau->r * q__2.r - tau->i * q__2.i, q__1.i = tau->r * q__2.i + + tau->i * q__2.r; + t6.r = q__1.r, t6.i = q__1.i; + v7.r = v[7].r, v7.i = v[7].i; + r_cnjg(&q__2, &v7); + q__1.r = tau->r * q__2.r - tau->i * q__2.i, q__1.i = tau->r * q__2.i + + tau->i * q__2.r; + t7.r = q__1.r, t7.i = q__1.i; + v8.r = v[8].r, v8.i = v[8].i; + r_cnjg(&q__2, &v8); + q__1.r = tau->r * q__2.r - tau->i * q__2.i, q__1.i = tau->r * q__2.i + + tau->i * q__2.r; + t8.r = q__1.r, t8.i = q__1.i; + v9.r = v[9].r, v9.i = v[9].i; + r_cnjg(&q__2, &v9); + q__1.r = tau->r * q__2.r - tau->i * q__2.i, q__1.i = tau->r * q__2.i + + tau->i * q__2.r; + t9.r = q__1.r, t9.i = q__1.i; + i__1 = *m; + for (j = 1; j <= i__1; ++j) { + i__2 = j + c_dim1; + q__9.r = v1.r * c__[i__2].r - v1.i * c__[i__2].i, q__9.i = v1.r * + c__[i__2].i + v1.i * c__[i__2].r; + i__3 = j + (c_dim1 << 1); + q__10.r = v2.r * c__[i__3].r - v2.i * c__[i__3].i, q__10.i = v2.r + * c__[i__3].i + v2.i * c__[i__3].r; + q__8.r = q__9.r + q__10.r, q__8.i = q__9.i + q__10.i; + i__4 = j + c_dim1 * 3; + q__11.r = v3.r * c__[i__4].r - v3.i * c__[i__4].i, q__11.i = v3.r + * c__[i__4].i + v3.i * c__[i__4].r; + q__7.r = q__8.r + q__11.r, q__7.i = q__8.i + q__11.i; + i__5 = j + (c_dim1 << 2); + q__12.r = v4.r * c__[i__5].r - v4.i * c__[i__5].i, q__12.i = v4.r + * c__[i__5].i + v4.i * c__[i__5].r; + q__6.r = q__7.r + q__12.r, q__6.i = q__7.i + q__12.i; + i__6 = j + c_dim1 * 5; + q__13.r = v5.r * c__[i__6].r - v5.i * c__[i__6].i, q__13.i = v5.r + * c__[i__6].i + v5.i * c__[i__6].r; + q__5.r = q__6.r + q__13.r, q__5.i = q__6.i + q__13.i; + i__7 = j + c_dim1 * 6; + q__14.r = v6.r * c__[i__7].r - v6.i * c__[i__7].i, q__14.i = v6.r + * c__[i__7].i + v6.i * c__[i__7].r; + q__4.r = q__5.r + q__14.r, q__4.i = q__5.i + q__14.i; + i__8 = j + c_dim1 * 7; + q__15.r = v7.r * c__[i__8].r - v7.i * c__[i__8].i, q__15.i = v7.r + * c__[i__8].i + v7.i * c__[i__8].r; + q__3.r = q__4.r + q__15.r, q__3.i = q__4.i + q__15.i; + i__9 = j + (c_dim1 << 3); + q__16.r = v8.r * c__[i__9].r - v8.i * c__[i__9].i, q__16.i = v8.r + * c__[i__9].i + v8.i * c__[i__9].r; + q__2.r = q__3.r + q__16.r, q__2.i = q__3.i + q__16.i; + i__10 = j + c_dim1 * 9; + q__17.r = v9.r * c__[i__10].r - v9.i * c__[i__10].i, q__17.i = + v9.r * c__[i__10].i + v9.i * c__[i__10].r; + q__1.r = q__2.r + q__17.r, q__1.i = q__2.i + q__17.i; + sum.r = q__1.r, sum.i = q__1.i; + i__2 = j + c_dim1; + i__3 = j + c_dim1; + q__2.r = sum.r * t1.r - sum.i * t1.i, q__2.i = sum.r * t1.i + + sum.i * t1.r; + q__1.r = c__[i__3].r - q__2.r, q__1.i = c__[i__3].i - q__2.i; + c__[i__2].r = q__1.r, c__[i__2].i = q__1.i; + i__2 = j + (c_dim1 << 1); + i__3 = j + (c_dim1 << 1); + q__2.r = sum.r * t2.r - sum.i * t2.i, q__2.i = sum.r * t2.i + + sum.i * t2.r; + q__1.r = c__[i__3].r - q__2.r, q__1.i = c__[i__3].i - q__2.i; + c__[i__2].r = q__1.r, c__[i__2].i = q__1.i; + i__2 = j + c_dim1 * 3; + i__3 = j + c_dim1 * 3; + q__2.r = sum.r * t3.r - sum.i * t3.i, q__2.i = sum.r * t3.i + + sum.i * t3.r; + q__1.r = c__[i__3].r - q__2.r, q__1.i = c__[i__3].i - q__2.i; + c__[i__2].r = q__1.r, c__[i__2].i = q__1.i; + i__2 = j + (c_dim1 << 2); + i__3 = j + (c_dim1 << 2); + q__2.r = sum.r * t4.r - sum.i * t4.i, q__2.i = sum.r * t4.i + + sum.i * t4.r; + q__1.r = c__[i__3].r - q__2.r, q__1.i = c__[i__3].i - q__2.i; + c__[i__2].r = q__1.r, c__[i__2].i = q__1.i; + i__2 = j + c_dim1 * 5; + i__3 = j + c_dim1 * 5; + q__2.r = sum.r * t5.r - sum.i * t5.i, q__2.i = sum.r * t5.i + + sum.i * t5.r; + q__1.r = c__[i__3].r - q__2.r, q__1.i = c__[i__3].i - q__2.i; + c__[i__2].r = q__1.r, c__[i__2].i = q__1.i; + i__2 = j + c_dim1 * 6; + i__3 = j + c_dim1 * 6; + q__2.r = sum.r * t6.r - sum.i * t6.i, q__2.i = sum.r * t6.i + + sum.i * t6.r; + q__1.r = c__[i__3].r - q__2.r, q__1.i = c__[i__3].i - q__2.i; + c__[i__2].r = q__1.r, c__[i__2].i = q__1.i; + i__2 = j + c_dim1 * 7; + i__3 = j + c_dim1 * 7; + q__2.r = sum.r * t7.r - sum.i * t7.i, q__2.i = sum.r * t7.i + + sum.i * t7.r; + q__1.r = c__[i__3].r - q__2.r, q__1.i = c__[i__3].i - q__2.i; + c__[i__2].r = q__1.r, c__[i__2].i = q__1.i; + i__2 = j + (c_dim1 << 3); + i__3 = j + (c_dim1 << 3); + q__2.r = sum.r * t8.r - sum.i * t8.i, q__2.i = sum.r * t8.i + + sum.i * t8.r; + q__1.r = c__[i__3].r - q__2.r, q__1.i = c__[i__3].i - q__2.i; + c__[i__2].r = q__1.r, c__[i__2].i = q__1.i; + i__2 = j + c_dim1 * 9; + i__3 = j + c_dim1 * 9; + q__2.r = sum.r * t9.r - sum.i * t9.i, q__2.i = sum.r * t9.i + + sum.i * t9.r; + q__1.r = c__[i__3].r - q__2.r, q__1.i = c__[i__3].i - q__2.i; + c__[i__2].r = q__1.r, c__[i__2].i = q__1.i; +/* L380: */ + } + goto L410; +L390: + +/* Special code for 10 x 10 Householder */ + + v1.r = v[1].r, v1.i = v[1].i; + r_cnjg(&q__2, &v1); + q__1.r = tau->r * q__2.r - tau->i * q__2.i, q__1.i = tau->r * q__2.i + + tau->i * q__2.r; + t1.r = q__1.r, t1.i = q__1.i; + v2.r = v[2].r, v2.i = v[2].i; + r_cnjg(&q__2, &v2); + q__1.r = tau->r * q__2.r - tau->i * q__2.i, q__1.i = tau->r * q__2.i + + tau->i * q__2.r; + t2.r = q__1.r, t2.i = q__1.i; + v3.r = v[3].r, v3.i = v[3].i; + r_cnjg(&q__2, &v3); + q__1.r = tau->r * q__2.r - tau->i * q__2.i, q__1.i = tau->r * q__2.i + + tau->i * q__2.r; + t3.r = q__1.r, t3.i = q__1.i; + v4.r = v[4].r, v4.i = v[4].i; + r_cnjg(&q__2, &v4); + q__1.r = tau->r * q__2.r - tau->i * q__2.i, q__1.i = tau->r * q__2.i + + tau->i * q__2.r; + t4.r = q__1.r, t4.i = q__1.i; + v5.r = v[5].r, v5.i = v[5].i; + r_cnjg(&q__2, &v5); + q__1.r = tau->r * q__2.r - tau->i * q__2.i, q__1.i = tau->r * q__2.i + + tau->i * q__2.r; + t5.r = q__1.r, t5.i = q__1.i; + v6.r = v[6].r, v6.i = v[6].i; + r_cnjg(&q__2, &v6); + q__1.r = tau->r * q__2.r - tau->i * q__2.i, q__1.i = tau->r * q__2.i + + tau->i * q__2.r; + t6.r = q__1.r, t6.i = q__1.i; + v7.r = v[7].r, v7.i = v[7].i; + r_cnjg(&q__2, &v7); + q__1.r = tau->r * q__2.r - tau->i * q__2.i, q__1.i = tau->r * q__2.i + + tau->i * q__2.r; + t7.r = q__1.r, t7.i = q__1.i; + v8.r = v[8].r, v8.i = v[8].i; + r_cnjg(&q__2, &v8); + q__1.r = tau->r * q__2.r - tau->i * q__2.i, q__1.i = tau->r * q__2.i + + tau->i * q__2.r; + t8.r = q__1.r, t8.i = q__1.i; + v9.r = v[9].r, v9.i = v[9].i; + r_cnjg(&q__2, &v9); + q__1.r = tau->r * q__2.r - tau->i * q__2.i, q__1.i = tau->r * q__2.i + + tau->i * q__2.r; + t9.r = q__1.r, t9.i = q__1.i; + v10.r = v[10].r, v10.i = v[10].i; + r_cnjg(&q__2, &v10); + q__1.r = tau->r * q__2.r - tau->i * q__2.i, q__1.i = tau->r * q__2.i + + tau->i * q__2.r; + t10.r = q__1.r, t10.i = q__1.i; + i__1 = *m; + for (j = 1; j <= i__1; ++j) { + i__2 = j + c_dim1; + q__10.r = v1.r * c__[i__2].r - v1.i * c__[i__2].i, q__10.i = v1.r + * c__[i__2].i + v1.i * c__[i__2].r; + i__3 = j + (c_dim1 << 1); + q__11.r = v2.r * c__[i__3].r - v2.i * c__[i__3].i, q__11.i = v2.r + * c__[i__3].i + v2.i * c__[i__3].r; + q__9.r = q__10.r + q__11.r, q__9.i = q__10.i + q__11.i; + i__4 = j + c_dim1 * 3; + q__12.r = v3.r * c__[i__4].r - v3.i * c__[i__4].i, q__12.i = v3.r + * c__[i__4].i + v3.i * c__[i__4].r; + q__8.r = q__9.r + q__12.r, q__8.i = q__9.i + q__12.i; + i__5 = j + (c_dim1 << 2); + q__13.r = v4.r * c__[i__5].r - v4.i * c__[i__5].i, q__13.i = v4.r + * c__[i__5].i + v4.i * c__[i__5].r; + q__7.r = q__8.r + q__13.r, q__7.i = q__8.i + q__13.i; + i__6 = j + c_dim1 * 5; + q__14.r = v5.r * c__[i__6].r - v5.i * c__[i__6].i, q__14.i = v5.r + * c__[i__6].i + v5.i * c__[i__6].r; + q__6.r = q__7.r + q__14.r, q__6.i = q__7.i + q__14.i; + i__7 = j + c_dim1 * 6; + q__15.r = v6.r * c__[i__7].r - v6.i * c__[i__7].i, q__15.i = v6.r + * c__[i__7].i + v6.i * c__[i__7].r; + q__5.r = q__6.r + q__15.r, q__5.i = q__6.i + q__15.i; + i__8 = j + c_dim1 * 7; + q__16.r = v7.r * c__[i__8].r - v7.i * c__[i__8].i, q__16.i = v7.r + * c__[i__8].i + v7.i * c__[i__8].r; + q__4.r = q__5.r + q__16.r, q__4.i = q__5.i + q__16.i; + i__9 = j + (c_dim1 << 3); + q__17.r = v8.r * c__[i__9].r - v8.i * c__[i__9].i, q__17.i = v8.r + * c__[i__9].i + v8.i * c__[i__9].r; + q__3.r = q__4.r + q__17.r, q__3.i = q__4.i + q__17.i; + i__10 = j + c_dim1 * 9; + q__18.r = v9.r * c__[i__10].r - v9.i * c__[i__10].i, q__18.i = + v9.r * c__[i__10].i + v9.i * c__[i__10].r; + q__2.r = q__3.r + q__18.r, q__2.i = q__3.i + q__18.i; + i__11 = j + c_dim1 * 10; + q__19.r = v10.r * c__[i__11].r - v10.i * c__[i__11].i, q__19.i = + v10.r * c__[i__11].i + v10.i * c__[i__11].r; + q__1.r = q__2.r + q__19.r, q__1.i = q__2.i + q__19.i; + sum.r = q__1.r, sum.i = q__1.i; + i__2 = j + c_dim1; + i__3 = j + c_dim1; + q__2.r = sum.r * t1.r - sum.i * t1.i, q__2.i = sum.r * t1.i + + sum.i * t1.r; + q__1.r = c__[i__3].r - q__2.r, q__1.i = c__[i__3].i - q__2.i; + c__[i__2].r = q__1.r, c__[i__2].i = q__1.i; + i__2 = j + (c_dim1 << 1); + i__3 = j + (c_dim1 << 1); + q__2.r = sum.r * t2.r - sum.i * t2.i, q__2.i = sum.r * t2.i + + sum.i * t2.r; + q__1.r = c__[i__3].r - q__2.r, q__1.i = c__[i__3].i - q__2.i; + c__[i__2].r = q__1.r, c__[i__2].i = q__1.i; + i__2 = j + c_dim1 * 3; + i__3 = j + c_dim1 * 3; + q__2.r = sum.r * t3.r - sum.i * t3.i, q__2.i = sum.r * t3.i + + sum.i * t3.r; + q__1.r = c__[i__3].r - q__2.r, q__1.i = c__[i__3].i - q__2.i; + c__[i__2].r = q__1.r, c__[i__2].i = q__1.i; + i__2 = j + (c_dim1 << 2); + i__3 = j + (c_dim1 << 2); + q__2.r = sum.r * t4.r - sum.i * t4.i, q__2.i = sum.r * t4.i + + sum.i * t4.r; + q__1.r = c__[i__3].r - q__2.r, q__1.i = c__[i__3].i - q__2.i; + c__[i__2].r = q__1.r, c__[i__2].i = q__1.i; + i__2 = j + c_dim1 * 5; + i__3 = j + c_dim1 * 5; + q__2.r = sum.r * t5.r - sum.i * t5.i, q__2.i = sum.r * t5.i + + sum.i * t5.r; + q__1.r = c__[i__3].r - q__2.r, q__1.i = c__[i__3].i - q__2.i; + c__[i__2].r = q__1.r, c__[i__2].i = q__1.i; + i__2 = j + c_dim1 * 6; + i__3 = j + c_dim1 * 6; + q__2.r = sum.r * t6.r - sum.i * t6.i, q__2.i = sum.r * t6.i + + sum.i * t6.r; + q__1.r = c__[i__3].r - q__2.r, q__1.i = c__[i__3].i - q__2.i; + c__[i__2].r = q__1.r, c__[i__2].i = q__1.i; + i__2 = j + c_dim1 * 7; + i__3 = j + c_dim1 * 7; + q__2.r = sum.r * t7.r - sum.i * t7.i, q__2.i = sum.r * t7.i + + sum.i * t7.r; + q__1.r = c__[i__3].r - q__2.r, q__1.i = c__[i__3].i - q__2.i; + c__[i__2].r = q__1.r, c__[i__2].i = q__1.i; + i__2 = j + (c_dim1 << 3); + i__3 = j + (c_dim1 << 3); + q__2.r = sum.r * t8.r - sum.i * t8.i, q__2.i = sum.r * t8.i + + sum.i * t8.r; + q__1.r = c__[i__3].r - q__2.r, q__1.i = c__[i__3].i - q__2.i; + c__[i__2].r = q__1.r, c__[i__2].i = q__1.i; + i__2 = j + c_dim1 * 9; + i__3 = j + c_dim1 * 9; + q__2.r = sum.r * t9.r - sum.i * t9.i, q__2.i = sum.r * t9.i + + sum.i * t9.r; + q__1.r = c__[i__3].r - q__2.r, q__1.i = c__[i__3].i - q__2.i; + c__[i__2].r = q__1.r, c__[i__2].i = q__1.i; + i__2 = j + c_dim1 * 10; + i__3 = j + c_dim1 * 10; + q__2.r = sum.r * t10.r - sum.i * t10.i, q__2.i = sum.r * t10.i + + sum.i * t10.r; + q__1.r = c__[i__3].r - q__2.r, q__1.i = c__[i__3].i - q__2.i; + c__[i__2].r = q__1.r, c__[i__2].i = q__1.i; +/* L400: */ + } + goto L410; + } +L410: + return 0; + +/* End of CLARFX */ + +} /* clarfx_ */ + +/* Subroutine */ int clascl_(char *type__, integer *kl, integer *ku, real * + cfrom, real *cto, integer *m, integer *n, complex *a, integer *lda, + integer *info) +{ + /* System generated locals */ + integer a_dim1, a_offset, i__1, i__2, i__3, i__4, i__5; + complex q__1; + + /* Local variables */ + static integer i__, j, k1, k2, k3, k4; + static real mul, cto1; + static logical done; + static real ctoc; + extern logical lsame_(char *, char *); + static integer itype; + static real cfrom1; + extern doublereal slamch_(char *); + static real cfromc; + extern /* Subroutine */ int xerbla_(char *, integer *); + static real bignum, smlnum; + + +/* + -- LAPACK auxiliary routine (version 3.0) -- + Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd., + Courant Institute, Argonne National Lab, and Rice University + February 29, 1992 + + + Purpose + ======= + + CLASCL multiplies the M by N complex matrix A by the real scalar + CTO/CFROM. This is done without over/underflow as long as the final + result CTO*A(I,J)/CFROM does not over/underflow. TYPE specifies that + A may be full, upper triangular, lower triangular, upper Hessenberg, + or banded. + + Arguments + ========= + + TYPE (input) CHARACTER*1 + TYPE indices the storage type of the input matrix. + = 'G': A is a full matrix. + = 'L': A is a lower triangular matrix. + = 'U': A is an upper triangular matrix. + = 'H': A is an upper Hessenberg matrix. + = 'B': A is a symmetric band matrix with lower bandwidth KL + and upper bandwidth KU and with the only the lower + half stored. + = 'Q': A is a symmetric band matrix with lower bandwidth KL + and upper bandwidth KU and with the only the upper + half stored. + = 'Z': A is a band matrix with lower bandwidth KL and upper + bandwidth KU. + + KL (input) INTEGER + The lower bandwidth of A. Referenced only if TYPE = 'B', + 'Q' or 'Z'. + + KU (input) INTEGER + The upper bandwidth of A. Referenced only if TYPE = 'B', + 'Q' or 'Z'. + + CFROM (input) REAL + CTO (input) REAL + The matrix A is multiplied by CTO/CFROM. A(I,J) is computed + without over/underflow if the final result CTO*A(I,J)/CFROM + can be represented without over/underflow. CFROM must be + nonzero. + + M (input) INTEGER + The number of rows of the matrix A. M >= 0. + + N (input) INTEGER + The number of columns of the matrix A. N >= 0. + + A (input/output) COMPLEX array, dimension (LDA,M) + The matrix to be multiplied by CTO/CFROM. See TYPE for the + storage type. + + LDA (input) INTEGER + The leading dimension of the array A. LDA >= max(1,M). + + INFO (output) INTEGER + 0 - successful exit + <0 - if INFO = -i, the i-th argument had an illegal value. + + ===================================================================== + + + Test the input arguments +*/ + + /* Parameter adjustments */ + a_dim1 = *lda; + a_offset = 1 + a_dim1; + a -= a_offset; + + /* Function Body */ + *info = 0; + + if (lsame_(type__, "G")) { + itype = 0; + } else if (lsame_(type__, "L")) { + itype = 1; + } else if (lsame_(type__, "U")) { + itype = 2; + } else if (lsame_(type__, "H")) { + itype = 3; + } else if (lsame_(type__, "B")) { + itype = 4; + } else if (lsame_(type__, "Q")) { + itype = 5; + } else if (lsame_(type__, "Z")) { + itype = 6; + } else { + itype = -1; + } + + if (itype == -1) { + *info = -1; + } else if (*cfrom == 0.f) { + *info = -4; + } else if (*m < 0) { + *info = -6; + } else if (*n < 0 || itype == 4 && *n != *m || itype == 5 && *n != *m) { + *info = -7; + } else if (itype <= 3 && *lda < max(1,*m)) { + *info = -9; + } else if (itype >= 4) { +/* Computing MAX */ + i__1 = *m - 1; + if (*kl < 0 || *kl > max(i__1,0)) { + *info = -2; + } else /* if(complicated condition) */ { +/* Computing MAX */ + i__1 = *n - 1; + if (*ku < 0 || *ku > max(i__1,0) || (itype == 4 || itype == 5) && + *kl != *ku) { + *info = -3; + } else if (itype == 4 && *lda < *kl + 1 || itype == 5 && *lda < * + ku + 1 || itype == 6 && *lda < (*kl << 1) + *ku + 1) { + *info = -9; + } + } + } + + if (*info != 0) { + i__1 = -(*info); + xerbla_("CLASCL", &i__1); + return 0; + } + +/* Quick return if possible */ + + if (*n == 0 || *m == 0) { + return 0; + } + +/* Get machine parameters */ + + smlnum = slamch_("S"); + bignum = 1.f / smlnum; + + cfromc = *cfrom; + ctoc = *cto; + +L10: + cfrom1 = cfromc * smlnum; + cto1 = ctoc / bignum; + if (dabs(cfrom1) > dabs(ctoc) && ctoc != 0.f) { + mul = smlnum; + done = FALSE_; + cfromc = cfrom1; + } else if (dabs(cto1) > dabs(cfromc)) { + mul = bignum; + done = FALSE_; + ctoc = cto1; + } else { + mul = ctoc / cfromc; + done = TRUE_; + } + + if (itype == 0) { + +/* Full matrix */ + + i__1 = *n; + for (j = 1; j <= i__1; ++j) { + i__2 = *m; + for (i__ = 1; i__ <= i__2; ++i__) { + i__3 = i__ + j * a_dim1; + i__4 = i__ + j * a_dim1; + q__1.r = mul * a[i__4].r, q__1.i = mul * a[i__4].i; + a[i__3].r = q__1.r, a[i__3].i = q__1.i; +/* L20: */ + } +/* L30: */ + } + + } else if (itype == 1) { + +/* Lower triangular matrix */ + + i__1 = *n; + for (j = 1; j <= i__1; ++j) { + i__2 = *m; + for (i__ = j; i__ <= i__2; ++i__) { + i__3 = i__ + j * a_dim1; + i__4 = i__ + j * a_dim1; + q__1.r = mul * a[i__4].r, q__1.i = mul * a[i__4].i; + a[i__3].r = q__1.r, a[i__3].i = q__1.i; +/* L40: */ + } +/* L50: */ + } + + } else if (itype == 2) { + +/* Upper triangular matrix */ + + i__1 = *n; + for (j = 1; j <= i__1; ++j) { + i__2 = min(j,*m); + for (i__ = 1; i__ <= i__2; ++i__) { + i__3 = i__ + j * a_dim1; + i__4 = i__ + j * a_dim1; + q__1.r = mul * a[i__4].r, q__1.i = mul * a[i__4].i; + a[i__3].r = q__1.r, a[i__3].i = q__1.i; +/* L60: */ + } +/* L70: */ + } + + } else if (itype == 3) { + +/* Upper Hessenberg matrix */ + + i__1 = *n; + for (j = 1; j <= i__1; ++j) { +/* Computing MIN */ + i__3 = j + 1; + i__2 = min(i__3,*m); + for (i__ = 1; i__ <= i__2; ++i__) { + i__3 = i__ + j * a_dim1; + i__4 = i__ + j * a_dim1; + q__1.r = mul * a[i__4].r, q__1.i = mul * a[i__4].i; + a[i__3].r = q__1.r, a[i__3].i = q__1.i; +/* L80: */ + } +/* L90: */ + } + + } else if (itype == 4) { + +/* Lower half of a symmetric band matrix */ + + k3 = *kl + 1; + k4 = *n + 1; + i__1 = *n; + for (j = 1; j <= i__1; ++j) { +/* Computing MIN */ + i__3 = k3, i__4 = k4 - j; + i__2 = min(i__3,i__4); + for (i__ = 1; i__ <= i__2; ++i__) { + i__3 = i__ + j * a_dim1; + i__4 = i__ + j * a_dim1; + q__1.r = mul * a[i__4].r, q__1.i = mul * a[i__4].i; + a[i__3].r = q__1.r, a[i__3].i = q__1.i; +/* L100: */ + } +/* L110: */ + } + + } else if (itype == 5) { + +/* Upper half of a symmetric band matrix */ + + k1 = *ku + 2; + k3 = *ku + 1; + i__1 = *n; + for (j = 1; j <= i__1; ++j) { +/* Computing MAX */ + i__2 = k1 - j; + i__3 = k3; + for (i__ = max(i__2,1); i__ <= i__3; ++i__) { + i__2 = i__ + j * a_dim1; + i__4 = i__ + j * a_dim1; + q__1.r = mul * a[i__4].r, q__1.i = mul * a[i__4].i; + a[i__2].r = q__1.r, a[i__2].i = q__1.i; +/* L120: */ + } +/* L130: */ + } + + } else if (itype == 6) { + +/* Band matrix */ + + k1 = *kl + *ku + 2; + k2 = *kl + 1; + k3 = (*kl << 1) + *ku + 1; + k4 = *kl + *ku + 1 + *m; + i__1 = *n; + for (j = 1; j <= i__1; ++j) { +/* Computing MAX */ + i__3 = k1 - j; +/* Computing MIN */ + i__4 = k3, i__5 = k4 - j; + i__2 = min(i__4,i__5); + for (i__ = max(i__3,k2); i__ <= i__2; ++i__) { + i__3 = i__ + j * a_dim1; + i__4 = i__ + j * a_dim1; + q__1.r = mul * a[i__4].r, q__1.i = mul * a[i__4].i; + a[i__3].r = q__1.r, a[i__3].i = q__1.i; +/* L140: */ + } +/* L150: */ + } + + } + + if (! done) { + goto L10; + } + + return 0; + +/* End of CLASCL */ + +} /* clascl_ */ + +/* Subroutine */ int claset_(char *uplo, integer *m, integer *n, complex * + alpha, complex *beta, complex *a, integer *lda) +{ + /* System generated locals */ + integer a_dim1, a_offset, i__1, i__2, i__3; + + /* Local variables */ + static integer i__, j; + extern logical lsame_(char *, char *); + + +/* + -- LAPACK auxiliary routine (version 3.0) -- + Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd., + Courant Institute, Argonne National Lab, and Rice University + October 31, 1992 + + + Purpose + ======= + + CLASET initializes a 2-D array A to BETA on the diagonal and + ALPHA on the offdiagonals. + + Arguments + ========= + + UPLO (input) CHARACTER*1 + Specifies the part of the matrix A to be set. + = 'U': Upper triangular part is set. The lower triangle + is unchanged. + = 'L': Lower triangular part is set. The upper triangle + is unchanged. + Otherwise: All of the matrix A is set. + + M (input) INTEGER + On entry, M specifies the number of rows of A. + + N (input) INTEGER + On entry, N specifies the number of columns of A. + + ALPHA (input) COMPLEX + All the offdiagonal array elements are set to ALPHA. + + BETA (input) COMPLEX + All the diagonal array elements are set to BETA. + + A (input/output) COMPLEX array, dimension (LDA,N) + On entry, the m by n matrix A. + On exit, A(i,j) = ALPHA, 1 <= i <= m, 1 <= j <= n, i.ne.j; + A(i,i) = BETA , 1 <= i <= min(m,n) + + LDA (input) INTEGER + The leading dimension of the array A. LDA >= max(1,M). + + ===================================================================== +*/ + + + /* Parameter adjustments */ + a_dim1 = *lda; + a_offset = 1 + a_dim1; + a -= a_offset; + + /* Function Body */ + if (lsame_(uplo, "U")) { + +/* + Set the diagonal to BETA and the strictly upper triangular + part of the array to ALPHA. +*/ + + i__1 = *n; + for (j = 2; j <= i__1; ++j) { +/* Computing MIN */ + i__3 = j - 1; + i__2 = min(i__3,*m); + for (i__ = 1; i__ <= i__2; ++i__) { + i__3 = i__ + j * a_dim1; + a[i__3].r = alpha->r, a[i__3].i = alpha->i; +/* L10: */ + } +/* L20: */ + } + i__1 = min(*n,*m); + for (i__ = 1; i__ <= i__1; ++i__) { + i__2 = i__ + i__ * a_dim1; + a[i__2].r = beta->r, a[i__2].i = beta->i; +/* L30: */ + } + + } else if (lsame_(uplo, "L")) { + +/* + Set the diagonal to BETA and the strictly lower triangular + part of the array to ALPHA. +*/ + + i__1 = min(*m,*n); + for (j = 1; j <= i__1; ++j) { + i__2 = *m; + for (i__ = j + 1; i__ <= i__2; ++i__) { + i__3 = i__ + j * a_dim1; + a[i__3].r = alpha->r, a[i__3].i = alpha->i; +/* L40: */ + } +/* L50: */ + } + i__1 = min(*n,*m); + for (i__ = 1; i__ <= i__1; ++i__) { + i__2 = i__ + i__ * a_dim1; + a[i__2].r = beta->r, a[i__2].i = beta->i; +/* L60: */ + } + + } else { + +/* + Set the array to BETA on the diagonal and ALPHA on the + offdiagonal. +*/ + + i__1 = *n; + for (j = 1; j <= i__1; ++j) { + i__2 = *m; + for (i__ = 1; i__ <= i__2; ++i__) { + i__3 = i__ + j * a_dim1; + a[i__3].r = alpha->r, a[i__3].i = alpha->i; +/* L70: */ + } +/* L80: */ + } + i__1 = min(*m,*n); + for (i__ = 1; i__ <= i__1; ++i__) { + i__2 = i__ + i__ * a_dim1; + a[i__2].r = beta->r, a[i__2].i = beta->i; +/* L90: */ + } + } + + return 0; + +/* End of CLASET */ + +} /* claset_ */ + +/* Subroutine */ int clasr_(char *side, char *pivot, char *direct, integer *m, + integer *n, real *c__, real *s, complex *a, integer *lda) +{ + /* System generated locals */ + integer a_dim1, a_offset, i__1, i__2, i__3, i__4; + complex q__1, q__2, q__3; + + /* Local variables */ + static integer i__, j, info; + static complex temp; + extern logical lsame_(char *, char *); + static real ctemp, stemp; + extern /* Subroutine */ int xerbla_(char *, integer *); + + +/* + -- LAPACK auxiliary routine (version 3.0) -- + Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd., + Courant Institute, Argonne National Lab, and Rice University + October 31, 1992 + + + Purpose + ======= + + CLASR performs the transformation + + A := P*A, when SIDE = 'L' or 'l' ( Left-hand side ) + + A := A*P', when SIDE = 'R' or 'r' ( Right-hand side ) + + where A is an m by n complex matrix and P is an orthogonal matrix, + consisting of a sequence of plane rotations determined by the + parameters PIVOT and DIRECT as follows ( z = m when SIDE = 'L' or 'l' + and z = n when SIDE = 'R' or 'r' ): + + When DIRECT = 'F' or 'f' ( Forward sequence ) then + + P = P( z - 1 )*...*P( 2 )*P( 1 ), + + and when DIRECT = 'B' or 'b' ( Backward sequence ) then + + P = P( 1 )*P( 2 )*...*P( z - 1 ), + + where P( k ) is a plane rotation matrix for the following planes: + + when PIVOT = 'V' or 'v' ( Variable pivot ), + the plane ( k, k + 1 ) + + when PIVOT = 'T' or 't' ( Top pivot ), + the plane ( 1, k + 1 ) + + when PIVOT = 'B' or 'b' ( Bottom pivot ), + the plane ( k, z ) + + c( k ) and s( k ) must contain the cosine and sine that define the + matrix P( k ). The two by two plane rotation part of the matrix + P( k ), R( k ), is assumed to be of the form + + R( k ) = ( c( k ) s( k ) ). + ( -s( k ) c( k ) ) + + Arguments + ========= + + SIDE (input) CHARACTER*1 + Specifies whether the plane rotation matrix P is applied to + A on the left or the right. + = 'L': Left, compute A := P*A + = 'R': Right, compute A:= A*P' + + DIRECT (input) CHARACTER*1 + Specifies whether P is a forward or backward sequence of + plane rotations. + = 'F': Forward, P = P( z - 1 )*...*P( 2 )*P( 1 ) + = 'B': Backward, P = P( 1 )*P( 2 )*...*P( z - 1 ) + + PIVOT (input) CHARACTER*1 + Specifies the plane for which P(k) is a plane rotation + matrix. + = 'V': Variable pivot, the plane (k,k+1) + = 'T': Top pivot, the plane (1,k+1) + = 'B': Bottom pivot, the plane (k,z) + + M (input) INTEGER + The number of rows of the matrix A. If m <= 1, an immediate + return is effected. + + N (input) INTEGER + The number of columns of the matrix A. If n <= 1, an + immediate return is effected. + + C, S (input) REAL arrays, dimension + (M-1) if SIDE = 'L' + (N-1) if SIDE = 'R' + c(k) and s(k) contain the cosine and sine that define the + matrix P(k). The two by two plane rotation part of the + matrix P(k), R(k), is assumed to be of the form + R( k ) = ( c( k ) s( k ) ). + ( -s( k ) c( k ) ) + + A (input/output) COMPLEX array, dimension (LDA,N) + The m by n matrix A. On exit, A is overwritten by P*A if + SIDE = 'R' or by A*P' if SIDE = 'L'. + + LDA (input) INTEGER + The leading dimension of the array A. LDA >= max(1,M). + + ===================================================================== + + + Test the input parameters +*/ + + /* Parameter adjustments */ + --c__; + --s; + a_dim1 = *lda; + a_offset = 1 + a_dim1; + a -= a_offset; + + /* Function Body */ + info = 0; + if (! (lsame_(side, "L") || lsame_(side, "R"))) { + info = 1; + } else if (! (lsame_(pivot, "V") || lsame_(pivot, + "T") || lsame_(pivot, "B"))) { + info = 2; + } else if (! (lsame_(direct, "F") || lsame_(direct, + "B"))) { + info = 3; + } else if (*m < 0) { + info = 4; + } else if (*n < 0) { + info = 5; + } else if (*lda < max(1,*m)) { + info = 9; + } + if (info != 0) { + xerbla_("CLASR ", &info); + return 0; + } + +/* Quick return if possible */ + + if (*m == 0 || *n == 0) { + return 0; + } + if (lsame_(side, "L")) { + +/* Form P * A */ + + if (lsame_(pivot, "V")) { + if (lsame_(direct, "F")) { + i__1 = *m - 1; + for (j = 1; j <= i__1; ++j) { + ctemp = c__[j]; + stemp = s[j]; + if (ctemp != 1.f || stemp != 0.f) { + i__2 = *n; + for (i__ = 1; i__ <= i__2; ++i__) { + i__3 = j + 1 + i__ * a_dim1; + temp.r = a[i__3].r, temp.i = a[i__3].i; + i__3 = j + 1 + i__ * a_dim1; + q__2.r = ctemp * temp.r, q__2.i = ctemp * temp.i; + i__4 = j + i__ * a_dim1; + q__3.r = stemp * a[i__4].r, q__3.i = stemp * a[ + i__4].i; + q__1.r = q__2.r - q__3.r, q__1.i = q__2.i - + q__3.i; + a[i__3].r = q__1.r, a[i__3].i = q__1.i; + i__3 = j + i__ * a_dim1; + q__2.r = stemp * temp.r, q__2.i = stemp * temp.i; + i__4 = j + i__ * a_dim1; + q__3.r = ctemp * a[i__4].r, q__3.i = ctemp * a[ + i__4].i; + q__1.r = q__2.r + q__3.r, q__1.i = q__2.i + + q__3.i; + a[i__3].r = q__1.r, a[i__3].i = q__1.i; +/* L10: */ + } + } +/* L20: */ + } + } else if (lsame_(direct, "B")) { + for (j = *m - 1; j >= 1; --j) { + ctemp = c__[j]; + stemp = s[j]; + if (ctemp != 1.f || stemp != 0.f) { + i__1 = *n; + for (i__ = 1; i__ <= i__1; ++i__) { + i__2 = j + 1 + i__ * a_dim1; + temp.r = a[i__2].r, temp.i = a[i__2].i; + i__2 = j + 1 + i__ * a_dim1; + q__2.r = ctemp * temp.r, q__2.i = ctemp * temp.i; + i__3 = j + i__ * a_dim1; + q__3.r = stemp * a[i__3].r, q__3.i = stemp * a[ + i__3].i; + q__1.r = q__2.r - q__3.r, q__1.i = q__2.i - + q__3.i; + a[i__2].r = q__1.r, a[i__2].i = q__1.i; + i__2 = j + i__ * a_dim1; + q__2.r = stemp * temp.r, q__2.i = stemp * temp.i; + i__3 = j + i__ * a_dim1; + q__3.r = ctemp * a[i__3].r, q__3.i = ctemp * a[ + i__3].i; + q__1.r = q__2.r + q__3.r, q__1.i = q__2.i + + q__3.i; + a[i__2].r = q__1.r, a[i__2].i = q__1.i; +/* L30: */ + } + } +/* L40: */ + } + } + } else if (lsame_(pivot, "T")) { + if (lsame_(direct, "F")) { + i__1 = *m; + for (j = 2; j <= i__1; ++j) { + ctemp = c__[j - 1]; + stemp = s[j - 1]; + if (ctemp != 1.f || stemp != 0.f) { + i__2 = *n; + for (i__ = 1; i__ <= i__2; ++i__) { + i__3 = j + i__ * a_dim1; + temp.r = a[i__3].r, temp.i = a[i__3].i; + i__3 = j + i__ * a_dim1; + q__2.r = ctemp * temp.r, q__2.i = ctemp * temp.i; + i__4 = i__ * a_dim1 + 1; + q__3.r = stemp * a[i__4].r, q__3.i = stemp * a[ + i__4].i; + q__1.r = q__2.r - q__3.r, q__1.i = q__2.i - + q__3.i; + a[i__3].r = q__1.r, a[i__3].i = q__1.i; + i__3 = i__ * a_dim1 + 1; + q__2.r = stemp * temp.r, q__2.i = stemp * temp.i; + i__4 = i__ * a_dim1 + 1; + q__3.r = ctemp * a[i__4].r, q__3.i = ctemp * a[ + i__4].i; + q__1.r = q__2.r + q__3.r, q__1.i = q__2.i + + q__3.i; + a[i__3].r = q__1.r, a[i__3].i = q__1.i; +/* L50: */ + } + } +/* L60: */ + } + } else if (lsame_(direct, "B")) { + for (j = *m; j >= 2; --j) { + ctemp = c__[j - 1]; + stemp = s[j - 1]; + if (ctemp != 1.f || stemp != 0.f) { + i__1 = *n; + for (i__ = 1; i__ <= i__1; ++i__) { + i__2 = j + i__ * a_dim1; + temp.r = a[i__2].r, temp.i = a[i__2].i; + i__2 = j + i__ * a_dim1; + q__2.r = ctemp * temp.r, q__2.i = ctemp * temp.i; + i__3 = i__ * a_dim1 + 1; + q__3.r = stemp * a[i__3].r, q__3.i = stemp * a[ + i__3].i; + q__1.r = q__2.r - q__3.r, q__1.i = q__2.i - + q__3.i; + a[i__2].r = q__1.r, a[i__2].i = q__1.i; + i__2 = i__ * a_dim1 + 1; + q__2.r = stemp * temp.r, q__2.i = stemp * temp.i; + i__3 = i__ * a_dim1 + 1; + q__3.r = ctemp * a[i__3].r, q__3.i = ctemp * a[ + i__3].i; + q__1.r = q__2.r + q__3.r, q__1.i = q__2.i + + q__3.i; + a[i__2].r = q__1.r, a[i__2].i = q__1.i; +/* L70: */ + } + } +/* L80: */ + } + } + } else if (lsame_(pivot, "B")) { + if (lsame_(direct, "F")) { + i__1 = *m - 1; + for (j = 1; j <= i__1; ++j) { + ctemp = c__[j]; + stemp = s[j]; + if (ctemp != 1.f || stemp != 0.f) { + i__2 = *n; + for (i__ = 1; i__ <= i__2; ++i__) { + i__3 = j + i__ * a_dim1; + temp.r = a[i__3].r, temp.i = a[i__3].i; + i__3 = j + i__ * a_dim1; + i__4 = *m + i__ * a_dim1; + q__2.r = stemp * a[i__4].r, q__2.i = stemp * a[ + i__4].i; + q__3.r = ctemp * temp.r, q__3.i = ctemp * temp.i; + q__1.r = q__2.r + q__3.r, q__1.i = q__2.i + + q__3.i; + a[i__3].r = q__1.r, a[i__3].i = q__1.i; + i__3 = *m + i__ * a_dim1; + i__4 = *m + i__ * a_dim1; + q__2.r = ctemp * a[i__4].r, q__2.i = ctemp * a[ + i__4].i; + q__3.r = stemp * temp.r, q__3.i = stemp * temp.i; + q__1.r = q__2.r - q__3.r, q__1.i = q__2.i - + q__3.i; + a[i__3].r = q__1.r, a[i__3].i = q__1.i; +/* L90: */ + } + } +/* L100: */ + } + } else if (lsame_(direct, "B")) { + for (j = *m - 1; j >= 1; --j) { + ctemp = c__[j]; + stemp = s[j]; + if (ctemp != 1.f || stemp != 0.f) { + i__1 = *n; + for (i__ = 1; i__ <= i__1; ++i__) { + i__2 = j + i__ * a_dim1; + temp.r = a[i__2].r, temp.i = a[i__2].i; + i__2 = j + i__ * a_dim1; + i__3 = *m + i__ * a_dim1; + q__2.r = stemp * a[i__3].r, q__2.i = stemp * a[ + i__3].i; + q__3.r = ctemp * temp.r, q__3.i = ctemp * temp.i; + q__1.r = q__2.r + q__3.r, q__1.i = q__2.i + + q__3.i; + a[i__2].r = q__1.r, a[i__2].i = q__1.i; + i__2 = *m + i__ * a_dim1; + i__3 = *m + i__ * a_dim1; + q__2.r = ctemp * a[i__3].r, q__2.i = ctemp * a[ + i__3].i; + q__3.r = stemp * temp.r, q__3.i = stemp * temp.i; + q__1.r = q__2.r - q__3.r, q__1.i = q__2.i - + q__3.i; + a[i__2].r = q__1.r, a[i__2].i = q__1.i; +/* L110: */ + } + } +/* L120: */ + } + } + } + } else if (lsame_(side, "R")) { + +/* Form A * P' */ + + if (lsame_(pivot, "V")) { + if (lsame_(direct, "F")) { + i__1 = *n - 1; + for (j = 1; j <= i__1; ++j) { + ctemp = c__[j]; + stemp = s[j]; + if (ctemp != 1.f || stemp != 0.f) { + i__2 = *m; + for (i__ = 1; i__ <= i__2; ++i__) { + i__3 = i__ + (j + 1) * a_dim1; + temp.r = a[i__3].r, temp.i = a[i__3].i; + i__3 = i__ + (j + 1) * a_dim1; + q__2.r = ctemp * temp.r, q__2.i = ctemp * temp.i; + i__4 = i__ + j * a_dim1; + q__3.r = stemp * a[i__4].r, q__3.i = stemp * a[ + i__4].i; + q__1.r = q__2.r - q__3.r, q__1.i = q__2.i - + q__3.i; + a[i__3].r = q__1.r, a[i__3].i = q__1.i; + i__3 = i__ + j * a_dim1; + q__2.r = stemp * temp.r, q__2.i = stemp * temp.i; + i__4 = i__ + j * a_dim1; + q__3.r = ctemp * a[i__4].r, q__3.i = ctemp * a[ + i__4].i; + q__1.r = q__2.r + q__3.r, q__1.i = q__2.i + + q__3.i; + a[i__3].r = q__1.r, a[i__3].i = q__1.i; +/* L130: */ + } + } +/* L140: */ + } + } else if (lsame_(direct, "B")) { + for (j = *n - 1; j >= 1; --j) { + ctemp = c__[j]; + stemp = s[j]; + if (ctemp != 1.f || stemp != 0.f) { + i__1 = *m; + for (i__ = 1; i__ <= i__1; ++i__) { + i__2 = i__ + (j + 1) * a_dim1; + temp.r = a[i__2].r, temp.i = a[i__2].i; + i__2 = i__ + (j + 1) * a_dim1; + q__2.r = ctemp * temp.r, q__2.i = ctemp * temp.i; + i__3 = i__ + j * a_dim1; + q__3.r = stemp * a[i__3].r, q__3.i = stemp * a[ + i__3].i; + q__1.r = q__2.r - q__3.r, q__1.i = q__2.i - + q__3.i; + a[i__2].r = q__1.r, a[i__2].i = q__1.i; + i__2 = i__ + j * a_dim1; + q__2.r = stemp * temp.r, q__2.i = stemp * temp.i; + i__3 = i__ + j * a_dim1; + q__3.r = ctemp * a[i__3].r, q__3.i = ctemp * a[ + i__3].i; + q__1.r = q__2.r + q__3.r, q__1.i = q__2.i + + q__3.i; + a[i__2].r = q__1.r, a[i__2].i = q__1.i; +/* L150: */ + } + } +/* L160: */ + } + } + } else if (lsame_(pivot, "T")) { + if (lsame_(direct, "F")) { + i__1 = *n; + for (j = 2; j <= i__1; ++j) { + ctemp = c__[j - 1]; + stemp = s[j - 1]; + if (ctemp != 1.f || stemp != 0.f) { + i__2 = *m; + for (i__ = 1; i__ <= i__2; ++i__) { + i__3 = i__ + j * a_dim1; + temp.r = a[i__3].r, temp.i = a[i__3].i; + i__3 = i__ + j * a_dim1; + q__2.r = ctemp * temp.r, q__2.i = ctemp * temp.i; + i__4 = i__ + a_dim1; + q__3.r = stemp * a[i__4].r, q__3.i = stemp * a[ + i__4].i; + q__1.r = q__2.r - q__3.r, q__1.i = q__2.i - + q__3.i; + a[i__3].r = q__1.r, a[i__3].i = q__1.i; + i__3 = i__ + a_dim1; + q__2.r = stemp * temp.r, q__2.i = stemp * temp.i; + i__4 = i__ + a_dim1; + q__3.r = ctemp * a[i__4].r, q__3.i = ctemp * a[ + i__4].i; + q__1.r = q__2.r + q__3.r, q__1.i = q__2.i + + q__3.i; + a[i__3].r = q__1.r, a[i__3].i = q__1.i; +/* L170: */ + } + } +/* L180: */ + } + } else if (lsame_(direct, "B")) { + for (j = *n; j >= 2; --j) { + ctemp = c__[j - 1]; + stemp = s[j - 1]; + if (ctemp != 1.f || stemp != 0.f) { + i__1 = *m; + for (i__ = 1; i__ <= i__1; ++i__) { + i__2 = i__ + j * a_dim1; + temp.r = a[i__2].r, temp.i = a[i__2].i; + i__2 = i__ + j * a_dim1; + q__2.r = ctemp * temp.r, q__2.i = ctemp * temp.i; + i__3 = i__ + a_dim1; + q__3.r = stemp * a[i__3].r, q__3.i = stemp * a[ + i__3].i; + q__1.r = q__2.r - q__3.r, q__1.i = q__2.i - + q__3.i; + a[i__2].r = q__1.r, a[i__2].i = q__1.i; + i__2 = i__ + a_dim1; + q__2.r = stemp * temp.r, q__2.i = stemp * temp.i; + i__3 = i__ + a_dim1; + q__3.r = ctemp * a[i__3].r, q__3.i = ctemp * a[ + i__3].i; + q__1.r = q__2.r + q__3.r, q__1.i = q__2.i + + q__3.i; + a[i__2].r = q__1.r, a[i__2].i = q__1.i; +/* L190: */ + } + } +/* L200: */ + } + } + } else if (lsame_(pivot, "B")) { + if (lsame_(direct, "F")) { + i__1 = *n - 1; + for (j = 1; j <= i__1; ++j) { + ctemp = c__[j]; + stemp = s[j]; + if (ctemp != 1.f || stemp != 0.f) { + i__2 = *m; + for (i__ = 1; i__ <= i__2; ++i__) { + i__3 = i__ + j * a_dim1; + temp.r = a[i__3].r, temp.i = a[i__3].i; + i__3 = i__ + j * a_dim1; + i__4 = i__ + *n * a_dim1; + q__2.r = stemp * a[i__4].r, q__2.i = stemp * a[ + i__4].i; + q__3.r = ctemp * temp.r, q__3.i = ctemp * temp.i; + q__1.r = q__2.r + q__3.r, q__1.i = q__2.i + + q__3.i; + a[i__3].r = q__1.r, a[i__3].i = q__1.i; + i__3 = i__ + *n * a_dim1; + i__4 = i__ + *n * a_dim1; + q__2.r = ctemp * a[i__4].r, q__2.i = ctemp * a[ + i__4].i; + q__3.r = stemp * temp.r, q__3.i = stemp * temp.i; + q__1.r = q__2.r - q__3.r, q__1.i = q__2.i - + q__3.i; + a[i__3].r = q__1.r, a[i__3].i = q__1.i; +/* L210: */ + } + } +/* L220: */ + } + } else if (lsame_(direct, "B")) { + for (j = *n - 1; j >= 1; --j) { + ctemp = c__[j]; + stemp = s[j]; + if (ctemp != 1.f || stemp != 0.f) { + i__1 = *m; + for (i__ = 1; i__ <= i__1; ++i__) { + i__2 = i__ + j * a_dim1; + temp.r = a[i__2].r, temp.i = a[i__2].i; + i__2 = i__ + j * a_dim1; + i__3 = i__ + *n * a_dim1; + q__2.r = stemp * a[i__3].r, q__2.i = stemp * a[ + i__3].i; + q__3.r = ctemp * temp.r, q__3.i = ctemp * temp.i; + q__1.r = q__2.r + q__3.r, q__1.i = q__2.i + + q__3.i; + a[i__2].r = q__1.r, a[i__2].i = q__1.i; + i__2 = i__ + *n * a_dim1; + i__3 = i__ + *n * a_dim1; + q__2.r = ctemp * a[i__3].r, q__2.i = ctemp * a[ + i__3].i; + q__3.r = stemp * temp.r, q__3.i = stemp * temp.i; + q__1.r = q__2.r - q__3.r, q__1.i = q__2.i - + q__3.i; + a[i__2].r = q__1.r, a[i__2].i = q__1.i; +/* L230: */ + } + } +/* L240: */ + } + } + } + } + + return 0; + +/* End of CLASR */ + +} /* clasr_ */ + +/* Subroutine */ int classq_(integer *n, complex *x, integer *incx, real * + scale, real *sumsq) +{ + /* System generated locals */ + integer i__1, i__2, i__3; + real r__1; + + /* Builtin functions */ + double r_imag(complex *); + + /* Local variables */ + static integer ix; + static real temp1; + + +/* + -- LAPACK auxiliary routine (version 3.0) -- + Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd., + Courant Institute, Argonne National Lab, and Rice University + June 30, 1999 + + + Purpose + ======= + + CLASSQ returns the values scl and ssq such that + + ( scl**2 )*ssq = x( 1 )**2 +...+ x( n )**2 + ( scale**2 )*sumsq, + + where x( i ) = abs( X( 1 + ( i - 1 )*INCX ) ). The value of sumsq is + assumed to be at least unity and the value of ssq will then satisfy + + 1.0 .le. ssq .le. ( sumsq + 2*n ). + + scale is assumed to be non-negative and scl returns the value + + scl = max( scale, abs( real( x( i ) ) ), abs( aimag( x( i ) ) ) ), + i + + scale and sumsq must be supplied in SCALE and SUMSQ respectively. + SCALE and SUMSQ are overwritten by scl and ssq respectively. + + The routine makes only one pass through the vector X. + + Arguments + ========= + + N (input) INTEGER + The number of elements to be used from the vector X. + + X (input) COMPLEX array, dimension (N) + The vector x as described above. + x( i ) = X( 1 + ( i - 1 )*INCX ), 1 <= i <= n. + + INCX (input) INTEGER + The increment between successive values of the vector X. + INCX > 0. + + SCALE (input/output) REAL + On entry, the value scale in the equation above. + On exit, SCALE is overwritten with the value scl . + + SUMSQ (input/output) REAL + On entry, the value sumsq in the equation above. + On exit, SUMSQ is overwritten with the value ssq . + + ===================================================================== +*/ + + + /* Parameter adjustments */ + --x; + + /* Function Body */ + if (*n > 0) { + i__1 = (*n - 1) * *incx + 1; + i__2 = *incx; + for (ix = 1; i__2 < 0 ? ix >= i__1 : ix <= i__1; ix += i__2) { + i__3 = ix; + if (x[i__3].r != 0.f) { + i__3 = ix; + temp1 = (r__1 = x[i__3].r, dabs(r__1)); + if (*scale < temp1) { +/* Computing 2nd power */ + r__1 = *scale / temp1; + *sumsq = *sumsq * (r__1 * r__1) + 1; + *scale = temp1; + } else { +/* Computing 2nd power */ + r__1 = temp1 / *scale; + *sumsq += r__1 * r__1; + } + } + if (r_imag(&x[ix]) != 0.f) { + temp1 = (r__1 = r_imag(&x[ix]), dabs(r__1)); + if (*scale < temp1) { +/* Computing 2nd power */ + r__1 = *scale / temp1; + *sumsq = *sumsq * (r__1 * r__1) + 1; + *scale = temp1; + } else { +/* Computing 2nd power */ + r__1 = temp1 / *scale; + *sumsq += r__1 * r__1; + } + } +/* L10: */ + } + } + + return 0; + +/* End of CLASSQ */ + +} /* classq_ */ + +/* Subroutine */ int claswp_(integer *n, complex *a, integer *lda, integer * + k1, integer *k2, integer *ipiv, integer *incx) +{ + /* System generated locals */ + integer a_dim1, a_offset, i__1, i__2, i__3, i__4, i__5, i__6; + + /* Local variables */ + static integer i__, j, k, i1, i2, n32, ip, ix, ix0, inc; + static complex temp; + + +/* + -- LAPACK auxiliary routine (version 3.0) -- + Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd., + Courant Institute, Argonne National Lab, and Rice University + June 30, 1999 + + + Purpose + ======= + + CLASWP performs a series of row interchanges on the matrix A. + One row interchange is initiated for each of rows K1 through K2 of A. + + Arguments + ========= + + N (input) INTEGER + The number of columns of the matrix A. + + A (input/output) COMPLEX array, dimension (LDA,N) + On entry, the matrix of column dimension N to which the row + interchanges will be applied. + On exit, the permuted matrix. + + LDA (input) INTEGER + The leading dimension of the array A. + + K1 (input) INTEGER + The first element of IPIV for which a row interchange will + be done. + + K2 (input) INTEGER + The last element of IPIV for which a row interchange will + be done. + + IPIV (input) INTEGER array, dimension (M*abs(INCX)) + The vector of pivot indices. Only the elements in positions + K1 through K2 of IPIV are accessed. + IPIV(K) = L implies rows K and L are to be interchanged. + + INCX (input) INTEGER + The increment between successive values of IPIV. If IPIV + is negative, the pivots are applied in reverse order. + + Further Details + =============== + + Modified by + R. C. Whaley, Computer Science Dept., Univ. of Tenn., Knoxville, USA + + ===================================================================== + + + Interchange row I with row IPIV(I) for each of rows K1 through K2. +*/ + + /* Parameter adjustments */ + a_dim1 = *lda; + a_offset = 1 + a_dim1; + a -= a_offset; + --ipiv; + + /* Function Body */ + if (*incx > 0) { + ix0 = *k1; + i1 = *k1; + i2 = *k2; + inc = 1; + } else if (*incx < 0) { + ix0 = (1 - *k2) * *incx + 1; + i1 = *k2; + i2 = *k1; + inc = -1; + } else { + return 0; + } + + n32 = *n / 32 << 5; + if (n32 != 0) { + i__1 = n32; + for (j = 1; j <= i__1; j += 32) { + ix = ix0; + i__2 = i2; + i__3 = inc; + for (i__ = i1; i__3 < 0 ? i__ >= i__2 : i__ <= i__2; i__ += i__3) + { + ip = ipiv[ix]; + if (ip != i__) { + i__4 = j + 31; + for (k = j; k <= i__4; ++k) { + i__5 = i__ + k * a_dim1; + temp.r = a[i__5].r, temp.i = a[i__5].i; + i__5 = i__ + k * a_dim1; + i__6 = ip + k * a_dim1; + a[i__5].r = a[i__6].r, a[i__5].i = a[i__6].i; + i__5 = ip + k * a_dim1; + a[i__5].r = temp.r, a[i__5].i = temp.i; +/* L10: */ + } + } + ix += *incx; +/* L20: */ + } +/* L30: */ + } + } + if (n32 != *n) { + ++n32; + ix = ix0; + i__1 = i2; + i__3 = inc; + for (i__ = i1; i__3 < 0 ? i__ >= i__1 : i__ <= i__1; i__ += i__3) { + ip = ipiv[ix]; + if (ip != i__) { + i__2 = *n; + for (k = n32; k <= i__2; ++k) { + i__4 = i__ + k * a_dim1; + temp.r = a[i__4].r, temp.i = a[i__4].i; + i__4 = i__ + k * a_dim1; + i__5 = ip + k * a_dim1; + a[i__4].r = a[i__5].r, a[i__4].i = a[i__5].i; + i__4 = ip + k * a_dim1; + a[i__4].r = temp.r, a[i__4].i = temp.i; +/* L40: */ + } + } + ix += *incx; +/* L50: */ + } + } + + return 0; + +/* End of CLASWP */ + +} /* claswp_ */ + +/* Subroutine */ int clatrd_(char *uplo, integer *n, integer *nb, complex *a, + integer *lda, real *e, complex *tau, complex *w, integer *ldw) +{ + /* System generated locals */ + integer a_dim1, a_offset, w_dim1, w_offset, i__1, i__2, i__3; + real r__1; + complex q__1, q__2, q__3, q__4; + + /* Local variables */ + static integer i__, iw; + static complex alpha; + extern /* Subroutine */ int cscal_(integer *, complex *, complex *, + integer *); + extern /* Complex */ VOID cdotc_(complex *, integer *, complex *, integer + *, complex *, integer *); + extern /* Subroutine */ int cgemv_(char *, integer *, integer *, complex * + , complex *, integer *, complex *, integer *, complex *, complex * + , integer *), chemv_(char *, integer *, complex *, + complex *, integer *, complex *, integer *, complex *, complex *, + integer *); + extern logical lsame_(char *, char *); + extern /* Subroutine */ int caxpy_(integer *, complex *, complex *, + integer *, complex *, integer *), clarfg_(integer *, complex *, + complex *, integer *, complex *), clacgv_(integer *, complex *, + integer *); + + +/* + -- LAPACK auxiliary routine (version 3.0) -- + Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd., + Courant Institute, Argonne National Lab, and Rice University + September 30, 1994 + + + Purpose + ======= + + CLATRD reduces NB rows and columns of a complex Hermitian matrix A to + Hermitian tridiagonal form by a unitary similarity + transformation Q' * A * Q, and returns the matrices V and W which are + needed to apply the transformation to the unreduced part of A. + + If UPLO = 'U', CLATRD reduces the last NB rows and columns of a + matrix, of which the upper triangle is supplied; + if UPLO = 'L', CLATRD reduces the first NB rows and columns of a + matrix, of which the lower triangle is supplied. + + This is an auxiliary routine called by CHETRD. + + Arguments + ========= + + UPLO (input) CHARACTER + Specifies whether the upper or lower triangular part of the + Hermitian matrix A is stored: + = 'U': Upper triangular + = 'L': Lower triangular + + N (input) INTEGER + The order of the matrix A. + + NB (input) INTEGER + The number of rows and columns to be reduced. + + A (input/output) COMPLEX array, dimension (LDA,N) + On entry, the Hermitian matrix A. If UPLO = 'U', the leading + n-by-n upper triangular part of A contains the upper + triangular part of the matrix A, and the strictly lower + triangular part of A is not referenced. If UPLO = 'L', the + leading n-by-n lower triangular part of A contains the lower + triangular part of the matrix A, and the strictly upper + triangular part of A is not referenced. + On exit: + if UPLO = 'U', the last NB columns have been reduced to + tridiagonal form, with the diagonal elements overwriting + the diagonal elements of A; the elements above the diagonal + with the array TAU, represent the unitary matrix Q as a + product of elementary reflectors; + if UPLO = 'L', the first NB columns have been reduced to + tridiagonal form, with the diagonal elements overwriting + the diagonal elements of A; the elements below the diagonal + with the array TAU, represent the unitary matrix Q as a + product of elementary reflectors. + See Further Details. + + LDA (input) INTEGER + The leading dimension of the array A. LDA >= max(1,N). + + E (output) REAL array, dimension (N-1) + If UPLO = 'U', E(n-nb:n-1) contains the superdiagonal + elements of the last NB columns of the reduced matrix; + if UPLO = 'L', E(1:nb) contains the subdiagonal elements of + the first NB columns of the reduced matrix. + + TAU (output) COMPLEX array, dimension (N-1) + The scalar factors of the elementary reflectors, stored in + TAU(n-nb:n-1) if UPLO = 'U', and in TAU(1:nb) if UPLO = 'L'. + See Further Details. + + W (output) COMPLEX array, dimension (LDW,NB) + The n-by-nb matrix W required to update the unreduced part + of A. + + LDW (input) INTEGER + The leading dimension of the array W. LDW >= max(1,N). + + Further Details + =============== + + If UPLO = 'U', the matrix Q is represented as a product of elementary + reflectors + + Q = H(n) H(n-1) . . . H(n-nb+1). + + Each H(i) has the form + + H(i) = I - tau * v * v' + + where tau is a complex scalar, and v is a complex vector with + v(i:n) = 0 and v(i-1) = 1; v(1:i-1) is stored on exit in A(1:i-1,i), + and tau in TAU(i-1). + + If UPLO = 'L', the matrix Q is represented as a product of elementary + reflectors + + Q = H(1) H(2) . . . H(nb). + + Each H(i) has the form + + H(i) = I - tau * v * v' + + where tau is a complex scalar, and v is a complex vector with + v(1:i) = 0 and v(i+1) = 1; v(i+1:n) is stored on exit in A(i+1:n,i), + and tau in TAU(i). + + The elements of the vectors v together form the n-by-nb matrix V + which is needed, with W, to apply the transformation to the unreduced + part of the matrix, using a Hermitian rank-2k update of the form: + A := A - V*W' - W*V'. + + The contents of A on exit are illustrated by the following examples + with n = 5 and nb = 2: + + if UPLO = 'U': if UPLO = 'L': + + ( a a a v4 v5 ) ( d ) + ( a a v4 v5 ) ( 1 d ) + ( a 1 v5 ) ( v1 1 a ) + ( d 1 ) ( v1 v2 a a ) + ( d ) ( v1 v2 a a a ) + + where d denotes a diagonal element of the reduced matrix, a denotes + an element of the original matrix that is unchanged, and vi denotes + an element of the vector defining H(i). + + ===================================================================== + + + Quick return if possible +*/ + + /* Parameter adjustments */ + a_dim1 = *lda; + a_offset = 1 + a_dim1; + a -= a_offset; + --e; + --tau; + w_dim1 = *ldw; + w_offset = 1 + w_dim1; + w -= w_offset; + + /* Function Body */ + if (*n <= 0) { + return 0; + } + + if (lsame_(uplo, "U")) { + +/* Reduce last NB columns of upper triangle */ + + i__1 = *n - *nb + 1; + for (i__ = *n; i__ >= i__1; --i__) { + iw = i__ - *n + *nb; + if (i__ < *n) { + +/* Update A(1:i,i) */ + + i__2 = i__ + i__ * a_dim1; + i__3 = i__ + i__ * a_dim1; + r__1 = a[i__3].r; + a[i__2].r = r__1, a[i__2].i = 0.f; + i__2 = *n - i__; + clacgv_(&i__2, &w[i__ + (iw + 1) * w_dim1], ldw); + i__2 = *n - i__; + q__1.r = -1.f, q__1.i = -0.f; + cgemv_("No transpose", &i__, &i__2, &q__1, &a[(i__ + 1) * + a_dim1 + 1], lda, &w[i__ + (iw + 1) * w_dim1], ldw, & + c_b56, &a[i__ * a_dim1 + 1], &c__1); + i__2 = *n - i__; + clacgv_(&i__2, &w[i__ + (iw + 1) * w_dim1], ldw); + i__2 = *n - i__; + clacgv_(&i__2, &a[i__ + (i__ + 1) * a_dim1], lda); + i__2 = *n - i__; + q__1.r = -1.f, q__1.i = -0.f; + cgemv_("No transpose", &i__, &i__2, &q__1, &w[(iw + 1) * + w_dim1 + 1], ldw, &a[i__ + (i__ + 1) * a_dim1], lda, & + c_b56, &a[i__ * a_dim1 + 1], &c__1); + i__2 = *n - i__; + clacgv_(&i__2, &a[i__ + (i__ + 1) * a_dim1], lda); + i__2 = i__ + i__ * a_dim1; + i__3 = i__ + i__ * a_dim1; + r__1 = a[i__3].r; + a[i__2].r = r__1, a[i__2].i = 0.f; + } + if (i__ > 1) { + +/* + Generate elementary reflector H(i) to annihilate + A(1:i-2,i) +*/ + + i__2 = i__ - 1 + i__ * a_dim1; + alpha.r = a[i__2].r, alpha.i = a[i__2].i; + i__2 = i__ - 1; + clarfg_(&i__2, &alpha, &a[i__ * a_dim1 + 1], &c__1, &tau[i__ + - 1]); + i__2 = i__ - 1; + e[i__2] = alpha.r; + i__2 = i__ - 1 + i__ * a_dim1; + a[i__2].r = 1.f, a[i__2].i = 0.f; + +/* Compute W(1:i-1,i) */ + + i__2 = i__ - 1; + chemv_("Upper", &i__2, &c_b56, &a[a_offset], lda, &a[i__ * + a_dim1 + 1], &c__1, &c_b55, &w[iw * w_dim1 + 1], & + c__1); + if (i__ < *n) { + i__2 = i__ - 1; + i__3 = *n - i__; + cgemv_("Conjugate transpose", &i__2, &i__3, &c_b56, &w[( + iw + 1) * w_dim1 + 1], ldw, &a[i__ * a_dim1 + 1], + &c__1, &c_b55, &w[i__ + 1 + iw * w_dim1], &c__1); + i__2 = i__ - 1; + i__3 = *n - i__; + q__1.r = -1.f, q__1.i = -0.f; + cgemv_("No transpose", &i__2, &i__3, &q__1, &a[(i__ + 1) * + a_dim1 + 1], lda, &w[i__ + 1 + iw * w_dim1], & + c__1, &c_b56, &w[iw * w_dim1 + 1], &c__1); + i__2 = i__ - 1; + i__3 = *n - i__; + cgemv_("Conjugate transpose", &i__2, &i__3, &c_b56, &a[( + i__ + 1) * a_dim1 + 1], lda, &a[i__ * a_dim1 + 1], + &c__1, &c_b55, &w[i__ + 1 + iw * w_dim1], &c__1); + i__2 = i__ - 1; + i__3 = *n - i__; + q__1.r = -1.f, q__1.i = -0.f; + cgemv_("No transpose", &i__2, &i__3, &q__1, &w[(iw + 1) * + w_dim1 + 1], ldw, &w[i__ + 1 + iw * w_dim1], & + c__1, &c_b56, &w[iw * w_dim1 + 1], &c__1); + } + i__2 = i__ - 1; + cscal_(&i__2, &tau[i__ - 1], &w[iw * w_dim1 + 1], &c__1); + q__3.r = -.5f, q__3.i = -0.f; + i__2 = i__ - 1; + q__2.r = q__3.r * tau[i__2].r - q__3.i * tau[i__2].i, q__2.i = + q__3.r * tau[i__2].i + q__3.i * tau[i__2].r; + i__3 = i__ - 1; + cdotc_(&q__4, &i__3, &w[iw * w_dim1 + 1], &c__1, &a[i__ * + a_dim1 + 1], &c__1); + q__1.r = q__2.r * q__4.r - q__2.i * q__4.i, q__1.i = q__2.r * + q__4.i + q__2.i * q__4.r; + alpha.r = q__1.r, alpha.i = q__1.i; + i__2 = i__ - 1; + caxpy_(&i__2, &alpha, &a[i__ * a_dim1 + 1], &c__1, &w[iw * + w_dim1 + 1], &c__1); + } + +/* L10: */ + } + } else { + +/* Reduce first NB columns of lower triangle */ + + i__1 = *nb; + for (i__ = 1; i__ <= i__1; ++i__) { + +/* Update A(i:n,i) */ + + i__2 = i__ + i__ * a_dim1; + i__3 = i__ + i__ * a_dim1; + r__1 = a[i__3].r; + a[i__2].r = r__1, a[i__2].i = 0.f; + i__2 = i__ - 1; + clacgv_(&i__2, &w[i__ + w_dim1], ldw); + i__2 = *n - i__ + 1; + i__3 = i__ - 1; + q__1.r = -1.f, q__1.i = -0.f; + cgemv_("No transpose", &i__2, &i__3, &q__1, &a[i__ + a_dim1], lda, + &w[i__ + w_dim1], ldw, &c_b56, &a[i__ + i__ * a_dim1], & + c__1); + i__2 = i__ - 1; + clacgv_(&i__2, &w[i__ + w_dim1], ldw); + i__2 = i__ - 1; + clacgv_(&i__2, &a[i__ + a_dim1], lda); + i__2 = *n - i__ + 1; + i__3 = i__ - 1; + q__1.r = -1.f, q__1.i = -0.f; + cgemv_("No transpose", &i__2, &i__3, &q__1, &w[i__ + w_dim1], ldw, + &a[i__ + a_dim1], lda, &c_b56, &a[i__ + i__ * a_dim1], & + c__1); + i__2 = i__ - 1; + clacgv_(&i__2, &a[i__ + a_dim1], lda); + i__2 = i__ + i__ * a_dim1; + i__3 = i__ + i__ * a_dim1; + r__1 = a[i__3].r; + a[i__2].r = r__1, a[i__2].i = 0.f; + if (i__ < *n) { + +/* + Generate elementary reflector H(i) to annihilate + A(i+2:n,i) +*/ + + i__2 = i__ + 1 + i__ * a_dim1; + alpha.r = a[i__2].r, alpha.i = a[i__2].i; + i__2 = *n - i__; +/* Computing MIN */ + i__3 = i__ + 2; + clarfg_(&i__2, &alpha, &a[min(i__3,*n) + i__ * a_dim1], &c__1, + &tau[i__]); + i__2 = i__; + e[i__2] = alpha.r; + i__2 = i__ + 1 + i__ * a_dim1; + a[i__2].r = 1.f, a[i__2].i = 0.f; + +/* Compute W(i+1:n,i) */ + + i__2 = *n - i__; + chemv_("Lower", &i__2, &c_b56, &a[i__ + 1 + (i__ + 1) * + a_dim1], lda, &a[i__ + 1 + i__ * a_dim1], &c__1, & + c_b55, &w[i__ + 1 + i__ * w_dim1], &c__1); + i__2 = *n - i__; + i__3 = i__ - 1; + cgemv_("Conjugate transpose", &i__2, &i__3, &c_b56, &w[i__ + + 1 + w_dim1], ldw, &a[i__ + 1 + i__ * a_dim1], &c__1, & + c_b55, &w[i__ * w_dim1 + 1], &c__1); + i__2 = *n - i__; + i__3 = i__ - 1; + q__1.r = -1.f, q__1.i = -0.f; + cgemv_("No transpose", &i__2, &i__3, &q__1, &a[i__ + 1 + + a_dim1], lda, &w[i__ * w_dim1 + 1], &c__1, &c_b56, &w[ + i__ + 1 + i__ * w_dim1], &c__1); + i__2 = *n - i__; + i__3 = i__ - 1; + cgemv_("Conjugate transpose", &i__2, &i__3, &c_b56, &a[i__ + + 1 + a_dim1], lda, &a[i__ + 1 + i__ * a_dim1], &c__1, & + c_b55, &w[i__ * w_dim1 + 1], &c__1); + i__2 = *n - i__; + i__3 = i__ - 1; + q__1.r = -1.f, q__1.i = -0.f; + cgemv_("No transpose", &i__2, &i__3, &q__1, &w[i__ + 1 + + w_dim1], ldw, &w[i__ * w_dim1 + 1], &c__1, &c_b56, &w[ + i__ + 1 + i__ * w_dim1], &c__1); + i__2 = *n - i__; + cscal_(&i__2, &tau[i__], &w[i__ + 1 + i__ * w_dim1], &c__1); + q__3.r = -.5f, q__3.i = -0.f; + i__2 = i__; + q__2.r = q__3.r * tau[i__2].r - q__3.i * tau[i__2].i, q__2.i = + q__3.r * tau[i__2].i + q__3.i * tau[i__2].r; + i__3 = *n - i__; + cdotc_(&q__4, &i__3, &w[i__ + 1 + i__ * w_dim1], &c__1, &a[ + i__ + 1 + i__ * a_dim1], &c__1); + q__1.r = q__2.r * q__4.r - q__2.i * q__4.i, q__1.i = q__2.r * + q__4.i + q__2.i * q__4.r; + alpha.r = q__1.r, alpha.i = q__1.i; + i__2 = *n - i__; + caxpy_(&i__2, &alpha, &a[i__ + 1 + i__ * a_dim1], &c__1, &w[ + i__ + 1 + i__ * w_dim1], &c__1); + } + +/* L20: */ + } + } + + return 0; + +/* End of CLATRD */ + +} /* clatrd_ */ + +/* Subroutine */ int clatrs_(char *uplo, char *trans, char *diag, char * + normin, integer *n, complex *a, integer *lda, complex *x, real *scale, + real *cnorm, integer *info) +{ + /* System generated locals */ + integer a_dim1, a_offset, i__1, i__2, i__3, i__4, i__5; + real r__1, r__2, r__3, r__4; + complex q__1, q__2, q__3, q__4; + + /* Builtin functions */ + double r_imag(complex *); + void r_cnjg(complex *, complex *); + + /* Local variables */ + static integer i__, j; + static real xj, rec, tjj; + static integer jinc; + static real xbnd; + static integer imax; + static real tmax; + static complex tjjs; + static real xmax, grow; + extern /* Complex */ VOID cdotc_(complex *, integer *, complex *, integer + *, complex *, integer *); + extern logical lsame_(char *, char *); + extern /* Subroutine */ int sscal_(integer *, real *, real *, integer *); + static real tscal; + static complex uscal; + static integer jlast; + extern /* Complex */ VOID cdotu_(complex *, integer *, complex *, integer + *, complex *, integer *); + static complex csumj; + extern /* Subroutine */ int caxpy_(integer *, complex *, complex *, + integer *, complex *, integer *); + static logical upper; + extern /* Subroutine */ int ctrsv_(char *, char *, char *, integer *, + complex *, integer *, complex *, integer *), slabad_(real *, real *); + extern integer icamax_(integer *, complex *, integer *); + extern /* Complex */ VOID cladiv_(complex *, complex *, complex *); + extern doublereal slamch_(char *); + extern /* Subroutine */ int csscal_(integer *, real *, complex *, integer + *), xerbla_(char *, integer *); + static real bignum; + extern integer isamax_(integer *, real *, integer *); + extern doublereal scasum_(integer *, complex *, integer *); + static logical notran; + static integer jfirst; + static real smlnum; + static logical nounit; + + +/* + -- LAPACK auxiliary routine (version 3.0) -- + Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd., + Courant Institute, Argonne National Lab, and Rice University + June 30, 1992 + + + Purpose + ======= + + CLATRS solves one of the triangular systems + + A * x = s*b, A**T * x = s*b, or A**H * x = s*b, + + with scaling to prevent overflow. Here A is an upper or lower + triangular matrix, A**T denotes the transpose of A, A**H denotes the + conjugate transpose of A, x and b are n-element vectors, and s is a + scaling factor, usually less than or equal to 1, chosen so that the + components of x will be less than the overflow threshold. If the + unscaled problem will not cause overflow, the Level 2 BLAS routine + CTRSV is called. If the matrix A is singular (A(j,j) = 0 for some j), + then s is set to 0 and a non-trivial solution to A*x = 0 is returned. + + Arguments + ========= + + UPLO (input) CHARACTER*1 + Specifies whether the matrix A is upper or lower triangular. + = 'U': Upper triangular + = 'L': Lower triangular + + TRANS (input) CHARACTER*1 + Specifies the operation applied to A. + = 'N': Solve A * x = s*b (No transpose) + = 'T': Solve A**T * x = s*b (Transpose) + = 'C': Solve A**H * x = s*b (Conjugate transpose) + + DIAG (input) CHARACTER*1 + Specifies whether or not the matrix A is unit triangular. + = 'N': Non-unit triangular + = 'U': Unit triangular + + NORMIN (input) CHARACTER*1 + Specifies whether CNORM has been set or not. + = 'Y': CNORM contains the column norms on entry + = 'N': CNORM is not set on entry. On exit, the norms will + be computed and stored in CNORM. + + N (input) INTEGER + The order of the matrix A. N >= 0. + + A (input) COMPLEX array, dimension (LDA,N) + The triangular matrix A. If UPLO = 'U', the leading n by n + upper triangular part of the array A contains the upper + triangular matrix, and the strictly lower triangular part of + A is not referenced. If UPLO = 'L', the leading n by n lower + triangular part of the array A contains the lower triangular + matrix, and the strictly upper triangular part of A is not + referenced. If DIAG = 'U', the diagonal elements of A are + also not referenced and are assumed to be 1. + + LDA (input) INTEGER + The leading dimension of the array A. LDA >= max (1,N). + + X (input/output) COMPLEX array, dimension (N) + On entry, the right hand side b of the triangular system. + On exit, X is overwritten by the solution vector x. + + SCALE (output) REAL + The scaling factor s for the triangular system + A * x = s*b, A**T * x = s*b, or A**H * x = s*b. + If SCALE = 0, the matrix A is singular or badly scaled, and + the vector x is an exact or approximate solution to A*x = 0. + + CNORM (input or output) REAL array, dimension (N) + + If NORMIN = 'Y', CNORM is an input argument and CNORM(j) + contains the norm of the off-diagonal part of the j-th column + of A. If TRANS = 'N', CNORM(j) must be greater than or equal + to the infinity-norm, and if TRANS = 'T' or 'C', CNORM(j) + must be greater than or equal to the 1-norm. + + If NORMIN = 'N', CNORM is an output argument and CNORM(j) + returns the 1-norm of the offdiagonal part of the j-th column + of A. + + INFO (output) INTEGER + = 0: successful exit + < 0: if INFO = -k, the k-th argument had an illegal value + + Further Details + ======= ======= + + A rough bound on x is computed; if that is less than overflow, CTRSV + is called, otherwise, specific code is used which checks for possible + overflow or divide-by-zero at every operation. + + A columnwise scheme is used for solving A*x = b. The basic algorithm + if A is lower triangular is + + x[1:n] := b[1:n] + for j = 1, ..., n + x(j) := x(j) / A(j,j) + x[j+1:n] := x[j+1:n] - x(j) * A[j+1:n,j] + end + + Define bounds on the components of x after j iterations of the loop: + M(j) = bound on x[1:j] + G(j) = bound on x[j+1:n] + Initially, let M(0) = 0 and G(0) = max{x(i), i=1,...,n}. + + Then for iteration j+1 we have + M(j+1) <= G(j) / | A(j+1,j+1) | + G(j+1) <= G(j) + M(j+1) * | A[j+2:n,j+1] | + <= G(j) ( 1 + CNORM(j+1) / | A(j+1,j+1) | ) + + where CNORM(j+1) is greater than or equal to the infinity-norm of + column j+1 of A, not counting the diagonal. Hence + + G(j) <= G(0) product ( 1 + CNORM(i) / | A(i,i) | ) + 1<=i<=j + and + + |x(j)| <= ( G(0) / |A(j,j)| ) product ( 1 + CNORM(i) / |A(i,i)| ) + 1<=i< j + + Since |x(j)| <= M(j), we use the Level 2 BLAS routine CTRSV if the + reciprocal of the largest M(j), j=1,..,n, is larger than + max(underflow, 1/overflow). + + The bound on x(j) is also used to determine when a step in the + columnwise method can be performed without fear of overflow. If + the computed bound is greater than a large constant, x is scaled to + prevent overflow, but if the bound overflows, x is set to 0, x(j) to + 1, and scale to 0, and a non-trivial solution to A*x = 0 is found. + + Similarly, a row-wise scheme is used to solve A**T *x = b or + A**H *x = b. The basic algorithm for A upper triangular is + + for j = 1, ..., n + x(j) := ( b(j) - A[1:j-1,j]' * x[1:j-1] ) / A(j,j) + end + + We simultaneously compute two bounds + G(j) = bound on ( b(i) - A[1:i-1,i]' * x[1:i-1] ), 1<=i<=j + M(j) = bound on x(i), 1<=i<=j + + The initial values are G(0) = 0, M(0) = max{b(i), i=1,..,n}, and we + add the constraint G(j) >= G(j-1) and M(j) >= M(j-1) for j >= 1. + Then the bound on x(j) is + + M(j) <= M(j-1) * ( 1 + CNORM(j) ) / | A(j,j) | + + <= M(0) * product ( ( 1 + CNORM(i) ) / |A(i,i)| ) + 1<=i<=j + + and we can safely call CTRSV if 1/M(n) and 1/G(n) are both greater + than max(underflow, 1/overflow). + + ===================================================================== +*/ + + + /* Parameter adjustments */ + a_dim1 = *lda; + a_offset = 1 + a_dim1; + a -= a_offset; + --x; + --cnorm; + + /* Function Body */ + *info = 0; + upper = lsame_(uplo, "U"); + notran = lsame_(trans, "N"); + nounit = lsame_(diag, "N"); + +/* Test the input parameters. */ + + if (! upper && ! lsame_(uplo, "L")) { + *info = -1; + } else if (! notran && ! lsame_(trans, "T") && ! + lsame_(trans, "C")) { + *info = -2; + } else if (! nounit && ! lsame_(diag, "U")) { + *info = -3; + } else if (! lsame_(normin, "Y") && ! lsame_(normin, + "N")) { + *info = -4; + } else if (*n < 0) { + *info = -5; + } else if (*lda < max(1,*n)) { + *info = -7; + } + if (*info != 0) { + i__1 = -(*info); + xerbla_("CLATRS", &i__1); + return 0; + } + +/* Quick return if possible */ + + if (*n == 0) { + return 0; + } + +/* Determine machine dependent parameters to control overflow. */ + + smlnum = slamch_("Safe minimum"); + bignum = 1.f / smlnum; + slabad_(&smlnum, &bignum); + smlnum /= slamch_("Precision"); + bignum = 1.f / smlnum; + *scale = 1.f; + + if (lsame_(normin, "N")) { + +/* Compute the 1-norm of each column, not including the diagonal. */ + + if (upper) { + +/* A is upper triangular. */ + + i__1 = *n; + for (j = 1; j <= i__1; ++j) { + i__2 = j - 1; + cnorm[j] = scasum_(&i__2, &a[j * a_dim1 + 1], &c__1); +/* L10: */ + } + } else { + +/* A is lower triangular. */ + + i__1 = *n - 1; + for (j = 1; j <= i__1; ++j) { + i__2 = *n - j; + cnorm[j] = scasum_(&i__2, &a[j + 1 + j * a_dim1], &c__1); +/* L20: */ + } + cnorm[*n] = 0.f; + } + } + +/* + Scale the column norms by TSCAL if the maximum element in CNORM is + greater than BIGNUM/2. +*/ + + imax = isamax_(n, &cnorm[1], &c__1); + tmax = cnorm[imax]; + if (tmax <= bignum * .5f) { + tscal = 1.f; + } else { + tscal = .5f / (smlnum * tmax); + sscal_(n, &tscal, &cnorm[1], &c__1); + } + +/* + Compute a bound on the computed solution vector to see if the + Level 2 BLAS routine CTRSV can be used. +*/ + + xmax = 0.f; + i__1 = *n; + for (j = 1; j <= i__1; ++j) { +/* Computing MAX */ + i__2 = j; + r__3 = xmax, r__4 = (r__1 = x[i__2].r / 2.f, dabs(r__1)) + (r__2 = + r_imag(&x[j]) / 2.f, dabs(r__2)); + xmax = dmax(r__3,r__4); +/* L30: */ + } + xbnd = xmax; + + if (notran) { + +/* Compute the growth in A * x = b. */ + + if (upper) { + jfirst = *n; + jlast = 1; + jinc = -1; + } else { + jfirst = 1; + jlast = *n; + jinc = 1; + } + + if (tscal != 1.f) { + grow = 0.f; + goto L60; + } + + if (nounit) { + +/* + A is non-unit triangular. + + Compute GROW = 1/G(j) and XBND = 1/M(j). + Initially, G(0) = max{x(i), i=1,...,n}. +*/ + + grow = .5f / dmax(xbnd,smlnum); + xbnd = grow; + i__1 = jlast; + i__2 = jinc; + for (j = jfirst; i__2 < 0 ? j >= i__1 : j <= i__1; j += i__2) { + +/* Exit the loop if the growth factor is too small. */ + + if (grow <= smlnum) { + goto L60; + } + + i__3 = j + j * a_dim1; + tjjs.r = a[i__3].r, tjjs.i = a[i__3].i; + tjj = (r__1 = tjjs.r, dabs(r__1)) + (r__2 = r_imag(&tjjs), + dabs(r__2)); + + if (tjj >= smlnum) { + +/* + M(j) = G(j-1) / abs(A(j,j)) + + Computing MIN +*/ + r__1 = xbnd, r__2 = dmin(1.f,tjj) * grow; + xbnd = dmin(r__1,r__2); + } else { + +/* M(j) could overflow, set XBND to 0. */ + + xbnd = 0.f; + } + + if (tjj + cnorm[j] >= smlnum) { + +/* G(j) = G(j-1)*( 1 + CNORM(j) / abs(A(j,j)) ) */ + + grow *= tjj / (tjj + cnorm[j]); + } else { + +/* G(j) could overflow, set GROW to 0. */ + + grow = 0.f; + } +/* L40: */ + } + grow = xbnd; + } else { + +/* + A is unit triangular. + + Compute GROW = 1/G(j), where G(0) = max{x(i), i=1,...,n}. + + Computing MIN +*/ + r__1 = 1.f, r__2 = .5f / dmax(xbnd,smlnum); + grow = dmin(r__1,r__2); + i__2 = jlast; + i__1 = jinc; + for (j = jfirst; i__1 < 0 ? j >= i__2 : j <= i__2; j += i__1) { + +/* Exit the loop if the growth factor is too small. */ + + if (grow <= smlnum) { + goto L60; + } + +/* G(j) = G(j-1)*( 1 + CNORM(j) ) */ + + grow *= 1.f / (cnorm[j] + 1.f); +/* L50: */ + } + } +L60: + + ; + } else { + +/* Compute the growth in A**T * x = b or A**H * x = b. */ + + if (upper) { + jfirst = 1; + jlast = *n; + jinc = 1; + } else { + jfirst = *n; + jlast = 1; + jinc = -1; + } + + if (tscal != 1.f) { + grow = 0.f; + goto L90; + } + + if (nounit) { + +/* + A is non-unit triangular. + + Compute GROW = 1/G(j) and XBND = 1/M(j). + Initially, M(0) = max{x(i), i=1,...,n}. +*/ + + grow = .5f / dmax(xbnd,smlnum); + xbnd = grow; + i__1 = jlast; + i__2 = jinc; + for (j = jfirst; i__2 < 0 ? j >= i__1 : j <= i__1; j += i__2) { + +/* Exit the loop if the growth factor is too small. */ + + if (grow <= smlnum) { + goto L90; + } + +/* G(j) = max( G(j-1), M(j-1)*( 1 + CNORM(j) ) ) */ + + xj = cnorm[j] + 1.f; +/* Computing MIN */ + r__1 = grow, r__2 = xbnd / xj; + grow = dmin(r__1,r__2); + + i__3 = j + j * a_dim1; + tjjs.r = a[i__3].r, tjjs.i = a[i__3].i; + tjj = (r__1 = tjjs.r, dabs(r__1)) + (r__2 = r_imag(&tjjs), + dabs(r__2)); + + if (tjj >= smlnum) { + +/* M(j) = M(j-1)*( 1 + CNORM(j) ) / abs(A(j,j)) */ + + if (xj > tjj) { + xbnd *= tjj / xj; + } + } else { + +/* M(j) could overflow, set XBND to 0. */ + + xbnd = 0.f; + } +/* L70: */ + } + grow = dmin(grow,xbnd); + } else { + +/* + A is unit triangular. + + Compute GROW = 1/G(j), where G(0) = max{x(i), i=1,...,n}. + + Computing MIN +*/ + r__1 = 1.f, r__2 = .5f / dmax(xbnd,smlnum); + grow = dmin(r__1,r__2); + i__2 = jlast; + i__1 = jinc; + for (j = jfirst; i__1 < 0 ? j >= i__2 : j <= i__2; j += i__1) { + +/* Exit the loop if the growth factor is too small. */ + + if (grow <= smlnum) { + goto L90; + } + +/* G(j) = ( 1 + CNORM(j) )*G(j-1) */ + + xj = cnorm[j] + 1.f; + grow /= xj; +/* L80: */ + } + } +L90: + ; + } + + if (grow * tscal > smlnum) { + +/* + Use the Level 2 BLAS solve if the reciprocal of the bound on + elements of X is not too small. +*/ + + ctrsv_(uplo, trans, diag, n, &a[a_offset], lda, &x[1], &c__1); + } else { + +/* Use a Level 1 BLAS solve, scaling intermediate results. */ + + if (xmax > bignum * .5f) { + +/* + Scale X so that its components are less than or equal to + BIGNUM in absolute value. +*/ + + *scale = bignum * .5f / xmax; + csscal_(n, scale, &x[1], &c__1); + xmax = bignum; + } else { + xmax *= 2.f; + } + + if (notran) { + +/* Solve A * x = b */ + + i__1 = jlast; + i__2 = jinc; + for (j = jfirst; i__2 < 0 ? j >= i__1 : j <= i__1; j += i__2) { + +/* Compute x(j) = b(j) / A(j,j), scaling x if necessary. */ + + i__3 = j; + xj = (r__1 = x[i__3].r, dabs(r__1)) + (r__2 = r_imag(&x[j]), + dabs(r__2)); + if (nounit) { + i__3 = j + j * a_dim1; + q__1.r = tscal * a[i__3].r, q__1.i = tscal * a[i__3].i; + tjjs.r = q__1.r, tjjs.i = q__1.i; + } else { + tjjs.r = tscal, tjjs.i = 0.f; + if (tscal == 1.f) { + goto L105; + } + } + tjj = (r__1 = tjjs.r, dabs(r__1)) + (r__2 = r_imag(&tjjs), + dabs(r__2)); + if (tjj > smlnum) { + +/* abs(A(j,j)) > SMLNUM: */ + + if (tjj < 1.f) { + if (xj > tjj * bignum) { + +/* Scale x by 1/b(j). */ + + rec = 1.f / xj; + csscal_(n, &rec, &x[1], &c__1); + *scale *= rec; + xmax *= rec; + } + } + i__3 = j; + cladiv_(&q__1, &x[j], &tjjs); + x[i__3].r = q__1.r, x[i__3].i = q__1.i; + i__3 = j; + xj = (r__1 = x[i__3].r, dabs(r__1)) + (r__2 = r_imag(&x[j] + ), dabs(r__2)); + } else if (tjj > 0.f) { + +/* 0 < abs(A(j,j)) <= SMLNUM: */ + + if (xj > tjj * bignum) { + +/* + Scale x by (1/abs(x(j)))*abs(A(j,j))*BIGNUM + to avoid overflow when dividing by A(j,j). +*/ + + rec = tjj * bignum / xj; + if (cnorm[j] > 1.f) { + +/* + Scale by 1/CNORM(j) to avoid overflow when + multiplying x(j) times column j. +*/ + + rec /= cnorm[j]; + } + csscal_(n, &rec, &x[1], &c__1); + *scale *= rec; + xmax *= rec; + } + i__3 = j; + cladiv_(&q__1, &x[j], &tjjs); + x[i__3].r = q__1.r, x[i__3].i = q__1.i; + i__3 = j; + xj = (r__1 = x[i__3].r, dabs(r__1)) + (r__2 = r_imag(&x[j] + ), dabs(r__2)); + } else { + +/* + A(j,j) = 0: Set x(1:n) = 0, x(j) = 1, and + scale = 0, and compute a solution to A*x = 0. +*/ + + i__3 = *n; + for (i__ = 1; i__ <= i__3; ++i__) { + i__4 = i__; + x[i__4].r = 0.f, x[i__4].i = 0.f; +/* L100: */ + } + i__3 = j; + x[i__3].r = 1.f, x[i__3].i = 0.f; + xj = 1.f; + *scale = 0.f; + xmax = 0.f; + } +L105: + +/* + Scale x if necessary to avoid overflow when adding a + multiple of column j of A. +*/ + + if (xj > 1.f) { + rec = 1.f / xj; + if (cnorm[j] > (bignum - xmax) * rec) { + +/* Scale x by 1/(2*abs(x(j))). */ + + rec *= .5f; + csscal_(n, &rec, &x[1], &c__1); + *scale *= rec; + } + } else if (xj * cnorm[j] > bignum - xmax) { + +/* Scale x by 1/2. */ + + csscal_(n, &c_b1794, &x[1], &c__1); + *scale *= .5f; + } + + if (upper) { + if (j > 1) { + +/* + Compute the update + x(1:j-1) := x(1:j-1) - x(j) * A(1:j-1,j) +*/ + + i__3 = j - 1; + i__4 = j; + q__2.r = -x[i__4].r, q__2.i = -x[i__4].i; + q__1.r = tscal * q__2.r, q__1.i = tscal * q__2.i; + caxpy_(&i__3, &q__1, &a[j * a_dim1 + 1], &c__1, &x[1], + &c__1); + i__3 = j - 1; + i__ = icamax_(&i__3, &x[1], &c__1); + i__3 = i__; + xmax = (r__1 = x[i__3].r, dabs(r__1)) + (r__2 = + r_imag(&x[i__]), dabs(r__2)); + } + } else { + if (j < *n) { + +/* + Compute the update + x(j+1:n) := x(j+1:n) - x(j) * A(j+1:n,j) +*/ + + i__3 = *n - j; + i__4 = j; + q__2.r = -x[i__4].r, q__2.i = -x[i__4].i; + q__1.r = tscal * q__2.r, q__1.i = tscal * q__2.i; + caxpy_(&i__3, &q__1, &a[j + 1 + j * a_dim1], &c__1, & + x[j + 1], &c__1); + i__3 = *n - j; + i__ = j + icamax_(&i__3, &x[j + 1], &c__1); + i__3 = i__; + xmax = (r__1 = x[i__3].r, dabs(r__1)) + (r__2 = + r_imag(&x[i__]), dabs(r__2)); + } + } +/* L110: */ + } + + } else if (lsame_(trans, "T")) { + +/* Solve A**T * x = b */ + + i__2 = jlast; + i__1 = jinc; + for (j = jfirst; i__1 < 0 ? j >= i__2 : j <= i__2; j += i__1) { + +/* + Compute x(j) = b(j) - sum A(k,j)*x(k). + k<>j +*/ + + i__3 = j; + xj = (r__1 = x[i__3].r, dabs(r__1)) + (r__2 = r_imag(&x[j]), + dabs(r__2)); + uscal.r = tscal, uscal.i = 0.f; + rec = 1.f / dmax(xmax,1.f); + if (cnorm[j] > (bignum - xj) * rec) { + +/* If x(j) could overflow, scale x by 1/(2*XMAX). */ + + rec *= .5f; + if (nounit) { + i__3 = j + j * a_dim1; + q__1.r = tscal * a[i__3].r, q__1.i = tscal * a[i__3] + .i; + tjjs.r = q__1.r, tjjs.i = q__1.i; + } else { + tjjs.r = tscal, tjjs.i = 0.f; + } + tjj = (r__1 = tjjs.r, dabs(r__1)) + (r__2 = r_imag(&tjjs), + dabs(r__2)); + if (tjj > 1.f) { + +/* + Divide by A(j,j) when scaling x if A(j,j) > 1. + + Computing MIN +*/ + r__1 = 1.f, r__2 = rec * tjj; + rec = dmin(r__1,r__2); + cladiv_(&q__1, &uscal, &tjjs); + uscal.r = q__1.r, uscal.i = q__1.i; + } + if (rec < 1.f) { + csscal_(n, &rec, &x[1], &c__1); + *scale *= rec; + xmax *= rec; + } + } + + csumj.r = 0.f, csumj.i = 0.f; + if (uscal.r == 1.f && uscal.i == 0.f) { + +/* + If the scaling needed for A in the dot product is 1, + call CDOTU to perform the dot product. +*/ + + if (upper) { + i__3 = j - 1; + cdotu_(&q__1, &i__3, &a[j * a_dim1 + 1], &c__1, &x[1], + &c__1); + csumj.r = q__1.r, csumj.i = q__1.i; + } else if (j < *n) { + i__3 = *n - j; + cdotu_(&q__1, &i__3, &a[j + 1 + j * a_dim1], &c__1, & + x[j + 1], &c__1); + csumj.r = q__1.r, csumj.i = q__1.i; + } + } else { + +/* Otherwise, use in-line code for the dot product. */ + + if (upper) { + i__3 = j - 1; + for (i__ = 1; i__ <= i__3; ++i__) { + i__4 = i__ + j * a_dim1; + q__3.r = a[i__4].r * uscal.r - a[i__4].i * + uscal.i, q__3.i = a[i__4].r * uscal.i + a[ + i__4].i * uscal.r; + i__5 = i__; + q__2.r = q__3.r * x[i__5].r - q__3.i * x[i__5].i, + q__2.i = q__3.r * x[i__5].i + q__3.i * x[ + i__5].r; + q__1.r = csumj.r + q__2.r, q__1.i = csumj.i + + q__2.i; + csumj.r = q__1.r, csumj.i = q__1.i; +/* L120: */ + } + } else if (j < *n) { + i__3 = *n; + for (i__ = j + 1; i__ <= i__3; ++i__) { + i__4 = i__ + j * a_dim1; + q__3.r = a[i__4].r * uscal.r - a[i__4].i * + uscal.i, q__3.i = a[i__4].r * uscal.i + a[ + i__4].i * uscal.r; + i__5 = i__; + q__2.r = q__3.r * x[i__5].r - q__3.i * x[i__5].i, + q__2.i = q__3.r * x[i__5].i + q__3.i * x[ + i__5].r; + q__1.r = csumj.r + q__2.r, q__1.i = csumj.i + + q__2.i; + csumj.r = q__1.r, csumj.i = q__1.i; +/* L130: */ + } + } + } + + q__1.r = tscal, q__1.i = 0.f; + if (uscal.r == q__1.r && uscal.i == q__1.i) { + +/* + Compute x(j) := ( x(j) - CSUMJ ) / A(j,j) if 1/A(j,j) + was not used to scale the dotproduct. +*/ + + i__3 = j; + i__4 = j; + q__1.r = x[i__4].r - csumj.r, q__1.i = x[i__4].i - + csumj.i; + x[i__3].r = q__1.r, x[i__3].i = q__1.i; + i__3 = j; + xj = (r__1 = x[i__3].r, dabs(r__1)) + (r__2 = r_imag(&x[j] + ), dabs(r__2)); + if (nounit) { + i__3 = j + j * a_dim1; + q__1.r = tscal * a[i__3].r, q__1.i = tscal * a[i__3] + .i; + tjjs.r = q__1.r, tjjs.i = q__1.i; + } else { + tjjs.r = tscal, tjjs.i = 0.f; + if (tscal == 1.f) { + goto L145; + } + } + +/* Compute x(j) = x(j) / A(j,j), scaling if necessary. */ + + tjj = (r__1 = tjjs.r, dabs(r__1)) + (r__2 = r_imag(&tjjs), + dabs(r__2)); + if (tjj > smlnum) { + +/* abs(A(j,j)) > SMLNUM: */ + + if (tjj < 1.f) { + if (xj > tjj * bignum) { + +/* Scale X by 1/abs(x(j)). */ + + rec = 1.f / xj; + csscal_(n, &rec, &x[1], &c__1); + *scale *= rec; + xmax *= rec; + } + } + i__3 = j; + cladiv_(&q__1, &x[j], &tjjs); + x[i__3].r = q__1.r, x[i__3].i = q__1.i; + } else if (tjj > 0.f) { + +/* 0 < abs(A(j,j)) <= SMLNUM: */ + + if (xj > tjj * bignum) { + +/* Scale x by (1/abs(x(j)))*abs(A(j,j))*BIGNUM. */ + + rec = tjj * bignum / xj; + csscal_(n, &rec, &x[1], &c__1); + *scale *= rec; + xmax *= rec; + } + i__3 = j; + cladiv_(&q__1, &x[j], &tjjs); + x[i__3].r = q__1.r, x[i__3].i = q__1.i; + } else { + +/* + A(j,j) = 0: Set x(1:n) = 0, x(j) = 1, and + scale = 0 and compute a solution to A**T *x = 0. +*/ + + i__3 = *n; + for (i__ = 1; i__ <= i__3; ++i__) { + i__4 = i__; + x[i__4].r = 0.f, x[i__4].i = 0.f; +/* L140: */ + } + i__3 = j; + x[i__3].r = 1.f, x[i__3].i = 0.f; + *scale = 0.f; + xmax = 0.f; + } +L145: + ; + } else { + +/* + Compute x(j) := x(j) / A(j,j) - CSUMJ if the dot + product has already been divided by 1/A(j,j). +*/ + + i__3 = j; + cladiv_(&q__2, &x[j], &tjjs); + q__1.r = q__2.r - csumj.r, q__1.i = q__2.i - csumj.i; + x[i__3].r = q__1.r, x[i__3].i = q__1.i; + } +/* Computing MAX */ + i__3 = j; + r__3 = xmax, r__4 = (r__1 = x[i__3].r, dabs(r__1)) + (r__2 = + r_imag(&x[j]), dabs(r__2)); + xmax = dmax(r__3,r__4); +/* L150: */ + } + + } else { + +/* Solve A**H * x = b */ + + i__1 = jlast; + i__2 = jinc; + for (j = jfirst; i__2 < 0 ? j >= i__1 : j <= i__1; j += i__2) { + +/* + Compute x(j) = b(j) - sum A(k,j)*x(k). + k<>j +*/ + + i__3 = j; + xj = (r__1 = x[i__3].r, dabs(r__1)) + (r__2 = r_imag(&x[j]), + dabs(r__2)); + uscal.r = tscal, uscal.i = 0.f; + rec = 1.f / dmax(xmax,1.f); + if (cnorm[j] > (bignum - xj) * rec) { + +/* If x(j) could overflow, scale x by 1/(2*XMAX). */ + + rec *= .5f; + if (nounit) { + r_cnjg(&q__2, &a[j + j * a_dim1]); + q__1.r = tscal * q__2.r, q__1.i = tscal * q__2.i; + tjjs.r = q__1.r, tjjs.i = q__1.i; + } else { + tjjs.r = tscal, tjjs.i = 0.f; + } + tjj = (r__1 = tjjs.r, dabs(r__1)) + (r__2 = r_imag(&tjjs), + dabs(r__2)); + if (tjj > 1.f) { + +/* + Divide by A(j,j) when scaling x if A(j,j) > 1. + + Computing MIN +*/ + r__1 = 1.f, r__2 = rec * tjj; + rec = dmin(r__1,r__2); + cladiv_(&q__1, &uscal, &tjjs); + uscal.r = q__1.r, uscal.i = q__1.i; + } + if (rec < 1.f) { + csscal_(n, &rec, &x[1], &c__1); + *scale *= rec; + xmax *= rec; + } + } + + csumj.r = 0.f, csumj.i = 0.f; + if (uscal.r == 1.f && uscal.i == 0.f) { + +/* + If the scaling needed for A in the dot product is 1, + call CDOTC to perform the dot product. +*/ + + if (upper) { + i__3 = j - 1; + cdotc_(&q__1, &i__3, &a[j * a_dim1 + 1], &c__1, &x[1], + &c__1); + csumj.r = q__1.r, csumj.i = q__1.i; + } else if (j < *n) { + i__3 = *n - j; + cdotc_(&q__1, &i__3, &a[j + 1 + j * a_dim1], &c__1, & + x[j + 1], &c__1); + csumj.r = q__1.r, csumj.i = q__1.i; + } + } else { + +/* Otherwise, use in-line code for the dot product. */ + + if (upper) { + i__3 = j - 1; + for (i__ = 1; i__ <= i__3; ++i__) { + r_cnjg(&q__4, &a[i__ + j * a_dim1]); + q__3.r = q__4.r * uscal.r - q__4.i * uscal.i, + q__3.i = q__4.r * uscal.i + q__4.i * + uscal.r; + i__4 = i__; + q__2.r = q__3.r * x[i__4].r - q__3.i * x[i__4].i, + q__2.i = q__3.r * x[i__4].i + q__3.i * x[ + i__4].r; + q__1.r = csumj.r + q__2.r, q__1.i = csumj.i + + q__2.i; + csumj.r = q__1.r, csumj.i = q__1.i; +/* L160: */ + } + } else if (j < *n) { + i__3 = *n; + for (i__ = j + 1; i__ <= i__3; ++i__) { + r_cnjg(&q__4, &a[i__ + j * a_dim1]); + q__3.r = q__4.r * uscal.r - q__4.i * uscal.i, + q__3.i = q__4.r * uscal.i + q__4.i * + uscal.r; + i__4 = i__; + q__2.r = q__3.r * x[i__4].r - q__3.i * x[i__4].i, + q__2.i = q__3.r * x[i__4].i + q__3.i * x[ + i__4].r; + q__1.r = csumj.r + q__2.r, q__1.i = csumj.i + + q__2.i; + csumj.r = q__1.r, csumj.i = q__1.i; +/* L170: */ + } + } + } + + q__1.r = tscal, q__1.i = 0.f; + if (uscal.r == q__1.r && uscal.i == q__1.i) { + +/* + Compute x(j) := ( x(j) - CSUMJ ) / A(j,j) if 1/A(j,j) + was not used to scale the dotproduct. +*/ + + i__3 = j; + i__4 = j; + q__1.r = x[i__4].r - csumj.r, q__1.i = x[i__4].i - + csumj.i; + x[i__3].r = q__1.r, x[i__3].i = q__1.i; + i__3 = j; + xj = (r__1 = x[i__3].r, dabs(r__1)) + (r__2 = r_imag(&x[j] + ), dabs(r__2)); + if (nounit) { + r_cnjg(&q__2, &a[j + j * a_dim1]); + q__1.r = tscal * q__2.r, q__1.i = tscal * q__2.i; + tjjs.r = q__1.r, tjjs.i = q__1.i; + } else { + tjjs.r = tscal, tjjs.i = 0.f; + if (tscal == 1.f) { + goto L185; + } + } + +/* Compute x(j) = x(j) / A(j,j), scaling if necessary. */ + + tjj = (r__1 = tjjs.r, dabs(r__1)) + (r__2 = r_imag(&tjjs), + dabs(r__2)); + if (tjj > smlnum) { + +/* abs(A(j,j)) > SMLNUM: */ + + if (tjj < 1.f) { + if (xj > tjj * bignum) { + +/* Scale X by 1/abs(x(j)). */ + + rec = 1.f / xj; + csscal_(n, &rec, &x[1], &c__1); + *scale *= rec; + xmax *= rec; + } + } + i__3 = j; + cladiv_(&q__1, &x[j], &tjjs); + x[i__3].r = q__1.r, x[i__3].i = q__1.i; + } else if (tjj > 0.f) { + +/* 0 < abs(A(j,j)) <= SMLNUM: */ + + if (xj > tjj * bignum) { + +/* Scale x by (1/abs(x(j)))*abs(A(j,j))*BIGNUM. */ + + rec = tjj * bignum / xj; + csscal_(n, &rec, &x[1], &c__1); + *scale *= rec; + xmax *= rec; + } + i__3 = j; + cladiv_(&q__1, &x[j], &tjjs); + x[i__3].r = q__1.r, x[i__3].i = q__1.i; + } else { + +/* + A(j,j) = 0: Set x(1:n) = 0, x(j) = 1, and + scale = 0 and compute a solution to A**H *x = 0. +*/ + + i__3 = *n; + for (i__ = 1; i__ <= i__3; ++i__) { + i__4 = i__; + x[i__4].r = 0.f, x[i__4].i = 0.f; +/* L180: */ + } + i__3 = j; + x[i__3].r = 1.f, x[i__3].i = 0.f; + *scale = 0.f; + xmax = 0.f; + } +L185: + ; + } else { + +/* + Compute x(j) := x(j) / A(j,j) - CSUMJ if the dot + product has already been divided by 1/A(j,j). +*/ + + i__3 = j; + cladiv_(&q__2, &x[j], &tjjs); + q__1.r = q__2.r - csumj.r, q__1.i = q__2.i - csumj.i; + x[i__3].r = q__1.r, x[i__3].i = q__1.i; + } +/* Computing MAX */ + i__3 = j; + r__3 = xmax, r__4 = (r__1 = x[i__3].r, dabs(r__1)) + (r__2 = + r_imag(&x[j]), dabs(r__2)); + xmax = dmax(r__3,r__4); +/* L190: */ + } + } + *scale /= tscal; + } + +/* Scale the column norms by 1/TSCAL for return. */ + + if (tscal != 1.f) { + r__1 = 1.f / tscal; + sscal_(n, &r__1, &cnorm[1], &c__1); + } + + return 0; + +/* End of CLATRS */ + +} /* clatrs_ */ + +/* Subroutine */ int clauu2_(char *uplo, integer *n, complex *a, integer *lda, + integer *info) +{ + /* System generated locals */ + integer a_dim1, a_offset, i__1, i__2, i__3; + real r__1; + complex q__1; + + /* Local variables */ + static integer i__; + static real aii; + extern /* Complex */ VOID cdotc_(complex *, integer *, complex *, integer + *, complex *, integer *); + extern logical lsame_(char *, char *); + extern /* Subroutine */ int cgemv_(char *, integer *, integer *, complex * + , complex *, integer *, complex *, integer *, complex *, complex * + , integer *); + static logical upper; + extern /* Subroutine */ int clacgv_(integer *, complex *, integer *), + csscal_(integer *, real *, complex *, integer *), xerbla_(char *, + integer *); + + +/* + -- LAPACK auxiliary routine (version 3.0) -- + Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd., + Courant Institute, Argonne National Lab, and Rice University + September 30, 1994 + + + Purpose + ======= + + CLAUU2 computes the product U * U' or L' * L, where the triangular + factor U or L is stored in the upper or lower triangular part of + the array A. + + If UPLO = 'U' or 'u' then the upper triangle of the result is stored, + overwriting the factor U in A. + If UPLO = 'L' or 'l' then the lower triangle of the result is stored, + overwriting the factor L in A. + + This is the unblocked form of the algorithm, calling Level 2 BLAS. + + Arguments + ========= + + UPLO (input) CHARACTER*1 + Specifies whether the triangular factor stored in the array A + is upper or lower triangular: + = 'U': Upper triangular + = 'L': Lower triangular + + N (input) INTEGER + The order of the triangular factor U or L. N >= 0. + + A (input/output) COMPLEX array, dimension (LDA,N) + On entry, the triangular factor U or L. + On exit, if UPLO = 'U', the upper triangle of A is + overwritten with the upper triangle of the product U * U'; + if UPLO = 'L', the lower triangle of A is overwritten with + the lower triangle of the product L' * L. + + LDA (input) INTEGER + The leading dimension of the array A. LDA >= max(1,N). + + INFO (output) INTEGER + = 0: successful exit + < 0: if INFO = -k, the k-th argument had an illegal value + + ===================================================================== + + + Test the input parameters. +*/ + + /* Parameter adjustments */ + a_dim1 = *lda; + a_offset = 1 + a_dim1; + a -= a_offset; + + /* Function Body */ + *info = 0; + upper = lsame_(uplo, "U"); + if (! upper && ! lsame_(uplo, "L")) { + *info = -1; + } else if (*n < 0) { + *info = -2; + } else if (*lda < max(1,*n)) { + *info = -4; + } + if (*info != 0) { + i__1 = -(*info); + xerbla_("CLAUU2", &i__1); + return 0; + } + +/* Quick return if possible */ + + if (*n == 0) { + return 0; + } + + if (upper) { + +/* Compute the product U * U'. */ + + i__1 = *n; + for (i__ = 1; i__ <= i__1; ++i__) { + i__2 = i__ + i__ * a_dim1; + aii = a[i__2].r; + if (i__ < *n) { + i__2 = i__ + i__ * a_dim1; + i__3 = *n - i__; + cdotc_(&q__1, &i__3, &a[i__ + (i__ + 1) * a_dim1], lda, &a[ + i__ + (i__ + 1) * a_dim1], lda); + r__1 = aii * aii + q__1.r; + a[i__2].r = r__1, a[i__2].i = 0.f; + i__2 = *n - i__; + clacgv_(&i__2, &a[i__ + (i__ + 1) * a_dim1], lda); + i__2 = i__ - 1; + i__3 = *n - i__; + q__1.r = aii, q__1.i = 0.f; + cgemv_("No transpose", &i__2, &i__3, &c_b56, &a[(i__ + 1) * + a_dim1 + 1], lda, &a[i__ + (i__ + 1) * a_dim1], lda, & + q__1, &a[i__ * a_dim1 + 1], &c__1); + i__2 = *n - i__; + clacgv_(&i__2, &a[i__ + (i__ + 1) * a_dim1], lda); + } else { + csscal_(&i__, &aii, &a[i__ * a_dim1 + 1], &c__1); + } +/* L10: */ + } + + } else { + +/* Compute the product L' * L. */ + + i__1 = *n; + for (i__ = 1; i__ <= i__1; ++i__) { + i__2 = i__ + i__ * a_dim1; + aii = a[i__2].r; + if (i__ < *n) { + i__2 = i__ + i__ * a_dim1; + i__3 = *n - i__; + cdotc_(&q__1, &i__3, &a[i__ + 1 + i__ * a_dim1], &c__1, &a[ + i__ + 1 + i__ * a_dim1], &c__1); + r__1 = aii * aii + q__1.r; + a[i__2].r = r__1, a[i__2].i = 0.f; + i__2 = i__ - 1; + clacgv_(&i__2, &a[i__ + a_dim1], lda); + i__2 = *n - i__; + i__3 = i__ - 1; + q__1.r = aii, q__1.i = 0.f; + cgemv_("Conjugate transpose", &i__2, &i__3, &c_b56, &a[i__ + + 1 + a_dim1], lda, &a[i__ + 1 + i__ * a_dim1], &c__1, & + q__1, &a[i__ + a_dim1], lda); + i__2 = i__ - 1; + clacgv_(&i__2, &a[i__ + a_dim1], lda); + } else { + csscal_(&i__, &aii, &a[i__ + a_dim1], lda); + } +/* L20: */ + } + } + + return 0; + +/* End of CLAUU2 */ + +} /* clauu2_ */ + +/* Subroutine */ int clauum_(char *uplo, integer *n, complex *a, integer *lda, + integer *info) +{ + /* System generated locals */ + integer a_dim1, a_offset, i__1, i__2, i__3, i__4; + + /* Local variables */ + static integer i__, ib, nb; + extern /* Subroutine */ int cgemm_(char *, char *, integer *, integer *, + integer *, complex *, complex *, integer *, complex *, integer *, + complex *, complex *, integer *), cherk_(char *, + char *, integer *, integer *, real *, complex *, integer *, real * + , complex *, integer *); + extern logical lsame_(char *, char *); + extern /* Subroutine */ int ctrmm_(char *, char *, char *, char *, + integer *, integer *, complex *, complex *, integer *, complex *, + integer *); + static logical upper; + extern /* Subroutine */ int clauu2_(char *, integer *, complex *, integer + *, integer *), xerbla_(char *, integer *); + extern integer ilaenv_(integer *, char *, char *, integer *, integer *, + integer *, integer *, ftnlen, ftnlen); + + +/* + -- LAPACK auxiliary routine (version 3.0) -- + Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd., + Courant Institute, Argonne National Lab, and Rice University + September 30, 1994 + + + Purpose + ======= + + CLAUUM computes the product U * U' or L' * L, where the triangular + factor U or L is stored in the upper or lower triangular part of + the array A. + + If UPLO = 'U' or 'u' then the upper triangle of the result is stored, + overwriting the factor U in A. + If UPLO = 'L' or 'l' then the lower triangle of the result is stored, + overwriting the factor L in A. + + This is the blocked form of the algorithm, calling Level 3 BLAS. + + Arguments + ========= + + UPLO (input) CHARACTER*1 + Specifies whether the triangular factor stored in the array A + is upper or lower triangular: + = 'U': Upper triangular + = 'L': Lower triangular + + N (input) INTEGER + The order of the triangular factor U or L. N >= 0. + + A (input/output) COMPLEX array, dimension (LDA,N) + On entry, the triangular factor U or L. + On exit, if UPLO = 'U', the upper triangle of A is + overwritten with the upper triangle of the product U * U'; + if UPLO = 'L', the lower triangle of A is overwritten with + the lower triangle of the product L' * L. + + LDA (input) INTEGER + The leading dimension of the array A. LDA >= max(1,N). + + INFO (output) INTEGER + = 0: successful exit + < 0: if INFO = -k, the k-th argument had an illegal value + + ===================================================================== + + + Test the input parameters. +*/ + + /* Parameter adjustments */ + a_dim1 = *lda; + a_offset = 1 + a_dim1; + a -= a_offset; + + /* Function Body */ + *info = 0; + upper = lsame_(uplo, "U"); + if (! upper && ! lsame_(uplo, "L")) { + *info = -1; + } else if (*n < 0) { + *info = -2; + } else if (*lda < max(1,*n)) { + *info = -4; + } + if (*info != 0) { + i__1 = -(*info); + xerbla_("CLAUUM", &i__1); + return 0; + } + +/* Quick return if possible */ + + if (*n == 0) { + return 0; + } + +/* Determine the block size for this environment. */ + + nb = ilaenv_(&c__1, "CLAUUM", uplo, n, &c_n1, &c_n1, &c_n1, (ftnlen)6, ( + ftnlen)1); + + if (nb <= 1 || nb >= *n) { + +/* Use unblocked code */ + + clauu2_(uplo, n, &a[a_offset], lda, info); + } else { + +/* Use blocked code */ + + if (upper) { + +/* Compute the product U * U'. */ + + i__1 = *n; + i__2 = nb; + for (i__ = 1; i__2 < 0 ? i__ >= i__1 : i__ <= i__1; i__ += i__2) { +/* Computing MIN */ + i__3 = nb, i__4 = *n - i__ + 1; + ib = min(i__3,i__4); + i__3 = i__ - 1; + ctrmm_("Right", "Upper", "Conjugate transpose", "Non-unit", & + i__3, &ib, &c_b56, &a[i__ + i__ * a_dim1], lda, &a[ + i__ * a_dim1 + 1], lda); + clauu2_("Upper", &ib, &a[i__ + i__ * a_dim1], lda, info); + if (i__ + ib <= *n) { + i__3 = i__ - 1; + i__4 = *n - i__ - ib + 1; + cgemm_("No transpose", "Conjugate transpose", &i__3, &ib, + &i__4, &c_b56, &a[(i__ + ib) * a_dim1 + 1], lda, & + a[i__ + (i__ + ib) * a_dim1], lda, &c_b56, &a[i__ + * a_dim1 + 1], lda); + i__3 = *n - i__ - ib + 1; + cherk_("Upper", "No transpose", &ib, &i__3, &c_b871, &a[ + i__ + (i__ + ib) * a_dim1], lda, &c_b871, &a[i__ + + i__ * a_dim1], lda); + } +/* L10: */ + } + } else { + +/* Compute the product L' * L. */ + + i__2 = *n; + i__1 = nb; + for (i__ = 1; i__1 < 0 ? i__ >= i__2 : i__ <= i__2; i__ += i__1) { +/* Computing MIN */ + i__3 = nb, i__4 = *n - i__ + 1; + ib = min(i__3,i__4); + i__3 = i__ - 1; + ctrmm_("Left", "Lower", "Conjugate transpose", "Non-unit", & + ib, &i__3, &c_b56, &a[i__ + i__ * a_dim1], lda, &a[ + i__ + a_dim1], lda); + clauu2_("Lower", &ib, &a[i__ + i__ * a_dim1], lda, info); + if (i__ + ib <= *n) { + i__3 = i__ - 1; + i__4 = *n - i__ - ib + 1; + cgemm_("Conjugate transpose", "No transpose", &ib, &i__3, + &i__4, &c_b56, &a[i__ + ib + i__ * a_dim1], lda, & + a[i__ + ib + a_dim1], lda, &c_b56, &a[i__ + + a_dim1], lda); + i__3 = *n - i__ - ib + 1; + cherk_("Lower", "Conjugate transpose", &ib, &i__3, & + c_b871, &a[i__ + ib + i__ * a_dim1], lda, &c_b871, + &a[i__ + i__ * a_dim1], lda); + } +/* L20: */ + } + } + } + + return 0; + +/* End of CLAUUM */ + +} /* clauum_ */ + +/* Subroutine */ int cpotf2_(char *uplo, integer *n, complex *a, integer *lda, + integer *info) +{ + /* System generated locals */ + integer a_dim1, a_offset, i__1, i__2, i__3; + real r__1; + complex q__1, q__2; + + /* Builtin functions */ + double sqrt(doublereal); + + /* Local variables */ + static integer j; + static real ajj; + extern /* Complex */ VOID cdotc_(complex *, integer *, complex *, integer + *, complex *, integer *); + extern logical lsame_(char *, char *); + extern /* Subroutine */ int cgemv_(char *, integer *, integer *, complex * + , complex *, integer *, complex *, integer *, complex *, complex * + , integer *); + static logical upper; + extern /* Subroutine */ int clacgv_(integer *, complex *, integer *), + csscal_(integer *, real *, complex *, integer *), xerbla_(char *, + integer *); + + +/* + -- LAPACK routine (version 3.0) -- + Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd., + Courant Institute, Argonne National Lab, and Rice University + September 30, 1994 + + + Purpose + ======= + + CPOTF2 computes the Cholesky factorization of a complex Hermitian + positive definite matrix A. + + The factorization has the form + A = U' * U , if UPLO = 'U', or + A = L * L', if UPLO = 'L', + where U is an upper triangular matrix and L is lower triangular. + + This is the unblocked version of the algorithm, calling Level 2 BLAS. + + Arguments + ========= + + UPLO (input) CHARACTER*1 + Specifies whether the upper or lower triangular part of the + Hermitian matrix A is stored. + = 'U': Upper triangular + = 'L': Lower triangular + + N (input) INTEGER + The order of the matrix A. N >= 0. + + A (input/output) COMPLEX array, dimension (LDA,N) + On entry, the Hermitian matrix A. If UPLO = 'U', the leading + n by n upper triangular part of A contains the upper + triangular part of the matrix A, and the strictly lower + triangular part of A is not referenced. If UPLO = 'L', the + leading n by n lower triangular part of A contains the lower + triangular part of the matrix A, and the strictly upper + triangular part of A is not referenced. + + On exit, if INFO = 0, the factor U or L from the Cholesky + factorization A = U'*U or A = L*L'. + + LDA (input) INTEGER + The leading dimension of the array A. LDA >= max(1,N). + + INFO (output) INTEGER + = 0: successful exit + < 0: if INFO = -k, the k-th argument had an illegal value + > 0: if INFO = k, the leading minor of order k is not + positive definite, and the factorization could not be + completed. + + ===================================================================== + + + Test the input parameters. +*/ + + /* Parameter adjustments */ + a_dim1 = *lda; + a_offset = 1 + a_dim1; + a -= a_offset; + + /* Function Body */ + *info = 0; + upper = lsame_(uplo, "U"); + if (! upper && ! lsame_(uplo, "L")) { + *info = -1; + } else if (*n < 0) { + *info = -2; + } else if (*lda < max(1,*n)) { + *info = -4; + } + if (*info != 0) { + i__1 = -(*info); + xerbla_("CPOTF2", &i__1); + return 0; + } + +/* Quick return if possible */ + + if (*n == 0) { + return 0; + } + + if (upper) { + +/* Compute the Cholesky factorization A = U'*U. */ + + i__1 = *n; + for (j = 1; j <= i__1; ++j) { + +/* Compute U(J,J) and test for non-positive-definiteness. */ + + i__2 = j + j * a_dim1; + r__1 = a[i__2].r; + i__3 = j - 1; + cdotc_(&q__2, &i__3, &a[j * a_dim1 + 1], &c__1, &a[j * a_dim1 + 1] + , &c__1); + q__1.r = r__1 - q__2.r, q__1.i = -q__2.i; + ajj = q__1.r; + if (ajj <= 0.f) { + i__2 = j + j * a_dim1; + a[i__2].r = ajj, a[i__2].i = 0.f; + goto L30; + } + ajj = sqrt(ajj); + i__2 = j + j * a_dim1; + a[i__2].r = ajj, a[i__2].i = 0.f; + +/* Compute elements J+1:N of row J. */ + + if (j < *n) { + i__2 = j - 1; + clacgv_(&i__2, &a[j * a_dim1 + 1], &c__1); + i__2 = j - 1; + i__3 = *n - j; + q__1.r = -1.f, q__1.i = -0.f; + cgemv_("Transpose", &i__2, &i__3, &q__1, &a[(j + 1) * a_dim1 + + 1], lda, &a[j * a_dim1 + 1], &c__1, &c_b56, &a[j + ( + j + 1) * a_dim1], lda); + i__2 = j - 1; + clacgv_(&i__2, &a[j * a_dim1 + 1], &c__1); + i__2 = *n - j; + r__1 = 1.f / ajj; + csscal_(&i__2, &r__1, &a[j + (j + 1) * a_dim1], lda); + } +/* L10: */ + } + } else { + +/* Compute the Cholesky factorization A = L*L'. */ + + i__1 = *n; + for (j = 1; j <= i__1; ++j) { + +/* Compute L(J,J) and test for non-positive-definiteness. */ + + i__2 = j + j * a_dim1; + r__1 = a[i__2].r; + i__3 = j - 1; + cdotc_(&q__2, &i__3, &a[j + a_dim1], lda, &a[j + a_dim1], lda); + q__1.r = r__1 - q__2.r, q__1.i = -q__2.i; + ajj = q__1.r; + if (ajj <= 0.f) { + i__2 = j + j * a_dim1; + a[i__2].r = ajj, a[i__2].i = 0.f; + goto L30; + } + ajj = sqrt(ajj); + i__2 = j + j * a_dim1; + a[i__2].r = ajj, a[i__2].i = 0.f; + +/* Compute elements J+1:N of column J. */ + + if (j < *n) { + i__2 = j - 1; + clacgv_(&i__2, &a[j + a_dim1], lda); + i__2 = *n - j; + i__3 = j - 1; + q__1.r = -1.f, q__1.i = -0.f; + cgemv_("No transpose", &i__2, &i__3, &q__1, &a[j + 1 + a_dim1] + , lda, &a[j + a_dim1], lda, &c_b56, &a[j + 1 + j * + a_dim1], &c__1); + i__2 = j - 1; + clacgv_(&i__2, &a[j + a_dim1], lda); + i__2 = *n - j; + r__1 = 1.f / ajj; + csscal_(&i__2, &r__1, &a[j + 1 + j * a_dim1], &c__1); + } +/* L20: */ + } + } + goto L40; + +L30: + *info = j; + +L40: + return 0; + +/* End of CPOTF2 */ + +} /* cpotf2_ */ + +/* Subroutine */ int cpotrf_(char *uplo, integer *n, complex *a, integer *lda, + integer *info) +{ + /* System generated locals */ + integer a_dim1, a_offset, i__1, i__2, i__3, i__4; + complex q__1; + + /* Local variables */ + static integer j, jb, nb; + extern /* Subroutine */ int cgemm_(char *, char *, integer *, integer *, + integer *, complex *, complex *, integer *, complex *, integer *, + complex *, complex *, integer *), cherk_(char *, + char *, integer *, integer *, real *, complex *, integer *, real * + , complex *, integer *); + extern logical lsame_(char *, char *); + extern /* Subroutine */ int ctrsm_(char *, char *, char *, char *, + integer *, integer *, complex *, complex *, integer *, complex *, + integer *); + static logical upper; + extern /* Subroutine */ int cpotf2_(char *, integer *, complex *, integer + *, integer *), xerbla_(char *, integer *); + extern integer ilaenv_(integer *, char *, char *, integer *, integer *, + integer *, integer *, ftnlen, ftnlen); + + +/* + -- LAPACK routine (version 3.0) -- + Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd., + Courant Institute, Argonne National Lab, and Rice University + September 30, 1994 + + + Purpose + ======= + + CPOTRF computes the Cholesky factorization of a complex Hermitian + positive definite matrix A. + + The factorization has the form + A = U**H * U, if UPLO = 'U', or + A = L * L**H, if UPLO = 'L', + where U is an upper triangular matrix and L is lower triangular. + + This is the block version of the algorithm, calling Level 3 BLAS. + + Arguments + ========= + + UPLO (input) CHARACTER*1 + = 'U': Upper triangle of A is stored; + = 'L': Lower triangle of A is stored. + + N (input) INTEGER + The order of the matrix A. N >= 0. + + A (input/output) COMPLEX array, dimension (LDA,N) + On entry, the Hermitian matrix A. If UPLO = 'U', the leading + N-by-N upper triangular part of A contains the upper + triangular part of the matrix A, and the strictly lower + triangular part of A is not referenced. If UPLO = 'L', the + leading N-by-N lower triangular part of A contains the lower + triangular part of the matrix A, and the strictly upper + triangular part of A is not referenced. + + On exit, if INFO = 0, the factor U or L from the Cholesky + factorization A = U**H*U or A = L*L**H. + + LDA (input) INTEGER + The leading dimension of the array A. LDA >= max(1,N). + + INFO (output) INTEGER + = 0: successful exit + < 0: if INFO = -i, the i-th argument had an illegal value + > 0: if INFO = i, the leading minor of order i is not + positive definite, and the factorization could not be + completed. + + ===================================================================== + + + Test the input parameters. +*/ + + /* Parameter adjustments */ + a_dim1 = *lda; + a_offset = 1 + a_dim1; + a -= a_offset; + + /* Function Body */ + *info = 0; + upper = lsame_(uplo, "U"); + if (! upper && ! lsame_(uplo, "L")) { + *info = -1; + } else if (*n < 0) { + *info = -2; + } else if (*lda < max(1,*n)) { + *info = -4; + } + if (*info != 0) { + i__1 = -(*info); + xerbla_("CPOTRF", &i__1); + return 0; + } + +/* Quick return if possible */ + + if (*n == 0) { + return 0; + } + +/* Determine the block size for this environment. */ + + nb = ilaenv_(&c__1, "CPOTRF", uplo, n, &c_n1, &c_n1, &c_n1, (ftnlen)6, ( + ftnlen)1); + if (nb <= 1 || nb >= *n) { + +/* Use unblocked code. */ + + cpotf2_(uplo, n, &a[a_offset], lda, info); + } else { + +/* Use blocked code. */ + + if (upper) { + +/* Compute the Cholesky factorization A = U'*U. */ + + i__1 = *n; + i__2 = nb; + for (j = 1; i__2 < 0 ? j >= i__1 : j <= i__1; j += i__2) { + +/* + Update and factorize the current diagonal block and test + for non-positive-definiteness. + + Computing MIN +*/ + i__3 = nb, i__4 = *n - j + 1; + jb = min(i__3,i__4); + i__3 = j - 1; + cherk_("Upper", "Conjugate transpose", &jb, &i__3, &c_b1150, & + a[j * a_dim1 + 1], lda, &c_b871, &a[j + j * a_dim1], + lda); + cpotf2_("Upper", &jb, &a[j + j * a_dim1], lda, info); + if (*info != 0) { + goto L30; + } + if (j + jb <= *n) { + +/* Compute the current block row. */ + + i__3 = *n - j - jb + 1; + i__4 = j - 1; + q__1.r = -1.f, q__1.i = -0.f; + cgemm_("Conjugate transpose", "No transpose", &jb, &i__3, + &i__4, &q__1, &a[j * a_dim1 + 1], lda, &a[(j + jb) + * a_dim1 + 1], lda, &c_b56, &a[j + (j + jb) * + a_dim1], lda); + i__3 = *n - j - jb + 1; + ctrsm_("Left", "Upper", "Conjugate transpose", "Non-unit", + &jb, &i__3, &c_b56, &a[j + j * a_dim1], lda, &a[ + j + (j + jb) * a_dim1], lda); + } +/* L10: */ + } + + } else { + +/* Compute the Cholesky factorization A = L*L'. */ + + i__2 = *n; + i__1 = nb; + for (j = 1; i__1 < 0 ? j >= i__2 : j <= i__2; j += i__1) { + +/* + Update and factorize the current diagonal block and test + for non-positive-definiteness. + + Computing MIN +*/ + i__3 = nb, i__4 = *n - j + 1; + jb = min(i__3,i__4); + i__3 = j - 1; + cherk_("Lower", "No transpose", &jb, &i__3, &c_b1150, &a[j + + a_dim1], lda, &c_b871, &a[j + j * a_dim1], lda); + cpotf2_("Lower", &jb, &a[j + j * a_dim1], lda, info); + if (*info != 0) { + goto L30; + } + if (j + jb <= *n) { + +/* Compute the current block column. */ + + i__3 = *n - j - jb + 1; + i__4 = j - 1; + q__1.r = -1.f, q__1.i = -0.f; + cgemm_("No transpose", "Conjugate transpose", &i__3, &jb, + &i__4, &q__1, &a[j + jb + a_dim1], lda, &a[j + + a_dim1], lda, &c_b56, &a[j + jb + j * a_dim1], + lda); + i__3 = *n - j - jb + 1; + ctrsm_("Right", "Lower", "Conjugate transpose", "Non-unit" + , &i__3, &jb, &c_b56, &a[j + j * a_dim1], lda, &a[ + j + jb + j * a_dim1], lda); + } +/* L20: */ + } + } + } + goto L40; + +L30: + *info = *info + j - 1; + +L40: + return 0; + +/* End of CPOTRF */ + +} /* cpotrf_ */ + +/* Subroutine */ int cpotri_(char *uplo, integer *n, complex *a, integer *lda, + integer *info) +{ + /* System generated locals */ + integer a_dim1, a_offset, i__1; + + /* Local variables */ + extern logical lsame_(char *, char *); + extern /* Subroutine */ int xerbla_(char *, integer *), clauum_( + char *, integer *, complex *, integer *, integer *), + ctrtri_(char *, char *, integer *, complex *, integer *, integer * + ); + + +/* + -- LAPACK routine (version 3.0) -- + Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd., + Courant Institute, Argonne National Lab, and Rice University + March 31, 1993 + + + Purpose + ======= + + CPOTRI computes the inverse of a complex Hermitian positive definite + matrix A using the Cholesky factorization A = U**H*U or A = L*L**H + computed by CPOTRF. + + Arguments + ========= + + UPLO (input) CHARACTER*1 + = 'U': Upper triangle of A is stored; + = 'L': Lower triangle of A is stored. + + N (input) INTEGER + The order of the matrix A. N >= 0. + + A (input/output) COMPLEX array, dimension (LDA,N) + On entry, the triangular factor U or L from the Cholesky + factorization A = U**H*U or A = L*L**H, as computed by + CPOTRF. + On exit, the upper or lower triangle of the (Hermitian) + inverse of A, overwriting the input factor U or L. + + LDA (input) INTEGER + The leading dimension of the array A. LDA >= max(1,N). + + INFO (output) INTEGER + = 0: successful exit + < 0: if INFO = -i, the i-th argument had an illegal value + > 0: if INFO = i, the (i,i) element of the factor U or L is + zero, and the inverse could not be computed. + + ===================================================================== + + + Test the input parameters. +*/ + + /* Parameter adjustments */ + a_dim1 = *lda; + a_offset = 1 + a_dim1; + a -= a_offset; + + /* Function Body */ + *info = 0; + if (! lsame_(uplo, "U") && ! lsame_(uplo, "L")) { + *info = -1; + } else if (*n < 0) { + *info = -2; + } else if (*lda < max(1,*n)) { + *info = -4; + } + if (*info != 0) { + i__1 = -(*info); + xerbla_("CPOTRI", &i__1); + return 0; + } + +/* Quick return if possible */ + + if (*n == 0) { + return 0; + } + +/* Invert the triangular Cholesky factor U or L. */ + + ctrtri_(uplo, "Non-unit", n, &a[a_offset], lda, info); + if (*info > 0) { + return 0; + } + +/* Form inv(U)*inv(U)' or inv(L)'*inv(L). */ + + clauum_(uplo, n, &a[a_offset], lda, info); + + return 0; + +/* End of CPOTRI */ + +} /* cpotri_ */ + +/* Subroutine */ int cpotrs_(char *uplo, integer *n, integer *nrhs, complex * + a, integer *lda, complex *b, integer *ldb, integer *info) +{ + /* System generated locals */ + integer a_dim1, a_offset, b_dim1, b_offset, i__1; + + /* Local variables */ + extern logical lsame_(char *, char *); + extern /* Subroutine */ int ctrsm_(char *, char *, char *, char *, + integer *, integer *, complex *, complex *, integer *, complex *, + integer *); + static logical upper; + extern /* Subroutine */ int xerbla_(char *, integer *); + + +/* + -- LAPACK routine (version 3.0) -- + Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd., + Courant Institute, Argonne National Lab, and Rice University + September 30, 1994 + + + Purpose + ======= + + CPOTRS solves a system of linear equations A*X = B with a Hermitian + positive definite matrix A using the Cholesky factorization + A = U**H*U or A = L*L**H computed by CPOTRF. + + Arguments + ========= + + UPLO (input) CHARACTER*1 + = 'U': Upper triangle of A is stored; + = 'L': Lower triangle of A is stored. + + N (input) INTEGER + The order of the matrix A. N >= 0. + + NRHS (input) INTEGER + The number of right hand sides, i.e., the number of columns + of the matrix B. NRHS >= 0. + + A (input) COMPLEX array, dimension (LDA,N) + The triangular factor U or L from the Cholesky factorization + A = U**H*U or A = L*L**H, as computed by CPOTRF. + + LDA (input) INTEGER + The leading dimension of the array A. LDA >= max(1,N). + + B (input/output) COMPLEX array, dimension (LDB,NRHS) + On entry, the right hand side matrix B. + On exit, the solution matrix X. + + LDB (input) INTEGER + The leading dimension of the array B. LDB >= max(1,N). + + INFO (output) INTEGER + = 0: successful exit + < 0: if INFO = -i, the i-th argument had an illegal value + + ===================================================================== + + + Test the input parameters. +*/ + + /* Parameter adjustments */ + a_dim1 = *lda; + a_offset = 1 + a_dim1; + a -= a_offset; + b_dim1 = *ldb; + b_offset = 1 + b_dim1; + b -= b_offset; + + /* Function Body */ + *info = 0; + upper = lsame_(uplo, "U"); + if (! upper && ! lsame_(uplo, "L")) { + *info = -1; + } else if (*n < 0) { + *info = -2; + } else if (*nrhs < 0) { + *info = -3; + } else if (*lda < max(1,*n)) { + *info = -5; + } else if (*ldb < max(1,*n)) { + *info = -7; + } + if (*info != 0) { + i__1 = -(*info); + xerbla_("CPOTRS", &i__1); + return 0; + } + +/* Quick return if possible */ + + if (*n == 0 || *nrhs == 0) { + return 0; + } + + if (upper) { + +/* + Solve A*X = B where A = U'*U. + + Solve U'*X = B, overwriting B with X. +*/ + + ctrsm_("Left", "Upper", "Conjugate transpose", "Non-unit", n, nrhs, & + c_b56, &a[a_offset], lda, &b[b_offset], ldb); + +/* Solve U*X = B, overwriting B with X. */ + + ctrsm_("Left", "Upper", "No transpose", "Non-unit", n, nrhs, &c_b56, & + a[a_offset], lda, &b[b_offset], ldb); + } else { + +/* + Solve A*X = B where A = L*L'. + + Solve L*X = B, overwriting B with X. +*/ + + ctrsm_("Left", "Lower", "No transpose", "Non-unit", n, nrhs, &c_b56, & + a[a_offset], lda, &b[b_offset], ldb); + +/* Solve L'*X = B, overwriting B with X. */ + + ctrsm_("Left", "Lower", "Conjugate transpose", "Non-unit", n, nrhs, & + c_b56, &a[a_offset], lda, &b[b_offset], ldb); + } + + return 0; + +/* End of CPOTRS */ + +} /* cpotrs_ */ + +/* Subroutine */ int csrot_(integer *n, complex *cx, integer *incx, complex * + cy, integer *incy, real *c__, real *s) +{ + /* System generated locals */ + integer i__1, i__2, i__3, i__4; + complex q__1, q__2, q__3; + + /* Local variables */ + static integer i__, ix, iy; + static complex ctemp; + + +/* + applies a plane rotation, where the cos and sin (c and s) are real + and the vectors cx and cy are complex. + jack dongarra, linpack, 3/11/78. + + ===================================================================== +*/ + + + /* Parameter adjustments */ + --cy; + --cx; + + /* Function Body */ + if (*n <= 0) { + return 0; + } + if (*incx == 1 && *incy == 1) { + goto L20; + } + +/* + code for unequal increments or equal increments not equal + to 1 +*/ + + ix = 1; + iy = 1; + if (*incx < 0) { + ix = (-(*n) + 1) * *incx + 1; + } + if (*incy < 0) { + iy = (-(*n) + 1) * *incy + 1; + } + i__1 = *n; + for (i__ = 1; i__ <= i__1; ++i__) { + i__2 = ix; + q__2.r = *c__ * cx[i__2].r, q__2.i = *c__ * cx[i__2].i; + i__3 = iy; + q__3.r = *s * cy[i__3].r, q__3.i = *s * cy[i__3].i; + q__1.r = q__2.r + q__3.r, q__1.i = q__2.i + q__3.i; + ctemp.r = q__1.r, ctemp.i = q__1.i; + i__2 = iy; + i__3 = iy; + q__2.r = *c__ * cy[i__3].r, q__2.i = *c__ * cy[i__3].i; + i__4 = ix; + q__3.r = *s * cx[i__4].r, q__3.i = *s * cx[i__4].i; + q__1.r = q__2.r - q__3.r, q__1.i = q__2.i - q__3.i; + cy[i__2].r = q__1.r, cy[i__2].i = q__1.i; + i__2 = ix; + cx[i__2].r = ctemp.r, cx[i__2].i = ctemp.i; + ix += *incx; + iy += *incy; +/* L10: */ + } + return 0; + +/* code for both increments equal to 1 */ + +L20: + i__1 = *n; + for (i__ = 1; i__ <= i__1; ++i__) { + i__2 = i__; + q__2.r = *c__ * cx[i__2].r, q__2.i = *c__ * cx[i__2].i; + i__3 = i__; + q__3.r = *s * cy[i__3].r, q__3.i = *s * cy[i__3].i; + q__1.r = q__2.r + q__3.r, q__1.i = q__2.i + q__3.i; + ctemp.r = q__1.r, ctemp.i = q__1.i; + i__2 = i__; + i__3 = i__; + q__2.r = *c__ * cy[i__3].r, q__2.i = *c__ * cy[i__3].i; + i__4 = i__; + q__3.r = *s * cx[i__4].r, q__3.i = *s * cx[i__4].i; + q__1.r = q__2.r - q__3.r, q__1.i = q__2.i - q__3.i; + cy[i__2].r = q__1.r, cy[i__2].i = q__1.i; + i__2 = i__; + cx[i__2].r = ctemp.r, cx[i__2].i = ctemp.i; +/* L30: */ + } + return 0; +} /* csrot_ */ + +/* Subroutine */ int cstedc_(char *compz, integer *n, real *d__, real *e, + complex *z__, integer *ldz, complex *work, integer *lwork, real * + rwork, integer *lrwork, integer *iwork, integer *liwork, integer * + info) +{ + /* System generated locals */ + integer z_dim1, z_offset, i__1, i__2, i__3, i__4; + real r__1, r__2; + + /* Builtin functions */ + double log(doublereal); + integer pow_ii(integer *, integer *); + double sqrt(doublereal); + + /* Local variables */ + static integer i__, j, k, m; + static real p; + static integer ii, ll, end, lgn; + static real eps, tiny; + extern logical lsame_(char *, char *); + extern /* Subroutine */ int cswap_(integer *, complex *, integer *, + complex *, integer *); + static integer lwmin; + extern /* Subroutine */ int claed0_(integer *, integer *, real *, real *, + complex *, integer *, complex *, integer *, real *, integer *, + integer *); + static integer start; + extern /* Subroutine */ int clacrm_(integer *, integer *, complex *, + integer *, real *, integer *, complex *, integer *, real *); + extern doublereal slamch_(char *); + extern /* Subroutine */ int clacpy_(char *, integer *, integer *, complex + *, integer *, complex *, integer *), xerbla_(char *, + integer *); + extern integer ilaenv_(integer *, char *, char *, integer *, integer *, + integer *, integer *, ftnlen, ftnlen); + extern /* Subroutine */ int slascl_(char *, integer *, integer *, real *, + real *, integer *, integer *, real *, integer *, integer *), sstedc_(char *, integer *, real *, real *, real *, + integer *, real *, integer *, integer *, integer *, integer *), slaset_(char *, integer *, integer *, real *, real *, + real *, integer *); + static integer liwmin, icompz; + extern /* Subroutine */ int csteqr_(char *, integer *, real *, real *, + complex *, integer *, real *, integer *); + static real orgnrm; + extern doublereal slanst_(char *, integer *, real *, real *); + extern /* Subroutine */ int ssterf_(integer *, real *, real *, integer *); + static integer lrwmin; + static logical lquery; + static integer smlsiz; + extern /* Subroutine */ int ssteqr_(char *, integer *, real *, real *, + real *, integer *, real *, integer *); + + +/* + -- LAPACK routine (version 3.0) -- + Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd., + Courant Institute, Argonne National Lab, and Rice University + June 30, 1999 + + + Purpose + ======= + + CSTEDC computes all eigenvalues and, optionally, eigenvectors of a + symmetric tridiagonal matrix using the divide and conquer method. + The eigenvectors of a full or band complex Hermitian matrix can also + be found if CHETRD or CHPTRD or CHBTRD has been used to reduce this + matrix to tridiagonal form. + + This code makes very mild assumptions about floating point + arithmetic. It will work on machines with a guard digit in + add/subtract, or on those binary machines without guard digits + which subtract like the Cray X-MP, Cray Y-MP, Cray C-90, or Cray-2. + It could conceivably fail on hexadecimal or decimal machines + without guard digits, but we know of none. See SLAED3 for details. + + Arguments + ========= + + COMPZ (input) CHARACTER*1 + = 'N': Compute eigenvalues only. + = 'I': Compute eigenvectors of tridiagonal matrix also. + = 'V': Compute eigenvectors of original Hermitian matrix + also. On entry, Z contains the unitary matrix used + to reduce the original matrix to tridiagonal form. + + N (input) INTEGER + The dimension of the symmetric tridiagonal matrix. N >= 0. + + D (input/output) REAL array, dimension (N) + On entry, the diagonal elements of the tridiagonal matrix. + On exit, if INFO = 0, the eigenvalues in ascending order. + + E (input/output) REAL array, dimension (N-1) + On entry, the subdiagonal elements of the tridiagonal matrix. + On exit, E has been destroyed. + + Z (input/output) COMPLEX array, dimension (LDZ,N) + On entry, if COMPZ = 'V', then Z contains the unitary + matrix used in the reduction to tridiagonal form. + On exit, if INFO = 0, then if COMPZ = 'V', Z contains the + orthonormal eigenvectors of the original Hermitian matrix, + and if COMPZ = 'I', Z contains the orthonormal eigenvectors + of the symmetric tridiagonal matrix. + If COMPZ = 'N', then Z is not referenced. + + LDZ (input) INTEGER + The leading dimension of the array Z. LDZ >= 1. + If eigenvectors are desired, then LDZ >= max(1,N). + + WORK (workspace/output) COMPLEX array, dimension (LWORK) + On exit, if INFO = 0, WORK(1) returns the optimal LWORK. + + LWORK (input) INTEGER + The dimension of the array WORK. + If COMPZ = 'N' or 'I', or N <= 1, LWORK must be at least 1. + If COMPZ = 'V' and N > 1, LWORK must be at least N*N. + + If LWORK = -1, then a workspace query is assumed; the routine + only calculates the optimal size of the WORK array, returns + this value as the first entry of the WORK array, and no error + message related to LWORK is issued by XERBLA. + + RWORK (workspace/output) REAL array, + dimension (LRWORK) + On exit, if INFO = 0, RWORK(1) returns the optimal LRWORK. + + LRWORK (input) INTEGER + The dimension of the array RWORK. + If COMPZ = 'N' or N <= 1, LRWORK must be at least 1. + If COMPZ = 'V' and N > 1, LRWORK must be at least + 1 + 3*N + 2*N*lg N + 3*N**2 , + where lg( N ) = smallest integer k such + that 2**k >= N. + If COMPZ = 'I' and N > 1, LRWORK must be at least + 1 + 4*N + 2*N**2 . + + If LRWORK = -1, then a workspace query is assumed; the + routine only calculates the optimal size of the RWORK array, + returns this value as the first entry of the RWORK array, and + no error message related to LRWORK is issued by XERBLA. + + IWORK (workspace/output) INTEGER array, dimension (LIWORK) + On exit, if INFO = 0, IWORK(1) returns the optimal LIWORK. + + LIWORK (input) INTEGER + The dimension of the array IWORK. + If COMPZ = 'N' or N <= 1, LIWORK must be at least 1. + If COMPZ = 'V' or N > 1, LIWORK must be at least + 6 + 6*N + 5*N*lg N. + If COMPZ = 'I' or N > 1, LIWORK must be at least + 3 + 5*N . + + If LIWORK = -1, then a workspace query is assumed; the + routine only calculates the optimal size of the IWORK array, + returns this value as the first entry of the IWORK array, and + no error message related to LIWORK is issued by XERBLA. + + INFO (output) INTEGER + = 0: successful exit. + < 0: if INFO = -i, the i-th argument had an illegal value. + > 0: The algorithm failed to compute an eigenvalue while + working on the submatrix lying in rows and columns + INFO/(N+1) through mod(INFO,N+1). + + Further Details + =============== + + Based on contributions by + Jeff Rutter, Computer Science Division, University of California + at Berkeley, USA + + ===================================================================== + + + Test the input parameters. +*/ + + /* Parameter adjustments */ + --d__; + --e; + z_dim1 = *ldz; + z_offset = 1 + z_dim1; + z__ -= z_offset; + --work; + --rwork; + --iwork; + + /* Function Body */ + *info = 0; + lquery = *lwork == -1 || *lrwork == -1 || *liwork == -1; + + if (lsame_(compz, "N")) { + icompz = 0; + } else if (lsame_(compz, "V")) { + icompz = 1; + } else if (lsame_(compz, "I")) { + icompz = 2; + } else { + icompz = -1; + } + if (*n <= 1 || icompz <= 0) { + lwmin = 1; + liwmin = 1; + lrwmin = 1; + } else { + lgn = (integer) (log((real) (*n)) / log(2.f)); + if (pow_ii(&c__2, &lgn) < *n) { + ++lgn; + } + if (pow_ii(&c__2, &lgn) < *n) { + ++lgn; + } + if (icompz == 1) { + lwmin = *n * *n; +/* Computing 2nd power */ + i__1 = *n; + lrwmin = *n * 3 + 1 + (*n << 1) * lgn + i__1 * i__1 * 3; + liwmin = *n * 6 + 6 + *n * 5 * lgn; + } else if (icompz == 2) { + lwmin = 1; +/* Computing 2nd power */ + i__1 = *n; + lrwmin = (*n << 2) + 1 + (i__1 * i__1 << 1); + liwmin = *n * 5 + 3; + } + } + if (icompz < 0) { + *info = -1; + } else if (*n < 0) { + *info = -2; + } else if (*ldz < 1 || icompz > 0 && *ldz < max(1,*n)) { + *info = -6; + } else if (*lwork < lwmin && ! lquery) { + *info = -8; + } else if (*lrwork < lrwmin && ! lquery) { + *info = -10; + } else if (*liwork < liwmin && ! lquery) { + *info = -12; + } + + if (*info == 0) { + work[1].r = (real) lwmin, work[1].i = 0.f; + rwork[1] = (real) lrwmin; + iwork[1] = liwmin; + } + + if (*info != 0) { + i__1 = -(*info); + xerbla_("CSTEDC", &i__1); + return 0; + } else if (lquery) { + return 0; + } + +/* Quick return if possible */ + + if (*n == 0) { + return 0; + } + if (*n == 1) { + if (icompz != 0) { + i__1 = z_dim1 + 1; + z__[i__1].r = 1.f, z__[i__1].i = 0.f; + } + return 0; + } + + smlsiz = ilaenv_(&c__9, "CSTEDC", " ", &c__0, &c__0, &c__0, &c__0, ( + ftnlen)6, (ftnlen)1); + +/* + If the following conditional clause is removed, then the routine + will use the Divide and Conquer routine to compute only the + eigenvalues, which requires (3N + 3N**2) real workspace and + (2 + 5N + 2N lg(N)) integer workspace. + Since on many architectures SSTERF is much faster than any other + algorithm for finding eigenvalues only, it is used here + as the default. + + If COMPZ = 'N', use SSTERF to compute the eigenvalues. +*/ + + if (icompz == 0) { + ssterf_(n, &d__[1], &e[1], info); + return 0; + } + +/* + If N is smaller than the minimum divide size (SMLSIZ+1), then + solve the problem with another solver. +*/ + + if (*n <= smlsiz) { + if (icompz == 0) { + ssterf_(n, &d__[1], &e[1], info); + return 0; + } else if (icompz == 2) { + csteqr_("I", n, &d__[1], &e[1], &z__[z_offset], ldz, &rwork[1], + info); + return 0; + } else { + csteqr_("V", n, &d__[1], &e[1], &z__[z_offset], ldz, &rwork[1], + info); + return 0; + } + } + +/* If COMPZ = 'I', we simply call SSTEDC instead. */ + + if (icompz == 2) { + slaset_("Full", n, n, &c_b1101, &c_b871, &rwork[1], n); + ll = *n * *n + 1; + i__1 = *lrwork - ll + 1; + sstedc_("I", n, &d__[1], &e[1], &rwork[1], n, &rwork[ll], &i__1, & + iwork[1], liwork, info); + i__1 = *n; + for (j = 1; j <= i__1; ++j) { + i__2 = *n; + for (i__ = 1; i__ <= i__2; ++i__) { + i__3 = i__ + j * z_dim1; + i__4 = (j - 1) * *n + i__; + z__[i__3].r = rwork[i__4], z__[i__3].i = 0.f; +/* L10: */ + } +/* L20: */ + } + return 0; + } + +/* + From now on, only option left to be handled is COMPZ = 'V', + i.e. ICOMPZ = 1. + + Scale. +*/ + + orgnrm = slanst_("M", n, &d__[1], &e[1]); + if (orgnrm == 0.f) { + return 0; + } + + eps = slamch_("Epsilon"); + + start = 1; + +/* while ( START <= N ) */ + +L30: + if (start <= *n) { + +/* + Let END be the position of the next subdiagonal entry such that + E( END ) <= TINY or END = N if no such subdiagonal exists. The + matrix identified by the elements between START and END + constitutes an independent sub-problem. +*/ + + end = start; +L40: + if (end < *n) { + tiny = eps * sqrt((r__1 = d__[end], dabs(r__1))) * sqrt((r__2 = + d__[end + 1], dabs(r__2))); + if ((r__1 = e[end], dabs(r__1)) > tiny) { + ++end; + goto L40; + } + } + +/* (Sub) Problem determined. Compute its size and solve it. */ + + m = end - start + 1; + if (m > smlsiz) { + *info = smlsiz; + +/* Scale. */ + + orgnrm = slanst_("M", &m, &d__[start], &e[start]); + slascl_("G", &c__0, &c__0, &orgnrm, &c_b871, &m, &c__1, &d__[ + start], &m, info); + i__1 = m - 1; + i__2 = m - 1; + slascl_("G", &c__0, &c__0, &orgnrm, &c_b871, &i__1, &c__1, &e[ + start], &i__2, info); + + claed0_(n, &m, &d__[start], &e[start], &z__[start * z_dim1 + 1], + ldz, &work[1], n, &rwork[1], &iwork[1], info); + if (*info > 0) { + *info = (*info / (m + 1) + start - 1) * (*n + 1) + *info % (m + + 1) + start - 1; + return 0; + } + +/* Scale back. */ + + slascl_("G", &c__0, &c__0, &c_b871, &orgnrm, &m, &c__1, &d__[ + start], &m, info); + + } else { + ssteqr_("I", &m, &d__[start], &e[start], &rwork[1], &m, &rwork[m * + m + 1], info); + clacrm_(n, &m, &z__[start * z_dim1 + 1], ldz, &rwork[1], &m, & + work[1], n, &rwork[m * m + 1]); + clacpy_("A", n, &m, &work[1], n, &z__[start * z_dim1 + 1], ldz); + if (*info > 0) { + *info = start * (*n + 1) + end; + return 0; + } + } + + start = end + 1; + goto L30; + } + +/* + endwhile + + If the problem split any number of times, then the eigenvalues + will not be properly ordered. Here we permute the eigenvalues + (and the associated eigenvectors) into ascending order. +*/ + + if (m != *n) { + +/* Use Selection Sort to minimize swaps of eigenvectors */ + + i__1 = *n; + for (ii = 2; ii <= i__1; ++ii) { + i__ = ii - 1; + k = i__; + p = d__[i__]; + i__2 = *n; + for (j = ii; j <= i__2; ++j) { + if (d__[j] < p) { + k = j; + p = d__[j]; + } +/* L50: */ + } + if (k != i__) { + d__[k] = d__[i__]; + d__[i__] = p; + cswap_(n, &z__[i__ * z_dim1 + 1], &c__1, &z__[k * z_dim1 + 1], + &c__1); + } +/* L60: */ + } + } + + work[1].r = (real) lwmin, work[1].i = 0.f; + rwork[1] = (real) lrwmin; + iwork[1] = liwmin; + + return 0; + +/* End of CSTEDC */ + +} /* cstedc_ */ + +/* Subroutine */ int csteqr_(char *compz, integer *n, real *d__, real *e, + complex *z__, integer *ldz, real *work, integer *info) +{ + /* System generated locals */ + integer z_dim1, z_offset, i__1, i__2; + real r__1, r__2; + + /* Builtin functions */ + double sqrt(doublereal), r_sign(real *, real *); + + /* Local variables */ + static real b, c__, f, g; + static integer i__, j, k, l, m; + static real p, r__, s; + static integer l1, ii, mm, lm1, mm1, nm1; + static real rt1, rt2, eps; + static integer lsv; + static real tst, eps2; + static integer lend, jtot; + extern /* Subroutine */ int slae2_(real *, real *, real *, real *, real *) + ; + extern logical lsame_(char *, char *); + extern /* Subroutine */ int clasr_(char *, char *, char *, integer *, + integer *, real *, real *, complex *, integer *); + static real anorm; + extern /* Subroutine */ int cswap_(integer *, complex *, integer *, + complex *, integer *); + static integer lendm1, lendp1; + extern /* Subroutine */ int slaev2_(real *, real *, real *, real *, real * + , real *, real *); + extern doublereal slapy2_(real *, real *); + static integer iscale; + extern doublereal slamch_(char *); + extern /* Subroutine */ int claset_(char *, integer *, integer *, complex + *, complex *, complex *, integer *); + static real safmin; + extern /* Subroutine */ int xerbla_(char *, integer *); + static real safmax; + extern /* Subroutine */ int slascl_(char *, integer *, integer *, real *, + real *, integer *, integer *, real *, integer *, integer *); + static integer lendsv; + extern /* Subroutine */ int slartg_(real *, real *, real *, real *, real * + ); + static real ssfmin; + static integer nmaxit, icompz; + static real ssfmax; + extern doublereal slanst_(char *, integer *, real *, real *); + extern /* Subroutine */ int slasrt_(char *, integer *, real *, integer *); + + +/* + -- LAPACK routine (version 3.0) -- + Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd., + Courant Institute, Argonne National Lab, and Rice University + September 30, 1994 + + + Purpose + ======= + + CSTEQR computes all eigenvalues and, optionally, eigenvectors of a + symmetric tridiagonal matrix using the implicit QL or QR method. + The eigenvectors of a full or band complex Hermitian matrix can also + be found if CHETRD or CHPTRD or CHBTRD has been used to reduce this + matrix to tridiagonal form. + + Arguments + ========= + + COMPZ (input) CHARACTER*1 + = 'N': Compute eigenvalues only. + = 'V': Compute eigenvalues and eigenvectors of the original + Hermitian matrix. On entry, Z must contain the + unitary matrix used to reduce the original matrix + to tridiagonal form. + = 'I': Compute eigenvalues and eigenvectors of the + tridiagonal matrix. Z is initialized to the identity + matrix. + + N (input) INTEGER + The order of the matrix. N >= 0. + + D (input/output) REAL array, dimension (N) + On entry, the diagonal elements of the tridiagonal matrix. + On exit, if INFO = 0, the eigenvalues in ascending order. + + E (input/output) REAL array, dimension (N-1) + On entry, the (n-1) subdiagonal elements of the tridiagonal + matrix. + On exit, E has been destroyed. + + Z (input/output) COMPLEX array, dimension (LDZ, N) + On entry, if COMPZ = 'V', then Z contains the unitary + matrix used in the reduction to tridiagonal form. + On exit, if INFO = 0, then if COMPZ = 'V', Z contains the + orthonormal eigenvectors of the original Hermitian matrix, + and if COMPZ = 'I', Z contains the orthonormal eigenvectors + of the symmetric tridiagonal matrix. + If COMPZ = 'N', then Z is not referenced. + + LDZ (input) INTEGER + The leading dimension of the array Z. LDZ >= 1, and if + eigenvectors are desired, then LDZ >= max(1,N). + + WORK (workspace) REAL array, dimension (max(1,2*N-2)) + If COMPZ = 'N', then WORK is not referenced. + + INFO (output) INTEGER + = 0: successful exit + < 0: if INFO = -i, the i-th argument had an illegal value + > 0: the algorithm has failed to find all the eigenvalues in + a total of 30*N iterations; if INFO = i, then i + elements of E have not converged to zero; on exit, D + and E contain the elements of a symmetric tridiagonal + matrix which is unitarily similar to the original + matrix. + + ===================================================================== + + + Test the input parameters. +*/ + + /* Parameter adjustments */ + --d__; + --e; + z_dim1 = *ldz; + z_offset = 1 + z_dim1; + z__ -= z_offset; + --work; + + /* Function Body */ + *info = 0; + + if (lsame_(compz, "N")) { + icompz = 0; + } else if (lsame_(compz, "V")) { + icompz = 1; + } else if (lsame_(compz, "I")) { + icompz = 2; + } else { + icompz = -1; + } + if (icompz < 0) { + *info = -1; + } else if (*n < 0) { + *info = -2; + } else if (*ldz < 1 || icompz > 0 && *ldz < max(1,*n)) { + *info = -6; + } + if (*info != 0) { + i__1 = -(*info); + xerbla_("CSTEQR", &i__1); + return 0; + } + +/* Quick return if possible */ + + if (*n == 0) { + return 0; + } + + if (*n == 1) { + if (icompz == 2) { + i__1 = z_dim1 + 1; + z__[i__1].r = 1.f, z__[i__1].i = 0.f; + } + return 0; + } + +/* Determine the unit roundoff and over/underflow thresholds. */ + + eps = slamch_("E"); +/* Computing 2nd power */ + r__1 = eps; + eps2 = r__1 * r__1; + safmin = slamch_("S"); + safmax = 1.f / safmin; + ssfmax = sqrt(safmax) / 3.f; + ssfmin = sqrt(safmin) / eps2; + +/* + Compute the eigenvalues and eigenvectors of the tridiagonal + matrix. +*/ + + if (icompz == 2) { + claset_("Full", n, n, &c_b55, &c_b56, &z__[z_offset], ldz); + } + + nmaxit = *n * 30; + jtot = 0; + +/* + Determine where the matrix splits and choose QL or QR iteration + for each block, according to whether top or bottom diagonal + element is smaller. +*/ + + l1 = 1; + nm1 = *n - 1; + +L10: + if (l1 > *n) { + goto L160; + } + if (l1 > 1) { + e[l1 - 1] = 0.f; + } + if (l1 <= nm1) { + i__1 = nm1; + for (m = l1; m <= i__1; ++m) { + tst = (r__1 = e[m], dabs(r__1)); + if (tst == 0.f) { + goto L30; + } + if (tst <= sqrt((r__1 = d__[m], dabs(r__1))) * sqrt((r__2 = d__[m + + 1], dabs(r__2))) * eps) { + e[m] = 0.f; + goto L30; + } +/* L20: */ + } + } + m = *n; + +L30: + l = l1; + lsv = l; + lend = m; + lendsv = lend; + l1 = m + 1; + if (lend == l) { + goto L10; + } + +/* Scale submatrix in rows and columns L to LEND */ + + i__1 = lend - l + 1; + anorm = slanst_("I", &i__1, &d__[l], &e[l]); + iscale = 0; + if (anorm == 0.f) { + goto L10; + } + if (anorm > ssfmax) { + iscale = 1; + i__1 = lend - l + 1; + slascl_("G", &c__0, &c__0, &anorm, &ssfmax, &i__1, &c__1, &d__[l], n, + info); + i__1 = lend - l; + slascl_("G", &c__0, &c__0, &anorm, &ssfmax, &i__1, &c__1, &e[l], n, + info); + } else if (anorm < ssfmin) { + iscale = 2; + i__1 = lend - l + 1; + slascl_("G", &c__0, &c__0, &anorm, &ssfmin, &i__1, &c__1, &d__[l], n, + info); + i__1 = lend - l; + slascl_("G", &c__0, &c__0, &anorm, &ssfmin, &i__1, &c__1, &e[l], n, + info); + } + +/* Choose between QL and QR iteration */ + + if ((r__1 = d__[lend], dabs(r__1)) < (r__2 = d__[l], dabs(r__2))) { + lend = lsv; + l = lendsv; + } + + if (lend > l) { + +/* + QL Iteration + + Look for small subdiagonal element. +*/ + +L40: + if (l != lend) { + lendm1 = lend - 1; + i__1 = lendm1; + for (m = l; m <= i__1; ++m) { +/* Computing 2nd power */ + r__2 = (r__1 = e[m], dabs(r__1)); + tst = r__2 * r__2; + if (tst <= eps2 * (r__1 = d__[m], dabs(r__1)) * (r__2 = d__[m + + 1], dabs(r__2)) + safmin) { + goto L60; + } +/* L50: */ + } + } + + m = lend; + +L60: + if (m < lend) { + e[m] = 0.f; + } + p = d__[l]; + if (m == l) { + goto L80; + } + +/* + If remaining matrix is 2-by-2, use SLAE2 or SLAEV2 + to compute its eigensystem. +*/ + + if (m == l + 1) { + if (icompz > 0) { + slaev2_(&d__[l], &e[l], &d__[l + 1], &rt1, &rt2, &c__, &s); + work[l] = c__; + work[*n - 1 + l] = s; + clasr_("R", "V", "B", n, &c__2, &work[l], &work[*n - 1 + l], & + z__[l * z_dim1 + 1], ldz); + } else { + slae2_(&d__[l], &e[l], &d__[l + 1], &rt1, &rt2); + } + d__[l] = rt1; + d__[l + 1] = rt2; + e[l] = 0.f; + l += 2; + if (l <= lend) { + goto L40; + } + goto L140; + } + + if (jtot == nmaxit) { + goto L140; + } + ++jtot; + +/* Form shift. */ + + g = (d__[l + 1] - p) / (e[l] * 2.f); + r__ = slapy2_(&g, &c_b871); + g = d__[m] - p + e[l] / (g + r_sign(&r__, &g)); + + s = 1.f; + c__ = 1.f; + p = 0.f; + +/* Inner loop */ + + mm1 = m - 1; + i__1 = l; + for (i__ = mm1; i__ >= i__1; --i__) { + f = s * e[i__]; + b = c__ * e[i__]; + slartg_(&g, &f, &c__, &s, &r__); + if (i__ != m - 1) { + e[i__ + 1] = r__; + } + g = d__[i__ + 1] - p; + r__ = (d__[i__] - g) * s + c__ * 2.f * b; + p = s * r__; + d__[i__ + 1] = g + p; + g = c__ * r__ - b; + +/* If eigenvectors are desired, then save rotations. */ + + if (icompz > 0) { + work[i__] = c__; + work[*n - 1 + i__] = -s; + } + +/* L70: */ + } + +/* If eigenvectors are desired, then apply saved rotations. */ + + if (icompz > 0) { + mm = m - l + 1; + clasr_("R", "V", "B", n, &mm, &work[l], &work[*n - 1 + l], &z__[l + * z_dim1 + 1], ldz); + } + + d__[l] -= p; + e[l] = g; + goto L40; + +/* Eigenvalue found. */ + +L80: + d__[l] = p; + + ++l; + if (l <= lend) { + goto L40; + } + goto L140; + + } else { + +/* + QR Iteration + + Look for small superdiagonal element. +*/ + +L90: + if (l != lend) { + lendp1 = lend + 1; + i__1 = lendp1; + for (m = l; m >= i__1; --m) { +/* Computing 2nd power */ + r__2 = (r__1 = e[m - 1], dabs(r__1)); + tst = r__2 * r__2; + if (tst <= eps2 * (r__1 = d__[m], dabs(r__1)) * (r__2 = d__[m + - 1], dabs(r__2)) + safmin) { + goto L110; + } +/* L100: */ + } + } + + m = lend; + +L110: + if (m > lend) { + e[m - 1] = 0.f; + } + p = d__[l]; + if (m == l) { + goto L130; + } + +/* + If remaining matrix is 2-by-2, use SLAE2 or SLAEV2 + to compute its eigensystem. +*/ + + if (m == l - 1) { + if (icompz > 0) { + slaev2_(&d__[l - 1], &e[l - 1], &d__[l], &rt1, &rt2, &c__, &s) + ; + work[m] = c__; + work[*n - 1 + m] = s; + clasr_("R", "V", "F", n, &c__2, &work[m], &work[*n - 1 + m], & + z__[(l - 1) * z_dim1 + 1], ldz); + } else { + slae2_(&d__[l - 1], &e[l - 1], &d__[l], &rt1, &rt2); + } + d__[l - 1] = rt1; + d__[l] = rt2; + e[l - 1] = 0.f; + l += -2; + if (l >= lend) { + goto L90; + } + goto L140; + } + + if (jtot == nmaxit) { + goto L140; + } + ++jtot; + +/* Form shift. */ + + g = (d__[l - 1] - p) / (e[l - 1] * 2.f); + r__ = slapy2_(&g, &c_b871); + g = d__[m] - p + e[l - 1] / (g + r_sign(&r__, &g)); + + s = 1.f; + c__ = 1.f; + p = 0.f; + +/* Inner loop */ + + lm1 = l - 1; + i__1 = lm1; + for (i__ = m; i__ <= i__1; ++i__) { + f = s * e[i__]; + b = c__ * e[i__]; + slartg_(&g, &f, &c__, &s, &r__); + if (i__ != m) { + e[i__ - 1] = r__; + } + g = d__[i__] - p; + r__ = (d__[i__ + 1] - g) * s + c__ * 2.f * b; + p = s * r__; + d__[i__] = g + p; + g = c__ * r__ - b; + +/* If eigenvectors are desired, then save rotations. */ + + if (icompz > 0) { + work[i__] = c__; + work[*n - 1 + i__] = s; + } + +/* L120: */ + } + +/* If eigenvectors are desired, then apply saved rotations. */ + + if (icompz > 0) { + mm = l - m + 1; + clasr_("R", "V", "F", n, &mm, &work[m], &work[*n - 1 + m], &z__[m + * z_dim1 + 1], ldz); + } + + d__[l] -= p; + e[lm1] = g; + goto L90; + +/* Eigenvalue found. */ + +L130: + d__[l] = p; + + --l; + if (l >= lend) { + goto L90; + } + goto L140; + + } + +/* Undo scaling if necessary */ + +L140: + if (iscale == 1) { + i__1 = lendsv - lsv + 1; + slascl_("G", &c__0, &c__0, &ssfmax, &anorm, &i__1, &c__1, &d__[lsv], + n, info); + i__1 = lendsv - lsv; + slascl_("G", &c__0, &c__0, &ssfmax, &anorm, &i__1, &c__1, &e[lsv], n, + info); + } else if (iscale == 2) { + i__1 = lendsv - lsv + 1; + slascl_("G", &c__0, &c__0, &ssfmin, &anorm, &i__1, &c__1, &d__[lsv], + n, info); + i__1 = lendsv - lsv; + slascl_("G", &c__0, &c__0, &ssfmin, &anorm, &i__1, &c__1, &e[lsv], n, + info); + } + +/* + Check for no convergence to an eigenvalue after a total + of N*MAXIT iterations. +*/ + + if (jtot == nmaxit) { + i__1 = *n - 1; + for (i__ = 1; i__ <= i__1; ++i__) { + if (e[i__] != 0.f) { + ++(*info); + } +/* L150: */ + } + return 0; + } + goto L10; + +/* Order eigenvalues and eigenvectors. */ + +L160: + if (icompz == 0) { + +/* Use Quick Sort */ + + slasrt_("I", n, &d__[1], info); + + } else { + +/* Use Selection Sort to minimize swaps of eigenvectors */ + + i__1 = *n; + for (ii = 2; ii <= i__1; ++ii) { + i__ = ii - 1; + k = i__; + p = d__[i__]; + i__2 = *n; + for (j = ii; j <= i__2; ++j) { + if (d__[j] < p) { + k = j; + p = d__[j]; + } +/* L170: */ + } + if (k != i__) { + d__[k] = d__[i__]; + d__[i__] = p; + cswap_(n, &z__[i__ * z_dim1 + 1], &c__1, &z__[k * z_dim1 + 1], + &c__1); + } +/* L180: */ + } + } + return 0; + +/* End of CSTEQR */ + +} /* csteqr_ */ + +/* Subroutine */ int ctrevc_(char *side, char *howmny, logical *select, + integer *n, complex *t, integer *ldt, complex *vl, integer *ldvl, + complex *vr, integer *ldvr, integer *mm, integer *m, complex *work, + real *rwork, integer *info) +{ + /* System generated locals */ + integer t_dim1, t_offset, vl_dim1, vl_offset, vr_dim1, vr_offset, i__1, + i__2, i__3, i__4, i__5; + real r__1, r__2, r__3; + complex q__1, q__2; + + /* Builtin functions */ + double r_imag(complex *); + void r_cnjg(complex *, complex *); + + /* Local variables */ + static integer i__, j, k, ii, ki, is; + static real ulp; + static logical allv; + static real unfl, ovfl, smin; + static logical over; + static real scale; + extern logical lsame_(char *, char *); + extern /* Subroutine */ int cgemv_(char *, integer *, integer *, complex * + , complex *, integer *, complex *, integer *, complex *, complex * + , integer *); + static real remax; + extern /* Subroutine */ int ccopy_(integer *, complex *, integer *, + complex *, integer *); + static logical leftv, bothv, somev; + extern /* Subroutine */ int slabad_(real *, real *); + extern integer icamax_(integer *, complex *, integer *); + extern doublereal slamch_(char *); + extern /* Subroutine */ int csscal_(integer *, real *, complex *, integer + *), xerbla_(char *, integer *), clatrs_(char *, char *, + char *, char *, integer *, complex *, integer *, complex *, real * + , real *, integer *); + extern doublereal scasum_(integer *, complex *, integer *); + static logical rightv; + static real smlnum; + + +/* + -- LAPACK routine (version 3.0) -- + Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd., + Courant Institute, Argonne National Lab, and Rice University + June 30, 1999 + + + Purpose + ======= + + CTREVC computes some or all of the right and/or left eigenvectors of + a complex upper triangular matrix T. + + The right eigenvector x and the left eigenvector y of T corresponding + to an eigenvalue w are defined by: + + T*x = w*x, y'*T = w*y' + + where y' denotes the conjugate transpose of the vector y. + + If all eigenvectors are requested, the routine may either return the + matrices X and/or Y of right or left eigenvectors of T, or the + products Q*X and/or Q*Y, where Q is an input unitary + matrix. If T was obtained from the Schur factorization of an + original matrix A = Q*T*Q', then Q*X and Q*Y are the matrices of + right or left eigenvectors of A. + + Arguments + ========= + + SIDE (input) CHARACTER*1 + = 'R': compute right eigenvectors only; + = 'L': compute left eigenvectors only; + = 'B': compute both right and left eigenvectors. + + HOWMNY (input) CHARACTER*1 + = 'A': compute all right and/or left eigenvectors; + = 'B': compute all right and/or left eigenvectors, + and backtransform them using the input matrices + supplied in VR and/or VL; + = 'S': compute selected right and/or left eigenvectors, + specified by the logical array SELECT. + + SELECT (input) LOGICAL array, dimension (N) + If HOWMNY = 'S', SELECT specifies the eigenvectors to be + computed. + If HOWMNY = 'A' or 'B', SELECT is not referenced. + To select the eigenvector corresponding to the j-th + eigenvalue, SELECT(j) must be set to .TRUE.. + + N (input) INTEGER + The order of the matrix T. N >= 0. + + T (input/output) COMPLEX array, dimension (LDT,N) + The upper triangular matrix T. T is modified, but restored + on exit. + + LDT (input) INTEGER + The leading dimension of the array T. LDT >= max(1,N). + + VL (input/output) COMPLEX array, dimension (LDVL,MM) + On entry, if SIDE = 'L' or 'B' and HOWMNY = 'B', VL must + contain an N-by-N matrix Q (usually the unitary matrix Q of + Schur vectors returned by CHSEQR). + On exit, if SIDE = 'L' or 'B', VL contains: + if HOWMNY = 'A', the matrix Y of left eigenvectors of T; + VL is lower triangular. The i-th column + VL(i) of VL is the eigenvector corresponding + to T(i,i). + if HOWMNY = 'B', the matrix Q*Y; + if HOWMNY = 'S', the left eigenvectors of T specified by + SELECT, stored consecutively in the columns + of VL, in the same order as their + eigenvalues. + If SIDE = 'R', VL is not referenced. + + LDVL (input) INTEGER + The leading dimension of the array VL. LDVL >= max(1,N) if + SIDE = 'L' or 'B'; LDVL >= 1 otherwise. + + VR (input/output) COMPLEX array, dimension (LDVR,MM) + On entry, if SIDE = 'R' or 'B' and HOWMNY = 'B', VR must + contain an N-by-N matrix Q (usually the unitary matrix Q of + Schur vectors returned by CHSEQR). + On exit, if SIDE = 'R' or 'B', VR contains: + if HOWMNY = 'A', the matrix X of right eigenvectors of T; + VR is upper triangular. The i-th column + VR(i) of VR is the eigenvector corresponding + to T(i,i). + if HOWMNY = 'B', the matrix Q*X; + if HOWMNY = 'S', the right eigenvectors of T specified by + SELECT, stored consecutively in the columns + of VR, in the same order as their + eigenvalues. + If SIDE = 'L', VR is not referenced. + + LDVR (input) INTEGER + The leading dimension of the array VR. LDVR >= max(1,N) if + SIDE = 'R' or 'B'; LDVR >= 1 otherwise. + + MM (input) INTEGER + The number of columns in the arrays VL and/or VR. MM >= M. + + M (output) INTEGER + The number of columns in the arrays VL and/or VR actually + used to store the eigenvectors. If HOWMNY = 'A' or 'B', M + is set to N. Each selected eigenvector occupies one + column. + + WORK (workspace) COMPLEX array, dimension (2*N) + + RWORK (workspace) REAL array, dimension (N) + + INFO (output) INTEGER + = 0: successful exit + < 0: if INFO = -i, the i-th argument had an illegal value + + Further Details + =============== + + The algorithm used in this program is basically backward (forward) + substitution, with scaling to make the the code robust against + possible overflow. + + Each eigenvector is normalized so that the element of largest + magnitude has magnitude 1; here the magnitude of a complex number + (x,y) is taken to be |x| + |y|. + + ===================================================================== + + + Decode and test the input parameters +*/ + + /* Parameter adjustments */ + --select; + t_dim1 = *ldt; + t_offset = 1 + t_dim1; + t -= t_offset; + vl_dim1 = *ldvl; + vl_offset = 1 + vl_dim1; + vl -= vl_offset; + vr_dim1 = *ldvr; + vr_offset = 1 + vr_dim1; + vr -= vr_offset; + --work; + --rwork; + + /* Function Body */ + bothv = lsame_(side, "B"); + rightv = lsame_(side, "R") || bothv; + leftv = lsame_(side, "L") || bothv; + + allv = lsame_(howmny, "A"); + over = lsame_(howmny, "B"); + somev = lsame_(howmny, "S"); + +/* + Set M to the number of columns required to store the selected + eigenvectors. +*/ + + if (somev) { + *m = 0; + i__1 = *n; + for (j = 1; j <= i__1; ++j) { + if (select[j]) { + ++(*m); + } +/* L10: */ + } + } else { + *m = *n; + } + + *info = 0; + if (! rightv && ! leftv) { + *info = -1; + } else if (! allv && ! over && ! somev) { + *info = -2; + } else if (*n < 0) { + *info = -4; + } else if (*ldt < max(1,*n)) { + *info = -6; + } else if (*ldvl < 1 || leftv && *ldvl < *n) { + *info = -8; + } else if (*ldvr < 1 || rightv && *ldvr < *n) { + *info = -10; + } else if (*mm < *m) { + *info = -11; + } + if (*info != 0) { + i__1 = -(*info); + xerbla_("CTREVC", &i__1); + return 0; + } + +/* Quick return if possible. */ + + if (*n == 0) { + return 0; + } + +/* Set the constants to control overflow. */ + + unfl = slamch_("Safe minimum"); + ovfl = 1.f / unfl; + slabad_(&unfl, &ovfl); + ulp = slamch_("Precision"); + smlnum = unfl * (*n / ulp); + +/* Store the diagonal elements of T in working array WORK. */ + + i__1 = *n; + for (i__ = 1; i__ <= i__1; ++i__) { + i__2 = i__ + *n; + i__3 = i__ + i__ * t_dim1; + work[i__2].r = t[i__3].r, work[i__2].i = t[i__3].i; +/* L20: */ + } + +/* + Compute 1-norm of each column of strictly upper triangular + part of T to control overflow in triangular solver. +*/ + + rwork[1] = 0.f; + i__1 = *n; + for (j = 2; j <= i__1; ++j) { + i__2 = j - 1; + rwork[j] = scasum_(&i__2, &t[j * t_dim1 + 1], &c__1); +/* L30: */ + } + + if (rightv) { + +/* Compute right eigenvectors. */ + + is = *m; + for (ki = *n; ki >= 1; --ki) { + + if (somev) { + if (! select[ki]) { + goto L80; + } + } +/* Computing MAX */ + i__1 = ki + ki * t_dim1; + r__3 = ulp * ((r__1 = t[i__1].r, dabs(r__1)) + (r__2 = r_imag(&t[ + ki + ki * t_dim1]), dabs(r__2))); + smin = dmax(r__3,smlnum); + + work[1].r = 1.f, work[1].i = 0.f; + +/* Form right-hand side. */ + + i__1 = ki - 1; + for (k = 1; k <= i__1; ++k) { + i__2 = k; + i__3 = k + ki * t_dim1; + q__1.r = -t[i__3].r, q__1.i = -t[i__3].i; + work[i__2].r = q__1.r, work[i__2].i = q__1.i; +/* L40: */ + } + +/* + Solve the triangular system: + (T(1:KI-1,1:KI-1) - T(KI,KI))*X = SCALE*WORK. +*/ + + i__1 = ki - 1; + for (k = 1; k <= i__1; ++k) { + i__2 = k + k * t_dim1; + i__3 = k + k * t_dim1; + i__4 = ki + ki * t_dim1; + q__1.r = t[i__3].r - t[i__4].r, q__1.i = t[i__3].i - t[i__4] + .i; + t[i__2].r = q__1.r, t[i__2].i = q__1.i; + i__2 = k + k * t_dim1; + if ((r__1 = t[i__2].r, dabs(r__1)) + (r__2 = r_imag(&t[k + k * + t_dim1]), dabs(r__2)) < smin) { + i__3 = k + k * t_dim1; + t[i__3].r = smin, t[i__3].i = 0.f; + } +/* L50: */ + } + + if (ki > 1) { + i__1 = ki - 1; + clatrs_("Upper", "No transpose", "Non-unit", "Y", &i__1, &t[ + t_offset], ldt, &work[1], &scale, &rwork[1], info); + i__1 = ki; + work[i__1].r = scale, work[i__1].i = 0.f; + } + +/* Copy the vector x or Q*x to VR and normalize. */ + + if (! over) { + ccopy_(&ki, &work[1], &c__1, &vr[is * vr_dim1 + 1], &c__1); + + ii = icamax_(&ki, &vr[is * vr_dim1 + 1], &c__1); + i__1 = ii + is * vr_dim1; + remax = 1.f / ((r__1 = vr[i__1].r, dabs(r__1)) + (r__2 = + r_imag(&vr[ii + is * vr_dim1]), dabs(r__2))); + csscal_(&ki, &remax, &vr[is * vr_dim1 + 1], &c__1); + + i__1 = *n; + for (k = ki + 1; k <= i__1; ++k) { + i__2 = k + is * vr_dim1; + vr[i__2].r = 0.f, vr[i__2].i = 0.f; +/* L60: */ + } + } else { + if (ki > 1) { + i__1 = ki - 1; + q__1.r = scale, q__1.i = 0.f; + cgemv_("N", n, &i__1, &c_b56, &vr[vr_offset], ldvr, &work[ + 1], &c__1, &q__1, &vr[ki * vr_dim1 + 1], &c__1); + } + + ii = icamax_(n, &vr[ki * vr_dim1 + 1], &c__1); + i__1 = ii + ki * vr_dim1; + remax = 1.f / ((r__1 = vr[i__1].r, dabs(r__1)) + (r__2 = + r_imag(&vr[ii + ki * vr_dim1]), dabs(r__2))); + csscal_(n, &remax, &vr[ki * vr_dim1 + 1], &c__1); + } + +/* Set back the original diagonal elements of T. */ + + i__1 = ki - 1; + for (k = 1; k <= i__1; ++k) { + i__2 = k + k * t_dim1; + i__3 = k + *n; + t[i__2].r = work[i__3].r, t[i__2].i = work[i__3].i; +/* L70: */ + } + + --is; +L80: + ; + } + } + + if (leftv) { + +/* Compute left eigenvectors. */ + + is = 1; + i__1 = *n; + for (ki = 1; ki <= i__1; ++ki) { + + if (somev) { + if (! select[ki]) { + goto L130; + } + } +/* Computing MAX */ + i__2 = ki + ki * t_dim1; + r__3 = ulp * ((r__1 = t[i__2].r, dabs(r__1)) + (r__2 = r_imag(&t[ + ki + ki * t_dim1]), dabs(r__2))); + smin = dmax(r__3,smlnum); + + i__2 = *n; + work[i__2].r = 1.f, work[i__2].i = 0.f; + +/* Form right-hand side. */ + + i__2 = *n; + for (k = ki + 1; k <= i__2; ++k) { + i__3 = k; + r_cnjg(&q__2, &t[ki + k * t_dim1]); + q__1.r = -q__2.r, q__1.i = -q__2.i; + work[i__3].r = q__1.r, work[i__3].i = q__1.i; +/* L90: */ + } + +/* + Solve the triangular system: + (T(KI+1:N,KI+1:N) - T(KI,KI))'*X = SCALE*WORK. +*/ + + i__2 = *n; + for (k = ki + 1; k <= i__2; ++k) { + i__3 = k + k * t_dim1; + i__4 = k + k * t_dim1; + i__5 = ki + ki * t_dim1; + q__1.r = t[i__4].r - t[i__5].r, q__1.i = t[i__4].i - t[i__5] + .i; + t[i__3].r = q__1.r, t[i__3].i = q__1.i; + i__3 = k + k * t_dim1; + if ((r__1 = t[i__3].r, dabs(r__1)) + (r__2 = r_imag(&t[k + k * + t_dim1]), dabs(r__2)) < smin) { + i__4 = k + k * t_dim1; + t[i__4].r = smin, t[i__4].i = 0.f; + } +/* L100: */ + } + + if (ki < *n) { + i__2 = *n - ki; + clatrs_("Upper", "Conjugate transpose", "Non-unit", "Y", & + i__2, &t[ki + 1 + (ki + 1) * t_dim1], ldt, &work[ki + + 1], &scale, &rwork[1], info); + i__2 = ki; + work[i__2].r = scale, work[i__2].i = 0.f; + } + +/* Copy the vector x or Q*x to VL and normalize. */ + + if (! over) { + i__2 = *n - ki + 1; + ccopy_(&i__2, &work[ki], &c__1, &vl[ki + is * vl_dim1], &c__1) + ; + + i__2 = *n - ki + 1; + ii = icamax_(&i__2, &vl[ki + is * vl_dim1], &c__1) + ki - 1; + i__2 = ii + is * vl_dim1; + remax = 1.f / ((r__1 = vl[i__2].r, dabs(r__1)) + (r__2 = + r_imag(&vl[ii + is * vl_dim1]), dabs(r__2))); + i__2 = *n - ki + 1; + csscal_(&i__2, &remax, &vl[ki + is * vl_dim1], &c__1); + + i__2 = ki - 1; + for (k = 1; k <= i__2; ++k) { + i__3 = k + is * vl_dim1; + vl[i__3].r = 0.f, vl[i__3].i = 0.f; +/* L110: */ + } + } else { + if (ki < *n) { + i__2 = *n - ki; + q__1.r = scale, q__1.i = 0.f; + cgemv_("N", n, &i__2, &c_b56, &vl[(ki + 1) * vl_dim1 + 1], + ldvl, &work[ki + 1], &c__1, &q__1, &vl[ki * + vl_dim1 + 1], &c__1); + } + + ii = icamax_(n, &vl[ki * vl_dim1 + 1], &c__1); + i__2 = ii + ki * vl_dim1; + remax = 1.f / ((r__1 = vl[i__2].r, dabs(r__1)) + (r__2 = + r_imag(&vl[ii + ki * vl_dim1]), dabs(r__2))); + csscal_(n, &remax, &vl[ki * vl_dim1 + 1], &c__1); + } + +/* Set back the original diagonal elements of T. */ + + i__2 = *n; + for (k = ki + 1; k <= i__2; ++k) { + i__3 = k + k * t_dim1; + i__4 = k + *n; + t[i__3].r = work[i__4].r, t[i__3].i = work[i__4].i; +/* L120: */ + } + + ++is; +L130: + ; + } + } + + return 0; + +/* End of CTREVC */ + +} /* ctrevc_ */ + +/* Subroutine */ int ctrti2_(char *uplo, char *diag, integer *n, complex *a, + integer *lda, integer *info) +{ + /* System generated locals */ + integer a_dim1, a_offset, i__1, i__2; + complex q__1; + + /* Builtin functions */ + void c_div(complex *, complex *, complex *); + + /* Local variables */ + static integer j; + static complex ajj; + extern /* Subroutine */ int cscal_(integer *, complex *, complex *, + integer *); + extern logical lsame_(char *, char *); + static logical upper; + extern /* Subroutine */ int ctrmv_(char *, char *, char *, integer *, + complex *, integer *, complex *, integer *), xerbla_(char *, integer *); + static logical nounit; + + +/* + -- LAPACK routine (version 3.0) -- + Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd., + Courant Institute, Argonne National Lab, and Rice University + September 30, 1994 + + + Purpose + ======= + + CTRTI2 computes the inverse of a complex upper or lower triangular + matrix. + + This is the Level 2 BLAS version of the algorithm. + + Arguments + ========= + + UPLO (input) CHARACTER*1 + Specifies whether the matrix A is upper or lower triangular. + = 'U': Upper triangular + = 'L': Lower triangular + + DIAG (input) CHARACTER*1 + Specifies whether or not the matrix A is unit triangular. + = 'N': Non-unit triangular + = 'U': Unit triangular + + N (input) INTEGER + The order of the matrix A. N >= 0. + + A (input/output) COMPLEX array, dimension (LDA,N) + On entry, the triangular matrix A. If UPLO = 'U', the + leading n by n upper triangular part of the array A contains + the upper triangular matrix, and the strictly lower + triangular part of A is not referenced. If UPLO = 'L', the + leading n by n lower triangular part of the array A contains + the lower triangular matrix, and the strictly upper + triangular part of A is not referenced. If DIAG = 'U', the + diagonal elements of A are also not referenced and are + assumed to be 1. + + On exit, the (triangular) inverse of the original matrix, in + the same storage format. + + LDA (input) INTEGER + The leading dimension of the array A. LDA >= max(1,N). + + INFO (output) INTEGER + = 0: successful exit + < 0: if INFO = -k, the k-th argument had an illegal value + + ===================================================================== + + + Test the input parameters. +*/ + + /* Parameter adjustments */ + a_dim1 = *lda; + a_offset = 1 + a_dim1; + a -= a_offset; + + /* Function Body */ + *info = 0; + upper = lsame_(uplo, "U"); + nounit = lsame_(diag, "N"); + if (! upper && ! lsame_(uplo, "L")) { + *info = -1; + } else if (! nounit && ! lsame_(diag, "U")) { + *info = -2; + } else if (*n < 0) { + *info = -3; + } else if (*lda < max(1,*n)) { + *info = -5; + } + if (*info != 0) { + i__1 = -(*info); + xerbla_("CTRTI2", &i__1); + return 0; + } + + if (upper) { + +/* Compute inverse of upper triangular matrix. */ + + i__1 = *n; + for (j = 1; j <= i__1; ++j) { + if (nounit) { + i__2 = j + j * a_dim1; + c_div(&q__1, &c_b56, &a[j + j * a_dim1]); + a[i__2].r = q__1.r, a[i__2].i = q__1.i; + i__2 = j + j * a_dim1; + q__1.r = -a[i__2].r, q__1.i = -a[i__2].i; + ajj.r = q__1.r, ajj.i = q__1.i; + } else { + q__1.r = -1.f, q__1.i = -0.f; + ajj.r = q__1.r, ajj.i = q__1.i; + } + +/* Compute elements 1:j-1 of j-th column. */ + + i__2 = j - 1; + ctrmv_("Upper", "No transpose", diag, &i__2, &a[a_offset], lda, & + a[j * a_dim1 + 1], &c__1); + i__2 = j - 1; + cscal_(&i__2, &ajj, &a[j * a_dim1 + 1], &c__1); +/* L10: */ + } + } else { + +/* Compute inverse of lower triangular matrix. */ + + for (j = *n; j >= 1; --j) { + if (nounit) { + i__1 = j + j * a_dim1; + c_div(&q__1, &c_b56, &a[j + j * a_dim1]); + a[i__1].r = q__1.r, a[i__1].i = q__1.i; + i__1 = j + j * a_dim1; + q__1.r = -a[i__1].r, q__1.i = -a[i__1].i; + ajj.r = q__1.r, ajj.i = q__1.i; + } else { + q__1.r = -1.f, q__1.i = -0.f; + ajj.r = q__1.r, ajj.i = q__1.i; + } + if (j < *n) { + +/* Compute elements j+1:n of j-th column. */ + + i__1 = *n - j; + ctrmv_("Lower", "No transpose", diag, &i__1, &a[j + 1 + (j + + 1) * a_dim1], lda, &a[j + 1 + j * a_dim1], &c__1); + i__1 = *n - j; + cscal_(&i__1, &ajj, &a[j + 1 + j * a_dim1], &c__1); + } +/* L20: */ + } + } + + return 0; + +/* End of CTRTI2 */ + +} /* ctrti2_ */ + +/* Subroutine */ int ctrtri_(char *uplo, char *diag, integer *n, complex *a, + integer *lda, integer *info) +{ + /* System generated locals */ + address a__1[2]; + integer a_dim1, a_offset, i__1, i__2, i__3[2], i__4, i__5; + complex q__1; + char ch__1[2]; + + /* Builtin functions */ + /* Subroutine */ int s_cat(char *, char **, integer *, integer *, ftnlen); + + /* Local variables */ + static integer j, jb, nb, nn; + extern logical lsame_(char *, char *); + extern /* Subroutine */ int ctrmm_(char *, char *, char *, char *, + integer *, integer *, complex *, complex *, integer *, complex *, + integer *), ctrsm_(char *, char *, + char *, char *, integer *, integer *, complex *, complex *, + integer *, complex *, integer *); + static logical upper; + extern /* Subroutine */ int ctrti2_(char *, char *, integer *, complex *, + integer *, integer *), xerbla_(char *, integer *); + extern integer ilaenv_(integer *, char *, char *, integer *, integer *, + integer *, integer *, ftnlen, ftnlen); + static logical nounit; + + +/* + -- LAPACK routine (version 3.0) -- + Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd., + Courant Institute, Argonne National Lab, and Rice University + September 30, 1994 + + + Purpose + ======= + + CTRTRI computes the inverse of a complex upper or lower triangular + matrix A. + + This is the Level 3 BLAS version of the algorithm. + + Arguments + ========= + + UPLO (input) CHARACTER*1 + = 'U': A is upper triangular; + = 'L': A is lower triangular. + + DIAG (input) CHARACTER*1 + = 'N': A is non-unit triangular; + = 'U': A is unit triangular. + + N (input) INTEGER + The order of the matrix A. N >= 0. + + A (input/output) COMPLEX array, dimension (LDA,N) + On entry, the triangular matrix A. If UPLO = 'U', the + leading N-by-N upper triangular part of the array A contains + the upper triangular matrix, and the strictly lower + triangular part of A is not referenced. If UPLO = 'L', the + leading N-by-N lower triangular part of the array A contains + the lower triangular matrix, and the strictly upper + triangular part of A is not referenced. If DIAG = 'U', the + diagonal elements of A are also not referenced and are + assumed to be 1. + On exit, the (triangular) inverse of the original matrix, in + the same storage format. + + LDA (input) INTEGER + The leading dimension of the array A. LDA >= max(1,N). + + INFO (output) INTEGER + = 0: successful exit + < 0: if INFO = -i, the i-th argument had an illegal value + > 0: if INFO = i, A(i,i) is exactly zero. The triangular + matrix is singular and its inverse can not be computed. + + ===================================================================== + + + Test the input parameters. +*/ + + /* Parameter adjustments */ + a_dim1 = *lda; + a_offset = 1 + a_dim1; + a -= a_offset; + + /* Function Body */ + *info = 0; + upper = lsame_(uplo, "U"); + nounit = lsame_(diag, "N"); + if (! upper && ! lsame_(uplo, "L")) { + *info = -1; + } else if (! nounit && ! lsame_(diag, "U")) { + *info = -2; + } else if (*n < 0) { + *info = -3; + } else if (*lda < max(1,*n)) { + *info = -5; + } + if (*info != 0) { + i__1 = -(*info); + xerbla_("CTRTRI", &i__1); + return 0; + } + +/* Quick return if possible */ + + if (*n == 0) { + return 0; + } + +/* Check for singularity if non-unit. */ + + if (nounit) { + i__1 = *n; + for (*info = 1; *info <= i__1; ++(*info)) { + i__2 = *info + *info * a_dim1; + if (a[i__2].r == 0.f && a[i__2].i == 0.f) { + return 0; + } +/* L10: */ + } + *info = 0; + } + +/* + Determine the block size for this environment. + + Writing concatenation +*/ + i__3[0] = 1, a__1[0] = uplo; + i__3[1] = 1, a__1[1] = diag; + s_cat(ch__1, a__1, i__3, &c__2, (ftnlen)2); + nb = ilaenv_(&c__1, "CTRTRI", ch__1, n, &c_n1, &c_n1, &c_n1, (ftnlen)6, ( + ftnlen)2); + if (nb <= 1 || nb >= *n) { + +/* Use unblocked code */ + + ctrti2_(uplo, diag, n, &a[a_offset], lda, info); + } else { + +/* Use blocked code */ + + if (upper) { + +/* Compute inverse of upper triangular matrix */ + + i__1 = *n; + i__2 = nb; + for (j = 1; i__2 < 0 ? j >= i__1 : j <= i__1; j += i__2) { +/* Computing MIN */ + i__4 = nb, i__5 = *n - j + 1; + jb = min(i__4,i__5); + +/* Compute rows 1:j-1 of current block column */ + + i__4 = j - 1; + ctrmm_("Left", "Upper", "No transpose", diag, &i__4, &jb, & + c_b56, &a[a_offset], lda, &a[j * a_dim1 + 1], lda); + i__4 = j - 1; + q__1.r = -1.f, q__1.i = -0.f; + ctrsm_("Right", "Upper", "No transpose", diag, &i__4, &jb, & + q__1, &a[j + j * a_dim1], lda, &a[j * a_dim1 + 1], + lda); + +/* Compute inverse of current diagonal block */ + + ctrti2_("Upper", diag, &jb, &a[j + j * a_dim1], lda, info); +/* L20: */ + } + } else { + +/* Compute inverse of lower triangular matrix */ + + nn = (*n - 1) / nb * nb + 1; + i__2 = -nb; + for (j = nn; i__2 < 0 ? j >= 1 : j <= 1; j += i__2) { +/* Computing MIN */ + i__1 = nb, i__4 = *n - j + 1; + jb = min(i__1,i__4); + if (j + jb <= *n) { + +/* Compute rows j+jb:n of current block column */ + + i__1 = *n - j - jb + 1; + ctrmm_("Left", "Lower", "No transpose", diag, &i__1, &jb, + &c_b56, &a[j + jb + (j + jb) * a_dim1], lda, &a[j + + jb + j * a_dim1], lda); + i__1 = *n - j - jb + 1; + q__1.r = -1.f, q__1.i = -0.f; + ctrsm_("Right", "Lower", "No transpose", diag, &i__1, &jb, + &q__1, &a[j + j * a_dim1], lda, &a[j + jb + j * + a_dim1], lda); + } + +/* Compute inverse of current diagonal block */ + + ctrti2_("Lower", diag, &jb, &a[j + j * a_dim1], lda, info); +/* L30: */ + } + } + } + + return 0; + +/* End of CTRTRI */ + +} /* ctrtri_ */ + +/* Subroutine */ int cung2r_(integer *m, integer *n, integer *k, complex *a, + integer *lda, complex *tau, complex *work, integer *info) +{ + /* System generated locals */ + integer a_dim1, a_offset, i__1, i__2, i__3; + complex q__1; + + /* Local variables */ + static integer i__, j, l; + extern /* Subroutine */ int cscal_(integer *, complex *, complex *, + integer *), clarf_(char *, integer *, integer *, complex *, + integer *, complex *, complex *, integer *, complex *), + xerbla_(char *, integer *); + + +/* + -- LAPACK routine (version 3.0) -- + Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd., + Courant Institute, Argonne National Lab, and Rice University + September 30, 1994 + + + Purpose + ======= + + CUNG2R generates an m by n complex matrix Q with orthonormal columns, + which is defined as the first n columns of a product of k elementary + reflectors of order m + + Q = H(1) H(2) . . . H(k) + + as returned by CGEQRF. + + Arguments + ========= + + M (input) INTEGER + The number of rows of the matrix Q. M >= 0. + + N (input) INTEGER + The number of columns of the matrix Q. M >= N >= 0. + + K (input) INTEGER + The number of elementary reflectors whose product defines the + matrix Q. N >= K >= 0. + + A (input/output) COMPLEX array, dimension (LDA,N) + On entry, the i-th column must contain the vector which + defines the elementary reflector H(i), for i = 1,2,...,k, as + returned by CGEQRF in the first k columns of its array + argument A. + On exit, the m by n matrix Q. + + LDA (input) INTEGER + The first dimension of the array A. LDA >= max(1,M). + + TAU (input) COMPLEX array, dimension (K) + TAU(i) must contain the scalar factor of the elementary + reflector H(i), as returned by CGEQRF. + + WORK (workspace) COMPLEX array, dimension (N) + + INFO (output) INTEGER + = 0: successful exit + < 0: if INFO = -i, the i-th argument has an illegal value + + ===================================================================== + + + Test the input arguments +*/ + + /* Parameter adjustments */ + a_dim1 = *lda; + a_offset = 1 + a_dim1; + a -= a_offset; + --tau; + --work; + + /* Function Body */ + *info = 0; + if (*m < 0) { + *info = -1; + } else if (*n < 0 || *n > *m) { + *info = -2; + } else if (*k < 0 || *k > *n) { + *info = -3; + } else if (*lda < max(1,*m)) { + *info = -5; + } + if (*info != 0) { + i__1 = -(*info); + xerbla_("CUNG2R", &i__1); + return 0; + } + +/* Quick return if possible */ + + if (*n <= 0) { + return 0; + } + +/* Initialise columns k+1:n to columns of the unit matrix */ + + i__1 = *n; + for (j = *k + 1; j <= i__1; ++j) { + i__2 = *m; + for (l = 1; l <= i__2; ++l) { + i__3 = l + j * a_dim1; + a[i__3].r = 0.f, a[i__3].i = 0.f; +/* L10: */ + } + i__2 = j + j * a_dim1; + a[i__2].r = 1.f, a[i__2].i = 0.f; +/* L20: */ + } + + for (i__ = *k; i__ >= 1; --i__) { + +/* Apply H(i) to A(i:m,i:n) from the left */ + + if (i__ < *n) { + i__1 = i__ + i__ * a_dim1; + a[i__1].r = 1.f, a[i__1].i = 0.f; + i__1 = *m - i__ + 1; + i__2 = *n - i__; + clarf_("Left", &i__1, &i__2, &a[i__ + i__ * a_dim1], &c__1, &tau[ + i__], &a[i__ + (i__ + 1) * a_dim1], lda, &work[1]); + } + if (i__ < *m) { + i__1 = *m - i__; + i__2 = i__; + q__1.r = -tau[i__2].r, q__1.i = -tau[i__2].i; + cscal_(&i__1, &q__1, &a[i__ + 1 + i__ * a_dim1], &c__1); + } + i__1 = i__ + i__ * a_dim1; + i__2 = i__; + q__1.r = 1.f - tau[i__2].r, q__1.i = 0.f - tau[i__2].i; + a[i__1].r = q__1.r, a[i__1].i = q__1.i; + +/* Set A(1:i-1,i) to zero */ + + i__1 = i__ - 1; + for (l = 1; l <= i__1; ++l) { + i__2 = l + i__ * a_dim1; + a[i__2].r = 0.f, a[i__2].i = 0.f; +/* L30: */ + } +/* L40: */ + } + return 0; + +/* End of CUNG2R */ + +} /* cung2r_ */ + +/* Subroutine */ int cungbr_(char *vect, integer *m, integer *n, integer *k, + complex *a, integer *lda, complex *tau, complex *work, integer *lwork, + integer *info) +{ + /* System generated locals */ + integer a_dim1, a_offset, i__1, i__2, i__3; + + /* Local variables */ + static integer i__, j, nb, mn; + extern logical lsame_(char *, char *); + static integer iinfo; + static logical wantq; + extern /* Subroutine */ int xerbla_(char *, integer *); + extern integer ilaenv_(integer *, char *, char *, integer *, integer *, + integer *, integer *, ftnlen, ftnlen); + extern /* Subroutine */ int cunglq_(integer *, integer *, integer *, + complex *, integer *, complex *, complex *, integer *, integer *), + cungqr_(integer *, integer *, integer *, complex *, integer *, + complex *, complex *, integer *, integer *); + static integer lwkopt; + static logical lquery; + + +/* + -- LAPACK routine (version 3.0) -- + Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd., + Courant Institute, Argonne National Lab, and Rice University + June 30, 1999 + + + Purpose + ======= + + CUNGBR generates one of the complex unitary matrices Q or P**H + determined by CGEBRD when reducing a complex matrix A to bidiagonal + form: A = Q * B * P**H. Q and P**H are defined as products of + elementary reflectors H(i) or G(i) respectively. + + If VECT = 'Q', A is assumed to have been an M-by-K matrix, and Q + is of order M: + if m >= k, Q = H(1) H(2) . . . H(k) and CUNGBR returns the first n + columns of Q, where m >= n >= k; + if m < k, Q = H(1) H(2) . . . H(m-1) and CUNGBR returns Q as an + M-by-M matrix. + + If VECT = 'P', A is assumed to have been a K-by-N matrix, and P**H + is of order N: + if k < n, P**H = G(k) . . . G(2) G(1) and CUNGBR returns the first m + rows of P**H, where n >= m >= k; + if k >= n, P**H = G(n-1) . . . G(2) G(1) and CUNGBR returns P**H as + an N-by-N matrix. + + Arguments + ========= + + VECT (input) CHARACTER*1 + Specifies whether the matrix Q or the matrix P**H is + required, as defined in the transformation applied by CGEBRD: + = 'Q': generate Q; + = 'P': generate P**H. + + M (input) INTEGER + The number of rows of the matrix Q or P**H to be returned. + M >= 0. + + N (input) INTEGER + The number of columns of the matrix Q or P**H to be returned. + N >= 0. + If VECT = 'Q', M >= N >= min(M,K); + if VECT = 'P', N >= M >= min(N,K). + + K (input) INTEGER + If VECT = 'Q', the number of columns in the original M-by-K + matrix reduced by CGEBRD. + If VECT = 'P', the number of rows in the original K-by-N + matrix reduced by CGEBRD. + K >= 0. + + A (input/output) COMPLEX array, dimension (LDA,N) + On entry, the vectors which define the elementary reflectors, + as returned by CGEBRD. + On exit, the M-by-N matrix Q or P**H. + + LDA (input) INTEGER + The leading dimension of the array A. LDA >= M. + + TAU (input) COMPLEX array, dimension + (min(M,K)) if VECT = 'Q' + (min(N,K)) if VECT = 'P' + TAU(i) must contain the scalar factor of the elementary + reflector H(i) or G(i), which determines Q or P**H, as + returned by CGEBRD in its array argument TAUQ or TAUP. + + WORK (workspace/output) COMPLEX array, dimension (LWORK) + On exit, if INFO = 0, WORK(1) returns the optimal LWORK. + + LWORK (input) INTEGER + The dimension of the array WORK. LWORK >= max(1,min(M,N)). + For optimum performance LWORK >= min(M,N)*NB, where NB + is the optimal blocksize. + + If LWORK = -1, then a workspace query is assumed; the routine + only calculates the optimal size of the WORK array, returns + this value as the first entry of the WORK array, and no error + message related to LWORK is issued by XERBLA. + + INFO (output) INTEGER + = 0: successful exit + < 0: if INFO = -i, the i-th argument had an illegal value + + ===================================================================== + + + Test the input arguments +*/ + + /* Parameter adjustments */ + a_dim1 = *lda; + a_offset = 1 + a_dim1; + a -= a_offset; + --tau; + --work; + + /* Function Body */ + *info = 0; + wantq = lsame_(vect, "Q"); + mn = min(*m,*n); + lquery = *lwork == -1; + if (! wantq && ! lsame_(vect, "P")) { + *info = -1; + } else if (*m < 0) { + *info = -2; + } else if (*n < 0 || wantq && (*n > *m || *n < min(*m,*k)) || ! wantq && ( + *m > *n || *m < min(*n,*k))) { + *info = -3; + } else if (*k < 0) { + *info = -4; + } else if (*lda < max(1,*m)) { + *info = -6; + } else if (*lwork < max(1,mn) && ! lquery) { + *info = -9; + } + + if (*info == 0) { + if (wantq) { + nb = ilaenv_(&c__1, "CUNGQR", " ", m, n, k, &c_n1, (ftnlen)6, ( + ftnlen)1); + } else { + nb = ilaenv_(&c__1, "CUNGLQ", " ", m, n, k, &c_n1, (ftnlen)6, ( + ftnlen)1); + } + lwkopt = max(1,mn) * nb; + work[1].r = (real) lwkopt, work[1].i = 0.f; + } + + if (*info != 0) { + i__1 = -(*info); + xerbla_("CUNGBR", &i__1); + return 0; + } else if (lquery) { + return 0; + } + +/* Quick return if possible */ + + if (*m == 0 || *n == 0) { + work[1].r = 1.f, work[1].i = 0.f; + return 0; + } + + if (wantq) { + +/* + Form Q, determined by a call to CGEBRD to reduce an m-by-k + matrix +*/ + + if (*m >= *k) { + +/* If m >= k, assume m >= n >= k */ + + cungqr_(m, n, k, &a[a_offset], lda, &tau[1], &work[1], lwork, & + iinfo); + + } else { + +/* + If m < k, assume m = n + + Shift the vectors which define the elementary reflectors one + column to the right, and set the first row and column of Q + to those of the unit matrix +*/ + + for (j = *m; j >= 2; --j) { + i__1 = j * a_dim1 + 1; + a[i__1].r = 0.f, a[i__1].i = 0.f; + i__1 = *m; + for (i__ = j + 1; i__ <= i__1; ++i__) { + i__2 = i__ + j * a_dim1; + i__3 = i__ + (j - 1) * a_dim1; + a[i__2].r = a[i__3].r, a[i__2].i = a[i__3].i; +/* L10: */ + } +/* L20: */ + } + i__1 = a_dim1 + 1; + a[i__1].r = 1.f, a[i__1].i = 0.f; + i__1 = *m; + for (i__ = 2; i__ <= i__1; ++i__) { + i__2 = i__ + a_dim1; + a[i__2].r = 0.f, a[i__2].i = 0.f; +/* L30: */ + } + if (*m > 1) { + +/* Form Q(2:m,2:m) */ + + i__1 = *m - 1; + i__2 = *m - 1; + i__3 = *m - 1; + cungqr_(&i__1, &i__2, &i__3, &a[(a_dim1 << 1) + 2], lda, &tau[ + 1], &work[1], lwork, &iinfo); + } + } + } else { + +/* + Form P', determined by a call to CGEBRD to reduce a k-by-n + matrix +*/ + + if (*k < *n) { + +/* If k < n, assume k <= m <= n */ + + cunglq_(m, n, k, &a[a_offset], lda, &tau[1], &work[1], lwork, & + iinfo); + + } else { + +/* + If k >= n, assume m = n + + Shift the vectors which define the elementary reflectors one + row downward, and set the first row and column of P' to + those of the unit matrix +*/ + + i__1 = a_dim1 + 1; + a[i__1].r = 1.f, a[i__1].i = 0.f; + i__1 = *n; + for (i__ = 2; i__ <= i__1; ++i__) { + i__2 = i__ + a_dim1; + a[i__2].r = 0.f, a[i__2].i = 0.f; +/* L40: */ + } + i__1 = *n; + for (j = 2; j <= i__1; ++j) { + for (i__ = j - 1; i__ >= 2; --i__) { + i__2 = i__ + j * a_dim1; + i__3 = i__ - 1 + j * a_dim1; + a[i__2].r = a[i__3].r, a[i__2].i = a[i__3].i; +/* L50: */ + } + i__2 = j * a_dim1 + 1; + a[i__2].r = 0.f, a[i__2].i = 0.f; +/* L60: */ + } + if (*n > 1) { + +/* Form P'(2:n,2:n) */ + + i__1 = *n - 1; + i__2 = *n - 1; + i__3 = *n - 1; + cunglq_(&i__1, &i__2, &i__3, &a[(a_dim1 << 1) + 2], lda, &tau[ + 1], &work[1], lwork, &iinfo); + } + } + } + work[1].r = (real) lwkopt, work[1].i = 0.f; + return 0; + +/* End of CUNGBR */ + +} /* cungbr_ */ + +/* Subroutine */ int cunghr_(integer *n, integer *ilo, integer *ihi, complex * + a, integer *lda, complex *tau, complex *work, integer *lwork, integer + *info) +{ + /* System generated locals */ + integer a_dim1, a_offset, i__1, i__2, i__3, i__4; + + /* Local variables */ + static integer i__, j, nb, nh, iinfo; + extern /* Subroutine */ int xerbla_(char *, integer *); + extern integer ilaenv_(integer *, char *, char *, integer *, integer *, + integer *, integer *, ftnlen, ftnlen); + extern /* Subroutine */ int cungqr_(integer *, integer *, integer *, + complex *, integer *, complex *, complex *, integer *, integer *); + static integer lwkopt; + static logical lquery; + + +/* + -- LAPACK routine (version 3.0) -- + Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd., + Courant Institute, Argonne National Lab, and Rice University + June 30, 1999 + + + Purpose + ======= + + CUNGHR generates a complex unitary matrix Q which is defined as the + product of IHI-ILO elementary reflectors of order N, as returned by + CGEHRD: + + Q = H(ilo) H(ilo+1) . . . H(ihi-1). + + Arguments + ========= + + N (input) INTEGER + The order of the matrix Q. N >= 0. + + ILO (input) INTEGER + IHI (input) INTEGER + ILO and IHI must have the same values as in the previous call + of CGEHRD. Q is equal to the unit matrix except in the + submatrix Q(ilo+1:ihi,ilo+1:ihi). + 1 <= ILO <= IHI <= N, if N > 0; ILO=1 and IHI=0, if N=0. + + A (input/output) COMPLEX array, dimension (LDA,N) + On entry, the vectors which define the elementary reflectors, + as returned by CGEHRD. + On exit, the N-by-N unitary matrix Q. + + LDA (input) INTEGER + The leading dimension of the array A. LDA >= max(1,N). + + TAU (input) COMPLEX array, dimension (N-1) + TAU(i) must contain the scalar factor of the elementary + reflector H(i), as returned by CGEHRD. + + WORK (workspace/output) COMPLEX array, dimension (LWORK) + On exit, if INFO = 0, WORK(1) returns the optimal LWORK. + + LWORK (input) INTEGER + The dimension of the array WORK. LWORK >= IHI-ILO. + For optimum performance LWORK >= (IHI-ILO)*NB, where NB is + the optimal blocksize. + + If LWORK = -1, then a workspace query is assumed; the routine + only calculates the optimal size of the WORK array, returns + this value as the first entry of the WORK array, and no error + message related to LWORK is issued by XERBLA. + + INFO (output) INTEGER + = 0: successful exit + < 0: if INFO = -i, the i-th argument had an illegal value + + ===================================================================== + + + Test the input arguments +*/ + + /* Parameter adjustments */ + a_dim1 = *lda; + a_offset = 1 + a_dim1; + a -= a_offset; + --tau; + --work; + + /* Function Body */ + *info = 0; + nh = *ihi - *ilo; + lquery = *lwork == -1; + if (*n < 0) { + *info = -1; + } else if (*ilo < 1 || *ilo > max(1,*n)) { + *info = -2; + } else if (*ihi < min(*ilo,*n) || *ihi > *n) { + *info = -3; + } else if (*lda < max(1,*n)) { + *info = -5; + } else if (*lwork < max(1,nh) && ! lquery) { + *info = -8; + } + + if (*info == 0) { + nb = ilaenv_(&c__1, "CUNGQR", " ", &nh, &nh, &nh, &c_n1, (ftnlen)6, ( + ftnlen)1); + lwkopt = max(1,nh) * nb; + work[1].r = (real) lwkopt, work[1].i = 0.f; + } + + if (*info != 0) { + i__1 = -(*info); + xerbla_("CUNGHR", &i__1); + return 0; + } else if (lquery) { + return 0; + } + +/* Quick return if possible */ + + if (*n == 0) { + work[1].r = 1.f, work[1].i = 0.f; + return 0; + } + +/* + Shift the vectors which define the elementary reflectors one + column to the right, and set the first ilo and the last n-ihi + rows and columns to those of the unit matrix +*/ + + i__1 = *ilo + 1; + for (j = *ihi; j >= i__1; --j) { + i__2 = j - 1; + for (i__ = 1; i__ <= i__2; ++i__) { + i__3 = i__ + j * a_dim1; + a[i__3].r = 0.f, a[i__3].i = 0.f; +/* L10: */ + } + i__2 = *ihi; + for (i__ = j + 1; i__ <= i__2; ++i__) { + i__3 = i__ + j * a_dim1; + i__4 = i__ + (j - 1) * a_dim1; + a[i__3].r = a[i__4].r, a[i__3].i = a[i__4].i; +/* L20: */ + } + i__2 = *n; + for (i__ = *ihi + 1; i__ <= i__2; ++i__) { + i__3 = i__ + j * a_dim1; + a[i__3].r = 0.f, a[i__3].i = 0.f; +/* L30: */ + } +/* L40: */ + } + i__1 = *ilo; + for (j = 1; j <= i__1; ++j) { + i__2 = *n; + for (i__ = 1; i__ <= i__2; ++i__) { + i__3 = i__ + j * a_dim1; + a[i__3].r = 0.f, a[i__3].i = 0.f; +/* L50: */ + } + i__2 = j + j * a_dim1; + a[i__2].r = 1.f, a[i__2].i = 0.f; +/* L60: */ + } + i__1 = *n; + for (j = *ihi + 1; j <= i__1; ++j) { + i__2 = *n; + for (i__ = 1; i__ <= i__2; ++i__) { + i__3 = i__ + j * a_dim1; + a[i__3].r = 0.f, a[i__3].i = 0.f; +/* L70: */ + } + i__2 = j + j * a_dim1; + a[i__2].r = 1.f, a[i__2].i = 0.f; +/* L80: */ + } + + if (nh > 0) { + +/* Generate Q(ilo+1:ihi,ilo+1:ihi) */ + + cungqr_(&nh, &nh, &nh, &a[*ilo + 1 + (*ilo + 1) * a_dim1], lda, &tau[* + ilo], &work[1], lwork, &iinfo); + } + work[1].r = (real) lwkopt, work[1].i = 0.f; + return 0; + +/* End of CUNGHR */ + +} /* cunghr_ */ + +/* Subroutine */ int cungl2_(integer *m, integer *n, integer *k, complex *a, + integer *lda, complex *tau, complex *work, integer *info) +{ + /* System generated locals */ + integer a_dim1, a_offset, i__1, i__2, i__3; + complex q__1, q__2; + + /* Builtin functions */ + void r_cnjg(complex *, complex *); + + /* Local variables */ + static integer i__, j, l; + extern /* Subroutine */ int cscal_(integer *, complex *, complex *, + integer *), clarf_(char *, integer *, integer *, complex *, + integer *, complex *, complex *, integer *, complex *), + clacgv_(integer *, complex *, integer *), xerbla_(char *, integer + *); + + +/* + -- LAPACK routine (version 3.0) -- + Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd., + Courant Institute, Argonne National Lab, and Rice University + June 30, 1999 + + + Purpose + ======= + + CUNGL2 generates an m-by-n complex matrix Q with orthonormal rows, + which is defined as the first m rows of a product of k elementary + reflectors of order n + + Q = H(k)' . . . H(2)' H(1)' + + as returned by CGELQF. + + Arguments + ========= + + M (input) INTEGER + The number of rows of the matrix Q. M >= 0. + + N (input) INTEGER + The number of columns of the matrix Q. N >= M. + + K (input) INTEGER + The number of elementary reflectors whose product defines the + matrix Q. M >= K >= 0. + + A (input/output) COMPLEX array, dimension (LDA,N) + On entry, the i-th row must contain the vector which defines + the elementary reflector H(i), for i = 1,2,...,k, as returned + by CGELQF in the first k rows of its array argument A. + On exit, the m by n matrix Q. + + LDA (input) INTEGER + The first dimension of the array A. LDA >= max(1,M). + + TAU (input) COMPLEX array, dimension (K) + TAU(i) must contain the scalar factor of the elementary + reflector H(i), as returned by CGELQF. + + WORK (workspace) COMPLEX array, dimension (M) + + INFO (output) INTEGER + = 0: successful exit + < 0: if INFO = -i, the i-th argument has an illegal value + + ===================================================================== + + + Test the input arguments +*/ + + /* Parameter adjustments */ + a_dim1 = *lda; + a_offset = 1 + a_dim1; + a -= a_offset; + --tau; + --work; + + /* Function Body */ + *info = 0; + if (*m < 0) { + *info = -1; + } else if (*n < *m) { + *info = -2; + } else if (*k < 0 || *k > *m) { + *info = -3; + } else if (*lda < max(1,*m)) { + *info = -5; + } + if (*info != 0) { + i__1 = -(*info); + xerbla_("CUNGL2", &i__1); + return 0; + } + +/* Quick return if possible */ + + if (*m <= 0) { + return 0; + } + + if (*k < *m) { + +/* Initialise rows k+1:m to rows of the unit matrix */ + + i__1 = *n; + for (j = 1; j <= i__1; ++j) { + i__2 = *m; + for (l = *k + 1; l <= i__2; ++l) { + i__3 = l + j * a_dim1; + a[i__3].r = 0.f, a[i__3].i = 0.f; +/* L10: */ + } + if (j > *k && j <= *m) { + i__2 = j + j * a_dim1; + a[i__2].r = 1.f, a[i__2].i = 0.f; + } +/* L20: */ + } + } + + for (i__ = *k; i__ >= 1; --i__) { + +/* Apply H(i)' to A(i:m,i:n) from the right */ + + if (i__ < *n) { + i__1 = *n - i__; + clacgv_(&i__1, &a[i__ + (i__ + 1) * a_dim1], lda); + if (i__ < *m) { + i__1 = i__ + i__ * a_dim1; + a[i__1].r = 1.f, a[i__1].i = 0.f; + i__1 = *m - i__; + i__2 = *n - i__ + 1; + r_cnjg(&q__1, &tau[i__]); + clarf_("Right", &i__1, &i__2, &a[i__ + i__ * a_dim1], lda, & + q__1, &a[i__ + 1 + i__ * a_dim1], lda, &work[1]); + } + i__1 = *n - i__; + i__2 = i__; + q__1.r = -tau[i__2].r, q__1.i = -tau[i__2].i; + cscal_(&i__1, &q__1, &a[i__ + (i__ + 1) * a_dim1], lda); + i__1 = *n - i__; + clacgv_(&i__1, &a[i__ + (i__ + 1) * a_dim1], lda); + } + i__1 = i__ + i__ * a_dim1; + r_cnjg(&q__2, &tau[i__]); + q__1.r = 1.f - q__2.r, q__1.i = 0.f - q__2.i; + a[i__1].r = q__1.r, a[i__1].i = q__1.i; + +/* Set A(i,1:i-1,i) to zero */ + + i__1 = i__ - 1; + for (l = 1; l <= i__1; ++l) { + i__2 = i__ + l * a_dim1; + a[i__2].r = 0.f, a[i__2].i = 0.f; +/* L30: */ + } +/* L40: */ + } + return 0; + +/* End of CUNGL2 */ + +} /* cungl2_ */ + +/* Subroutine */ int cunglq_(integer *m, integer *n, integer *k, complex *a, + integer *lda, complex *tau, complex *work, integer *lwork, integer * + info) +{ + /* System generated locals */ + integer a_dim1, a_offset, i__1, i__2, i__3, i__4; + + /* Local variables */ + static integer i__, j, l, ib, nb, ki, kk, nx, iws, nbmin, iinfo; + extern /* Subroutine */ int cungl2_(integer *, integer *, integer *, + complex *, integer *, complex *, complex *, integer *), clarfb_( + char *, char *, char *, char *, integer *, integer *, integer *, + complex *, integer *, complex *, integer *, complex *, integer *, + complex *, integer *), clarft_( + char *, char *, integer *, integer *, complex *, integer *, + complex *, complex *, integer *), xerbla_(char *, + integer *); + extern integer ilaenv_(integer *, char *, char *, integer *, integer *, + integer *, integer *, ftnlen, ftnlen); + static integer ldwork, lwkopt; + static logical lquery; + + +/* + -- LAPACK routine (version 3.0) -- + Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd., + Courant Institute, Argonne National Lab, and Rice University + June 30, 1999 + + + Purpose + ======= + + CUNGLQ generates an M-by-N complex matrix Q with orthonormal rows, + which is defined as the first M rows of a product of K elementary + reflectors of order N + + Q = H(k)' . . . H(2)' H(1)' + + as returned by CGELQF. + + Arguments + ========= + + M (input) INTEGER + The number of rows of the matrix Q. M >= 0. + + N (input) INTEGER + The number of columns of the matrix Q. N >= M. + + K (input) INTEGER + The number of elementary reflectors whose product defines the + matrix Q. M >= K >= 0. + + A (input/output) COMPLEX array, dimension (LDA,N) + On entry, the i-th row must contain the vector which defines + the elementary reflector H(i), for i = 1,2,...,k, as returned + by CGELQF in the first k rows of its array argument A. + On exit, the M-by-N matrix Q. + + LDA (input) INTEGER + The first dimension of the array A. LDA >= max(1,M). + + TAU (input) COMPLEX array, dimension (K) + TAU(i) must contain the scalar factor of the elementary + reflector H(i), as returned by CGELQF. + + WORK (workspace/output) COMPLEX array, dimension (LWORK) + On exit, if INFO = 0, WORK(1) returns the optimal LWORK. + + LWORK (input) INTEGER + The dimension of the array WORK. LWORK >= max(1,M). + For optimum performance LWORK >= M*NB, where NB is + the optimal blocksize. + + If LWORK = -1, then a workspace query is assumed; the routine + only calculates the optimal size of the WORK array, returns + this value as the first entry of the WORK array, and no error + message related to LWORK is issued by XERBLA. + + INFO (output) INTEGER + = 0: successful exit; + < 0: if INFO = -i, the i-th argument has an illegal value + + ===================================================================== + + + Test the input arguments +*/ + + /* Parameter adjustments */ + a_dim1 = *lda; + a_offset = 1 + a_dim1; + a -= a_offset; + --tau; + --work; + + /* Function Body */ + *info = 0; + nb = ilaenv_(&c__1, "CUNGLQ", " ", m, n, k, &c_n1, (ftnlen)6, (ftnlen)1); + lwkopt = max(1,*m) * nb; + work[1].r = (real) lwkopt, work[1].i = 0.f; + lquery = *lwork == -1; + if (*m < 0) { + *info = -1; + } else if (*n < *m) { + *info = -2; + } else if (*k < 0 || *k > *m) { + *info = -3; + } else if (*lda < max(1,*m)) { + *info = -5; + } else if (*lwork < max(1,*m) && ! lquery) { + *info = -8; + } + if (*info != 0) { + i__1 = -(*info); + xerbla_("CUNGLQ", &i__1); + return 0; + } else if (lquery) { + return 0; + } + +/* Quick return if possible */ + + if (*m <= 0) { + work[1].r = 1.f, work[1].i = 0.f; + return 0; + } + + nbmin = 2; + nx = 0; + iws = *m; + if (nb > 1 && nb < *k) { + +/* + Determine when to cross over from blocked to unblocked code. + + Computing MAX +*/ + i__1 = 0, i__2 = ilaenv_(&c__3, "CUNGLQ", " ", m, n, k, &c_n1, ( + ftnlen)6, (ftnlen)1); + nx = max(i__1,i__2); + if (nx < *k) { + +/* Determine if workspace is large enough for blocked code. */ + + ldwork = *m; + iws = ldwork * nb; + if (*lwork < iws) { + +/* + Not enough workspace to use optimal NB: reduce NB and + determine the minimum value of NB. +*/ + + nb = *lwork / ldwork; +/* Computing MAX */ + i__1 = 2, i__2 = ilaenv_(&c__2, "CUNGLQ", " ", m, n, k, &c_n1, + (ftnlen)6, (ftnlen)1); + nbmin = max(i__1,i__2); + } + } + } + + if (nb >= nbmin && nb < *k && nx < *k) { + +/* + Use blocked code after the last block. + The first kk rows are handled by the block method. +*/ + + ki = (*k - nx - 1) / nb * nb; +/* Computing MIN */ + i__1 = *k, i__2 = ki + nb; + kk = min(i__1,i__2); + +/* Set A(kk+1:m,1:kk) to zero. */ + + i__1 = kk; + for (j = 1; j <= i__1; ++j) { + i__2 = *m; + for (i__ = kk + 1; i__ <= i__2; ++i__) { + i__3 = i__ + j * a_dim1; + a[i__3].r = 0.f, a[i__3].i = 0.f; +/* L10: */ + } +/* L20: */ + } + } else { + kk = 0; + } + +/* Use unblocked code for the last or only block. */ + + if (kk < *m) { + i__1 = *m - kk; + i__2 = *n - kk; + i__3 = *k - kk; + cungl2_(&i__1, &i__2, &i__3, &a[kk + 1 + (kk + 1) * a_dim1], lda, & + tau[kk + 1], &work[1], &iinfo); + } + + if (kk > 0) { + +/* Use blocked code */ + + i__1 = -nb; + for (i__ = ki + 1; i__1 < 0 ? i__ >= 1 : i__ <= 1; i__ += i__1) { +/* Computing MIN */ + i__2 = nb, i__3 = *k - i__ + 1; + ib = min(i__2,i__3); + if (i__ + ib <= *m) { + +/* + Form the triangular factor of the block reflector + H = H(i) H(i+1) . . . H(i+ib-1) +*/ + + i__2 = *n - i__ + 1; + clarft_("Forward", "Rowwise", &i__2, &ib, &a[i__ + i__ * + a_dim1], lda, &tau[i__], &work[1], &ldwork); + +/* Apply H' to A(i+ib:m,i:n) from the right */ + + i__2 = *m - i__ - ib + 1; + i__3 = *n - i__ + 1; + clarfb_("Right", "Conjugate transpose", "Forward", "Rowwise", + &i__2, &i__3, &ib, &a[i__ + i__ * a_dim1], lda, &work[ + 1], &ldwork, &a[i__ + ib + i__ * a_dim1], lda, &work[ + ib + 1], &ldwork); + } + +/* Apply H' to columns i:n of current block */ + + i__2 = *n - i__ + 1; + cungl2_(&ib, &i__2, &ib, &a[i__ + i__ * a_dim1], lda, &tau[i__], & + work[1], &iinfo); + +/* Set columns 1:i-1 of current block to zero */ + + i__2 = i__ - 1; + for (j = 1; j <= i__2; ++j) { + i__3 = i__ + ib - 1; + for (l = i__; l <= i__3; ++l) { + i__4 = l + j * a_dim1; + a[i__4].r = 0.f, a[i__4].i = 0.f; +/* L30: */ + } +/* L40: */ + } +/* L50: */ + } + } + + work[1].r = (real) iws, work[1].i = 0.f; + return 0; + +/* End of CUNGLQ */ + +} /* cunglq_ */ + +/* Subroutine */ int cungqr_(integer *m, integer *n, integer *k, complex *a, + integer *lda, complex *tau, complex *work, integer *lwork, integer * + info) +{ + /* System generated locals */ + integer a_dim1, a_offset, i__1, i__2, i__3, i__4; + + /* Local variables */ + static integer i__, j, l, ib, nb, ki, kk, nx, iws, nbmin, iinfo; + extern /* Subroutine */ int cung2r_(integer *, integer *, integer *, + complex *, integer *, complex *, complex *, integer *), clarfb_( + char *, char *, char *, char *, integer *, integer *, integer *, + complex *, integer *, complex *, integer *, complex *, integer *, + complex *, integer *), clarft_( + char *, char *, integer *, integer *, complex *, integer *, + complex *, complex *, integer *), xerbla_(char *, + integer *); + extern integer ilaenv_(integer *, char *, char *, integer *, integer *, + integer *, integer *, ftnlen, ftnlen); + static integer ldwork, lwkopt; + static logical lquery; + + +/* + -- LAPACK routine (version 3.0) -- + Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd., + Courant Institute, Argonne National Lab, and Rice University + June 30, 1999 + + + Purpose + ======= + + CUNGQR generates an M-by-N complex matrix Q with orthonormal columns, + which is defined as the first N columns of a product of K elementary + reflectors of order M + + Q = H(1) H(2) . . . H(k) + + as returned by CGEQRF. + + Arguments + ========= + + M (input) INTEGER + The number of rows of the matrix Q. M >= 0. + + N (input) INTEGER + The number of columns of the matrix Q. M >= N >= 0. + + K (input) INTEGER + The number of elementary reflectors whose product defines the + matrix Q. N >= K >= 0. + + A (input/output) COMPLEX array, dimension (LDA,N) + On entry, the i-th column must contain the vector which + defines the elementary reflector H(i), for i = 1,2,...,k, as + returned by CGEQRF in the first k columns of its array + argument A. + On exit, the M-by-N matrix Q. + + LDA (input) INTEGER + The first dimension of the array A. LDA >= max(1,M). + + TAU (input) COMPLEX array, dimension (K) + TAU(i) must contain the scalar factor of the elementary + reflector H(i), as returned by CGEQRF. + + WORK (workspace/output) COMPLEX array, dimension (LWORK) + On exit, if INFO = 0, WORK(1) returns the optimal LWORK. + + LWORK (input) INTEGER + The dimension of the array WORK. LWORK >= max(1,N). + For optimum performance LWORK >= N*NB, where NB is the + optimal blocksize. + + If LWORK = -1, then a workspace query is assumed; the routine + only calculates the optimal size of the WORK array, returns + this value as the first entry of the WORK array, and no error + message related to LWORK is issued by XERBLA. + + INFO (output) INTEGER + = 0: successful exit + < 0: if INFO = -i, the i-th argument has an illegal value + + ===================================================================== + + + Test the input arguments +*/ + + /* Parameter adjustments */ + a_dim1 = *lda; + a_offset = 1 + a_dim1; + a -= a_offset; + --tau; + --work; + + /* Function Body */ + *info = 0; + nb = ilaenv_(&c__1, "CUNGQR", " ", m, n, k, &c_n1, (ftnlen)6, (ftnlen)1); + lwkopt = max(1,*n) * nb; + work[1].r = (real) lwkopt, work[1].i = 0.f; + lquery = *lwork == -1; + if (*m < 0) { + *info = -1; + } else if (*n < 0 || *n > *m) { + *info = -2; + } else if (*k < 0 || *k > *n) { + *info = -3; + } else if (*lda < max(1,*m)) { + *info = -5; + } else if (*lwork < max(1,*n) && ! lquery) { + *info = -8; + } + if (*info != 0) { + i__1 = -(*info); + xerbla_("CUNGQR", &i__1); + return 0; + } else if (lquery) { + return 0; + } + +/* Quick return if possible */ + + if (*n <= 0) { + work[1].r = 1.f, work[1].i = 0.f; + return 0; + } + + nbmin = 2; + nx = 0; + iws = *n; + if (nb > 1 && nb < *k) { + +/* + Determine when to cross over from blocked to unblocked code. + + Computing MAX +*/ + i__1 = 0, i__2 = ilaenv_(&c__3, "CUNGQR", " ", m, n, k, &c_n1, ( + ftnlen)6, (ftnlen)1); + nx = max(i__1,i__2); + if (nx < *k) { + +/* Determine if workspace is large enough for blocked code. */ + + ldwork = *n; + iws = ldwork * nb; + if (*lwork < iws) { + +/* + Not enough workspace to use optimal NB: reduce NB and + determine the minimum value of NB. +*/ + + nb = *lwork / ldwork; +/* Computing MAX */ + i__1 = 2, i__2 = ilaenv_(&c__2, "CUNGQR", " ", m, n, k, &c_n1, + (ftnlen)6, (ftnlen)1); + nbmin = max(i__1,i__2); + } + } + } + + if (nb >= nbmin && nb < *k && nx < *k) { + +/* + Use blocked code after the last block. + The first kk columns are handled by the block method. +*/ + + ki = (*k - nx - 1) / nb * nb; +/* Computing MIN */ + i__1 = *k, i__2 = ki + nb; + kk = min(i__1,i__2); + +/* Set A(1:kk,kk+1:n) to zero. */ + + i__1 = *n; + for (j = kk + 1; j <= i__1; ++j) { + i__2 = kk; + for (i__ = 1; i__ <= i__2; ++i__) { + i__3 = i__ + j * a_dim1; + a[i__3].r = 0.f, a[i__3].i = 0.f; +/* L10: */ + } +/* L20: */ + } + } else { + kk = 0; + } + +/* Use unblocked code for the last or only block. */ + + if (kk < *n) { + i__1 = *m - kk; + i__2 = *n - kk; + i__3 = *k - kk; + cung2r_(&i__1, &i__2, &i__3, &a[kk + 1 + (kk + 1) * a_dim1], lda, & + tau[kk + 1], &work[1], &iinfo); + } + + if (kk > 0) { + +/* Use blocked code */ + + i__1 = -nb; + for (i__ = ki + 1; i__1 < 0 ? i__ >= 1 : i__ <= 1; i__ += i__1) { +/* Computing MIN */ + i__2 = nb, i__3 = *k - i__ + 1; + ib = min(i__2,i__3); + if (i__ + ib <= *n) { + +/* + Form the triangular factor of the block reflector + H = H(i) H(i+1) . . . H(i+ib-1) +*/ + + i__2 = *m - i__ + 1; + clarft_("Forward", "Columnwise", &i__2, &ib, &a[i__ + i__ * + a_dim1], lda, &tau[i__], &work[1], &ldwork); + +/* Apply H to A(i:m,i+ib:n) from the left */ + + i__2 = *m - i__ + 1; + i__3 = *n - i__ - ib + 1; + clarfb_("Left", "No transpose", "Forward", "Columnwise", & + i__2, &i__3, &ib, &a[i__ + i__ * a_dim1], lda, &work[ + 1], &ldwork, &a[i__ + (i__ + ib) * a_dim1], lda, & + work[ib + 1], &ldwork); + } + +/* Apply H to rows i:m of current block */ + + i__2 = *m - i__ + 1; + cung2r_(&i__2, &ib, &ib, &a[i__ + i__ * a_dim1], lda, &tau[i__], & + work[1], &iinfo); + +/* Set rows 1:i-1 of current block to zero */ + + i__2 = i__ + ib - 1; + for (j = i__; j <= i__2; ++j) { + i__3 = i__ - 1; + for (l = 1; l <= i__3; ++l) { + i__4 = l + j * a_dim1; + a[i__4].r = 0.f, a[i__4].i = 0.f; +/* L30: */ + } +/* L40: */ + } +/* L50: */ + } + } + + work[1].r = (real) iws, work[1].i = 0.f; + return 0; + +/* End of CUNGQR */ + +} /* cungqr_ */ + +/* Subroutine */ int cunm2l_(char *side, char *trans, integer *m, integer *n, + integer *k, complex *a, integer *lda, complex *tau, complex *c__, + integer *ldc, complex *work, integer *info) +{ + /* System generated locals */ + integer a_dim1, a_offset, c_dim1, c_offset, i__1, i__2, i__3; + complex q__1; + + /* Builtin functions */ + void r_cnjg(complex *, complex *); + + /* Local variables */ + static integer i__, i1, i2, i3, mi, ni, nq; + static complex aii; + static logical left; + static complex taui; + extern /* Subroutine */ int clarf_(char *, integer *, integer *, complex * + , integer *, complex *, complex *, integer *, complex *); + extern logical lsame_(char *, char *); + extern /* Subroutine */ int xerbla_(char *, integer *); + static logical notran; + + +/* + -- LAPACK routine (version 3.0) -- + Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd., + Courant Institute, Argonne National Lab, and Rice University + September 30, 1994 + + + Purpose + ======= + + CUNM2L overwrites the general complex m-by-n matrix C with + + Q * C if SIDE = 'L' and TRANS = 'N', or + + Q'* C if SIDE = 'L' and TRANS = 'C', or + + C * Q if SIDE = 'R' and TRANS = 'N', or + + C * Q' if SIDE = 'R' and TRANS = 'C', + + where Q is a complex unitary matrix defined as the product of k + elementary reflectors + + Q = H(k) . . . H(2) H(1) + + as returned by CGEQLF. Q is of order m if SIDE = 'L' and of order n + if SIDE = 'R'. + + Arguments + ========= + + SIDE (input) CHARACTER*1 + = 'L': apply Q or Q' from the Left + = 'R': apply Q or Q' from the Right + + TRANS (input) CHARACTER*1 + = 'N': apply Q (No transpose) + = 'C': apply Q' (Conjugate transpose) + + M (input) INTEGER + The number of rows of the matrix C. M >= 0. + + N (input) INTEGER + The number of columns of the matrix C. N >= 0. + + K (input) INTEGER + The number of elementary reflectors whose product defines + the matrix Q. + If SIDE = 'L', M >= K >= 0; + if SIDE = 'R', N >= K >= 0. + + A (input) COMPLEX array, dimension (LDA,K) + The i-th column must contain the vector which defines the + elementary reflector H(i), for i = 1,2,...,k, as returned by + CGEQLF in the last k columns of its array argument A. + A is modified by the routine but restored on exit. + + LDA (input) INTEGER + The leading dimension of the array A. + If SIDE = 'L', LDA >= max(1,M); + if SIDE = 'R', LDA >= max(1,N). + + TAU (input) COMPLEX array, dimension (K) + TAU(i) must contain the scalar factor of the elementary + reflector H(i), as returned by CGEQLF. + + C (input/output) COMPLEX array, dimension (LDC,N) + On entry, the m-by-n matrix C. + On exit, C is overwritten by Q*C or Q'*C or C*Q' or C*Q. + + LDC (input) INTEGER + The leading dimension of the array C. LDC >= max(1,M). + + WORK (workspace) COMPLEX array, dimension + (N) if SIDE = 'L', + (M) if SIDE = 'R' + + INFO (output) INTEGER + = 0: successful exit + < 0: if INFO = -i, the i-th argument had an illegal value + + ===================================================================== + + + Test the input arguments +*/ + + /* Parameter adjustments */ + a_dim1 = *lda; + a_offset = 1 + a_dim1; + a -= a_offset; + --tau; + c_dim1 = *ldc; + c_offset = 1 + c_dim1; + c__ -= c_offset; + --work; + + /* Function Body */ + *info = 0; + left = lsame_(side, "L"); + notran = lsame_(trans, "N"); + +/* NQ is the order of Q */ + + if (left) { + nq = *m; + } else { + nq = *n; + } + if (! left && ! lsame_(side, "R")) { + *info = -1; + } else if (! notran && ! lsame_(trans, "C")) { + *info = -2; + } else if (*m < 0) { + *info = -3; + } else if (*n < 0) { + *info = -4; + } else if (*k < 0 || *k > nq) { + *info = -5; + } else if (*lda < max(1,nq)) { + *info = -7; + } else if (*ldc < max(1,*m)) { + *info = -10; + } + if (*info != 0) { + i__1 = -(*info); + xerbla_("CUNM2L", &i__1); + return 0; + } + +/* Quick return if possible */ + + if (*m == 0 || *n == 0 || *k == 0) { + return 0; + } + + if (left && notran || ! left && ! notran) { + i1 = 1; + i2 = *k; + i3 = 1; + } else { + i1 = *k; + i2 = 1; + i3 = -1; + } + + if (left) { + ni = *n; + } else { + mi = *m; + } + + i__1 = i2; + i__2 = i3; + for (i__ = i1; i__2 < 0 ? i__ >= i__1 : i__ <= i__1; i__ += i__2) { + if (left) { + +/* H(i) or H(i)' is applied to C(1:m-k+i,1:n) */ + + mi = *m - *k + i__; + } else { + +/* H(i) or H(i)' is applied to C(1:m,1:n-k+i) */ + + ni = *n - *k + i__; + } + +/* Apply H(i) or H(i)' */ + + if (notran) { + i__3 = i__; + taui.r = tau[i__3].r, taui.i = tau[i__3].i; + } else { + r_cnjg(&q__1, &tau[i__]); + taui.r = q__1.r, taui.i = q__1.i; + } + i__3 = nq - *k + i__ + i__ * a_dim1; + aii.r = a[i__3].r, aii.i = a[i__3].i; + i__3 = nq - *k + i__ + i__ * a_dim1; + a[i__3].r = 1.f, a[i__3].i = 0.f; + clarf_(side, &mi, &ni, &a[i__ * a_dim1 + 1], &c__1, &taui, &c__[ + c_offset], ldc, &work[1]); + i__3 = nq - *k + i__ + i__ * a_dim1; + a[i__3].r = aii.r, a[i__3].i = aii.i; +/* L10: */ + } + return 0; + +/* End of CUNM2L */ + +} /* cunm2l_ */ + +/* Subroutine */ int cunm2r_(char *side, char *trans, integer *m, integer *n, + integer *k, complex *a, integer *lda, complex *tau, complex *c__, + integer *ldc, complex *work, integer *info) +{ + /* System generated locals */ + integer a_dim1, a_offset, c_dim1, c_offset, i__1, i__2, i__3; + complex q__1; + + /* Builtin functions */ + void r_cnjg(complex *, complex *); + + /* Local variables */ + static integer i__, i1, i2, i3, ic, jc, mi, ni, nq; + static complex aii; + static logical left; + static complex taui; + extern /* Subroutine */ int clarf_(char *, integer *, integer *, complex * + , integer *, complex *, complex *, integer *, complex *); + extern logical lsame_(char *, char *); + extern /* Subroutine */ int xerbla_(char *, integer *); + static logical notran; + + +/* + -- LAPACK routine (version 3.0) -- + Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd., + Courant Institute, Argonne National Lab, and Rice University + September 30, 1994 + + + Purpose + ======= + + CUNM2R overwrites the general complex m-by-n matrix C with + + Q * C if SIDE = 'L' and TRANS = 'N', or + + Q'* C if SIDE = 'L' and TRANS = 'C', or + + C * Q if SIDE = 'R' and TRANS = 'N', or + + C * Q' if SIDE = 'R' and TRANS = 'C', + + where Q is a complex unitary matrix defined as the product of k + elementary reflectors + + Q = H(1) H(2) . . . H(k) + + as returned by CGEQRF. Q is of order m if SIDE = 'L' and of order n + if SIDE = 'R'. + + Arguments + ========= + + SIDE (input) CHARACTER*1 + = 'L': apply Q or Q' from the Left + = 'R': apply Q or Q' from the Right + + TRANS (input) CHARACTER*1 + = 'N': apply Q (No transpose) + = 'C': apply Q' (Conjugate transpose) + + M (input) INTEGER + The number of rows of the matrix C. M >= 0. + + N (input) INTEGER + The number of columns of the matrix C. N >= 0. + + K (input) INTEGER + The number of elementary reflectors whose product defines + the matrix Q. + If SIDE = 'L', M >= K >= 0; + if SIDE = 'R', N >= K >= 0. + + A (input) COMPLEX array, dimension (LDA,K) + The i-th column must contain the vector which defines the + elementary reflector H(i), for i = 1,2,...,k, as returned by + CGEQRF in the first k columns of its array argument A. + A is modified by the routine but restored on exit. + + LDA (input) INTEGER + The leading dimension of the array A. + If SIDE = 'L', LDA >= max(1,M); + if SIDE = 'R', LDA >= max(1,N). + + TAU (input) COMPLEX array, dimension (K) + TAU(i) must contain the scalar factor of the elementary + reflector H(i), as returned by CGEQRF. + + C (input/output) COMPLEX array, dimension (LDC,N) + On entry, the m-by-n matrix C. + On exit, C is overwritten by Q*C or Q'*C or C*Q' or C*Q. + + LDC (input) INTEGER + The leading dimension of the array C. LDC >= max(1,M). + + WORK (workspace) COMPLEX array, dimension + (N) if SIDE = 'L', + (M) if SIDE = 'R' + + INFO (output) INTEGER + = 0: successful exit + < 0: if INFO = -i, the i-th argument had an illegal value + + ===================================================================== + + + Test the input arguments +*/ + + /* Parameter adjustments */ + a_dim1 = *lda; + a_offset = 1 + a_dim1; + a -= a_offset; + --tau; + c_dim1 = *ldc; + c_offset = 1 + c_dim1; + c__ -= c_offset; + --work; + + /* Function Body */ + *info = 0; + left = lsame_(side, "L"); + notran = lsame_(trans, "N"); + +/* NQ is the order of Q */ + + if (left) { + nq = *m; + } else { + nq = *n; + } + if (! left && ! lsame_(side, "R")) { + *info = -1; + } else if (! notran && ! lsame_(trans, "C")) { + *info = -2; + } else if (*m < 0) { + *info = -3; + } else if (*n < 0) { + *info = -4; + } else if (*k < 0 || *k > nq) { + *info = -5; + } else if (*lda < max(1,nq)) { + *info = -7; + } else if (*ldc < max(1,*m)) { + *info = -10; + } + if (*info != 0) { + i__1 = -(*info); + xerbla_("CUNM2R", &i__1); + return 0; + } + +/* Quick return if possible */ + + if (*m == 0 || *n == 0 || *k == 0) { + return 0; + } + + if (left && ! notran || ! left && notran) { + i1 = 1; + i2 = *k; + i3 = 1; + } else { + i1 = *k; + i2 = 1; + i3 = -1; + } + + if (left) { + ni = *n; + jc = 1; + } else { + mi = *m; + ic = 1; + } + + i__1 = i2; + i__2 = i3; + for (i__ = i1; i__2 < 0 ? i__ >= i__1 : i__ <= i__1; i__ += i__2) { + if (left) { + +/* H(i) or H(i)' is applied to C(i:m,1:n) */ + + mi = *m - i__ + 1; + ic = i__; + } else { + +/* H(i) or H(i)' is applied to C(1:m,i:n) */ + + ni = *n - i__ + 1; + jc = i__; + } + +/* Apply H(i) or H(i)' */ + + if (notran) { + i__3 = i__; + taui.r = tau[i__3].r, taui.i = tau[i__3].i; + } else { + r_cnjg(&q__1, &tau[i__]); + taui.r = q__1.r, taui.i = q__1.i; + } + i__3 = i__ + i__ * a_dim1; + aii.r = a[i__3].r, aii.i = a[i__3].i; + i__3 = i__ + i__ * a_dim1; + a[i__3].r = 1.f, a[i__3].i = 0.f; + clarf_(side, &mi, &ni, &a[i__ + i__ * a_dim1], &c__1, &taui, &c__[ic + + jc * c_dim1], ldc, &work[1]); + i__3 = i__ + i__ * a_dim1; + a[i__3].r = aii.r, a[i__3].i = aii.i; +/* L10: */ + } + return 0; + +/* End of CUNM2R */ + +} /* cunm2r_ */ + +/* Subroutine */ int cunmbr_(char *vect, char *side, char *trans, integer *m, + integer *n, integer *k, complex *a, integer *lda, complex *tau, + complex *c__, integer *ldc, complex *work, integer *lwork, integer * + info) +{ + /* System generated locals */ + address a__1[2]; + integer a_dim1, a_offset, c_dim1, c_offset, i__1, i__2, i__3[2]; + char ch__1[2]; + + /* Builtin functions */ + /* Subroutine */ int s_cat(char *, char **, integer *, integer *, ftnlen); + + /* Local variables */ + static integer i1, i2, nb, mi, ni, nq, nw; + static logical left; + extern logical lsame_(char *, char *); + static integer iinfo; + extern /* Subroutine */ int xerbla_(char *, integer *); + extern integer ilaenv_(integer *, char *, char *, integer *, integer *, + integer *, integer *, ftnlen, ftnlen); + extern /* Subroutine */ int cunmlq_(char *, char *, integer *, integer *, + integer *, complex *, integer *, complex *, complex *, integer *, + complex *, integer *, integer *); + static logical notran; + extern /* Subroutine */ int cunmqr_(char *, char *, integer *, integer *, + integer *, complex *, integer *, complex *, complex *, integer *, + complex *, integer *, integer *); + static logical applyq; + static char transt[1]; + static integer lwkopt; + static logical lquery; + + +/* + -- LAPACK routine (version 3.0) -- + Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd., + Courant Institute, Argonne National Lab, and Rice University + June 30, 1999 + + + Purpose + ======= + + If VECT = 'Q', CUNMBR overwrites the general complex M-by-N matrix C + with + SIDE = 'L' SIDE = 'R' + TRANS = 'N': Q * C C * Q + TRANS = 'C': Q**H * C C * Q**H + + If VECT = 'P', CUNMBR overwrites the general complex M-by-N matrix C + with + SIDE = 'L' SIDE = 'R' + TRANS = 'N': P * C C * P + TRANS = 'C': P**H * C C * P**H + + Here Q and P**H are the unitary matrices determined by CGEBRD when + reducing a complex matrix A to bidiagonal form: A = Q * B * P**H. Q + and P**H are defined as products of elementary reflectors H(i) and + G(i) respectively. + + Let nq = m if SIDE = 'L' and nq = n if SIDE = 'R'. Thus nq is the + order of the unitary matrix Q or P**H that is applied. + + If VECT = 'Q', A is assumed to have been an NQ-by-K matrix: + if nq >= k, Q = H(1) H(2) . . . H(k); + if nq < k, Q = H(1) H(2) . . . H(nq-1). + + If VECT = 'P', A is assumed to have been a K-by-NQ matrix: + if k < nq, P = G(1) G(2) . . . G(k); + if k >= nq, P = G(1) G(2) . . . G(nq-1). + + Arguments + ========= + + VECT (input) CHARACTER*1 + = 'Q': apply Q or Q**H; + = 'P': apply P or P**H. + + SIDE (input) CHARACTER*1 + = 'L': apply Q, Q**H, P or P**H from the Left; + = 'R': apply Q, Q**H, P or P**H from the Right. + + TRANS (input) CHARACTER*1 + = 'N': No transpose, apply Q or P; + = 'C': Conjugate transpose, apply Q**H or P**H. + + M (input) INTEGER + The number of rows of the matrix C. M >= 0. + + N (input) INTEGER + The number of columns of the matrix C. N >= 0. + + K (input) INTEGER + If VECT = 'Q', the number of columns in the original + matrix reduced by CGEBRD. + If VECT = 'P', the number of rows in the original + matrix reduced by CGEBRD. + K >= 0. + + A (input) COMPLEX array, dimension + (LDA,min(nq,K)) if VECT = 'Q' + (LDA,nq) if VECT = 'P' + The vectors which define the elementary reflectors H(i) and + G(i), whose products determine the matrices Q and P, as + returned by CGEBRD. + + LDA (input) INTEGER + The leading dimension of the array A. + If VECT = 'Q', LDA >= max(1,nq); + if VECT = 'P', LDA >= max(1,min(nq,K)). + + TAU (input) COMPLEX array, dimension (min(nq,K)) + TAU(i) must contain the scalar factor of the elementary + reflector H(i) or G(i) which determines Q or P, as returned + by CGEBRD in the array argument TAUQ or TAUP. + + C (input/output) COMPLEX array, dimension (LDC,N) + On entry, the M-by-N matrix C. + On exit, C is overwritten by Q*C or Q**H*C or C*Q**H or C*Q + or P*C or P**H*C or C*P or C*P**H. + + LDC (input) INTEGER + The leading dimension of the array C. LDC >= max(1,M). + + WORK (workspace/output) COMPLEX array, dimension (LWORK) + On exit, if INFO = 0, WORK(1) returns the optimal LWORK. + + LWORK (input) INTEGER + The dimension of the array WORK. + If SIDE = 'L', LWORK >= max(1,N); + if SIDE = 'R', LWORK >= max(1,M). + For optimum performance LWORK >= N*NB if SIDE = 'L', and + LWORK >= M*NB if SIDE = 'R', where NB is the optimal + blocksize. + + If LWORK = -1, then a workspace query is assumed; the routine + only calculates the optimal size of the WORK array, returns + this value as the first entry of the WORK array, and no error + message related to LWORK is issued by XERBLA. + + INFO (output) INTEGER + = 0: successful exit + < 0: if INFO = -i, the i-th argument had an illegal value + + ===================================================================== + + + Test the input arguments +*/ + + /* Parameter adjustments */ + a_dim1 = *lda; + a_offset = 1 + a_dim1; + a -= a_offset; + --tau; + c_dim1 = *ldc; + c_offset = 1 + c_dim1; + c__ -= c_offset; + --work; + + /* Function Body */ + *info = 0; + applyq = lsame_(vect, "Q"); + left = lsame_(side, "L"); + notran = lsame_(trans, "N"); + lquery = *lwork == -1; + +/* NQ is the order of Q or P and NW is the minimum dimension of WORK */ + + if (left) { + nq = *m; + nw = *n; + } else { + nq = *n; + nw = *m; + } + if (! applyq && ! lsame_(vect, "P")) { + *info = -1; + } else if (! left && ! lsame_(side, "R")) { + *info = -2; + } else if (! notran && ! lsame_(trans, "C")) { + *info = -3; + } else if (*m < 0) { + *info = -4; + } else if (*n < 0) { + *info = -5; + } else if (*k < 0) { + *info = -6; + } else /* if(complicated condition) */ { +/* Computing MAX */ + i__1 = 1, i__2 = min(nq,*k); + if (applyq && *lda < max(1,nq) || ! applyq && *lda < max(i__1,i__2)) { + *info = -8; + } else if (*ldc < max(1,*m)) { + *info = -11; + } else if (*lwork < max(1,nw) && ! lquery) { + *info = -13; + } + } + + if (*info == 0) { + if (applyq) { + if (left) { +/* Writing concatenation */ + i__3[0] = 1, a__1[0] = side; + i__3[1] = 1, a__1[1] = trans; + s_cat(ch__1, a__1, i__3, &c__2, (ftnlen)2); + i__1 = *m - 1; + i__2 = *m - 1; + nb = ilaenv_(&c__1, "CUNMQR", ch__1, &i__1, n, &i__2, &c_n1, ( + ftnlen)6, (ftnlen)2); + } else { +/* Writing concatenation */ + i__3[0] = 1, a__1[0] = side; + i__3[1] = 1, a__1[1] = trans; + s_cat(ch__1, a__1, i__3, &c__2, (ftnlen)2); + i__1 = *n - 1; + i__2 = *n - 1; + nb = ilaenv_(&c__1, "CUNMQR", ch__1, m, &i__1, &i__2, &c_n1, ( + ftnlen)6, (ftnlen)2); + } + } else { + if (left) { +/* Writing concatenation */ + i__3[0] = 1, a__1[0] = side; + i__3[1] = 1, a__1[1] = trans; + s_cat(ch__1, a__1, i__3, &c__2, (ftnlen)2); + i__1 = *m - 1; + i__2 = *m - 1; + nb = ilaenv_(&c__1, "CUNMLQ", ch__1, &i__1, n, &i__2, &c_n1, ( + ftnlen)6, (ftnlen)2); + } else { +/* Writing concatenation */ + i__3[0] = 1, a__1[0] = side; + i__3[1] = 1, a__1[1] = trans; + s_cat(ch__1, a__1, i__3, &c__2, (ftnlen)2); + i__1 = *n - 1; + i__2 = *n - 1; + nb = ilaenv_(&c__1, "CUNMLQ", ch__1, m, &i__1, &i__2, &c_n1, ( + ftnlen)6, (ftnlen)2); + } + } + lwkopt = max(1,nw) * nb; + work[1].r = (real) lwkopt, work[1].i = 0.f; + } + + if (*info != 0) { + i__1 = -(*info); + xerbla_("CUNMBR", &i__1); + return 0; + } else if (lquery) { + } + +/* Quick return if possible */ + + work[1].r = 1.f, work[1].i = 0.f; + if (*m == 0 || *n == 0) { + return 0; + } + + if (applyq) { + +/* Apply Q */ + + if (nq >= *k) { + +/* Q was determined by a call to CGEBRD with nq >= k */ + + cunmqr_(side, trans, m, n, k, &a[a_offset], lda, &tau[1], &c__[ + c_offset], ldc, &work[1], lwork, &iinfo); + } else if (nq > 1) { + +/* Q was determined by a call to CGEBRD with nq < k */ + + if (left) { + mi = *m - 1; + ni = *n; + i1 = 2; + i2 = 1; + } else { + mi = *m; + ni = *n - 1; + i1 = 1; + i2 = 2; + } + i__1 = nq - 1; + cunmqr_(side, trans, &mi, &ni, &i__1, &a[a_dim1 + 2], lda, &tau[1] + , &c__[i1 + i2 * c_dim1], ldc, &work[1], lwork, &iinfo); + } + } else { + +/* Apply P */ + + if (notran) { + *(unsigned char *)transt = 'C'; + } else { + *(unsigned char *)transt = 'N'; + } + if (nq > *k) { + +/* P was determined by a call to CGEBRD with nq > k */ + + cunmlq_(side, transt, m, n, k, &a[a_offset], lda, &tau[1], &c__[ + c_offset], ldc, &work[1], lwork, &iinfo); + } else if (nq > 1) { + +/* P was determined by a call to CGEBRD with nq <= k */ + + if (left) { + mi = *m - 1; + ni = *n; + i1 = 2; + i2 = 1; + } else { + mi = *m; + ni = *n - 1; + i1 = 1; + i2 = 2; + } + i__1 = nq - 1; + cunmlq_(side, transt, &mi, &ni, &i__1, &a[(a_dim1 << 1) + 1], lda, + &tau[1], &c__[i1 + i2 * c_dim1], ldc, &work[1], lwork, & + iinfo); + } + } + work[1].r = (real) lwkopt, work[1].i = 0.f; + return 0; + +/* End of CUNMBR */ + +} /* cunmbr_ */ + +/* Subroutine */ int cunml2_(char *side, char *trans, integer *m, integer *n, + integer *k, complex *a, integer *lda, complex *tau, complex *c__, + integer *ldc, complex *work, integer *info) +{ + /* System generated locals */ + integer a_dim1, a_offset, c_dim1, c_offset, i__1, i__2, i__3; + complex q__1; + + /* Builtin functions */ + void r_cnjg(complex *, complex *); + + /* Local variables */ + static integer i__, i1, i2, i3, ic, jc, mi, ni, nq; + static complex aii; + static logical left; + static complex taui; + extern /* Subroutine */ int clarf_(char *, integer *, integer *, complex * + , integer *, complex *, complex *, integer *, complex *); + extern logical lsame_(char *, char *); + extern /* Subroutine */ int clacgv_(integer *, complex *, integer *), + xerbla_(char *, integer *); + static logical notran; + + +/* + -- LAPACK routine (version 3.0) -- + Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd., + Courant Institute, Argonne National Lab, and Rice University + September 30, 1994 + + + Purpose + ======= + + CUNML2 overwrites the general complex m-by-n matrix C with + + Q * C if SIDE = 'L' and TRANS = 'N', or + + Q'* C if SIDE = 'L' and TRANS = 'C', or + + C * Q if SIDE = 'R' and TRANS = 'N', or + + C * Q' if SIDE = 'R' and TRANS = 'C', + + where Q is a complex unitary matrix defined as the product of k + elementary reflectors + + Q = H(k)' . . . H(2)' H(1)' + + as returned by CGELQF. Q is of order m if SIDE = 'L' and of order n + if SIDE = 'R'. + + Arguments + ========= + + SIDE (input) CHARACTER*1 + = 'L': apply Q or Q' from the Left + = 'R': apply Q or Q' from the Right + + TRANS (input) CHARACTER*1 + = 'N': apply Q (No transpose) + = 'C': apply Q' (Conjugate transpose) + + M (input) INTEGER + The number of rows of the matrix C. M >= 0. + + N (input) INTEGER + The number of columns of the matrix C. N >= 0. + + K (input) INTEGER + The number of elementary reflectors whose product defines + the matrix Q. + If SIDE = 'L', M >= K >= 0; + if SIDE = 'R', N >= K >= 0. + + A (input) COMPLEX array, dimension + (LDA,M) if SIDE = 'L', + (LDA,N) if SIDE = 'R' + The i-th row must contain the vector which defines the + elementary reflector H(i), for i = 1,2,...,k, as returned by + CGELQF in the first k rows of its array argument A. + A is modified by the routine but restored on exit. + + LDA (input) INTEGER + The leading dimension of the array A. LDA >= max(1,K). + + TAU (input) COMPLEX array, dimension (K) + TAU(i) must contain the scalar factor of the elementary + reflector H(i), as returned by CGELQF. + + C (input/output) COMPLEX array, dimension (LDC,N) + On entry, the m-by-n matrix C. + On exit, C is overwritten by Q*C or Q'*C or C*Q' or C*Q. + + LDC (input) INTEGER + The leading dimension of the array C. LDC >= max(1,M). + + WORK (workspace) COMPLEX array, dimension + (N) if SIDE = 'L', + (M) if SIDE = 'R' + + INFO (output) INTEGER + = 0: successful exit + < 0: if INFO = -i, the i-th argument had an illegal value + + ===================================================================== + + + Test the input arguments +*/ + + /* Parameter adjustments */ + a_dim1 = *lda; + a_offset = 1 + a_dim1; + a -= a_offset; + --tau; + c_dim1 = *ldc; + c_offset = 1 + c_dim1; + c__ -= c_offset; + --work; + + /* Function Body */ + *info = 0; + left = lsame_(side, "L"); + notran = lsame_(trans, "N"); + +/* NQ is the order of Q */ + + if (left) { + nq = *m; + } else { + nq = *n; + } + if (! left && ! lsame_(side, "R")) { + *info = -1; + } else if (! notran && ! lsame_(trans, "C")) { + *info = -2; + } else if (*m < 0) { + *info = -3; + } else if (*n < 0) { + *info = -4; + } else if (*k < 0 || *k > nq) { + *info = -5; + } else if (*lda < max(1,*k)) { + *info = -7; + } else if (*ldc < max(1,*m)) { + *info = -10; + } + if (*info != 0) { + i__1 = -(*info); + xerbla_("CUNML2", &i__1); + return 0; + } + +/* Quick return if possible */ + + if (*m == 0 || *n == 0 || *k == 0) { + return 0; + } + + if (left && notran || ! left && ! notran) { + i1 = 1; + i2 = *k; + i3 = 1; + } else { + i1 = *k; + i2 = 1; + i3 = -1; + } + + if (left) { + ni = *n; + jc = 1; + } else { + mi = *m; + ic = 1; + } + + i__1 = i2; + i__2 = i3; + for (i__ = i1; i__2 < 0 ? i__ >= i__1 : i__ <= i__1; i__ += i__2) { + if (left) { + +/* H(i) or H(i)' is applied to C(i:m,1:n) */ + + mi = *m - i__ + 1; + ic = i__; + } else { + +/* H(i) or H(i)' is applied to C(1:m,i:n) */ + + ni = *n - i__ + 1; + jc = i__; + } + +/* Apply H(i) or H(i)' */ + + if (notran) { + r_cnjg(&q__1, &tau[i__]); + taui.r = q__1.r, taui.i = q__1.i; + } else { + i__3 = i__; + taui.r = tau[i__3].r, taui.i = tau[i__3].i; + } + if (i__ < nq) { + i__3 = nq - i__; + clacgv_(&i__3, &a[i__ + (i__ + 1) * a_dim1], lda); + } + i__3 = i__ + i__ * a_dim1; + aii.r = a[i__3].r, aii.i = a[i__3].i; + i__3 = i__ + i__ * a_dim1; + a[i__3].r = 1.f, a[i__3].i = 0.f; + clarf_(side, &mi, &ni, &a[i__ + i__ * a_dim1], lda, &taui, &c__[ic + + jc * c_dim1], ldc, &work[1]); + i__3 = i__ + i__ * a_dim1; + a[i__3].r = aii.r, a[i__3].i = aii.i; + if (i__ < nq) { + i__3 = nq - i__; + clacgv_(&i__3, &a[i__ + (i__ + 1) * a_dim1], lda); + } +/* L10: */ + } + return 0; + +/* End of CUNML2 */ + +} /* cunml2_ */ + +/* Subroutine */ int cunmlq_(char *side, char *trans, integer *m, integer *n, + integer *k, complex *a, integer *lda, complex *tau, complex *c__, + integer *ldc, complex *work, integer *lwork, integer *info) +{ + /* System generated locals */ + address a__1[2]; + integer a_dim1, a_offset, c_dim1, c_offset, i__1, i__2, i__3[2], i__4, + i__5; + char ch__1[2]; + + /* Builtin functions */ + /* Subroutine */ int s_cat(char *, char **, integer *, integer *, ftnlen); + + /* Local variables */ + static integer i__; + static complex t[4160] /* was [65][64] */; + static integer i1, i2, i3, ib, ic, jc, nb, mi, ni, nq, nw, iws; + static logical left; + extern logical lsame_(char *, char *); + static integer nbmin, iinfo; + extern /* Subroutine */ int cunml2_(char *, char *, integer *, integer *, + integer *, complex *, integer *, complex *, complex *, integer *, + complex *, integer *), clarfb_(char *, char *, + char *, char *, integer *, integer *, integer *, complex *, + integer *, complex *, integer *, complex *, integer *, complex *, + integer *), clarft_(char *, char * + , integer *, integer *, complex *, integer *, complex *, complex * + , integer *), xerbla_(char *, integer *); + extern integer ilaenv_(integer *, char *, char *, integer *, integer *, + integer *, integer *, ftnlen, ftnlen); + static logical notran; + static integer ldwork; + static char transt[1]; + static integer lwkopt; + static logical lquery; + + +/* + -- LAPACK routine (version 3.0) -- + Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd., + Courant Institute, Argonne National Lab, and Rice University + June 30, 1999 + + + Purpose + ======= + + CUNMLQ overwrites the general complex M-by-N matrix C with + + SIDE = 'L' SIDE = 'R' + TRANS = 'N': Q * C C * Q + TRANS = 'C': Q**H * C C * Q**H + + where Q is a complex unitary matrix defined as the product of k + elementary reflectors + + Q = H(k)' . . . H(2)' H(1)' + + as returned by CGELQF. Q is of order M if SIDE = 'L' and of order N + if SIDE = 'R'. + + Arguments + ========= + + SIDE (input) CHARACTER*1 + = 'L': apply Q or Q**H from the Left; + = 'R': apply Q or Q**H from the Right. + + TRANS (input) CHARACTER*1 + = 'N': No transpose, apply Q; + = 'C': Conjugate transpose, apply Q**H. + + M (input) INTEGER + The number of rows of the matrix C. M >= 0. + + N (input) INTEGER + The number of columns of the matrix C. N >= 0. + + K (input) INTEGER + The number of elementary reflectors whose product defines + the matrix Q. + If SIDE = 'L', M >= K >= 0; + if SIDE = 'R', N >= K >= 0. + + A (input) COMPLEX array, dimension + (LDA,M) if SIDE = 'L', + (LDA,N) if SIDE = 'R' + The i-th row must contain the vector which defines the + elementary reflector H(i), for i = 1,2,...,k, as returned by + CGELQF in the first k rows of its array argument A. + A is modified by the routine but restored on exit. + + LDA (input) INTEGER + The leading dimension of the array A. LDA >= max(1,K). + + TAU (input) COMPLEX array, dimension (K) + TAU(i) must contain the scalar factor of the elementary + reflector H(i), as returned by CGELQF. + + C (input/output) COMPLEX array, dimension (LDC,N) + On entry, the M-by-N matrix C. + On exit, C is overwritten by Q*C or Q**H*C or C*Q**H or C*Q. + + LDC (input) INTEGER + The leading dimension of the array C. LDC >= max(1,M). + + WORK (workspace/output) COMPLEX array, dimension (LWORK) + On exit, if INFO = 0, WORK(1) returns the optimal LWORK. + + LWORK (input) INTEGER + The dimension of the array WORK. + If SIDE = 'L', LWORK >= max(1,N); + if SIDE = 'R', LWORK >= max(1,M). + For optimum performance LWORK >= N*NB if SIDE 'L', and + LWORK >= M*NB if SIDE = 'R', where NB is the optimal + blocksize. + + If LWORK = -1, then a workspace query is assumed; the routine + only calculates the optimal size of the WORK array, returns + this value as the first entry of the WORK array, and no error + message related to LWORK is issued by XERBLA. + + INFO (output) INTEGER + = 0: successful exit + < 0: if INFO = -i, the i-th argument had an illegal value + + ===================================================================== + + + Test the input arguments +*/ + + /* Parameter adjustments */ + a_dim1 = *lda; + a_offset = 1 + a_dim1; + a -= a_offset; + --tau; + c_dim1 = *ldc; + c_offset = 1 + c_dim1; + c__ -= c_offset; + --work; + + /* Function Body */ + *info = 0; + left = lsame_(side, "L"); + notran = lsame_(trans, "N"); + lquery = *lwork == -1; + +/* NQ is the order of Q and NW is the minimum dimension of WORK */ + + if (left) { + nq = *m; + nw = *n; + } else { + nq = *n; + nw = *m; + } + if (! left && ! lsame_(side, "R")) { + *info = -1; + } else if (! notran && ! lsame_(trans, "C")) { + *info = -2; + } else if (*m < 0) { + *info = -3; + } else if (*n < 0) { + *info = -4; + } else if (*k < 0 || *k > nq) { + *info = -5; + } else if (*lda < max(1,*k)) { + *info = -7; + } else if (*ldc < max(1,*m)) { + *info = -10; + } else if (*lwork < max(1,nw) && ! lquery) { + *info = -12; + } + + if (*info == 0) { + +/* + Determine the block size. NB may be at most NBMAX, where NBMAX + is used to define the local array T. + + Computing MIN + Writing concatenation +*/ + i__3[0] = 1, a__1[0] = side; + i__3[1] = 1, a__1[1] = trans; + s_cat(ch__1, a__1, i__3, &c__2, (ftnlen)2); + i__1 = 64, i__2 = ilaenv_(&c__1, "CUNMLQ", ch__1, m, n, k, &c_n1, ( + ftnlen)6, (ftnlen)2); + nb = min(i__1,i__2); + lwkopt = max(1,nw) * nb; + work[1].r = (real) lwkopt, work[1].i = 0.f; + } + + if (*info != 0) { + i__1 = -(*info); + xerbla_("CUNMLQ", &i__1); + return 0; + } else if (lquery) { + return 0; + } + +/* Quick return if possible */ + + if (*m == 0 || *n == 0 || *k == 0) { + work[1].r = 1.f, work[1].i = 0.f; + return 0; + } + + nbmin = 2; + ldwork = nw; + if (nb > 1 && nb < *k) { + iws = nw * nb; + if (*lwork < iws) { + nb = *lwork / ldwork; +/* + Computing MAX + Writing concatenation +*/ + i__3[0] = 1, a__1[0] = side; + i__3[1] = 1, a__1[1] = trans; + s_cat(ch__1, a__1, i__3, &c__2, (ftnlen)2); + i__1 = 2, i__2 = ilaenv_(&c__2, "CUNMLQ", ch__1, m, n, k, &c_n1, ( + ftnlen)6, (ftnlen)2); + nbmin = max(i__1,i__2); + } + } else { + iws = nw; + } + + if (nb < nbmin || nb >= *k) { + +/* Use unblocked code */ + + cunml2_(side, trans, m, n, k, &a[a_offset], lda, &tau[1], &c__[ + c_offset], ldc, &work[1], &iinfo); + } else { + +/* Use blocked code */ + + if (left && notran || ! left && ! notran) { + i1 = 1; + i2 = *k; + i3 = nb; + } else { + i1 = (*k - 1) / nb * nb + 1; + i2 = 1; + i3 = -nb; + } + + if (left) { + ni = *n; + jc = 1; + } else { + mi = *m; + ic = 1; + } + + if (notran) { + *(unsigned char *)transt = 'C'; + } else { + *(unsigned char *)transt = 'N'; + } + + i__1 = i2; + i__2 = i3; + for (i__ = i1; i__2 < 0 ? i__ >= i__1 : i__ <= i__1; i__ += i__2) { +/* Computing MIN */ + i__4 = nb, i__5 = *k - i__ + 1; + ib = min(i__4,i__5); + +/* + Form the triangular factor of the block reflector + H = H(i) H(i+1) . . . H(i+ib-1) +*/ + + i__4 = nq - i__ + 1; + clarft_("Forward", "Rowwise", &i__4, &ib, &a[i__ + i__ * a_dim1], + lda, &tau[i__], t, &c__65); + if (left) { + +/* H or H' is applied to C(i:m,1:n) */ + + mi = *m - i__ + 1; + ic = i__; + } else { + +/* H or H' is applied to C(1:m,i:n) */ + + ni = *n - i__ + 1; + jc = i__; + } + +/* Apply H or H' */ + + clarfb_(side, transt, "Forward", "Rowwise", &mi, &ni, &ib, &a[i__ + + i__ * a_dim1], lda, t, &c__65, &c__[ic + jc * c_dim1], + ldc, &work[1], &ldwork); +/* L10: */ + } + } + work[1].r = (real) lwkopt, work[1].i = 0.f; + return 0; + +/* End of CUNMLQ */ + +} /* cunmlq_ */ + +/* Subroutine */ int cunmql_(char *side, char *trans, integer *m, integer *n, + integer *k, complex *a, integer *lda, complex *tau, complex *c__, + integer *ldc, complex *work, integer *lwork, integer *info) +{ + /* System generated locals */ + address a__1[2]; + integer a_dim1, a_offset, c_dim1, c_offset, i__1, i__2, i__3[2], i__4, + i__5; + char ch__1[2]; + + /* Builtin functions */ + /* Subroutine */ int s_cat(char *, char **, integer *, integer *, ftnlen); + + /* Local variables */ + static integer i__; + static complex t[4160] /* was [65][64] */; + static integer i1, i2, i3, ib, nb, mi, ni, nq, nw, iws; + static logical left; + extern logical lsame_(char *, char *); + static integer nbmin, iinfo; + extern /* Subroutine */ int cunm2l_(char *, char *, integer *, integer *, + integer *, complex *, integer *, complex *, complex *, integer *, + complex *, integer *), clarfb_(char *, char *, + char *, char *, integer *, integer *, integer *, complex *, + integer *, complex *, integer *, complex *, integer *, complex *, + integer *), clarft_(char *, char * + , integer *, integer *, complex *, integer *, complex *, complex * + , integer *), xerbla_(char *, integer *); + extern integer ilaenv_(integer *, char *, char *, integer *, integer *, + integer *, integer *, ftnlen, ftnlen); + static logical notran; + static integer ldwork, lwkopt; + static logical lquery; + + +/* + -- LAPACK routine (version 3.0) -- + Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd., + Courant Institute, Argonne National Lab, and Rice University + June 30, 1999 + + + Purpose + ======= + + CUNMQL overwrites the general complex M-by-N matrix C with + + SIDE = 'L' SIDE = 'R' + TRANS = 'N': Q * C C * Q + TRANS = 'C': Q**H * C C * Q**H + + where Q is a complex unitary matrix defined as the product of k + elementary reflectors + + Q = H(k) . . . H(2) H(1) + + as returned by CGEQLF. Q is of order M if SIDE = 'L' and of order N + if SIDE = 'R'. + + Arguments + ========= + + SIDE (input) CHARACTER*1 + = 'L': apply Q or Q**H from the Left; + = 'R': apply Q or Q**H from the Right. + + TRANS (input) CHARACTER*1 + = 'N': No transpose, apply Q; + = 'C': Transpose, apply Q**H. + + M (input) INTEGER + The number of rows of the matrix C. M >= 0. + + N (input) INTEGER + The number of columns of the matrix C. N >= 0. + + K (input) INTEGER + The number of elementary reflectors whose product defines + the matrix Q. + If SIDE = 'L', M >= K >= 0; + if SIDE = 'R', N >= K >= 0. + + A (input) COMPLEX array, dimension (LDA,K) + The i-th column must contain the vector which defines the + elementary reflector H(i), for i = 1,2,...,k, as returned by + CGEQLF in the last k columns of its array argument A. + A is modified by the routine but restored on exit. + + LDA (input) INTEGER + The leading dimension of the array A. + If SIDE = 'L', LDA >= max(1,M); + if SIDE = 'R', LDA >= max(1,N). + + TAU (input) COMPLEX array, dimension (K) + TAU(i) must contain the scalar factor of the elementary + reflector H(i), as returned by CGEQLF. + + C (input/output) COMPLEX array, dimension (LDC,N) + On entry, the M-by-N matrix C. + On exit, C is overwritten by Q*C or Q**H*C or C*Q**H or C*Q. + + LDC (input) INTEGER + The leading dimension of the array C. LDC >= max(1,M). + + WORK (workspace/output) COMPLEX array, dimension (LWORK) + On exit, if INFO = 0, WORK(1) returns the optimal LWORK. + + LWORK (input) INTEGER + The dimension of the array WORK. + If SIDE = 'L', LWORK >= max(1,N); + if SIDE = 'R', LWORK >= max(1,M). + For optimum performance LWORK >= N*NB if SIDE = 'L', and + LWORK >= M*NB if SIDE = 'R', where NB is the optimal + blocksize. + + If LWORK = -1, then a workspace query is assumed; the routine + only calculates the optimal size of the WORK array, returns + this value as the first entry of the WORK array, and no error + message related to LWORK is issued by XERBLA. + + INFO (output) INTEGER + = 0: successful exit + < 0: if INFO = -i, the i-th argument had an illegal value + + ===================================================================== + + + Test the input arguments +*/ + + /* Parameter adjustments */ + a_dim1 = *lda; + a_offset = 1 + a_dim1; + a -= a_offset; + --tau; + c_dim1 = *ldc; + c_offset = 1 + c_dim1; + c__ -= c_offset; + --work; + + /* Function Body */ + *info = 0; + left = lsame_(side, "L"); + notran = lsame_(trans, "N"); + lquery = *lwork == -1; + +/* NQ is the order of Q and NW is the minimum dimension of WORK */ + + if (left) { + nq = *m; + nw = *n; + } else { + nq = *n; + nw = *m; + } + if (! left && ! lsame_(side, "R")) { + *info = -1; + } else if (! notran && ! lsame_(trans, "C")) { + *info = -2; + } else if (*m < 0) { + *info = -3; + } else if (*n < 0) { + *info = -4; + } else if (*k < 0 || *k > nq) { + *info = -5; + } else if (*lda < max(1,nq)) { + *info = -7; + } else if (*ldc < max(1,*m)) { + *info = -10; + } else if (*lwork < max(1,nw) && ! lquery) { + *info = -12; + } + + if (*info == 0) { + +/* + Determine the block size. NB may be at most NBMAX, where NBMAX + is used to define the local array T. + + Computing MIN + Writing concatenation +*/ + i__3[0] = 1, a__1[0] = side; + i__3[1] = 1, a__1[1] = trans; + s_cat(ch__1, a__1, i__3, &c__2, (ftnlen)2); + i__1 = 64, i__2 = ilaenv_(&c__1, "CUNMQL", ch__1, m, n, k, &c_n1, ( + ftnlen)6, (ftnlen)2); + nb = min(i__1,i__2); + lwkopt = max(1,nw) * nb; + work[1].r = (real) lwkopt, work[1].i = 0.f; + } + + if (*info != 0) { + i__1 = -(*info); + xerbla_("CUNMQL", &i__1); + return 0; + } else if (lquery) { + return 0; + } + +/* Quick return if possible */ + + if (*m == 0 || *n == 0 || *k == 0) { + work[1].r = 1.f, work[1].i = 0.f; + return 0; + } + + nbmin = 2; + ldwork = nw; + if (nb > 1 && nb < *k) { + iws = nw * nb; + if (*lwork < iws) { + nb = *lwork / ldwork; +/* + Computing MAX + Writing concatenation +*/ + i__3[0] = 1, a__1[0] = side; + i__3[1] = 1, a__1[1] = trans; + s_cat(ch__1, a__1, i__3, &c__2, (ftnlen)2); + i__1 = 2, i__2 = ilaenv_(&c__2, "CUNMQL", ch__1, m, n, k, &c_n1, ( + ftnlen)6, (ftnlen)2); + nbmin = max(i__1,i__2); + } + } else { + iws = nw; + } + + if (nb < nbmin || nb >= *k) { + +/* Use unblocked code */ + + cunm2l_(side, trans, m, n, k, &a[a_offset], lda, &tau[1], &c__[ + c_offset], ldc, &work[1], &iinfo); + } else { + +/* Use blocked code */ + + if (left && notran || ! left && ! notran) { + i1 = 1; + i2 = *k; + i3 = nb; + } else { + i1 = (*k - 1) / nb * nb + 1; + i2 = 1; + i3 = -nb; + } + + if (left) { + ni = *n; + } else { + mi = *m; + } + + i__1 = i2; + i__2 = i3; + for (i__ = i1; i__2 < 0 ? i__ >= i__1 : i__ <= i__1; i__ += i__2) { +/* Computing MIN */ + i__4 = nb, i__5 = *k - i__ + 1; + ib = min(i__4,i__5); + +/* + Form the triangular factor of the block reflector + H = H(i+ib-1) . . . H(i+1) H(i) +*/ + + i__4 = nq - *k + i__ + ib - 1; + clarft_("Backward", "Columnwise", &i__4, &ib, &a[i__ * a_dim1 + 1] + , lda, &tau[i__], t, &c__65); + if (left) { + +/* H or H' is applied to C(1:m-k+i+ib-1,1:n) */ + + mi = *m - *k + i__ + ib - 1; + } else { + +/* H or H' is applied to C(1:m,1:n-k+i+ib-1) */ + + ni = *n - *k + i__ + ib - 1; + } + +/* Apply H or H' */ + + clarfb_(side, trans, "Backward", "Columnwise", &mi, &ni, &ib, &a[ + i__ * a_dim1 + 1], lda, t, &c__65, &c__[c_offset], ldc, & + work[1], &ldwork); +/* L10: */ + } + } + work[1].r = (real) lwkopt, work[1].i = 0.f; + return 0; + +/* End of CUNMQL */ + +} /* cunmql_ */ + +/* Subroutine */ int cunmqr_(char *side, char *trans, integer *m, integer *n, + integer *k, complex *a, integer *lda, complex *tau, complex *c__, + integer *ldc, complex *work, integer *lwork, integer *info) +{ + /* System generated locals */ + address a__1[2]; + integer a_dim1, a_offset, c_dim1, c_offset, i__1, i__2, i__3[2], i__4, + i__5; + char ch__1[2]; + + /* Builtin functions */ + /* Subroutine */ int s_cat(char *, char **, integer *, integer *, ftnlen); + + /* Local variables */ + static integer i__; + static complex t[4160] /* was [65][64] */; + static integer i1, i2, i3, ib, ic, jc, nb, mi, ni, nq, nw, iws; + static logical left; + extern logical lsame_(char *, char *); + static integer nbmin, iinfo; + extern /* Subroutine */ int cunm2r_(char *, char *, integer *, integer *, + integer *, complex *, integer *, complex *, complex *, integer *, + complex *, integer *), clarfb_(char *, char *, + char *, char *, integer *, integer *, integer *, complex *, + integer *, complex *, integer *, complex *, integer *, complex *, + integer *), clarft_(char *, char * + , integer *, integer *, complex *, integer *, complex *, complex * + , integer *), xerbla_(char *, integer *); + extern integer ilaenv_(integer *, char *, char *, integer *, integer *, + integer *, integer *, ftnlen, ftnlen); + static logical notran; + static integer ldwork, lwkopt; + static logical lquery; + + +/* + -- LAPACK routine (version 3.0) -- + Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd., + Courant Institute, Argonne National Lab, and Rice University + June 30, 1999 + + + Purpose + ======= + + CUNMQR overwrites the general complex M-by-N matrix C with + + SIDE = 'L' SIDE = 'R' + TRANS = 'N': Q * C C * Q + TRANS = 'C': Q**H * C C * Q**H + + where Q is a complex unitary matrix defined as the product of k + elementary reflectors + + Q = H(1) H(2) . . . H(k) + + as returned by CGEQRF. Q is of order M if SIDE = 'L' and of order N + if SIDE = 'R'. + + Arguments + ========= + + SIDE (input) CHARACTER*1 + = 'L': apply Q or Q**H from the Left; + = 'R': apply Q or Q**H from the Right. + + TRANS (input) CHARACTER*1 + = 'N': No transpose, apply Q; + = 'C': Conjugate transpose, apply Q**H. + + M (input) INTEGER + The number of rows of the matrix C. M >= 0. + + N (input) INTEGER + The number of columns of the matrix C. N >= 0. + + K (input) INTEGER + The number of elementary reflectors whose product defines + the matrix Q. + If SIDE = 'L', M >= K >= 0; + if SIDE = 'R', N >= K >= 0. + + A (input) COMPLEX array, dimension (LDA,K) + The i-th column must contain the vector which defines the + elementary reflector H(i), for i = 1,2,...,k, as returned by + CGEQRF in the first k columns of its array argument A. + A is modified by the routine but restored on exit. + + LDA (input) INTEGER + The leading dimension of the array A. + If SIDE = 'L', LDA >= max(1,M); + if SIDE = 'R', LDA >= max(1,N). + + TAU (input) COMPLEX array, dimension (K) + TAU(i) must contain the scalar factor of the elementary + reflector H(i), as returned by CGEQRF. + + C (input/output) COMPLEX array, dimension (LDC,N) + On entry, the M-by-N matrix C. + On exit, C is overwritten by Q*C or Q**H*C or C*Q**H or C*Q. + + LDC (input) INTEGER + The leading dimension of the array C. LDC >= max(1,M). + + WORK (workspace/output) COMPLEX array, dimension (LWORK) + On exit, if INFO = 0, WORK(1) returns the optimal LWORK. + + LWORK (input) INTEGER + The dimension of the array WORK. + If SIDE = 'L', LWORK >= max(1,N); + if SIDE = 'R', LWORK >= max(1,M). + For optimum performance LWORK >= N*NB if SIDE = 'L', and + LWORK >= M*NB if SIDE = 'R', where NB is the optimal + blocksize. + + If LWORK = -1, then a workspace query is assumed; the routine + only calculates the optimal size of the WORK array, returns + this value as the first entry of the WORK array, and no error + message related to LWORK is issued by XERBLA. + + INFO (output) INTEGER + = 0: successful exit + < 0: if INFO = -i, the i-th argument had an illegal value + + ===================================================================== + + + Test the input arguments +*/ + + /* Parameter adjustments */ + a_dim1 = *lda; + a_offset = 1 + a_dim1; + a -= a_offset; + --tau; + c_dim1 = *ldc; + c_offset = 1 + c_dim1; + c__ -= c_offset; + --work; + + /* Function Body */ + *info = 0; + left = lsame_(side, "L"); + notran = lsame_(trans, "N"); + lquery = *lwork == -1; + +/* NQ is the order of Q and NW is the minimum dimension of WORK */ + + if (left) { + nq = *m; + nw = *n; + } else { + nq = *n; + nw = *m; + } + if (! left && ! lsame_(side, "R")) { + *info = -1; + } else if (! notran && ! lsame_(trans, "C")) { + *info = -2; + } else if (*m < 0) { + *info = -3; + } else if (*n < 0) { + *info = -4; + } else if (*k < 0 || *k > nq) { + *info = -5; + } else if (*lda < max(1,nq)) { + *info = -7; + } else if (*ldc < max(1,*m)) { + *info = -10; + } else if (*lwork < max(1,nw) && ! lquery) { + *info = -12; + } + + if (*info == 0) { + +/* + Determine the block size. NB may be at most NBMAX, where NBMAX + is used to define the local array T. + + Computing MIN + Writing concatenation +*/ + i__3[0] = 1, a__1[0] = side; + i__3[1] = 1, a__1[1] = trans; + s_cat(ch__1, a__1, i__3, &c__2, (ftnlen)2); + i__1 = 64, i__2 = ilaenv_(&c__1, "CUNMQR", ch__1, m, n, k, &c_n1, ( + ftnlen)6, (ftnlen)2); + nb = min(i__1,i__2); + lwkopt = max(1,nw) * nb; + work[1].r = (real) lwkopt, work[1].i = 0.f; + } + + if (*info != 0) { + i__1 = -(*info); + xerbla_("CUNMQR", &i__1); + return 0; + } else if (lquery) { + return 0; + } + +/* Quick return if possible */ + + if (*m == 0 || *n == 0 || *k == 0) { + work[1].r = 1.f, work[1].i = 0.f; + return 0; + } + + nbmin = 2; + ldwork = nw; + if (nb > 1 && nb < *k) { + iws = nw * nb; + if (*lwork < iws) { + nb = *lwork / ldwork; +/* + Computing MAX + Writing concatenation +*/ + i__3[0] = 1, a__1[0] = side; + i__3[1] = 1, a__1[1] = trans; + s_cat(ch__1, a__1, i__3, &c__2, (ftnlen)2); + i__1 = 2, i__2 = ilaenv_(&c__2, "CUNMQR", ch__1, m, n, k, &c_n1, ( + ftnlen)6, (ftnlen)2); + nbmin = max(i__1,i__2); + } + } else { + iws = nw; + } + + if (nb < nbmin || nb >= *k) { + +/* Use unblocked code */ + + cunm2r_(side, trans, m, n, k, &a[a_offset], lda, &tau[1], &c__[ + c_offset], ldc, &work[1], &iinfo); + } else { + +/* Use blocked code */ + + if (left && ! notran || ! left && notran) { + i1 = 1; + i2 = *k; + i3 = nb; + } else { + i1 = (*k - 1) / nb * nb + 1; + i2 = 1; + i3 = -nb; + } + + if (left) { + ni = *n; + jc = 1; + } else { + mi = *m; + ic = 1; + } + + i__1 = i2; + i__2 = i3; + for (i__ = i1; i__2 < 0 ? i__ >= i__1 : i__ <= i__1; i__ += i__2) { +/* Computing MIN */ + i__4 = nb, i__5 = *k - i__ + 1; + ib = min(i__4,i__5); + +/* + Form the triangular factor of the block reflector + H = H(i) H(i+1) . . . H(i+ib-1) +*/ + + i__4 = nq - i__ + 1; + clarft_("Forward", "Columnwise", &i__4, &ib, &a[i__ + i__ * + a_dim1], lda, &tau[i__], t, &c__65) + ; + if (left) { + +/* H or H' is applied to C(i:m,1:n) */ + + mi = *m - i__ + 1; + ic = i__; + } else { + +/* H or H' is applied to C(1:m,i:n) */ + + ni = *n - i__ + 1; + jc = i__; + } + +/* Apply H or H' */ + + clarfb_(side, trans, "Forward", "Columnwise", &mi, &ni, &ib, &a[ + i__ + i__ * a_dim1], lda, t, &c__65, &c__[ic + jc * + c_dim1], ldc, &work[1], &ldwork); +/* L10: */ + } + } + work[1].r = (real) lwkopt, work[1].i = 0.f; + return 0; + +/* End of CUNMQR */ + +} /* cunmqr_ */ + +/* Subroutine */ int cunmtr_(char *side, char *uplo, char *trans, integer *m, + integer *n, complex *a, integer *lda, complex *tau, complex *c__, + integer *ldc, complex *work, integer *lwork, integer *info) +{ + /* System generated locals */ + address a__1[2]; + integer a_dim1, a_offset, c_dim1, c_offset, i__1[2], i__2, i__3; + char ch__1[2]; + + /* Builtin functions */ + /* Subroutine */ int s_cat(char *, char **, integer *, integer *, ftnlen); + + /* Local variables */ + static integer i1, i2, nb, mi, ni, nq, nw; + static logical left; + extern logical lsame_(char *, char *); + static integer iinfo; + static logical upper; + extern /* Subroutine */ int xerbla_(char *, integer *); + extern integer ilaenv_(integer *, char *, char *, integer *, integer *, + integer *, integer *, ftnlen, ftnlen); + extern /* Subroutine */ int cunmql_(char *, char *, integer *, integer *, + integer *, complex *, integer *, complex *, complex *, integer *, + complex *, integer *, integer *), cunmqr_(char *, + char *, integer *, integer *, integer *, complex *, integer *, + complex *, complex *, integer *, complex *, integer *, integer *); + static integer lwkopt; + static logical lquery; + + +/* + -- LAPACK routine (version 3.0) -- + Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd., + Courant Institute, Argonne National Lab, and Rice University + June 30, 1999 + + + Purpose + ======= + + CUNMTR overwrites the general complex M-by-N matrix C with + + SIDE = 'L' SIDE = 'R' + TRANS = 'N': Q * C C * Q + TRANS = 'C': Q**H * C C * Q**H + + where Q is a complex unitary matrix of order nq, with nq = m if + SIDE = 'L' and nq = n if SIDE = 'R'. Q is defined as the product of + nq-1 elementary reflectors, as returned by CHETRD: + + if UPLO = 'U', Q = H(nq-1) . . . H(2) H(1); + + if UPLO = 'L', Q = H(1) H(2) . . . H(nq-1). + + Arguments + ========= + + SIDE (input) CHARACTER*1 + = 'L': apply Q or Q**H from the Left; + = 'R': apply Q or Q**H from the Right. + + UPLO (input) CHARACTER*1 + = 'U': Upper triangle of A contains elementary reflectors + from CHETRD; + = 'L': Lower triangle of A contains elementary reflectors + from CHETRD. + + TRANS (input) CHARACTER*1 + = 'N': No transpose, apply Q; + = 'C': Conjugate transpose, apply Q**H. + + M (input) INTEGER + The number of rows of the matrix C. M >= 0. + + N (input) INTEGER + The number of columns of the matrix C. N >= 0. + + A (input) COMPLEX array, dimension + (LDA,M) if SIDE = 'L' + (LDA,N) if SIDE = 'R' + The vectors which define the elementary reflectors, as + returned by CHETRD. + + LDA (input) INTEGER + The leading dimension of the array A. + LDA >= max(1,M) if SIDE = 'L'; LDA >= max(1,N) if SIDE = 'R'. + + TAU (input) COMPLEX array, dimension + (M-1) if SIDE = 'L' + (N-1) if SIDE = 'R' + TAU(i) must contain the scalar factor of the elementary + reflector H(i), as returned by CHETRD. + + C (input/output) COMPLEX array, dimension (LDC,N) + On entry, the M-by-N matrix C. + On exit, C is overwritten by Q*C or Q**H*C or C*Q**H or C*Q. + + LDC (input) INTEGER + The leading dimension of the array C. LDC >= max(1,M). + + WORK (workspace/output) COMPLEX array, dimension (LWORK) + On exit, if INFO = 0, WORK(1) returns the optimal LWORK. + + LWORK (input) INTEGER + The dimension of the array WORK. + If SIDE = 'L', LWORK >= max(1,N); + if SIDE = 'R', LWORK >= max(1,M). + For optimum performance LWORK >= N*NB if SIDE = 'L', and + LWORK >=M*NB if SIDE = 'R', where NB is the optimal + blocksize. + + If LWORK = -1, then a workspace query is assumed; the routine + only calculates the optimal size of the WORK array, returns + this value as the first entry of the WORK array, and no error + message related to LWORK is issued by XERBLA. + + INFO (output) INTEGER + = 0: successful exit + < 0: if INFO = -i, the i-th argument had an illegal value + + ===================================================================== + + + Test the input arguments +*/ + + /* Parameter adjustments */ + a_dim1 = *lda; + a_offset = 1 + a_dim1; + a -= a_offset; + --tau; + c_dim1 = *ldc; + c_offset = 1 + c_dim1; + c__ -= c_offset; + --work; + + /* Function Body */ + *info = 0; + left = lsame_(side, "L"); + upper = lsame_(uplo, "U"); + lquery = *lwork == -1; + +/* NQ is the order of Q and NW is the minimum dimension of WORK */ + + if (left) { + nq = *m; + nw = *n; + } else { + nq = *n; + nw = *m; + } + if (! left && ! lsame_(side, "R")) { + *info = -1; + } else if (! upper && ! lsame_(uplo, "L")) { + *info = -2; + } else if (! lsame_(trans, "N") && ! lsame_(trans, + "C")) { + *info = -3; + } else if (*m < 0) { + *info = -4; + } else if (*n < 0) { + *info = -5; + } else if (*lda < max(1,nq)) { + *info = -7; + } else if (*ldc < max(1,*m)) { + *info = -10; + } else if (*lwork < max(1,nw) && ! lquery) { + *info = -12; + } + + if (*info == 0) { + if (upper) { + if (left) { +/* Writing concatenation */ + i__1[0] = 1, a__1[0] = side; + i__1[1] = 1, a__1[1] = trans; + s_cat(ch__1, a__1, i__1, &c__2, (ftnlen)2); + i__2 = *m - 1; + i__3 = *m - 1; + nb = ilaenv_(&c__1, "CUNMQL", ch__1, &i__2, n, &i__3, &c_n1, ( + ftnlen)6, (ftnlen)2); + } else { +/* Writing concatenation */ + i__1[0] = 1, a__1[0] = side; + i__1[1] = 1, a__1[1] = trans; + s_cat(ch__1, a__1, i__1, &c__2, (ftnlen)2); + i__2 = *n - 1; + i__3 = *n - 1; + nb = ilaenv_(&c__1, "CUNMQL", ch__1, m, &i__2, &i__3, &c_n1, ( + ftnlen)6, (ftnlen)2); + } + } else { + if (left) { +/* Writing concatenation */ + i__1[0] = 1, a__1[0] = side; + i__1[1] = 1, a__1[1] = trans; + s_cat(ch__1, a__1, i__1, &c__2, (ftnlen)2); + i__2 = *m - 1; + i__3 = *m - 1; + nb = ilaenv_(&c__1, "CUNMQR", ch__1, &i__2, n, &i__3, &c_n1, ( + ftnlen)6, (ftnlen)2); + } else { +/* Writing concatenation */ + i__1[0] = 1, a__1[0] = side; + i__1[1] = 1, a__1[1] = trans; + s_cat(ch__1, a__1, i__1, &c__2, (ftnlen)2); + i__2 = *n - 1; + i__3 = *n - 1; + nb = ilaenv_(&c__1, "CUNMQR", ch__1, m, &i__2, &i__3, &c_n1, ( + ftnlen)6, (ftnlen)2); + } + } + lwkopt = max(1,nw) * nb; + work[1].r = (real) lwkopt, work[1].i = 0.f; + } + + if (*info != 0) { + i__2 = -(*info); + xerbla_("CUNMTR", &i__2); + return 0; + } else if (lquery) { + return 0; + } + +/* Quick return if possible */ + + if (*m == 0 || *n == 0 || nq == 1) { + work[1].r = 1.f, work[1].i = 0.f; + return 0; + } + + if (left) { + mi = *m - 1; + ni = *n; + } else { + mi = *m; + ni = *n - 1; + } + + if (upper) { + +/* Q was determined by a call to CHETRD with UPLO = 'U' */ + + i__2 = nq - 1; + cunmql_(side, trans, &mi, &ni, &i__2, &a[(a_dim1 << 1) + 1], lda, & + tau[1], &c__[c_offset], ldc, &work[1], lwork, &iinfo); + } else { + +/* Q was determined by a call to CHETRD with UPLO = 'L' */ + + if (left) { + i1 = 2; + i2 = 1; + } else { + i1 = 1; + i2 = 2; + } + i__2 = nq - 1; + cunmqr_(side, trans, &mi, &ni, &i__2, &a[a_dim1 + 2], lda, &tau[1], & + c__[i1 + i2 * c_dim1], ldc, &work[1], lwork, &iinfo); + } + work[1].r = (real) lwkopt, work[1].i = 0.f; + return 0; + +/* End of CUNMTR */ + +} /* cunmtr_ */ + |