diff options
Diffstat (limited to 'numpy/ma')
-rw-r--r-- | numpy/ma/core.py | 121 | ||||
-rw-r--r-- | numpy/ma/extras.py | 9 | ||||
-rw-r--r-- | numpy/ma/mrecords.py | 2 | ||||
-rw-r--r-- | numpy/ma/version.py | 14 |
4 files changed, 24 insertions, 122 deletions
diff --git a/numpy/ma/core.py b/numpy/ma/core.py index 95b799f6d..bb0d8d412 100644 --- a/numpy/ma/core.py +++ b/numpy/ma/core.py @@ -59,14 +59,14 @@ __all__ = [ 'choose', 'clip', 'common_fill_value', 'compress', 'compressed', 'concatenate', 'conjugate', 'convolve', 'copy', 'correlate', 'cos', 'cosh', 'count', 'cumprod', 'cumsum', 'default_fill_value', 'diag', 'diagonal', - 'diff', 'divide', 'dump', 'dumps', 'empty', 'empty_like', 'equal', 'exp', + 'diff', 'divide', 'empty', 'empty_like', 'equal', 'exp', 'expand_dims', 'fabs', 'filled', 'fix_invalid', 'flatten_mask', 'flatten_structured_array', 'floor', 'floor_divide', 'fmod', 'frombuffer', 'fromflex', 'fromfunction', 'getdata', 'getmask', 'getmaskarray', 'greater', 'greater_equal', 'harden_mask', 'hypot', 'identity', 'ids', 'indices', 'inner', 'innerproduct', 'isMA', 'isMaskedArray', 'is_mask', 'is_masked', 'isarray', 'left_shift', - 'less', 'less_equal', 'load', 'loads', 'log', 'log10', 'log2', + 'less', 'less_equal', 'log', 'log10', 'log2', 'logical_and', 'logical_not', 'logical_or', 'logical_xor', 'make_mask', 'make_mask_descr', 'make_mask_none', 'mask_or', 'masked', 'masked_array', 'masked_equal', 'masked_greater', @@ -4394,7 +4394,7 @@ class MaskedArray(ndarray): ---------- axis : None or int or tuple of ints, optional Axis or axes along which the count is performed. - The default (`axis` = `None`) performs the count over all + The default, None, performs the count over all the dimensions of the input array. `axis` may be negative, in which case it counts from the last to the first axis. @@ -4774,7 +4774,7 @@ class MaskedArray(ndarray): See Also -------- - ndarray.all : corresponding function for ndarrays + numpy.ndarray.all : corresponding function for ndarrays numpy.all : equivalent function Examples @@ -4812,7 +4812,7 @@ class MaskedArray(ndarray): See Also -------- - ndarray.any : corresponding function for ndarrays + numpy.ndarray.any : corresponding function for ndarrays numpy.any : equivalent function """ @@ -4866,7 +4866,7 @@ class MaskedArray(ndarray): flatnonzero : Return indices that are non-zero in the flattened version of the input array. - ndarray.nonzero : + numpy.ndarray.nonzero : Equivalent ndarray method. count_nonzero : Counts the number of non-zero elements in the input array. @@ -4994,7 +4994,7 @@ class MaskedArray(ndarray): See Also -------- - ndarray.sum : corresponding function for ndarrays + numpy.ndarray.sum : corresponding function for ndarrays numpy.sum : equivalent function Examples @@ -5065,7 +5065,7 @@ class MaskedArray(ndarray): See Also -------- - ndarray.cumsum : corresponding function for ndarrays + numpy.ndarray.cumsum : corresponding function for ndarrays numpy.cumsum : equivalent function Examples @@ -5102,7 +5102,7 @@ class MaskedArray(ndarray): See Also -------- - ndarray.prod : corresponding function for ndarrays + numpy.ndarray.prod : corresponding function for ndarrays numpy.prod : equivalent function """ kwargs = {} if keepdims is np._NoValue else {'keepdims': keepdims} @@ -5148,7 +5148,7 @@ class MaskedArray(ndarray): See Also -------- - ndarray.cumprod : corresponding function for ndarrays + numpy.ndarray.cumprod : corresponding function for ndarrays numpy.cumprod : equivalent function """ result = self.filled(1).cumprod(axis=axis, dtype=dtype, out=out) @@ -5171,7 +5171,7 @@ class MaskedArray(ndarray): See Also -------- - ndarray.mean : corresponding function for ndarrays + numpy.ndarray.mean : corresponding function for ndarrays numpy.mean : Equivalent function numpy.ma.average: Weighted average. @@ -5260,7 +5260,7 @@ class MaskedArray(ndarray): See Also -------- - ndarray.var : corresponding function for ndarrays + numpy.ndarray.var : corresponding function for ndarrays numpy.var : Equivalent function """ kwargs = {} if keepdims is np._NoValue else {'keepdims': keepdims} @@ -5323,7 +5323,7 @@ class MaskedArray(ndarray): See Also -------- - ndarray.std : corresponding function for ndarrays + numpy.ndarray.std : corresponding function for ndarrays numpy.std : Equivalent function """ kwargs = {} if keepdims is np._NoValue else {'keepdims': keepdims} @@ -5344,7 +5344,7 @@ class MaskedArray(ndarray): See Also -------- - ndarray.around : corresponding function for ndarrays + numpy.ndarray.around : corresponding function for ndarrays numpy.around : equivalent function """ result = self._data.round(decimals=decimals, out=out).view(type(self)) @@ -5406,7 +5406,7 @@ class MaskedArray(ndarray): -------- MaskedArray.sort : Describes sorting algorithms used. lexsort : Indirect stable sort with multiple keys. - ndarray.sort : Inplace sort. + numpy.ndarray.sort : Inplace sort. Notes ----- @@ -5558,7 +5558,7 @@ class MaskedArray(ndarray): See Also -------- - ndarray.sort : Method to sort an array in-place. + numpy.ndarray.sort : Method to sort an array in-place. argsort : Indirect sort. lexsort : Indirect stable sort on multiple keys. searchsorted : Find elements in a sorted array. @@ -5978,7 +5978,7 @@ class MaskedArray(ndarray): See Also -------- - ndarray.tobytes + numpy.ndarray.tobytes tolist, tofile Notes @@ -7886,93 +7886,6 @@ def _pickle_warn(method): stacklevel=3) -def dump(a, F): - """ - Pickle a masked array to a file. - - This is a wrapper around ``cPickle.dump``. - - Parameters - ---------- - a : MaskedArray - The array to be pickled. - F : str or file-like object - The file to pickle `a` to. If a string, the full path to the file. - - """ - _pickle_warn('dump') - if not hasattr(F, 'readline'): - with open(F, 'w') as F: - pickle.dump(a, F) - else: - pickle.dump(a, F) - - -def dumps(a): - """ - Return a string corresponding to the pickling of a masked array. - - This is a wrapper around ``cPickle.dumps``. - - Parameters - ---------- - a : MaskedArray - The array for which the string representation of the pickle is - returned. - - """ - _pickle_warn('dumps') - return pickle.dumps(a) - - -def load(F): - """ - Wrapper around ``cPickle.load`` which accepts either a file-like object - or a filename. - - Parameters - ---------- - F : str or file - The file or file name to load. - - See Also - -------- - dump : Pickle an array - - Notes - ----- - This is different from `numpy.load`, which does not use cPickle but loads - the NumPy binary .npy format. - - """ - _pickle_warn('load') - if not hasattr(F, 'readline'): - with open(F, 'r') as F: - return pickle.load(F) - else: - return pickle.load(F) - - -def loads(strg): - """ - Load a pickle from the current string. - - The result of ``cPickle.loads(strg)`` is returned. - - Parameters - ---------- - strg : str - The string to load. - - See Also - -------- - dumps : Return a string corresponding to the pickling of a masked array. - - """ - _pickle_warn('loads') - return pickle.loads(strg) - - def fromfile(file, dtype=float, count=-1, sep=''): raise NotImplementedError( "fromfile() not yet implemented for a MaskedArray.") diff --git a/numpy/ma/extras.py b/numpy/ma/extras.py index 639b3dd1f..4a83ac781 100644 --- a/numpy/ma/extras.py +++ b/numpy/ma/extras.py @@ -542,15 +542,18 @@ def average(a, axis=None, weights=None, returned=False): Data to be averaged. Masked entries are not taken into account in the computation. axis : int, optional - Axis along which to average `a`. If `None`, averaging is done over + Axis along which to average `a`. If None, averaging is done over the flattened array. weights : array_like, optional The importance that each element has in the computation of the average. The weights array can either be 1-D (in which case its length must be the size of `a` along the given axis) or of the same shape as `a`. If ``weights=None``, then all data in `a` are assumed to have a - weight equal to one. If `weights` is complex, the imaginary parts - are ignored. + weight equal to one. The 1-D calculation is:: + + avg = sum(a * weights) / sum(weights) + + The only constraint on `weights` is that `sum(weights)` must not be 0. returned : bool, optional Flag indicating whether a tuple ``(result, sum of weights)`` should be returned as output (True), or just the result (False). diff --git a/numpy/ma/mrecords.py b/numpy/ma/mrecords.py index 931a7e8b9..826fb0f64 100644 --- a/numpy/ma/mrecords.py +++ b/numpy/ma/mrecords.py @@ -208,7 +208,7 @@ class MaskedRecords(MaskedArray, object): _localdict = ndarray.__getattribute__(self, '__dict__') _data = ndarray.view(self, _localdict['_baseclass']) obj = _data.getfield(*res) - if obj.dtype.fields: + if obj.dtype.names is not None: raise NotImplementedError("MaskedRecords is currently limited to" "simple records.") # Get some special attributes diff --git a/numpy/ma/version.py b/numpy/ma/version.py deleted file mode 100644 index a2c5c42a8..000000000 --- a/numpy/ma/version.py +++ /dev/null @@ -1,14 +0,0 @@ -"""Version number - -""" -from __future__ import division, absolute_import, print_function - -version = '1.00' -release = False - -if not release: - from . import core - from . import extras - revision = [core.__revision__.split(':')[-1][:-1].strip(), - extras.__revision__.split(':')[-1][:-1].strip(),] - version += '.dev%04i' % max([int(rev) for rev in revision]) |