summaryrefslogtreecommitdiff
path: root/numpy/ma/extras.py
diff options
context:
space:
mode:
Diffstat (limited to 'numpy/ma/extras.py')
-rw-r--r--numpy/ma/extras.py16
1 files changed, 8 insertions, 8 deletions
diff --git a/numpy/ma/extras.py b/numpy/ma/extras.py
index 1c28eadb8..27abcb2c1 100644
--- a/numpy/ma/extras.py
+++ b/numpy/ma/extras.py
@@ -533,7 +533,7 @@ def average(a, axis=None, weights=None, returned=False):
d = add.reduce(w, axis, dtype=float)
del w, r
else:
- raise ValueError, 'average: weights wrong shape.'
+ raise ValueError('average: weights wrong shape.')
else:
if weights is None:
n = add.reduce(a, axis, dtype=float)
@@ -556,7 +556,7 @@ def average(a, axis=None, weights=None, returned=False):
n = add.reduce(a * w, axis, dtype=float)
d = add.reduce(w, axis, dtype=float)
else:
- raise ValueError, 'average: weights wrong shape.'
+ raise ValueError('average: weights wrong shape.')
del w
if n is masked or d is masked:
return masked
@@ -718,7 +718,7 @@ def compress_rowcols(x, axis=None):
"""
x = asarray(x)
if x.ndim != 2:
- raise NotImplementedError, "compress2d works for 2D arrays only."
+ raise NotImplementedError("compress2d works for 2D arrays only.")
m = getmask(x)
# Nothing is masked: return x
if m is nomask or not m.any():
@@ -842,7 +842,7 @@ def mask_rowcols(a, axis=None):
"""
a = asarray(a)
if a.ndim != 2:
- raise NotImplementedError, "compress2d works for 2D arrays only."
+ raise NotImplementedError("compress2d works for 2D arrays only.")
m = getmask(a)
# Nothing is masked: return a
if m is nomask or not m.any():
@@ -1429,7 +1429,7 @@ class MAxisConcatenator(AxisConcatenator):
def __getitem__(self, key):
if isinstance(key, str):
- raise MAError, "Unavailable for masked array."
+ raise MAError("Unavailable for masked array.")
if type(key) is not tuple:
key = (key,)
objs = []
@@ -1459,7 +1459,7 @@ class MAxisConcatenator(AxisConcatenator):
self.axis = int(key[k])
continue
except (ValueError, TypeError):
- raise ValueError, "Unknown special directive"
+ raise ValueError("Unknown special directive")
elif type(key[k]) in np.ScalarType:
newobj = asarray([key[k]])
scalars.append(k)
@@ -1706,7 +1706,7 @@ def notmasked_contiguous(a, axis=None):
a = asarray(a)
nd = a.ndim
if nd > 2:
- raise NotImplementedError, "Currently limited to atmost 2D array."
+ raise NotImplementedError("Currently limited to atmost 2D array.")
if axis is None or nd == 1:
return flatnotmasked_contiguous(a)
#
@@ -1863,7 +1863,7 @@ def polyfit(x, y, deg, rcond=None, full=False):
else:
m = mx
else:
- raise TypeError, "Expected a 1D or 2D array for y!"
+ raise TypeError("Expected a 1D or 2D array for y!")
if m is not nomask:
x[m] = y[m] = masked
# Set rcond