diff options
Diffstat (limited to 'numpy/ma')
-rw-r--r-- | numpy/ma/__init__.pyi | 1 | ||||
-rw-r--r-- | numpy/ma/core.py | 377 | ||||
-rw-r--r-- | numpy/ma/core.pyi | 9 | ||||
-rw-r--r-- | numpy/ma/extras.py | 96 | ||||
-rw-r--r-- | numpy/ma/tests/test_core.py | 159 | ||||
-rw-r--r-- | numpy/ma/tests/test_extras.py | 45 | ||||
-rw-r--r-- | numpy/ma/tests/test_old_ma.py | 8 | ||||
-rw-r--r-- | numpy/ma/tests/test_regression.py | 6 | ||||
-rw-r--r-- | numpy/ma/tests/test_subclassing.py | 10 | ||||
-rw-r--r-- | numpy/ma/testutils.py | 2 |
10 files changed, 588 insertions, 125 deletions
diff --git a/numpy/ma/__init__.pyi b/numpy/ma/__init__.pyi index 7f5cb56a8..ce72383e5 100644 --- a/numpy/ma/__init__.pyi +++ b/numpy/ma/__init__.pyi @@ -155,7 +155,6 @@ from numpy.ma.core import ( resize as resize, right_shift as right_shift, round as round, - round_ as round_, set_fill_value as set_fill_value, shape as shape, sin as sin, diff --git a/numpy/ma/core.py b/numpy/ma/core.py index 59ba3a593..2fe326885 100644 --- a/numpy/ma/core.py +++ b/numpy/ma/core.py @@ -2310,7 +2310,7 @@ def masked_values(x, value, rtol=1e-5, atol=1e-8, copy=True, shrink=True): mask=False, fill_value=2.1) - Unlike `masked_equal`, `masked_values` can perform approximate equalities. + Unlike `masked_equal`, `masked_values` can perform approximate equalities. >>> ma.masked_values(x, 2.1, atol=1e-1) masked_array(data=[1.0, 1.1, --, 1.1, 3.0], @@ -2356,8 +2356,13 @@ def masked_invalid(a, copy=True): fill_value=1e+20) """ - - return masked_where(~(np.isfinite(getdata(a))), a, copy=copy) + a = np.array(a, copy=False, subok=True) + res = masked_where(~(np.isfinite(a)), a, copy=copy) + # masked_invalid previously never returned nomask as a mask and doing so + # threw off matplotlib (gh-22842). So use shrink=False: + if res._mask is nomask: + res._mask = make_mask_none(res.shape, res.dtype) + return res ############################################################################### # Printing options # @@ -2852,7 +2857,7 @@ class MaskedArray(ndarray): mask = np.array( [getmaskarray(np.asanyarray(m, dtype=_data.dtype)) for m in data], dtype=mdtype) - except ValueError: + except (ValueError, TypeError): # If data is nested mask = nomask # Force shrinking of the mask if needed (and possible) @@ -2865,11 +2870,17 @@ class MaskedArray(ndarray): _data._mask = _data._mask.copy() # Reset the shape of the original mask if getmask(data) is not nomask: - data._mask.shape = data.shape + # gh-21022 encounters an issue here + # because data._mask.shape is not writeable, but + # the op was also pointless in that case, because + # the shapes were the same, so we can at least + # avoid that path + if data._mask.shape != data.shape: + data._mask.shape = data.shape else: # Case 2. : With a mask in input. # If mask is boolean, create an array of True or False - + # if users pass `mask=None` be forgiving here and cast it False # for speed; although the default is `mask=nomask` and can differ. if mask is None: @@ -2922,7 +2933,7 @@ class MaskedArray(ndarray): else: _data._mask = np.logical_or(mask, _data._mask) _data._sharedmask = False - + # Update fill_value. if fill_value is None: fill_value = getattr(data, '_fill_value', None) @@ -3329,6 +3340,10 @@ class MaskedArray(ndarray): # Note: Don't try to check for m.any(), that'll take too long return dout + # setitem may put NaNs into integer arrays or occasionally overflow a + # float. But this may happen in masked values, so avoid otherwise + # correct warnings (as is typical also in masked calculations). + @np.errstate(over='ignore', invalid='ignore') def __setitem__(self, indx, value): """ x.__setitem__(i, y) <==> x[i]=y @@ -4620,6 +4635,7 @@ class MaskedArray(ndarray): otherwise. 'K' means to read the elements in the order they occur in memory, except for reversing the data when strides are negative. By default, 'C' index order is used. + (Masked arrays currently use 'A' on the data when 'K' is passed.) Returns ------- @@ -4646,6 +4662,13 @@ class MaskedArray(ndarray): fill_value=999999) """ + # The order of _data and _mask could be different (it shouldn't be + # normally). Passing order `K` or `A` would be incorrect. + # So we ignore the mask memory order. + # TODO: We don't actually support K, so use A instead. We could + # try to guess this correct by sorting strides or deprecate. + if order in "kKaA": + order = "F" if self._data.flags.fnc else "C" r = ndarray.ravel(self._data, order=order).view(type(self)) r._update_from(self) if self._mask is not nomask: @@ -6295,6 +6318,12 @@ class MaskedArray(ndarray): memo[id(self)] = copied for (k, v) in self.__dict__.items(): copied.__dict__[k] = deepcopy(v, memo) + # as clearly documented for np.copy(), you need to use + # deepcopy() directly for arrays of object type that may + # contain compound types--you cannot depend on normal + # copy semantics to do the right thing here + if self.dtype.hasobject: + copied._data[...] = deepcopy(copied._data) return copied @@ -6991,6 +7020,21 @@ def sort(a, axis=-1, kind=None, order=None, endwith=True, fill_value=None): See Also -------- MaskedArray.sort : equivalent method + + Examples + -------- + >>> import numpy.ma as ma + >>> x = [11.2, -3.973, 0.801, -1.41] + >>> mask = [0, 0, 0, 1] + >>> masked_x = ma.masked_array(x, mask) + >>> masked_x + masked_array(data=[11.2, -3.973, 0.801, --], + mask=[False, False, False, True], + fill_value=1e+20) + >>> ma.sort(masked_x) + masked_array(data=[-3.973, 0.801, 11.2, --], + mask=[False, False, False, True], + fill_value=1e+20) """ a = np.array(a, copy=True, subok=True) if axis is None: @@ -7016,6 +7060,29 @@ def compressed(x): -------- ma.MaskedArray.compressed : Equivalent method. + Examples + -------- + + Create an array with negative values masked: + + >>> import numpy as np + >>> x = np.array([[1, -1, 0], [2, -1, 3], [7, 4, -1]]) + >>> masked_x = np.ma.masked_array(x, mask=x < 0) + >>> masked_x + masked_array( + data=[[1, --, 0], + [2, --, 3], + [7, 4, --]], + mask=[[False, True, False], + [False, True, False], + [False, False, True]], + fill_value=999999) + + Compress the masked array into a 1-D array of non-masked values: + + >>> np.ma.compressed(masked_x) + array([1, 0, 2, 3, 7, 4]) + """ return asanyarray(x).compressed() @@ -7091,6 +7158,38 @@ def diag(v, k=0): -------- numpy.diag : Equivalent function for ndarrays. + Examples + -------- + + Create an array with negative values masked: + + >>> import numpy as np + >>> x = np.array([[11.2, -3.973, 18], [0.801, -1.41, 12], [7, 33, -12]]) + >>> masked_x = np.ma.masked_array(x, mask=x < 0) + >>> masked_x + masked_array( + data=[[11.2, --, 18.0], + [0.801, --, 12.0], + [7.0, 33.0, --]], + mask=[[False, True, False], + [False, True, False], + [False, False, True]], + fill_value=1e+20) + + Isolate the main diagonal from the masked array: + + >>> np.ma.diag(masked_x) + masked_array(data=[11.2, --, --], + mask=[False, True, True], + fill_value=1e+20) + + Isolate the first diagonal below the main diagonal: + + >>> np.ma.diag(masked_x, -1) + masked_array(data=[0.801, 33.0], + mask=[False, False], + fill_value=1e+20) + """ output = np.diag(v, k).view(MaskedArray) if getmask(v) is not nomask: @@ -7130,6 +7229,21 @@ def right_shift(a, n): -------- numpy.right_shift + Examples + -------- + >>> import numpy.ma as ma + >>> x = [11, 3, 8, 1] + >>> mask = [0, 0, 0, 1] + >>> masked_x = ma.masked_array(x, mask) + >>> masked_x + masked_array(data=[11, 3, 8, --], + mask=[False, False, False, True], + fill_value=999999) + >>> ma.right_shift(masked_x,1) + masked_array(data=[5, 1, 4, --], + mask=[False, False, False, True], + fill_value=999999) + """ m = getmask(a) if m is nomask: @@ -7341,6 +7455,141 @@ def size(obj, axis=None): size.__doc__ = np.size.__doc__ +def diff(a, /, n=1, axis=-1, prepend=np._NoValue, append=np._NoValue): + """ + Calculate the n-th discrete difference along the given axis. + The first difference is given by ``out[i] = a[i+1] - a[i]`` along + the given axis, higher differences are calculated by using `diff` + recursively. + Preserves the input mask. + + Parameters + ---------- + a : array_like + Input array + n : int, optional + The number of times values are differenced. If zero, the input + is returned as-is. + axis : int, optional + The axis along which the difference is taken, default is the + last axis. + prepend, append : array_like, optional + Values to prepend or append to `a` along axis prior to + performing the difference. Scalar values are expanded to + arrays with length 1 in the direction of axis and the shape + of the input array in along all other axes. Otherwise the + dimension and shape must match `a` except along axis. + + Returns + ------- + diff : MaskedArray + The n-th differences. The shape of the output is the same as `a` + except along `axis` where the dimension is smaller by `n`. The + type of the output is the same as the type of the difference + between any two elements of `a`. This is the same as the type of + `a` in most cases. A notable exception is `datetime64`, which + results in a `timedelta64` output array. + + See Also + -------- + numpy.diff : Equivalent function in the top-level NumPy module. + + Notes + ----- + Type is preserved for boolean arrays, so the result will contain + `False` when consecutive elements are the same and `True` when they + differ. + + For unsigned integer arrays, the results will also be unsigned. This + should not be surprising, as the result is consistent with + calculating the difference directly: + + >>> u8_arr = np.array([1, 0], dtype=np.uint8) + >>> np.ma.diff(u8_arr) + masked_array(data=[255], + mask=False, + fill_value=999999, + dtype=uint8) + >>> u8_arr[1,...] - u8_arr[0,...] + 255 + + If this is not desirable, then the array should be cast to a larger + integer type first: + + >>> i16_arr = u8_arr.astype(np.int16) + >>> np.ma.diff(i16_arr) + masked_array(data=[-1], + mask=False, + fill_value=999999, + dtype=int16) + + Examples + -------- + >>> a = np.array([1, 2, 3, 4, 7, 0, 2, 3]) + >>> x = np.ma.masked_where(a < 2, a) + >>> np.ma.diff(x) + masked_array(data=[--, 1, 1, 3, --, --, 1], + mask=[ True, False, False, False, True, True, False], + fill_value=999999) + + >>> np.ma.diff(x, n=2) + masked_array(data=[--, 0, 2, --, --, --], + mask=[ True, False, False, True, True, True], + fill_value=999999) + + >>> a = np.array([[1, 3, 1, 5, 10], [0, 1, 5, 6, 8]]) + >>> x = np.ma.masked_equal(a, value=1) + >>> np.ma.diff(x) + masked_array( + data=[[--, --, --, 5], + [--, --, 1, 2]], + mask=[[ True, True, True, False], + [ True, True, False, False]], + fill_value=1) + + >>> np.ma.diff(x, axis=0) + masked_array(data=[[--, --, --, 1, -2]], + mask=[[ True, True, True, False, False]], + fill_value=1) + + """ + if n == 0: + return a + if n < 0: + raise ValueError("order must be non-negative but got " + repr(n)) + + a = np.ma.asanyarray(a) + if a.ndim == 0: + raise ValueError( + "diff requires input that is at least one dimensional" + ) + + combined = [] + if prepend is not np._NoValue: + prepend = np.ma.asanyarray(prepend) + if prepend.ndim == 0: + shape = list(a.shape) + shape[axis] = 1 + prepend = np.broadcast_to(prepend, tuple(shape)) + combined.append(prepend) + + combined.append(a) + + if append is not np._NoValue: + append = np.ma.asanyarray(append) + if append.ndim == 0: + shape = list(a.shape) + shape[axis] = 1 + append = np.broadcast_to(append, tuple(shape)) + combined.append(append) + + if len(combined) > 1: + a = np.ma.concatenate(combined, axis) + + # GH 22465 np.diff without prepend/append preserves the mask + return np.diff(a, n, axis) + + ############################################################################## # Extra functions # ############################################################################## @@ -7568,94 +7817,18 @@ def round_(a, decimals=0, out=None): round = round_ -# Needed by dot, so move here from extras.py. It will still be exported -# from extras.py for compatibility. -def mask_rowcols(a, axis=None): +def _mask_propagate(a, axis): """ - Mask rows and/or columns of a 2D array that contain masked values. - - Mask whole rows and/or columns of a 2D array that contain - masked values. The masking behavior is selected using the - `axis` parameter. - - - If `axis` is None, rows *and* columns are masked. - - If `axis` is 0, only rows are masked. - - If `axis` is 1 or -1, only columns are masked. - - Parameters - ---------- - a : array_like, MaskedArray - The array to mask. If not a MaskedArray instance (or if no array - elements are masked). The result is a MaskedArray with `mask` set - to `nomask` (False). Must be a 2D array. - axis : int, optional - Axis along which to perform the operation. If None, applies to a - flattened version of the array. - - Returns - ------- - a : MaskedArray - A modified version of the input array, masked depending on the value - of the `axis` parameter. - - Raises - ------ - NotImplementedError - If input array `a` is not 2D. - - See Also - -------- - mask_rows : Mask rows of a 2D array that contain masked values. - mask_cols : Mask cols of a 2D array that contain masked values. - masked_where : Mask where a condition is met. - - Notes - ----- - The input array's mask is modified by this function. - - Examples - -------- - >>> import numpy.ma as ma - >>> a = np.zeros((3, 3), dtype=int) - >>> a[1, 1] = 1 - >>> a - array([[0, 0, 0], - [0, 1, 0], - [0, 0, 0]]) - >>> a = ma.masked_equal(a, 1) - >>> a - masked_array( - data=[[0, 0, 0], - [0, --, 0], - [0, 0, 0]], - mask=[[False, False, False], - [False, True, False], - [False, False, False]], - fill_value=1) - >>> ma.mask_rowcols(a) - masked_array( - data=[[0, --, 0], - [--, --, --], - [0, --, 0]], - mask=[[False, True, False], - [ True, True, True], - [False, True, False]], - fill_value=1) - + Mask whole 1-d vectors of an array that contain masked values. """ a = array(a, subok=False) - if a.ndim != 2: - raise NotImplementedError("mask_rowcols works for 2D arrays only.") m = getmask(a) - # Nothing is masked: return a - if m is nomask or not m.any(): + if m is nomask or not m.any() or axis is None: return a - maskedval = m.nonzero() a._mask = a._mask.copy() - if not axis: - a[np.unique(maskedval[0])] = masked - if axis in [None, 1, -1]: - a[:, np.unique(maskedval[1])] = masked + axes = normalize_axis_tuple(axis, a.ndim) + for ax in axes: + a._mask |= m.any(axis=ax, keepdims=True) return a @@ -7672,10 +7845,6 @@ def dot(a, b, strict=False, out=None): corresponding method, it is recommended that the optional arguments be treated as keyword only. At some point that may be mandatory. - .. note:: - Works only with 2-D arrays at the moment. - - Parameters ---------- a, b : masked_array_like @@ -7719,18 +7888,22 @@ def dot(a, b, strict=False, out=None): fill_value=999999) """ - # !!!: Works only with 2D arrays. There should be a way to get it to run - # with higher dimension - if strict and (a.ndim == 2) and (b.ndim == 2): - a = mask_rowcols(a, 0) - b = mask_rowcols(b, 1) + if strict is True: + if np.ndim(a) == 0 or np.ndim(b) == 0: + pass + elif b.ndim == 1: + a = _mask_propagate(a, a.ndim - 1) + b = _mask_propagate(b, b.ndim - 1) + else: + a = _mask_propagate(a, a.ndim - 1) + b = _mask_propagate(b, b.ndim - 2) am = ~getmaskarray(a) bm = ~getmaskarray(b) if out is None: d = np.dot(filled(a, 0), filled(b, 0)) m = ~np.dot(am, bm) - if d.ndim == 0: + if np.ndim(d) == 0: d = np.asarray(d) r = d.view(get_masked_subclass(a, b)) r.__setmask__(m) @@ -8281,12 +8454,6 @@ clip = _convert2ma( np_ret='clipped_array : ndarray', np_ma_ret='clipped_array : MaskedArray', ) -diff = _convert2ma( - 'diff', - params=dict(fill_value=None, hardmask=False), - np_ret='diff : ndarray', - np_ma_ret='diff : MaskedArray', -) empty = _convert2ma( 'empty', params=dict(fill_value=None, hardmask=False), diff --git a/numpy/ma/core.pyi b/numpy/ma/core.pyi index 94a91da85..e94ebce3c 100644 --- a/numpy/ma/core.pyi +++ b/numpy/ma/core.pyi @@ -7,7 +7,6 @@ from numpy import ( amin as amin, bool_ as bool_, expand_dims as expand_dims, - diff as diff, clip as clip, indices as indices, ones_like as ones_like, @@ -220,6 +219,10 @@ class MaskedArray(ndarray[_ShapeType, _DType_co]): def compress(self, condition, axis=..., out=...): ... def __eq__(self, other): ... def __ne__(self, other): ... + def __ge__(self, other): ... + def __gt__(self, other): ... + def __le__(self, other): ... + def __lt__(self, other): ... def __add__(self, other): ... def __radd__(self, other): ... def __sub__(self, other): ... @@ -429,10 +432,10 @@ def resize(x, new_shape): ... def ndim(obj): ... def shape(obj): ... def size(obj, axis=...): ... +def diff(a, /, n=..., axis=..., prepend=..., append=...): ... def where(condition, x=..., y=...): ... def choose(indices, choices, out=..., mode=...): ... -def round_(a, decimals=..., out=...): ... -round = round_ +def round(a, decimals=..., out=...): ... def inner(a, b): ... innerproduct = inner diff --git a/numpy/ma/extras.py b/numpy/ma/extras.py index 41bce0f22..8a6246c36 100644 --- a/numpy/ma/extras.py +++ b/numpy/ma/extras.py @@ -27,8 +27,7 @@ from . import core as ma from .core import ( MaskedArray, MAError, add, array, asarray, concatenate, filled, count, getmask, getmaskarray, make_mask_descr, masked, masked_array, mask_or, - nomask, ones, sort, zeros, getdata, get_masked_subclass, dot, - mask_rowcols + nomask, ones, sort, zeros, getdata, get_masked_subclass, dot ) import numpy as np @@ -398,7 +397,7 @@ def apply_along_axis(func1d, axis, arr, *args, **kwargs): dtypes.append(np.asarray(res).dtype) outarr = zeros(outshape, object) outarr[tuple(ind)] = res - Ntot = np.product(outshape) + Ntot = np.prod(outshape) k = 1 while k < Ntot: # increment the index @@ -418,7 +417,7 @@ def apply_along_axis(func1d, axis, arr, *args, **kwargs): j = i.copy() j[axis] = ([slice(None, None)] * res.ndim) j.put(indlist, ind) - Ntot = np.product(outshape) + Ntot = np.prod(outshape) holdshape = outshape outshape = list(arr.shape) outshape[axis] = res.shape @@ -955,6 +954,95 @@ def compress_cols(a): return compress_rowcols(a, 1) +def mask_rowcols(a, axis=None): + """ + Mask rows and/or columns of a 2D array that contain masked values. + + Mask whole rows and/or columns of a 2D array that contain + masked values. The masking behavior is selected using the + `axis` parameter. + + - If `axis` is None, rows *and* columns are masked. + - If `axis` is 0, only rows are masked. + - If `axis` is 1 or -1, only columns are masked. + + Parameters + ---------- + a : array_like, MaskedArray + The array to mask. If not a MaskedArray instance (or if no array + elements are masked), the result is a MaskedArray with `mask` set + to `nomask` (False). Must be a 2D array. + axis : int, optional + Axis along which to perform the operation. If None, applies to a + flattened version of the array. + + Returns + ------- + a : MaskedArray + A modified version of the input array, masked depending on the value + of the `axis` parameter. + + Raises + ------ + NotImplementedError + If input array `a` is not 2D. + + See Also + -------- + mask_rows : Mask rows of a 2D array that contain masked values. + mask_cols : Mask cols of a 2D array that contain masked values. + masked_where : Mask where a condition is met. + + Notes + ----- + The input array's mask is modified by this function. + + Examples + -------- + >>> import numpy.ma as ma + >>> a = np.zeros((3, 3), dtype=int) + >>> a[1, 1] = 1 + >>> a + array([[0, 0, 0], + [0, 1, 0], + [0, 0, 0]]) + >>> a = ma.masked_equal(a, 1) + >>> a + masked_array( + data=[[0, 0, 0], + [0, --, 0], + [0, 0, 0]], + mask=[[False, False, False], + [False, True, False], + [False, False, False]], + fill_value=1) + >>> ma.mask_rowcols(a) + masked_array( + data=[[0, --, 0], + [--, --, --], + [0, --, 0]], + mask=[[False, True, False], + [ True, True, True], + [False, True, False]], + fill_value=1) + + """ + a = array(a, subok=False) + if a.ndim != 2: + raise NotImplementedError("mask_rowcols works for 2D arrays only.") + m = getmask(a) + # Nothing is masked: return a + if m is nomask or not m.any(): + return a + maskedval = m.nonzero() + a._mask = a._mask.copy() + if not axis: + a[np.unique(maskedval[0])] = masked + if axis in [None, 1, -1]: + a[:, np.unique(maskedval[1])] = masked + return a + + def mask_rows(a, axis=np._NoValue): """ Mask rows of a 2D array that contain masked values. diff --git a/numpy/ma/tests/test_core.py b/numpy/ma/tests/test_core.py index bc897d731..6ab1d7e4f 100644 --- a/numpy/ma/tests/test_core.py +++ b/numpy/ma/tests/test_core.py @@ -8,6 +8,7 @@ __author__ = "Pierre GF Gerard-Marchant" import sys import warnings +import copy import operator import itertools import textwrap @@ -23,6 +24,7 @@ import numpy.core.umath as umath from numpy.testing import ( assert_raises, assert_warns, suppress_warnings, IS_WASM ) +from numpy.testing._private.utils import requires_memory from numpy import ndarray from numpy.compat import asbytes from numpy.ma.testutils import ( @@ -375,6 +377,24 @@ class TestMaskedArray: assert_equal(s1, s2) assert_(x1[1:1].shape == (0,)) + def test_setitem_no_warning(self): + # Setitem shouldn't warn, because the assignment might be masked + # and warning for a masked assignment is weird (see gh-23000) + # (When the value is masked, otherwise a warning would be acceptable + # but is not given currently.) + x = np.ma.arange(60).reshape((6, 10)) + index = (slice(1, 5, 2), [7, 5]) + value = np.ma.masked_all((2, 2)) + value._data[...] = np.inf # not a valid integer... + x[index] = value + # The masked scalar is special cased, but test anyway (it's NaN): + x[...] = np.ma.masked + # Finally, a large value that cannot be cast to the float32 `x` + x = np.ma.arange(3., dtype=np.float32) + value = np.ma.array([2e234, 1, 1], mask=[True, False, False]) + x[...] = value + x[[0, 1, 2]] = value + @suppress_copy_mask_on_assignment def test_copy(self): # Tests of some subtle points of copying and sizing. @@ -1334,16 +1354,16 @@ class TestMaskedArrayArithmetic: assert_equal(np.sum(x, axis=0), sum(x, axis=0)) assert_equal(np.sum(filled(xm, 0), axis=0), sum(xm, axis=0)) assert_equal(np.sum(x, 0), sum(x, 0)) - assert_equal(np.product(x, axis=0), product(x, axis=0)) - assert_equal(np.product(x, 0), product(x, 0)) - assert_equal(np.product(filled(xm, 1), axis=0), product(xm, axis=0)) + assert_equal(np.prod(x, axis=0), product(x, axis=0)) + assert_equal(np.prod(x, 0), product(x, 0)) + assert_equal(np.prod(filled(xm, 1), axis=0), product(xm, axis=0)) s = (3, 4) x.shape = y.shape = xm.shape = ym.shape = s if len(s) > 1: assert_equal(np.concatenate((x, y), 1), concatenate((xm, ym), 1)) assert_equal(np.add.reduce(x, 1), add.reduce(x, 1)) assert_equal(np.sum(x, 1), sum(x, 1)) - assert_equal(np.product(x, 1), product(x, 1)) + assert_equal(np.prod(x, 1), product(x, 1)) def test_binops_d2D(self): # Test binary operations on 2D data @@ -3409,6 +3429,24 @@ class TestMaskedArrayMethods: assert_equal(a.ravel(order='C'), [1, 2, 3, 4]) assert_equal(a.ravel(order='F'), [1, 3, 2, 4]) + @pytest.mark.parametrize("order", "AKCF") + @pytest.mark.parametrize("data_order", "CF") + def test_ravel_order(self, order, data_order): + # Ravelling must ravel mask and data in the same order always to avoid + # misaligning the two in the ravel result. + arr = np.ones((5, 10), order=data_order) + arr[0, :] = 0 + mask = np.ones((10, 5), dtype=bool, order=data_order).T + mask[0, :] = False + x = array(arr, mask=mask) + assert x._data.flags.fnc != x._mask.flags.fnc + assert (x.filled(0) == 0).all() + raveled = x.ravel(order) + assert (raveled.filled(0) == 0).all() + + # NOTE: Can be wrong if arr order is neither C nor F and `order="K"` + assert_array_equal(arr.ravel(order), x.ravel(order)._data) + def test_reshape(self): # Tests reshape x = arange(4) @@ -4084,6 +4122,7 @@ class TestMaskedArrayMathMethods: assert_equal(a.max(-1), [3, 6]) assert_equal(a.max(1), [3, 6]) + @requires_memory(free_bytes=2 * 10000 * 1000 * 2) def test_mean_overflow(self): # Test overflow in masked arrays # gh-20272 @@ -4091,6 +4130,46 @@ class TestMaskedArrayMathMethods: mask=np.zeros((10000, 10000))) assert_equal(a.mean(), 65535.0) + def test_diff_with_prepend(self): + # GH 22465 + x = np.array([1, 2, 2, 3, 4, 2, 1, 1]) + + a = np.ma.masked_equal(x[3:], value=2) + a_prep = np.ma.masked_equal(x[:3], value=2) + diff1 = np.ma.diff(a, prepend=a_prep, axis=0) + + b = np.ma.masked_equal(x, value=2) + diff2 = np.ma.diff(b, axis=0) + + assert_(np.ma.allequal(diff1, diff2)) + + def test_diff_with_append(self): + # GH 22465 + x = np.array([1, 2, 2, 3, 4, 2, 1, 1]) + + a = np.ma.masked_equal(x[:3], value=2) + a_app = np.ma.masked_equal(x[3:], value=2) + diff1 = np.ma.diff(a, append=a_app, axis=0) + + b = np.ma.masked_equal(x, value=2) + diff2 = np.ma.diff(b, axis=0) + + assert_(np.ma.allequal(diff1, diff2)) + + def test_diff_with_dim_0(self): + with pytest.raises( + ValueError, + match="diff requires input that is at least one dimensional" + ): + np.ma.diff(np.array(1)) + + def test_diff_with_n_0(self): + a = np.ma.masked_equal([1, 2, 2, 3, 4, 2, 1, 1], value=2) + diff = np.ma.diff(a, n=0, axis=0) + + assert_(np.ma.allequal(a, diff)) + + class TestMaskedArrayMathMethodsComplex: # Test class for miscellaneous MaskedArrays methods. def setup_method(self): @@ -4464,7 +4543,7 @@ class TestMaskedArrayFunctions: x = np.arange(4, dtype=np.int32) y = np.arange(4, dtype=np.float32) * 2.2 test = where(x > 1.5, y, x).dtype - control = np.find_common_type([np.int32, np.float32], []) + control = np.result_type(np.int32, np.float32) assert_equal(test, control) def test_where_broadcast(self): @@ -4507,6 +4586,32 @@ class TestMaskedArrayFunctions: match="not supported for the input types"): np.ma.masked_invalid(a) + def test_masked_invalid_pandas(self): + # getdata() used to be bad for pandas series due to its _data + # attribute. This test is a regression test mainly and may be + # removed if getdata() is adjusted. + class Series(): + _data = "nonsense" + + def __array__(self): + return np.array([5, np.nan, np.inf]) + + arr = np.ma.masked_invalid(Series()) + assert_array_equal(arr._data, np.array(Series())) + assert_array_equal(arr._mask, [False, True, True]) + + @pytest.mark.parametrize("copy", [True, False]) + def test_masked_invalid_full_mask(self, copy): + # Matplotlib relied on masked_invalid always returning a full mask + # (Also astropy projects, but were ok with it gh-22720 and gh-22842) + a = np.ma.array([1, 2, 3, 4]) + assert a._mask is nomask + res = np.ma.masked_invalid(a, copy=copy) + assert res.mask is not nomask + # mask of a should not be mutated + assert a.mask is nomask + assert np.may_share_memory(a._data, res._data) != copy + def test_choose(self): # Test choose choices = [[0, 1, 2, 3], [10, 11, 12, 13], @@ -5502,3 +5607,47 @@ note original note""" assert_equal(np.ma.core.doc_note(method.__doc__, "note"), expected_doc) + + +def test_gh_22556(): + source = np.ma.array([0, [0, 1, 2]], dtype=object) + deepcopy = copy.deepcopy(source) + deepcopy[1].append('this should not appear in source') + assert len(source[1]) == 3 + + +def test_gh_21022(): + # testing for absence of reported error + source = np.ma.masked_array(data=[-1, -1], mask=True, dtype=np.float64) + axis = np.array(0) + result = np.prod(source, axis=axis, keepdims=False) + result = np.ma.masked_array(result, + mask=np.ones(result.shape, dtype=np.bool_)) + array = np.ma.masked_array(data=-1, mask=True, dtype=np.float64) + copy.deepcopy(array) + copy.deepcopy(result) + + +def test_deepcopy_2d_obj(): + source = np.ma.array([[0, "dog"], + [1, 1], + [[1, 2], "cat"]], + mask=[[0, 1], + [0, 0], + [0, 0]], + dtype=object) + deepcopy = copy.deepcopy(source) + deepcopy[2, 0].extend(['this should not appear in source', 3]) + assert len(source[2, 0]) == 2 + assert len(deepcopy[2, 0]) == 4 + assert_equal(deepcopy._mask, source._mask) + deepcopy._mask[0, 0] = 1 + assert source._mask[0, 0] == 0 + + +def test_deepcopy_0d_obj(): + source = np.ma.array(0, mask=[0], dtype=object) + deepcopy = copy.deepcopy(source) + deepcopy[...] = 17 + assert_equal(source, 0) + assert_equal(deepcopy, 17) diff --git a/numpy/ma/tests/test_extras.py b/numpy/ma/tests/test_extras.py index 38603fb84..d09a50fec 100644 --- a/numpy/ma/tests/test_extras.py +++ b/numpy/ma/tests/test_extras.py @@ -387,8 +387,8 @@ class TestConcatenator: # Tests mr_ on 2D arrays. a_1 = np.random.rand(5, 5) a_2 = np.random.rand(5, 5) - m_1 = np.round_(np.random.rand(5, 5), 0) - m_2 = np.round_(np.random.rand(5, 5), 0) + m_1 = np.round(np.random.rand(5, 5), 0) + m_2 = np.round(np.random.rand(5, 5), 0) b_1 = masked_array(a_1, mask=m_1) b_2 = masked_array(a_2, mask=m_2) # append columns @@ -730,6 +730,47 @@ class TestCompressFunctions: assert_equal(c.mask, [[0, 0, 1], [1, 1, 1], [0, 0, 1]]) c = dot(b, a, strict=False) assert_equal(c, np.dot(b.filled(0), a.filled(0))) + # + a = masked_array(np.arange(8).reshape(2, 2, 2), + mask=[[[1, 0], [0, 0]], [[0, 0], [0, 0]]]) + b = masked_array(np.arange(8).reshape(2, 2, 2), + mask=[[[0, 0], [0, 0]], [[0, 0], [0, 1]]]) + c = dot(a, b, strict=True) + assert_equal(c.mask, + [[[[1, 1], [1, 1]], [[0, 0], [0, 1]]], + [[[0, 0], [0, 1]], [[0, 0], [0, 1]]]]) + c = dot(a, b, strict=False) + assert_equal(c.mask, + [[[[0, 0], [0, 1]], [[0, 0], [0, 0]]], + [[[0, 0], [0, 0]], [[0, 0], [0, 0]]]]) + c = dot(b, a, strict=True) + assert_equal(c.mask, + [[[[1, 0], [0, 0]], [[1, 0], [0, 0]]], + [[[1, 0], [0, 0]], [[1, 1], [1, 1]]]]) + c = dot(b, a, strict=False) + assert_equal(c.mask, + [[[[0, 0], [0, 0]], [[0, 0], [0, 0]]], + [[[0, 0], [0, 0]], [[1, 0], [0, 0]]]]) + # + a = masked_array(np.arange(8).reshape(2, 2, 2), + mask=[[[1, 0], [0, 0]], [[0, 0], [0, 0]]]) + b = 5. + c = dot(a, b, strict=True) + assert_equal(c.mask, [[[1, 0], [0, 0]], [[0, 0], [0, 0]]]) + c = dot(a, b, strict=False) + assert_equal(c.mask, [[[1, 0], [0, 0]], [[0, 0], [0, 0]]]) + c = dot(b, a, strict=True) + assert_equal(c.mask, [[[1, 0], [0, 0]], [[0, 0], [0, 0]]]) + c = dot(b, a, strict=False) + assert_equal(c.mask, [[[1, 0], [0, 0]], [[0, 0], [0, 0]]]) + # + a = masked_array(np.arange(8).reshape(2, 2, 2), + mask=[[[1, 0], [0, 0]], [[0, 0], [0, 0]]]) + b = masked_array(np.arange(2), mask=[0, 1]) + c = dot(a, b, strict=True) + assert_equal(c.mask, [[1, 1], [1, 1]]) + c = dot(a, b, strict=False) + assert_equal(c.mask, [[1, 0], [0, 0]]) def test_dot_returns_maskedarray(self): # See gh-6611 diff --git a/numpy/ma/tests/test_old_ma.py b/numpy/ma/tests/test_old_ma.py index 8465b1153..7b892ad23 100644 --- a/numpy/ma/tests/test_old_ma.py +++ b/numpy/ma/tests/test_old_ma.py @@ -194,16 +194,16 @@ class TestMa: assert_(eq(np.sum(x, axis=0), sum(x, axis=0))) assert_(eq(np.sum(filled(xm, 0), axis=0), sum(xm, axis=0))) assert_(eq(np.sum(x, 0), sum(x, 0))) - assert_(eq(np.product(x, axis=0), product(x, axis=0))) - assert_(eq(np.product(x, 0), product(x, 0))) - assert_(eq(np.product(filled(xm, 1), axis=0), + assert_(eq(np.prod(x, axis=0), product(x, axis=0))) + assert_(eq(np.prod(x, 0), product(x, 0))) + assert_(eq(np.prod(filled(xm, 1), axis=0), product(xm, axis=0))) if len(s) > 1: assert_(eq(np.concatenate((x, y), 1), concatenate((xm, ym), 1))) assert_(eq(np.add.reduce(x, 1), add.reduce(x, 1))) assert_(eq(np.sum(x, 1), sum(x, 1))) - assert_(eq(np.product(x, 1), product(x, 1))) + assert_(eq(np.prod(x, 1), product(x, 1))) def test_testCI(self): # Test of conversions and indexing diff --git a/numpy/ma/tests/test_regression.py b/numpy/ma/tests/test_regression.py index cb3d0349f..f4f32cc7a 100644 --- a/numpy/ma/tests/test_regression.py +++ b/numpy/ma/tests/test_regression.py @@ -89,3 +89,9 @@ class TestRegression: def test_masked_array_tobytes_fortran(self): ma = np.ma.arange(4).reshape((2,2)) assert_array_equal(ma.tobytes(order='F'), ma.T.tobytes()) + + def test_structured_array(self): + # see gh-22041 + np.ma.array((1, (b"", b"")), + dtype=[("x", np.int_), + ("y", [("i", np.void), ("j", np.void)])]) diff --git a/numpy/ma/tests/test_subclassing.py b/numpy/ma/tests/test_subclassing.py index 64c66eeb9..e3c885253 100644 --- a/numpy/ma/tests/test_subclassing.py +++ b/numpy/ma/tests/test_subclassing.py @@ -154,6 +154,7 @@ class WrappedArray(NDArrayOperatorsMixin): ufunc deferrals are commutative. See: https://github.com/numpy/numpy/issues/15200) """ + __slots__ = ('_array', 'attrs') __array_priority__ = 20 def __init__(self, array, **attrs): @@ -448,3 +449,12 @@ class TestClassWrapping: assert_(isinstance(np.divide(wm, m2), WrappedArray)) assert_(isinstance(np.divide(m2, wm), WrappedArray)) assert_equal(np.divide(m2, wm), np.divide(wm, m2)) + + def test_mixins_have_slots(self): + mixin = NDArrayOperatorsMixin() + # Should raise an error + assert_raises(AttributeError, mixin.__setattr__, "not_a_real_attr", 1) + + m = np.ma.masked_array([1, 3, 5], mask=[False, True, False]) + wm = WrappedArray(m) + assert_raises(AttributeError, wm.__setattr__, "not_an_attr", 2) diff --git a/numpy/ma/testutils.py b/numpy/ma/testutils.py index 2dd479abe..7a633906b 100644 --- a/numpy/ma/testutils.py +++ b/numpy/ma/testutils.py @@ -233,7 +233,7 @@ def fail_if_array_equal(x, y, err_msg='', verbose=True): """ def compare(x, y): - return (not np.alltrue(approx(x, y))) + return (not np.all(approx(x, y))) assert_array_compare(compare, x, y, err_msg=err_msg, verbose=verbose, header='Arrays are not equal') |