summaryrefslogtreecommitdiff
path: root/numpy/ma/core.py
diff options
context:
space:
mode:
Diffstat (limited to 'numpy/ma/core.py')
-rw-r--r--numpy/ma/core.py1009
1 files changed, 543 insertions, 466 deletions
diff --git a/numpy/ma/core.py b/numpy/ma/core.py
index 96d7207bd..63a61599c 100644
--- a/numpy/ma/core.py
+++ b/numpy/ma/core.py
@@ -516,18 +516,18 @@ def set_fill_value(a, fill_value):
array([0, 1, 2, 3, 4])
>>> a = ma.masked_where(a < 3, a)
>>> a
- masked_array(data = [-- -- -- 3 4],
- mask = [ True True True False False],
- fill_value=999999)
+ masked_array(data=[--, --, --, 3, 4],
+ mask=[ True, True, True, False, False],
+ fill_value=999999)
>>> ma.set_fill_value(a, -999)
>>> a
- masked_array(data = [-- -- -- 3 4],
- mask = [ True True True False False],
- fill_value=-999)
+ masked_array(data=[--, --, --, 3, 4],
+ mask=[ True, True, True, False, False],
+ fill_value=-999)
Nothing happens if `a` is not a masked array.
- >>> a = range(5)
+ >>> a = list(range(5))
>>> a
[0, 1, 2, 3, 4]
>>> ma.set_fill_value(a, 100)
@@ -689,13 +689,12 @@ def getdata(a, subok=True):
>>> import numpy.ma as ma
>>> a = ma.masked_equal([[1,2],[3,4]], 2)
>>> a
- masked_array(data =
- [[1 --]
- [3 4]],
- mask =
- [[False True]
- [False False]],
- fill_value=999999)
+ masked_array(
+ data=[[1, --],
+ [3, 4]],
+ mask=[[False, True],
+ [False, False]],
+ fill_value=2)
>>> ma.getdata(a)
array([[1, 2],
[3, 4]])
@@ -752,20 +751,19 @@ def fix_invalid(a, mask=nomask, copy=True, fill_value=None):
--------
>>> x = np.ma.array([1., -1, np.nan, np.inf], mask=[1] + [0]*3)
>>> x
- masked_array(data = [-- -1.0 nan inf],
- mask = [ True False False False],
- fill_value = 1e+20)
+ masked_array(data=[--, -1.0, nan, inf],
+ mask=[ True, False, False, False],
+ fill_value=1e+20)
>>> np.ma.fix_invalid(x)
- masked_array(data = [-- -1.0 -- --],
- mask = [ True False True True],
- fill_value = 1e+20)
+ masked_array(data=[--, -1.0, --, --],
+ mask=[ True, False, True, True],
+ fill_value=1e+20)
>>> fixed = np.ma.fix_invalid(x)
>>> fixed.data
- array([ 1.00000000e+00, -1.00000000e+00, 1.00000000e+20,
- 1.00000000e+20])
+ array([ 1.e+00, -1.e+00, 1.e+20, 1.e+20])
>>> x.data
- array([ 1., -1., NaN, Inf])
+ array([ 1., -1., nan, inf])
"""
a = masked_array(a, copy=copy, mask=mask, subok=True)
@@ -1346,9 +1344,9 @@ def make_mask_descr(ndtype):
--------
>>> import numpy.ma as ma
>>> dtype = np.dtype({'names':['foo', 'bar'],
- 'formats':[np.float32, int]})
+ ... 'formats':[np.float32, np.int64]})
>>> dtype
- dtype([('foo', '<f4'), ('bar', '<i4')])
+ dtype([('foo', '<f4'), ('bar', '<i8')])
>>> ma.make_mask_descr(dtype)
dtype([('foo', '|b1'), ('bar', '|b1')])
>>> ma.make_mask_descr(np.float32)
@@ -1381,13 +1379,12 @@ def getmask(a):
>>> import numpy.ma as ma
>>> a = ma.masked_equal([[1,2],[3,4]], 2)
>>> a
- masked_array(data =
- [[1 --]
- [3 4]],
- mask =
- [[False True]
- [False False]],
- fill_value=999999)
+ masked_array(
+ data=[[1, --],
+ [3, 4]],
+ mask=[[False, True],
+ [False, False]],
+ fill_value=2)
>>> ma.getmask(a)
array([[False, True],
[False, False]])
@@ -1402,12 +1399,11 @@ def getmask(a):
>>> b = ma.masked_array([[1,2],[3,4]])
>>> b
- masked_array(data =
- [[1 2]
- [3 4]],
- mask =
- False,
- fill_value=999999)
+ masked_array(
+ data=[[1, 2],
+ [3, 4]],
+ mask=False,
+ fill_value=999999)
>>> ma.nomask
False
>>> ma.getmask(b) == ma.nomask
@@ -1445,13 +1441,12 @@ def getmaskarray(arr):
>>> import numpy.ma as ma
>>> a = ma.masked_equal([[1,2],[3,4]], 2)
>>> a
- masked_array(data =
- [[1 --]
- [3 4]],
- mask =
- [[False True]
- [False False]],
- fill_value=999999)
+ masked_array(
+ data=[[1, --],
+ [3, 4]],
+ mask=[[False, True],
+ [False, False]],
+ fill_value=2)
>>> ma.getmaskarray(a)
array([[False, True],
[False, False]])
@@ -1460,13 +1455,12 @@ def getmaskarray(arr):
>>> b = ma.masked_array([[1,2],[3,4]])
>>> b
- masked_array(data =
- [[1 2]
- [3 4]],
- mask =
- False,
- fill_value=999999)
- >>> >ma.getmaskarray(b)
+ masked_array(
+ data=[[1, 2],
+ [3, 4]],
+ mask=False,
+ fill_value=999999)
+ >>> ma.getmaskarray(b)
array([[False, False],
[False, False]])
@@ -1504,9 +1498,9 @@ def is_mask(m):
>>> import numpy.ma as ma
>>> m = ma.masked_equal([0, 1, 0, 2, 3], 0)
>>> m
- masked_array(data = [-- 1 -- 2 3],
- mask = [ True False True False False],
- fill_value=999999)
+ masked_array(data=[--, 1, --, 2, 3],
+ mask=[ True, False, True, False, False],
+ fill_value=0)
>>> ma.is_mask(m)
False
>>> ma.is_mask(m.mask)
@@ -1527,14 +1521,14 @@ def is_mask(m):
Arrays with complex dtypes don't return True.
>>> dtype = np.dtype({'names':['monty', 'pithon'],
- 'formats':[bool, bool]})
+ ... 'formats':[bool, bool]})
>>> dtype
dtype([('monty', '|b1'), ('pithon', '|b1')])
>>> m = np.array([(True, False), (False, True), (True, False)],
- dtype=dtype)
+ ... dtype=dtype)
>>> m
- array([(True, False), (False, True), (True, False)],
- dtype=[('monty', '|b1'), ('pithon', '|b1')])
+ array([( True, False), (False, True), ( True, False)],
+ dtype=[('monty', '?'), ('pithon', '?')])
>>> ma.is_mask(m)
False
@@ -1600,7 +1594,7 @@ def make_mask(m, copy=False, shrink=True, dtype=MaskType):
>>> m = np.zeros(4)
>>> m
- array([ 0., 0., 0., 0.])
+ array([0., 0., 0., 0.])
>>> ma.make_mask(m)
False
>>> ma.make_mask(m, shrink=False)
@@ -1616,11 +1610,11 @@ def make_mask(m, copy=False, shrink=True, dtype=MaskType):
>>> arr
[(1, 0), (0, 1), (1, 0), (1, 0)]
>>> dtype = np.dtype({'names':['man', 'mouse'],
- 'formats':[int, int]})
+ ... 'formats':[np.int64, np.int64]})
>>> arr = np.array(arr, dtype=dtype)
>>> arr
array([(1, 0), (0, 1), (1, 0), (1, 0)],
- dtype=[('man', '<i4'), ('mouse', '<i4')])
+ dtype=[('man', '<i8'), ('mouse', '<i8')])
>>> ma.make_mask(arr, dtype=dtype)
array([(True, False), (False, True), (True, False), (True, False)],
dtype=[('man', '|b1'), ('mouse', '|b1')])
@@ -1679,9 +1673,9 @@ def make_mask_none(newshape, dtype=None):
Defining a more complex dtype.
>>> dtype = np.dtype({'names':['foo', 'bar'],
- 'formats':[np.float32, int]})
+ ... 'formats':[np.float32, np.int64]})
>>> dtype
- dtype([('foo', '<f4'), ('bar', '<i4')])
+ dtype([('foo', '<f4'), ('bar', '<i8')])
>>> ma.make_mask_none((3,), dtype=dtype)
array([(False, False), (False, False), (False, False)],
dtype=[('foo', '|b1'), ('bar', '|b1')])
@@ -1779,16 +1773,16 @@ def flatten_mask(mask):
Examples
--------
>>> mask = np.array([0, 0, 1])
- >>> flatten_mask(mask)
+ >>> np.ma.flatten_mask(mask)
array([False, False, True])
>>> mask = np.array([(0, 0), (0, 1)], dtype=[('a', bool), ('b', bool)])
- >>> flatten_mask(mask)
+ >>> np.ma.flatten_mask(mask)
array([False, False, False, True])
>>> mdtype = [('a', bool), ('b', [('ba', bool), ('bb', bool)])]
>>> mask = np.array([(0, (0, 0)), (0, (0, 1))], dtype=mdtype)
- >>> flatten_mask(mask)
+ >>> np.ma.flatten_mask(mask)
array([False, False, False, False, False, True])
"""
@@ -1873,38 +1867,39 @@ def masked_where(condition, a, copy=True):
>>> a
array([0, 1, 2, 3])
>>> ma.masked_where(a <= 2, a)
- masked_array(data = [-- -- -- 3],
- mask = [ True True True False],
- fill_value=999999)
+ masked_array(data=[--, --, --, 3],
+ mask=[ True, True, True, False],
+ fill_value=999999)
Mask array `b` conditional on `a`.
>>> b = ['a', 'b', 'c', 'd']
>>> ma.masked_where(a == 2, b)
- masked_array(data = [a b -- d],
- mask = [False False True False],
- fill_value=N/A)
+ masked_array(data=['a', 'b', --, 'd'],
+ mask=[False, False, True, False],
+ fill_value='N/A',
+ dtype='<U1')
Effect of the `copy` argument.
>>> c = ma.masked_where(a <= 2, a)
>>> c
- masked_array(data = [-- -- -- 3],
- mask = [ True True True False],
- fill_value=999999)
+ masked_array(data=[--, --, --, 3],
+ mask=[ True, True, True, False],
+ fill_value=999999)
>>> c[0] = 99
>>> c
- masked_array(data = [99 -- -- 3],
- mask = [False True True False],
- fill_value=999999)
+ masked_array(data=[99, --, --, 3],
+ mask=[False, True, True, False],
+ fill_value=999999)
>>> a
array([0, 1, 2, 3])
>>> c = ma.masked_where(a <= 2, a, copy=False)
>>> c[0] = 99
>>> c
- masked_array(data = [99 -- -- 3],
- mask = [False True True False],
- fill_value=999999)
+ masked_array(data=[99, --, --, 3],
+ mask=[False, True, True, False],
+ fill_value=999999)
>>> a
array([99, 1, 2, 3])
@@ -1913,19 +1908,19 @@ def masked_where(condition, a, copy=True):
>>> a = np.arange(4)
>>> a = ma.masked_where(a == 2, a)
>>> a
- masked_array(data = [0 1 -- 3],
- mask = [False False True False],
- fill_value=999999)
+ masked_array(data=[0, 1, --, 3],
+ mask=[False, False, True, False],
+ fill_value=999999)
>>> b = np.arange(4)
>>> b = ma.masked_where(b == 0, b)
>>> b
- masked_array(data = [-- 1 2 3],
- mask = [ True False False False],
- fill_value=999999)
+ masked_array(data=[--, 1, 2, 3],
+ mask=[ True, False, False, False],
+ fill_value=999999)
>>> ma.masked_where(a == 3, b)
- masked_array(data = [-- 1 -- --],
- mask = [ True False True True],
- fill_value=999999)
+ masked_array(data=[--, 1, --, --],
+ mask=[ True, False, True, True],
+ fill_value=999999)
"""
# Make sure that condition is a valid standard-type mask.
@@ -1965,9 +1960,9 @@ def masked_greater(x, value, copy=True):
>>> a
array([0, 1, 2, 3])
>>> ma.masked_greater(a, 2)
- masked_array(data = [0 1 2 --],
- mask = [False False False True],
- fill_value=999999)
+ masked_array(data=[0, 1, 2, --],
+ mask=[False, False, False, True],
+ fill_value=999999)
"""
return masked_where(greater(x, value), x, copy=copy)
@@ -1991,9 +1986,9 @@ def masked_greater_equal(x, value, copy=True):
>>> a
array([0, 1, 2, 3])
>>> ma.masked_greater_equal(a, 2)
- masked_array(data = [0 1 -- --],
- mask = [False False True True],
- fill_value=999999)
+ masked_array(data=[0, 1, --, --],
+ mask=[False, False, True, True],
+ fill_value=999999)
"""
return masked_where(greater_equal(x, value), x, copy=copy)
@@ -2017,9 +2012,9 @@ def masked_less(x, value, copy=True):
>>> a
array([0, 1, 2, 3])
>>> ma.masked_less(a, 2)
- masked_array(data = [-- -- 2 3],
- mask = [ True True False False],
- fill_value=999999)
+ masked_array(data=[--, --, 2, 3],
+ mask=[ True, True, False, False],
+ fill_value=999999)
"""
return masked_where(less(x, value), x, copy=copy)
@@ -2043,9 +2038,9 @@ def masked_less_equal(x, value, copy=True):
>>> a
array([0, 1, 2, 3])
>>> ma.masked_less_equal(a, 2)
- masked_array(data = [-- -- -- 3],
- mask = [ True True True False],
- fill_value=999999)
+ masked_array(data=[--, --, --, 3],
+ mask=[ True, True, True, False],
+ fill_value=999999)
"""
return masked_where(less_equal(x, value), x, copy=copy)
@@ -2069,9 +2064,9 @@ def masked_not_equal(x, value, copy=True):
>>> a
array([0, 1, 2, 3])
>>> ma.masked_not_equal(a, 2)
- masked_array(data = [-- -- 2 --],
- mask = [ True True False True],
- fill_value=999999)
+ masked_array(data=[--, --, 2, --],
+ mask=[ True, True, False, True],
+ fill_value=999999)
"""
return masked_where(not_equal(x, value), x, copy=copy)
@@ -2097,9 +2092,9 @@ def masked_equal(x, value, copy=True):
>>> a
array([0, 1, 2, 3])
>>> ma.masked_equal(a, 2)
- masked_array(data = [0 1 -- 3],
- mask = [False False True False],
- fill_value=999999)
+ masked_array(data=[0, 1, --, 3],
+ mask=[False, False, True, False],
+ fill_value=2)
"""
output = masked_where(equal(x, value), x, copy=copy)
@@ -2128,16 +2123,16 @@ def masked_inside(x, v1, v2, copy=True):
>>> import numpy.ma as ma
>>> x = [0.31, 1.2, 0.01, 0.2, -0.4, -1.1]
>>> ma.masked_inside(x, -0.3, 0.3)
- masked_array(data = [0.31 1.2 -- -- -0.4 -1.1],
- mask = [False False True True False False],
- fill_value=1e+20)
+ masked_array(data=[0.31, 1.2, --, --, -0.4, -1.1],
+ mask=[False, False, True, True, False, False],
+ fill_value=1e+20)
The order of `v1` and `v2` doesn't matter.
>>> ma.masked_inside(x, 0.3, -0.3)
- masked_array(data = [0.31 1.2 -- -- -0.4 -1.1],
- mask = [False False True True False False],
- fill_value=1e+20)
+ masked_array(data=[0.31, 1.2, --, --, -0.4, -1.1],
+ mask=[False, False, True, True, False, False],
+ fill_value=1e+20)
"""
if v2 < v1:
@@ -2168,16 +2163,16 @@ def masked_outside(x, v1, v2, copy=True):
>>> import numpy.ma as ma
>>> x = [0.31, 1.2, 0.01, 0.2, -0.4, -1.1]
>>> ma.masked_outside(x, -0.3, 0.3)
- masked_array(data = [-- -- 0.01 0.2 -- --],
- mask = [ True True False False True True],
- fill_value=1e+20)
+ masked_array(data=[--, --, 0.01, 0.2, --, --],
+ mask=[ True, True, False, False, True, True],
+ fill_value=1e+20)
The order of `v1` and `v2` doesn't matter.
>>> ma.masked_outside(x, 0.3, -0.3)
- masked_array(data = [-- -- 0.01 0.2 -- --],
- mask = [ True True False False True True],
- fill_value=1e+20)
+ masked_array(data=[--, --, 0.01, 0.2, --, --],
+ mask=[ True, True, False, False, True, True],
+ fill_value=1e+20)
"""
if v2 < v1:
@@ -2222,20 +2217,27 @@ def masked_object(x, value, copy=True, shrink=True):
>>> food = np.array(['green_eggs', 'ham'], dtype=object)
>>> # don't eat spoiled food
>>> eat = ma.masked_object(food, 'green_eggs')
- >>> print(eat)
- [-- ham]
+ >>> eat
+ masked_array(data=[--, 'ham'],
+ mask=[ True, False],
+ fill_value='green_eggs',
+ dtype=object)
>>> # plain ol` ham is boring
>>> fresh_food = np.array(['cheese', 'ham', 'pineapple'], dtype=object)
>>> eat = ma.masked_object(fresh_food, 'green_eggs')
- >>> print(eat)
- [cheese ham pineapple]
+ >>> eat
+ masked_array(data=['cheese', 'ham', 'pineapple'],
+ mask=False,
+ fill_value='green_eggs',
+ dtype=object)
Note that `mask` is set to ``nomask`` if possible.
>>> eat
- masked_array(data = [cheese ham pineapple],
- mask = False,
- fill_value=?)
+ masked_array(data=['cheese', 'ham', 'pineapple'],
+ mask=False,
+ fill_value='green_eggs',
+ dtype=object)
"""
if isMaskedArray(x):
@@ -2290,16 +2292,16 @@ def masked_values(x, value, rtol=1e-5, atol=1e-8, copy=True, shrink=True):
>>> import numpy.ma as ma
>>> x = np.array([1, 1.1, 2, 1.1, 3])
>>> ma.masked_values(x, 1.1)
- masked_array(data = [1.0 -- 2.0 -- 3.0],
- mask = [False True False True False],
- fill_value=1.1)
+ masked_array(data=[1.0, --, 2.0, --, 3.0],
+ mask=[False, True, False, True, False],
+ fill_value=1.1)
Note that `mask` is set to ``nomask`` if possible.
>>> ma.masked_values(x, 1.5)
- masked_array(data = [ 1. 1.1 2. 1.1 3. ],
- mask = False,
- fill_value=1.5)
+ masked_array(data=[1. , 1.1, 2. , 1.1, 3. ],
+ mask=False,
+ fill_value=1.5)
For integers, the fill value will be different in general to the
result of ``masked_equal``.
@@ -2308,13 +2310,13 @@ def masked_values(x, value, rtol=1e-5, atol=1e-8, copy=True, shrink=True):
>>> x
array([0, 1, 2, 3, 4])
>>> ma.masked_values(x, 2)
- masked_array(data = [0 1 -- 3 4],
- mask = [False False True False False],
- fill_value=2)
+ masked_array(data=[0, 1, --, 3, 4],
+ mask=[False, False, True, False, False],
+ fill_value=2)
>>> ma.masked_equal(x, 2)
- masked_array(data = [0 1 -- 3 4],
- mask = [False False True False False],
- fill_value=999999)
+ masked_array(data=[0, 1, --, 3, 4],
+ mask=[False, False, True, False, False],
+ fill_value=2)
"""
xnew = filled(x, value)
@@ -2348,11 +2350,11 @@ def masked_invalid(a, copy=True):
>>> a[2] = np.NaN
>>> a[3] = np.PINF
>>> a
- array([ 0., 1., NaN, Inf, 4.])
+ array([ 0., 1., nan, inf, 4.])
>>> ma.masked_invalid(a)
- masked_array(data = [0.0 1.0 -- -- 4.0],
- mask = [False False True True False],
- fill_value=1e+20)
+ masked_array(data=[0.0, 1.0, --, --, 4.0],
+ mask=[False, False, True, True, False],
+ fill_value=1e+20)
"""
a = np.array(a, copy=copy, subok=True)
@@ -2513,7 +2515,7 @@ def flatten_structured_array(a):
--------
>>> ndtype = [('a', int), ('b', float)]
>>> a = np.array([(1, 1), (2, 2)], dtype=ndtype)
- >>> flatten_structured_array(a)
+ >>> np.ma.flatten_structured_array(a)
array([[1., 1.],
[2., 2.]])
@@ -2684,9 +2686,7 @@ class MaskedIterator(object):
>>> fl.next()
3
>>> fl.next()
- masked_array(data = --,
- mask = True,
- fill_value = 1e+20)
+ masked
>>> fl.next()
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
@@ -3551,6 +3551,11 @@ class MaskedArray(ndarray):
array([[False, False],
[False, False]])
>>> x.shrink_mask()
+ masked_array(
+ data=[[1, 2],
+ [3, 4]],
+ mask=False,
+ fill_value=999999)
>>> x.mask
False
@@ -3639,7 +3644,7 @@ class MaskedArray(ndarray):
-inf
>>> x.set_fill_value(np.pi)
>>> x.fill_value
- 3.1415926535897931
+ 3.1415926535897931 # may vary
Reset to default:
@@ -3688,9 +3693,9 @@ class MaskedArray(ndarray):
--------
>>> x = np.ma.array([1,2,3,4,5], mask=[0,0,1,0,1], fill_value=-999)
>>> x.filled()
- array([1, 2, -999, 4, -999])
+ array([ 1, 2, -999, 4, -999])
>>> type(x.filled())
- <type 'numpy.ndarray'>
+ <class 'numpy.ndarray'>
Subclassing is preserved. This means that if, e.g., the data part of
the masked array is a recarray, `filled` returns a recarray:
@@ -3755,7 +3760,7 @@ class MaskedArray(ndarray):
>>> x.compressed()
array([0, 1])
>>> type(x.compressed())
- <type 'numpy.ndarray'>
+ <class 'numpy.ndarray'>
"""
data = ndarray.ravel(self._data)
@@ -3797,25 +3802,29 @@ class MaskedArray(ndarray):
Examples
--------
>>> x = np.ma.array([[1,2,3],[4,5,6],[7,8,9]], mask=[0] + [1,0]*4)
- >>> print(x)
- [[1 -- 3]
- [-- 5 --]
- [7 -- 9]]
+ >>> x
+ masked_array(
+ data=[[1, --, 3],
+ [--, 5, --],
+ [7, --, 9]],
+ mask=[[False, True, False],
+ [ True, False, True],
+ [False, True, False]],
+ fill_value=999999)
>>> x.compress([1, 0, 1])
- masked_array(data = [1 3],
- mask = [False False],
- fill_value=999999)
+ masked_array(data=[1, 3],
+ mask=[False, False],
+ fill_value=999999)
>>> x.compress([1, 0, 1], axis=1)
- masked_array(data =
- [[1 3]
- [-- --]
- [7 9]],
- mask =
- [[False False]
- [ True True]
- [False False]],
- fill_value=999999)
+ masked_array(
+ data=[[1, 3],
+ [--, --],
+ [7, 9]],
+ mask=[[False, False],
+ [ True, True],
+ [False, False]],
+ fill_value=999999)
"""
# Get the basic components
@@ -4348,9 +4357,9 @@ class MaskedArray(ndarray):
--------
>>> x = np.ma.array([1+1.j, -2j, 3.45+1.6j], mask=[False, True, False])
>>> x.get_imag()
- masked_array(data = [1.0 -- 1.6],
- mask = [False True False],
- fill_value = 1e+20)
+ masked_array(data=[1.0, --, 1.6],
+ mask=[False, True, False],
+ fill_value=1e+20)
"""
result = self._data.imag.view(type(self))
@@ -4383,9 +4392,9 @@ class MaskedArray(ndarray):
--------
>>> x = np.ma.array([1+1.j, -2j, 3.45+1.6j], mask=[False, True, False])
>>> x.get_real()
- masked_array(data = [1.0 -- 3.45],
- mask = [False True False],
- fill_value = 1e+20)
+ masked_array(data=[1.0, --, 3.45],
+ mask=[False, True, False],
+ fill_value=1e+20)
"""
result = self._data.real.view(type(self))
@@ -4431,13 +4440,12 @@ class MaskedArray(ndarray):
>>> a = ma.arange(6).reshape((2, 3))
>>> a[1, :] = ma.masked
>>> a
- masked_array(data =
- [[0 1 2]
- [-- -- --]],
- mask =
- [[False False False]
- [ True True True]],
- fill_value = 999999)
+ masked_array(
+ data=[[0, 1, 2],
+ [--, --, --]],
+ mask=[[False, False, False],
+ [ True, True, True]],
+ fill_value=999999)
>>> a.count()
3
@@ -4522,12 +4530,20 @@ class MaskedArray(ndarray):
Examples
--------
>>> x = np.ma.array([[1,2,3],[4,5,6],[7,8,9]], mask=[0] + [1,0]*4)
- >>> print(x)
- [[1 -- 3]
- [-- 5 --]
- [7 -- 9]]
- >>> print(x.ravel())
- [1 -- 3 -- 5 -- 7 -- 9]
+ >>> x
+ masked_array(
+ data=[[1, --, 3],
+ [--, 5, --],
+ [7, --, 9]],
+ mask=[[False, True, False],
+ [ True, False, True],
+ [False, True, False]],
+ fill_value=999999)
+ >>> x.ravel()
+ masked_array(data=[1, --, 3, --, 5, --, 7, --, 9],
+ mask=[False, True, False, True, False, True, False, True,
+ False],
+ fill_value=999999)
"""
r = ndarray.ravel(self._data, order=order).view(type(self))
@@ -4576,15 +4592,25 @@ class MaskedArray(ndarray):
Examples
--------
>>> x = np.ma.array([[1,2],[3,4]], mask=[1,0,0,1])
- >>> print(x)
- [[-- 2]
- [3 --]]
+ >>> x
+ masked_array(
+ data=[[--, 2],
+ [3, --]],
+ mask=[[ True, False],
+ [False, True]],
+ fill_value=999999)
>>> x = x.reshape((4,1))
- >>> print(x)
- [[--]
- [2]
- [3]
- [--]]
+ >>> x
+ masked_array(
+ data=[[--],
+ [2],
+ [3],
+ [--]],
+ mask=[[ True],
+ [False],
+ [False],
+ [ True]],
+ fill_value=999999)
"""
kwargs.update(order=kwargs.get('order', 'C'))
@@ -4641,21 +4667,36 @@ class MaskedArray(ndarray):
Examples
--------
>>> x = np.ma.array([[1,2,3],[4,5,6],[7,8,9]], mask=[0] + [1,0]*4)
- >>> print(x)
- [[1 -- 3]
- [-- 5 --]
- [7 -- 9]]
+ >>> x
+ masked_array(
+ data=[[1, --, 3],
+ [--, 5, --],
+ [7, --, 9]],
+ mask=[[False, True, False],
+ [ True, False, True],
+ [False, True, False]],
+ fill_value=999999)
>>> x.put([0,4,8],[10,20,30])
- >>> print(x)
- [[10 -- 3]
- [-- 20 --]
- [7 -- 30]]
+ >>> x
+ masked_array(
+ data=[[10, --, 3],
+ [--, 20, --],
+ [7, --, 30]],
+ mask=[[False, True, False],
+ [ True, False, True],
+ [False, True, False]],
+ fill_value=999999)
>>> x.put(4,999)
- >>> print(x)
- [[10 -- 3]
- [-- 999 --]
- [7 -- 30]]
+ >>> x
+ masked_array(
+ data=[[10, --, 3],
+ [--, 999, --],
+ [7, --, 30]],
+ mask=[[False, True, False],
+ [ True, False, True],
+ [False, True, False]],
+ fill_value=999999)
"""
# Hard mask: Get rid of the values/indices that fall on masked data
@@ -4695,14 +4736,14 @@ class MaskedArray(ndarray):
--------
>>> x = np.ma.array([1, 2, 3], mask=[0, 1, 1])
>>> x.ids()
- (166670640, 166659832)
+ (166670640, 166659832) # may vary
If the array has no mask, the address of `nomask` is returned. This address
is typically not close to the data in memory:
>>> x = np.ma.array([1, 2, 3])
>>> x.ids()
- (166691080, 3083169284L)
+ (166691080, 3083169284L) # may vary
"""
if self._mask is nomask:
@@ -4851,13 +4892,12 @@ class MaskedArray(ndarray):
>>> import numpy.ma as ma
>>> x = ma.array(np.eye(3))
>>> x
- masked_array(data =
- [[ 1. 0. 0.]
- [ 0. 1. 0.]
- [ 0. 0. 1.]],
- mask =
- False,
- fill_value=1e+20)
+ masked_array(
+ data=[[1., 0., 0.],
+ [0., 1., 0.],
+ [0., 0., 1.]],
+ mask=False,
+ fill_value=1e+20)
>>> x.nonzero()
(array([0, 1, 2]), array([0, 1, 2]))
@@ -4865,15 +4905,14 @@ class MaskedArray(ndarray):
>>> x[1, 1] = ma.masked
>>> x
- masked_array(data =
- [[1.0 0.0 0.0]
- [0.0 -- 0.0]
- [0.0 0.0 1.0]],
- mask =
- [[False False False]
- [False True False]
- [False False False]],
- fill_value=1e+20)
+ masked_array(
+ data=[[1.0, 0.0, 0.0],
+ [0.0, --, 0.0],
+ [0.0, 0.0, 1.0]],
+ mask=[[False, False, False],
+ [False, True, False],
+ [False, False, False]],
+ fill_value=1e+20)
>>> x.nonzero()
(array([0, 2]), array([0, 2]))
@@ -4890,13 +4929,12 @@ class MaskedArray(ndarray):
>>> a = ma.array([[1,2,3],[4,5,6],[7,8,9]])
>>> a > 3
- masked_array(data =
- [[False False False]
- [ True True True]
- [ True True True]],
- mask =
- False,
- fill_value=999999)
+ masked_array(
+ data=[[False, False, False],
+ [ True, True, True],
+ [ True, True, True]],
+ mask=False,
+ fill_value=True)
>>> ma.nonzero(a > 3)
(array([1, 1, 1, 2, 2, 2]), array([0, 1, 2, 0, 1, 2]))
@@ -4978,18 +5016,27 @@ class MaskedArray(ndarray):
Examples
--------
>>> x = np.ma.array([[1,2,3],[4,5,6],[7,8,9]], mask=[0] + [1,0]*4)
- >>> print(x)
- [[1 -- 3]
- [-- 5 --]
- [7 -- 9]]
- >>> print(x.sum())
+ >>> x
+ masked_array(
+ data=[[1, --, 3],
+ [--, 5, --],
+ [7, --, 9]],
+ mask=[[False, True, False],
+ [ True, False, True],
+ [False, True, False]],
+ fill_value=999999)
+ >>> x.sum()
25
- >>> print(x.sum(axis=1))
- [4 5 16]
- >>> print(x.sum(axis=0))
- [8 5 12]
+ >>> x.sum(axis=1)
+ masked_array(data=[4, 5, 16],
+ mask=[False, False, False],
+ fill_value=999999)
+ >>> x.sum(axis=0)
+ masked_array(data=[8, 5, 12],
+ mask=[False, False, False],
+ fill_value=999999)
>>> print(type(x.sum(axis=0, dtype=np.int64)[0]))
- <type 'numpy.int64'>
+ <class 'numpy.int64'>
"""
kwargs = {} if keepdims is np._NoValue else {'keepdims': keepdims}
@@ -5040,8 +5087,11 @@ class MaskedArray(ndarray):
Examples
--------
>>> marr = np.ma.array(np.arange(10), mask=[0,0,0,1,1,1,0,0,0,0])
- >>> print(marr.cumsum())
- [0 1 3 -- -- -- 9 16 24 33]
+ >>> marr.cumsum()
+ masked_array(data=[0, 1, 3, --, --, --, 9, 16, 24, 33],
+ mask=[False, False, False, True, True, True, False, False,
+ False, False],
+ fill_value=999999)
"""
result = self.filled(0).cumsum(axis=axis, dtype=dtype, out=out)
@@ -5145,9 +5195,9 @@ class MaskedArray(ndarray):
--------
>>> a = np.ma.array([1,2,3], mask=[False, False, True])
>>> a
- masked_array(data = [1 2 --],
- mask = [False False True],
- fill_value = 999999)
+ masked_array(data=[1, 2, --],
+ mask=[False, False, True],
+ fill_value=999999)
>>> a.mean()
1.5
@@ -5200,9 +5250,9 @@ class MaskedArray(ndarray):
--------
>>> a = np.ma.array([1,2,3])
>>> a.anom()
- masked_array(data = [-1. 0. 1.],
- mask = False,
- fill_value = 1e+20)
+ masked_array(data=[-1., 0., 1.],
+ mask=False,
+ fill_value=1e+20)
"""
m = self.mean(axis, dtype)
@@ -5382,9 +5432,9 @@ class MaskedArray(ndarray):
--------
>>> a = np.ma.array([3,2,1], mask=[False, False, True])
>>> a
- masked_array(data = [3 2 --],
- mask = [False False True],
- fill_value = 999999)
+ masked_array(data=[3, 2, --],
+ mask=[False, False, True],
+ fill_value=999999)
>>> a.argsort()
array([1, 0, 2])
@@ -5432,15 +5482,19 @@ class MaskedArray(ndarray):
Examples
--------
- >>> x = np.ma.array(arange(4), mask=[1,1,0,0])
+ >>> x = np.ma.array(np.arange(4), mask=[1,1,0,0])
>>> x.shape = (2,2)
- >>> print(x)
- [[-- --]
- [2 3]]
- >>> print(x.argmin(axis=0, fill_value=-1))
- [0 0]
- >>> print(x.argmin(axis=0, fill_value=9))
- [1 1]
+ >>> x
+ masked_array(
+ data=[[--, --],
+ [2, 3]],
+ mask=[[ True, True],
+ [False, False]],
+ fill_value=999999)
+ >>> x.argmin(axis=0, fill_value=-1)
+ array([0, 0])
+ >>> x.argmin(axis=0, fill_value=9)
+ array([1, 1])
"""
if fill_value is None:
@@ -5531,23 +5585,29 @@ class MaskedArray(ndarray):
Examples
--------
- >>> a = ma.array([1, 2, 5, 4, 3],mask=[0, 1, 0, 1, 0])
+ >>> a = np.ma.array([1, 2, 5, 4, 3],mask=[0, 1, 0, 1, 0])
>>> # Default
>>> a.sort()
- >>> print(a)
- [1 3 5 -- --]
+ >>> a
+ masked_array(data=[1, 3, 5, --, --],
+ mask=[False, False, False, True, True],
+ fill_value=999999)
- >>> a = ma.array([1, 2, 5, 4, 3],mask=[0, 1, 0, 1, 0])
+ >>> a = np.ma.array([1, 2, 5, 4, 3],mask=[0, 1, 0, 1, 0])
>>> # Put missing values in the front
>>> a.sort(endwith=False)
- >>> print(a)
- [-- -- 1 3 5]
+ >>> a
+ masked_array(data=[--, --, 1, 3, 5],
+ mask=[ True, True, False, False, False],
+ fill_value=999999)
- >>> a = ma.array([1, 2, 5, 4, 3],mask=[0, 1, 0, 1, 0])
+ >>> a = np.ma.array([1, 2, 5, 4, 3],mask=[0, 1, 0, 1, 0])
>>> # fill_value takes over endwith
>>> a.sort(endwith=False, fill_value=3)
- >>> print(a)
- [1 -- -- 3 5]
+ >>> a
+ masked_array(data=[1, --, --, 3, 5],
+ mask=[False, True, True, False, False],
+ fill_value=999999)
"""
if self._mask is nomask:
@@ -5653,27 +5713,36 @@ class MaskedArray(ndarray):
Examples
--------
>>> x = np.ma.array(np.arange(6), mask=[0 ,1, 0, 0, 0 ,1]).reshape(3, 2)
- >>> print(x)
- [[0 --]
- [2 3]
- [4 --]]
+ >>> x
+ masked_array(
+ data=[[0, --],
+ [2, 3],
+ [4, --]],
+ mask=[[False, True],
+ [False, False],
+ [False, True]],
+ fill_value=999999)
>>> x.mini()
- 0
+ masked_array(data=0,
+ mask=False,
+ fill_value=999999)
>>> x.mini(axis=0)
- masked_array(data = [0 3],
- mask = [False False],
- fill_value = 999999)
- >>> print(x.mini(axis=1))
- [0 2 4]
+ masked_array(data=[0, 3],
+ mask=[False, False],
+ fill_value=999999)
+ >>> x.mini(axis=1)
+ masked_array(data=[0, 2, 4],
+ mask=[False, False, False],
+ fill_value=999999)
There is a small difference between `mini` and `min`:
>>> x[:,1].mini(axis=0)
- masked_array(data = --,
- mask = True,
- fill_value = 999999)
+ masked_array(data=3,
+ mask=False,
+ fill_value=999999)
>>> x[:,1].min(axis=0)
- masked
+ 3
"""
# 2016-04-13, 1.13.0, gh-8764
@@ -5926,7 +5995,7 @@ class MaskedArray(ndarray):
--------
>>> x = np.ma.array(np.array([[1, 2], [3, 4]]), mask=[[0, 1], [1, 0]])
>>> x.tobytes()
- '\\x01\\x00\\x00\\x00?B\\x0f\\x00?B\\x0f\\x00\\x04\\x00\\x00\\x00'
+ b'\\x01\\x00\\x00\\x00\\x00\\x00\\x00\\x00?B\\x0f\\x00\\x00\\x00\\x00\\x00?B\\x0f\\x00\\x00\\x00\\x00\\x00\\x04\\x00\\x00\\x00\\x00\\x00\\x00\\x00'
"""
return self.filled(fill_value).tobytes(order=order)
@@ -5974,14 +6043,20 @@ class MaskedArray(ndarray):
Examples
--------
>>> x = np.ma.array([[1,2,3],[4,5,6],[7,8,9]], mask=[0] + [1,0]*4)
- >>> print(x)
- [[1 -- 3]
- [-- 5 --]
- [7 -- 9]]
- >>> print(x.toflex())
- [[(1, False) (2, True) (3, False)]
- [(4, True) (5, False) (6, True)]
- [(7, False) (8, True) (9, False)]]
+ >>> x
+ masked_array(
+ data=[[1, --, 3],
+ [--, 5, --],
+ [7, --, 9]],
+ mask=[[False, True, False],
+ [ True, False, True],
+ [False, True, False]],
+ fill_value=999999)
+ >>> x.toflex()
+ array([[(1, False), (2, True), (3, False)],
+ [(4, True), (5, False), (6, True)],
+ [(7, False), (8, True), (9, False)]],
+ dtype=[('_data', '<i8'), ('_mask', '?')])
"""
# Get the basic dtype.
@@ -6228,15 +6303,14 @@ def isMaskedArray(x):
[ 0., 0., 1.]])
>>> m = ma.masked_values(a, 0)
>>> m
- masked_array(data =
- [[1.0 -- --]
- [-- 1.0 --]
- [-- -- 1.0]],
- mask =
- [[False True True]
- [ True False True]
- [ True True False]],
- fill_value=0.0)
+ masked_array(
+ data=[[1.0, --, --],
+ [--, 1.0, --],
+ [--, --, 1.0]],
+ mask=[[False, True, True],
+ [ True, False, True],
+ [ True, True, False]],
+ fill_value=0.0)
>>> ma.isMaskedArray(a)
False
>>> ma.isMaskedArray(m)
@@ -6400,16 +6474,16 @@ def is_masked(x):
>>> import numpy.ma as ma
>>> x = ma.masked_equal([0, 1, 0, 2, 3], 0)
>>> x
- masked_array(data = [-- 1 -- 2 3],
- mask = [ True False True False False],
- fill_value=999999)
+ masked_array(data=[--, 1, --, 2, 3],
+ mask=[ True, False, True, False, False],
+ fill_value=0)
>>> ma.is_masked(x)
True
>>> x = ma.masked_equal([0, 1, 0, 2, 3], 42)
>>> x
- masked_array(data = [0 1 0 2 3],
- mask = False,
- fill_value=999999)
+ masked_array(data=[0, 1, 0, 2, 3],
+ mask=False,
+ fill_value=42)
>>> ma.is_masked(x)
False
@@ -6759,17 +6833,17 @@ def concatenate(arrays, axis=0):
>>> a[1] = ma.masked
>>> b = ma.arange(2, 5)
>>> a
- masked_array(data = [0 -- 2],
- mask = [False True False],
- fill_value = 999999)
+ masked_array(data=[0, --, 2],
+ mask=[False, True, False],
+ fill_value=999999)
>>> b
- masked_array(data = [2 3 4],
- mask = False,
- fill_value = 999999)
+ masked_array(data=[2, 3, 4],
+ mask=False,
+ fill_value=999999)
>>> ma.concatenate([a, b])
- masked_array(data = [0 -- 2 2 3 4],
- mask = [False True False False False False],
- fill_value = 999999)
+ masked_array(data=[0, --, 2, 2, 3, 4],
+ mask=[False, True, False, False, False, False],
+ fill_value=999999)
"""
d = np.concatenate([getdata(a) for a in arrays], axis)
@@ -6924,24 +6998,21 @@ def transpose(a, axes=None):
>>> import numpy.ma as ma
>>> x = ma.arange(4).reshape((2,2))
>>> x[1, 1] = ma.masked
- >>>> x
- masked_array(data =
- [[0 1]
- [2 --]],
- mask =
- [[False False]
- [False True]],
- fill_value = 999999)
+ >>> x
+ masked_array(
+ data=[[0, 1],
+ [2, --]],
+ mask=[[False, False],
+ [False, True]],
+ fill_value=999999)
>>> ma.transpose(x)
- masked_array(data =
- [[0 2]
- [1 --]],
- mask =
- [[False False]
- [False True]],
- fill_value = 999999)
-
+ masked_array(
+ data=[[0, 2],
+ [1, --]],
+ mask=[[False, False],
+ [False, True]],
+ fill_value=999999)
"""
# We can't use 'frommethod', as 'transpose' doesn't take keywords
try:
@@ -6988,39 +7059,39 @@ def resize(x, new_shape):
>>> a = ma.array([[1, 2] ,[3, 4]])
>>> a[0, 1] = ma.masked
>>> a
- masked_array(data =
- [[1 --]
- [3 4]],
- mask =
- [[False True]
- [False False]],
- fill_value = 999999)
+ masked_array(
+ data=[[1, --],
+ [3, 4]],
+ mask=[[False, True],
+ [False, False]],
+ fill_value=999999)
>>> np.resize(a, (3, 3))
- array([[1, 2, 3],
- [4, 1, 2],
- [3, 4, 1]])
+ masked_array(
+ data=[[1, 2, 3],
+ [4, 1, 2],
+ [3, 4, 1]],
+ mask=False,
+ fill_value=999999)
>>> ma.resize(a, (3, 3))
- masked_array(data =
- [[1 -- 3]
- [4 1 --]
- [3 4 1]],
- mask =
- [[False True False]
- [False False True]
- [False False False]],
- fill_value = 999999)
+ masked_array(
+ data=[[1, --, 3],
+ [4, 1, --],
+ [3, 4, 1]],
+ mask=[[False, True, False],
+ [False, False, True],
+ [False, False, False]],
+ fill_value=999999)
A MaskedArray is always returned, regardless of the input type.
>>> a = np.array([[1, 2] ,[3, 4]])
>>> ma.resize(a, (3, 3))
- masked_array(data =
- [[1 2 3]
- [4 1 2]
- [3 4 1]],
- mask =
- False,
- fill_value = 999999)
+ masked_array(
+ data=[[1, 2, 3],
+ [4, 1, 2],
+ [3, 4, 1]],
+ mask=False,
+ fill_value=999999)
"""
# We can't use _frommethods here, as N.resize is notoriously whiny.
@@ -7111,14 +7182,24 @@ def where(condition, x=_NoValue, y=_NoValue):
>>> x = np.ma.array(np.arange(9.).reshape(3, 3), mask=[[0, 1, 0],
... [1, 0, 1],
... [0, 1, 0]])
- >>> print(x)
- [[0.0 -- 2.0]
- [-- 4.0 --]
- [6.0 -- 8.0]]
- >>> print(np.ma.where(x > 5, x, -3.1416))
- [[-3.1416 -- -3.1416]
- [-- -3.1416 --]
- [6.0 -- 8.0]]
+ >>> x
+ masked_array(
+ data=[[0.0, --, 2.0],
+ [--, 4.0, --],
+ [6.0, --, 8.0]],
+ mask=[[False, True, False],
+ [ True, False, True],
+ [False, True, False]],
+ fill_value=1e+20)
+ >>> np.ma.where(x > 5, x, -3.1416)
+ masked_array(
+ data=[[-3.1416, --, -3.1416],
+ [--, -3.1416, --],
+ [6.0, --, 8.0]],
+ mask=[[False, True, False],
+ [ True, False, True],
+ [False, True, False]],
+ fill_value=1e+20)
"""
@@ -7198,9 +7279,9 @@ def choose(indices, choices, out=None, mode='raise'):
>>> choice = np.array([[1,1,1], [2,2,2], [3,3,3]])
>>> a = np.array([2, 1, 0])
>>> np.ma.choose(a, choice)
- masked_array(data = [3 2 1],
- mask = False,
- fill_value=999999)
+ masked_array(data=[3, 2, 1],
+ mask=False,
+ fill_value=999999)
"""
def fmask(x):
@@ -7323,25 +7404,23 @@ def mask_rowcols(a, axis=None):
[0, 0, 0]])
>>> a = ma.masked_equal(a, 1)
>>> a
- masked_array(data =
- [[0 0 0]
- [0 -- 0]
- [0 0 0]],
- mask =
- [[False False False]
- [False True False]
- [False False False]],
- fill_value=999999)
+ masked_array(
+ data=[[0, 0, 0],
+ [0, --, 0],
+ [0, 0, 0]],
+ mask=[[False, False, False],
+ [False, True, False],
+ [False, False, False]],
+ fill_value=1)
>>> ma.mask_rowcols(a)
- masked_array(data =
- [[0 -- 0]
- [-- -- --]
- [0 -- 0]],
- mask =
- [[False True False]
- [ True True True]
- [False True False]],
- fill_value=999999)
+ masked_array(
+ data=[[0, --, 0],
+ [--, --, --],
+ [0, --, 0]],
+ mask=[[False, True, False],
+ [ True, True, True],
+ [False, True, False]],
+ fill_value=1)
"""
a = array(a, subok=False)
@@ -7402,24 +7481,22 @@ def dot(a, b, strict=False, out=None):
Examples
--------
- >>> a = ma.array([[1, 2, 3], [4, 5, 6]], mask=[[1, 0, 0], [0, 0, 0]])
- >>> b = ma.array([[1, 2], [3, 4], [5, 6]], mask=[[1, 0], [0, 0], [0, 0]])
+ >>> a = np.ma.array([[1, 2, 3], [4, 5, 6]], mask=[[1, 0, 0], [0, 0, 0]])
+ >>> b = np.ma.array([[1, 2], [3, 4], [5, 6]], mask=[[1, 0], [0, 0], [0, 0]])
>>> np.ma.dot(a, b)
- masked_array(data =
- [[21 26]
- [45 64]],
- mask =
- [[False False]
- [False False]],
- fill_value = 999999)
+ masked_array(
+ data=[[21, 26],
+ [45, 64]],
+ mask=[[False, False],
+ [False, False]],
+ fill_value=999999)
>>> np.ma.dot(a, b, strict=True)
- masked_array(data =
- [[-- --]
- [-- 64]],
- mask =
- [[ True True]
- [ True False]],
- fill_value = 999999)
+ masked_array(
+ data=[[--, --],
+ [--, 64]],
+ mask=[[ True, True],
+ [ True, False]],
+ fill_value=999999)
"""
# !!!: Works only with 2D arrays. There should be a way to get it to run
@@ -7587,18 +7664,18 @@ def allequal(a, b, fill_value=True):
Examples
--------
- >>> a = ma.array([1e10, 1e-7, 42.0], mask=[0, 0, 1])
+ >>> a = np.ma.array([1e10, 1e-7, 42.0], mask=[0, 0, 1])
>>> a
- masked_array(data = [10000000000.0 1e-07 --],
- mask = [False False True],
- fill_value=1e+20)
+ masked_array(data=[10000000000.0, 1e-07, --],
+ mask=[False, False, True],
+ fill_value=1e+20)
- >>> b = array([1e10, 1e-7, -42.0])
+ >>> b = np.array([1e10, 1e-7, -42.0])
>>> b
array([ 1.00000000e+10, 1.00000000e-07, -4.20000000e+01])
- >>> ma.allequal(a, b, fill_value=False)
+ >>> np.ma.allequal(a, b, fill_value=False)
False
- >>> ma.allequal(a, b)
+ >>> np.ma.allequal(a, b)
True
"""
@@ -7664,29 +7741,29 @@ def allclose(a, b, masked_equal=True, rtol=1e-5, atol=1e-8):
Examples
--------
- >>> a = ma.array([1e10, 1e-7, 42.0], mask=[0, 0, 1])
+ >>> a = np.ma.array([1e10, 1e-7, 42.0], mask=[0, 0, 1])
>>> a
- masked_array(data = [10000000000.0 1e-07 --],
- mask = [False False True],
- fill_value = 1e+20)
- >>> b = ma.array([1e10, 1e-8, -42.0], mask=[0, 0, 1])
- >>> ma.allclose(a, b)
+ masked_array(data=[10000000000.0, 1e-07, --],
+ mask=[False, False, True],
+ fill_value=1e+20)
+ >>> b = np.ma.array([1e10, 1e-8, -42.0], mask=[0, 0, 1])
+ >>> np.ma.allclose(a, b)
False
- >>> a = ma.array([1e10, 1e-8, 42.0], mask=[0, 0, 1])
- >>> b = ma.array([1.00001e10, 1e-9, -42.0], mask=[0, 0, 1])
- >>> ma.allclose(a, b)
+ >>> a = np.ma.array([1e10, 1e-8, 42.0], mask=[0, 0, 1])
+ >>> b = np.ma.array([1.00001e10, 1e-9, -42.0], mask=[0, 0, 1])
+ >>> np.ma.allclose(a, b)
True
- >>> ma.allclose(a, b, masked_equal=False)
+ >>> np.ma.allclose(a, b, masked_equal=False)
False
Masked values are not compared directly.
- >>> a = ma.array([1e10, 1e-8, 42.0], mask=[0, 0, 1])
- >>> b = ma.array([1.00001e10, 1e-9, 42.0], mask=[0, 0, 1])
- >>> ma.allclose(a, b)
+ >>> a = np.ma.array([1e10, 1e-8, 42.0], mask=[0, 0, 1])
+ >>> b = np.ma.array([1.00001e10, 1e-9, 42.0], mask=[0, 0, 1])
+ >>> np.ma.allclose(a, b)
True
- >>> ma.allclose(a, b, masked_equal=False)
+ >>> np.ma.allclose(a, b, masked_equal=False)
False
"""
@@ -7753,15 +7830,14 @@ def asarray(a, dtype=None, order=None):
--------
>>> x = np.arange(10.).reshape(2, 5)
>>> x
- array([[ 0., 1., 2., 3., 4.],
- [ 5., 6., 7., 8., 9.]])
+ array([[0., 1., 2., 3., 4.],
+ [5., 6., 7., 8., 9.]])
>>> np.ma.asarray(x)
- masked_array(data =
- [[ 0. 1. 2. 3. 4.]
- [ 5. 6. 7. 8. 9.]],
- mask =
- False,
- fill_value = 1e+20)
+ masked_array(
+ data=[[0., 1., 2., 3., 4.],
+ [5., 6., 7., 8., 9.]],
+ mask=False,
+ fill_value=1e+20)
>>> type(np.ma.asarray(x))
<class 'numpy.ma.core.MaskedArray'>
@@ -7801,15 +7877,14 @@ def asanyarray(a, dtype=None):
--------
>>> x = np.arange(10.).reshape(2, 5)
>>> x
- array([[ 0., 1., 2., 3., 4.],
- [ 5., 6., 7., 8., 9.]])
+ array([[0., 1., 2., 3., 4.],
+ [5., 6., 7., 8., 9.]])
>>> np.ma.asanyarray(x)
- masked_array(data =
- [[ 0. 1. 2. 3. 4.]
- [ 5. 6. 7. 8. 9.]],
- mask =
- False,
- fill_value = 1e+20)
+ masked_array(
+ data=[[0., 1., 2., 3., 4.],
+ [5., 6., 7., 8., 9.]],
+ mask=False,
+ fill_value=1e+20)
>>> type(np.ma.asanyarray(x))
<class 'numpy.ma.core.MaskedArray'>
@@ -7953,39 +8028,38 @@ def fromflex(fxarray):
>>> x = np.ma.array(np.arange(9).reshape(3, 3), mask=[0] + [1, 0] * 4)
>>> rec = x.toflex()
>>> rec
- array([[(0, False), (1, True), (2, False)],
- [(3, True), (4, False), (5, True)],
- [(6, False), (7, True), (8, False)]],
- dtype=[('_data', '<i4'), ('_mask', '|b1')])
+ array([[(0, False), (1, True), (2, False)],
+ [(3, True), (4, False), (5, True)],
+ [(6, False), (7, True), (8, False)]],
+ dtype=[('_data', '<i8'), ('_mask', '?')])
>>> x2 = np.ma.fromflex(rec)
>>> x2
- masked_array(data =
- [[0 -- 2]
- [-- 4 --]
- [6 -- 8]],
- mask =
- [[False True False]
- [ True False True]
- [False True False]],
- fill_value = 999999)
+ masked_array(
+ data=[[0, --, 2],
+ [--, 4, --],
+ [6, --, 8]],
+ mask=[[False, True, False],
+ [ True, False, True],
+ [False, True, False]],
+ fill_value=999999)
Extra fields can be present in the structured array but are discarded:
>>> dt = [('_data', '<i4'), ('_mask', '|b1'), ('field3', '<f4')]
>>> rec2 = np.zeros((2, 2), dtype=dt)
>>> rec2
- array([[(0, False, 0.0), (0, False, 0.0)],
- [(0, False, 0.0), (0, False, 0.0)]],
- dtype=[('_data', '<i4'), ('_mask', '|b1'), ('field3', '<f4')])
+ array([[(0, False, 0.), (0, False, 0.)],
+ [(0, False, 0.), (0, False, 0.)]],
+ dtype=[('_data', '<i4'), ('_mask', '?'), ('field3', '<f4')])
>>> y = np.ma.fromflex(rec2)
>>> y
- masked_array(data =
- [[0 0]
- [0 0]],
- mask =
- [[False False]
- [False False]],
- fill_value = 999999)
+ masked_array(
+ data=[[0, 0],
+ [0, 0]],
+ mask=[[False, False],
+ [False, False]],
+ fill_value=999999,
+ dtype=int32)
"""
return masked_array(fxarray['_data'], mask=fxarray['_mask'])
@@ -8086,7 +8160,10 @@ def append(a, b, axis=None):
>>> import numpy.ma as ma
>>> a = ma.masked_values([1, 2, 3], 2)
>>> b = ma.masked_values([[4, 5, 6], [7, 8, 9]], 7)
- >>> print(ma.append(a, b))
- [1 -- 3 4 5 6 -- 8 9]
+ >>> ma.append(a, b)
+ masked_array(data=[1, --, 3, 4, 5, 6, --, 8, 9],
+ mask=[False, True, False, False, False, False, True, False,
+ False],
+ fill_value=999999)
"""
return concatenate([a, b], axis)