summaryrefslogtreecommitdiff
path: root/numpy/ma
diff options
context:
space:
mode:
Diffstat (limited to 'numpy/ma')
-rw-r--r--numpy/ma/core.py121
-rw-r--r--numpy/ma/extras.py9
-rw-r--r--numpy/ma/mrecords.py2
-rw-r--r--numpy/ma/version.py14
4 files changed, 24 insertions, 122 deletions
diff --git a/numpy/ma/core.py b/numpy/ma/core.py
index 95b799f6d..bb0d8d412 100644
--- a/numpy/ma/core.py
+++ b/numpy/ma/core.py
@@ -59,14 +59,14 @@ __all__ = [
'choose', 'clip', 'common_fill_value', 'compress', 'compressed',
'concatenate', 'conjugate', 'convolve', 'copy', 'correlate', 'cos', 'cosh',
'count', 'cumprod', 'cumsum', 'default_fill_value', 'diag', 'diagonal',
- 'diff', 'divide', 'dump', 'dumps', 'empty', 'empty_like', 'equal', 'exp',
+ 'diff', 'divide', 'empty', 'empty_like', 'equal', 'exp',
'expand_dims', 'fabs', 'filled', 'fix_invalid', 'flatten_mask',
'flatten_structured_array', 'floor', 'floor_divide', 'fmod',
'frombuffer', 'fromflex', 'fromfunction', 'getdata', 'getmask',
'getmaskarray', 'greater', 'greater_equal', 'harden_mask', 'hypot',
'identity', 'ids', 'indices', 'inner', 'innerproduct', 'isMA',
'isMaskedArray', 'is_mask', 'is_masked', 'isarray', 'left_shift',
- 'less', 'less_equal', 'load', 'loads', 'log', 'log10', 'log2',
+ 'less', 'less_equal', 'log', 'log10', 'log2',
'logical_and', 'logical_not', 'logical_or', 'logical_xor', 'make_mask',
'make_mask_descr', 'make_mask_none', 'mask_or', 'masked',
'masked_array', 'masked_equal', 'masked_greater',
@@ -4394,7 +4394,7 @@ class MaskedArray(ndarray):
----------
axis : None or int or tuple of ints, optional
Axis or axes along which the count is performed.
- The default (`axis` = `None`) performs the count over all
+ The default, None, performs the count over all
the dimensions of the input array. `axis` may be negative, in
which case it counts from the last to the first axis.
@@ -4774,7 +4774,7 @@ class MaskedArray(ndarray):
See Also
--------
- ndarray.all : corresponding function for ndarrays
+ numpy.ndarray.all : corresponding function for ndarrays
numpy.all : equivalent function
Examples
@@ -4812,7 +4812,7 @@ class MaskedArray(ndarray):
See Also
--------
- ndarray.any : corresponding function for ndarrays
+ numpy.ndarray.any : corresponding function for ndarrays
numpy.any : equivalent function
"""
@@ -4866,7 +4866,7 @@ class MaskedArray(ndarray):
flatnonzero :
Return indices that are non-zero in the flattened version of the input
array.
- ndarray.nonzero :
+ numpy.ndarray.nonzero :
Equivalent ndarray method.
count_nonzero :
Counts the number of non-zero elements in the input array.
@@ -4994,7 +4994,7 @@ class MaskedArray(ndarray):
See Also
--------
- ndarray.sum : corresponding function for ndarrays
+ numpy.ndarray.sum : corresponding function for ndarrays
numpy.sum : equivalent function
Examples
@@ -5065,7 +5065,7 @@ class MaskedArray(ndarray):
See Also
--------
- ndarray.cumsum : corresponding function for ndarrays
+ numpy.ndarray.cumsum : corresponding function for ndarrays
numpy.cumsum : equivalent function
Examples
@@ -5102,7 +5102,7 @@ class MaskedArray(ndarray):
See Also
--------
- ndarray.prod : corresponding function for ndarrays
+ numpy.ndarray.prod : corresponding function for ndarrays
numpy.prod : equivalent function
"""
kwargs = {} if keepdims is np._NoValue else {'keepdims': keepdims}
@@ -5148,7 +5148,7 @@ class MaskedArray(ndarray):
See Also
--------
- ndarray.cumprod : corresponding function for ndarrays
+ numpy.ndarray.cumprod : corresponding function for ndarrays
numpy.cumprod : equivalent function
"""
result = self.filled(1).cumprod(axis=axis, dtype=dtype, out=out)
@@ -5171,7 +5171,7 @@ class MaskedArray(ndarray):
See Also
--------
- ndarray.mean : corresponding function for ndarrays
+ numpy.ndarray.mean : corresponding function for ndarrays
numpy.mean : Equivalent function
numpy.ma.average: Weighted average.
@@ -5260,7 +5260,7 @@ class MaskedArray(ndarray):
See Also
--------
- ndarray.var : corresponding function for ndarrays
+ numpy.ndarray.var : corresponding function for ndarrays
numpy.var : Equivalent function
"""
kwargs = {} if keepdims is np._NoValue else {'keepdims': keepdims}
@@ -5323,7 +5323,7 @@ class MaskedArray(ndarray):
See Also
--------
- ndarray.std : corresponding function for ndarrays
+ numpy.ndarray.std : corresponding function for ndarrays
numpy.std : Equivalent function
"""
kwargs = {} if keepdims is np._NoValue else {'keepdims': keepdims}
@@ -5344,7 +5344,7 @@ class MaskedArray(ndarray):
See Also
--------
- ndarray.around : corresponding function for ndarrays
+ numpy.ndarray.around : corresponding function for ndarrays
numpy.around : equivalent function
"""
result = self._data.round(decimals=decimals, out=out).view(type(self))
@@ -5406,7 +5406,7 @@ class MaskedArray(ndarray):
--------
MaskedArray.sort : Describes sorting algorithms used.
lexsort : Indirect stable sort with multiple keys.
- ndarray.sort : Inplace sort.
+ numpy.ndarray.sort : Inplace sort.
Notes
-----
@@ -5558,7 +5558,7 @@ class MaskedArray(ndarray):
See Also
--------
- ndarray.sort : Method to sort an array in-place.
+ numpy.ndarray.sort : Method to sort an array in-place.
argsort : Indirect sort.
lexsort : Indirect stable sort on multiple keys.
searchsorted : Find elements in a sorted array.
@@ -5978,7 +5978,7 @@ class MaskedArray(ndarray):
See Also
--------
- ndarray.tobytes
+ numpy.ndarray.tobytes
tolist, tofile
Notes
@@ -7886,93 +7886,6 @@ def _pickle_warn(method):
stacklevel=3)
-def dump(a, F):
- """
- Pickle a masked array to a file.
-
- This is a wrapper around ``cPickle.dump``.
-
- Parameters
- ----------
- a : MaskedArray
- The array to be pickled.
- F : str or file-like object
- The file to pickle `a` to. If a string, the full path to the file.
-
- """
- _pickle_warn('dump')
- if not hasattr(F, 'readline'):
- with open(F, 'w') as F:
- pickle.dump(a, F)
- else:
- pickle.dump(a, F)
-
-
-def dumps(a):
- """
- Return a string corresponding to the pickling of a masked array.
-
- This is a wrapper around ``cPickle.dumps``.
-
- Parameters
- ----------
- a : MaskedArray
- The array for which the string representation of the pickle is
- returned.
-
- """
- _pickle_warn('dumps')
- return pickle.dumps(a)
-
-
-def load(F):
- """
- Wrapper around ``cPickle.load`` which accepts either a file-like object
- or a filename.
-
- Parameters
- ----------
- F : str or file
- The file or file name to load.
-
- See Also
- --------
- dump : Pickle an array
-
- Notes
- -----
- This is different from `numpy.load`, which does not use cPickle but loads
- the NumPy binary .npy format.
-
- """
- _pickle_warn('load')
- if not hasattr(F, 'readline'):
- with open(F, 'r') as F:
- return pickle.load(F)
- else:
- return pickle.load(F)
-
-
-def loads(strg):
- """
- Load a pickle from the current string.
-
- The result of ``cPickle.loads(strg)`` is returned.
-
- Parameters
- ----------
- strg : str
- The string to load.
-
- See Also
- --------
- dumps : Return a string corresponding to the pickling of a masked array.
-
- """
- _pickle_warn('loads')
- return pickle.loads(strg)
-
-
def fromfile(file, dtype=float, count=-1, sep=''):
raise NotImplementedError(
"fromfile() not yet implemented for a MaskedArray.")
diff --git a/numpy/ma/extras.py b/numpy/ma/extras.py
index 639b3dd1f..4a83ac781 100644
--- a/numpy/ma/extras.py
+++ b/numpy/ma/extras.py
@@ -542,15 +542,18 @@ def average(a, axis=None, weights=None, returned=False):
Data to be averaged.
Masked entries are not taken into account in the computation.
axis : int, optional
- Axis along which to average `a`. If `None`, averaging is done over
+ Axis along which to average `a`. If None, averaging is done over
the flattened array.
weights : array_like, optional
The importance that each element has in the computation of the average.
The weights array can either be 1-D (in which case its length must be
the size of `a` along the given axis) or of the same shape as `a`.
If ``weights=None``, then all data in `a` are assumed to have a
- weight equal to one. If `weights` is complex, the imaginary parts
- are ignored.
+ weight equal to one. The 1-D calculation is::
+
+ avg = sum(a * weights) / sum(weights)
+
+ The only constraint on `weights` is that `sum(weights)` must not be 0.
returned : bool, optional
Flag indicating whether a tuple ``(result, sum of weights)``
should be returned as output (True), or just the result (False).
diff --git a/numpy/ma/mrecords.py b/numpy/ma/mrecords.py
index 931a7e8b9..826fb0f64 100644
--- a/numpy/ma/mrecords.py
+++ b/numpy/ma/mrecords.py
@@ -208,7 +208,7 @@ class MaskedRecords(MaskedArray, object):
_localdict = ndarray.__getattribute__(self, '__dict__')
_data = ndarray.view(self, _localdict['_baseclass'])
obj = _data.getfield(*res)
- if obj.dtype.fields:
+ if obj.dtype.names is not None:
raise NotImplementedError("MaskedRecords is currently limited to"
"simple records.")
# Get some special attributes
diff --git a/numpy/ma/version.py b/numpy/ma/version.py
deleted file mode 100644
index a2c5c42a8..000000000
--- a/numpy/ma/version.py
+++ /dev/null
@@ -1,14 +0,0 @@
-"""Version number
-
-"""
-from __future__ import division, absolute_import, print_function
-
-version = '1.00'
-release = False
-
-if not release:
- from . import core
- from . import extras
- revision = [core.__revision__.split(':')[-1][:-1].strip(),
- extras.__revision__.split(':')[-1][:-1].strip(),]
- version += '.dev%04i' % max([int(rev) for rev in revision])