summaryrefslogtreecommitdiff
path: root/numpy/matrixlib/tests/test_masked_matrix.py
diff options
context:
space:
mode:
Diffstat (limited to 'numpy/matrixlib/tests/test_masked_matrix.py')
-rw-r--r--numpy/matrixlib/tests/test_masked_matrix.py211
1 files changed, 211 insertions, 0 deletions
diff --git a/numpy/matrixlib/tests/test_masked_matrix.py b/numpy/matrixlib/tests/test_masked_matrix.py
new file mode 100644
index 000000000..80d1cacca
--- /dev/null
+++ b/numpy/matrixlib/tests/test_masked_matrix.py
@@ -0,0 +1,211 @@
+from __future__ import division, absolute_import, print_function
+
+import pickle
+
+import numpy as np
+from numpy.ma.testutils import assert_, assert_equal
+from numpy.ma.core import (masked_array, masked_values, masked, allequal,
+ MaskType, getmask, MaskedArray, nomask,
+ log, add, hypot, divide)
+
+
+class MMatrix(MaskedArray, np.matrix,):
+
+ def __new__(cls, data, mask=nomask):
+ mat = np.matrix(data)
+ _data = MaskedArray.__new__(cls, data=mat, mask=mask)
+ return _data
+
+ def __array_finalize__(self, obj):
+ np.matrix.__array_finalize__(self, obj)
+ MaskedArray.__array_finalize__(self, obj)
+ return
+
+ def _get_series(self):
+ _view = self.view(MaskedArray)
+ _view._sharedmask = False
+ return _view
+ _series = property(fget=_get_series)
+
+
+class TestMaskedMatrix(object):
+ def test_matrix_indexing(self):
+ # Tests conversions and indexing
+ x1 = np.matrix([[1, 2, 3], [4, 3, 2]])
+ x2 = masked_array(x1, mask=[[1, 0, 0], [0, 1, 0]])
+ x3 = masked_array(x1, mask=[[0, 1, 0], [1, 0, 0]])
+ x4 = masked_array(x1)
+ # test conversion to strings
+ str(x2) # raises?
+ repr(x2) # raises?
+ # tests of indexing
+ assert_(type(x2[1, 0]) is type(x1[1, 0]))
+ assert_(x1[1, 0] == x2[1, 0])
+ assert_(x2[1, 1] is masked)
+ assert_equal(x1[0, 2], x2[0, 2])
+ assert_equal(x1[0, 1:], x2[0, 1:])
+ assert_equal(x1[:, 2], x2[:, 2])
+ assert_equal(x1[:], x2[:])
+ assert_equal(x1[1:], x3[1:])
+ x1[0, 2] = 9
+ x2[0, 2] = 9
+ assert_equal(x1, x2)
+ x1[0, 1:] = 99
+ x2[0, 1:] = 99
+ assert_equal(x1, x2)
+ x2[0, 1] = masked
+ assert_equal(x1, x2)
+ x2[0, 1:] = masked
+ assert_equal(x1, x2)
+ x2[0, :] = x1[0, :]
+ x2[0, 1] = masked
+ assert_(allequal(getmask(x2), np.array([[0, 1, 0], [0, 1, 0]])))
+ x3[1, :] = masked_array([1, 2, 3], [1, 1, 0])
+ assert_(allequal(getmask(x3)[1], masked_array([1, 1, 0])))
+ assert_(allequal(getmask(x3[1]), masked_array([1, 1, 0])))
+ x4[1, :] = masked_array([1, 2, 3], [1, 1, 0])
+ assert_(allequal(getmask(x4[1]), masked_array([1, 1, 0])))
+ assert_(allequal(x4[1], masked_array([1, 2, 3])))
+ x1 = np.matrix(np.arange(5) * 1.0)
+ x2 = masked_values(x1, 3.0)
+ assert_equal(x1, x2)
+ assert_(allequal(masked_array([0, 0, 0, 1, 0], dtype=MaskType),
+ x2.mask))
+ assert_equal(3.0, x2.fill_value)
+
+ def test_pickling_subbaseclass(self):
+ # Test pickling w/ a subclass of ndarray
+ a = masked_array(np.matrix(list(range(10))), mask=[1, 0, 1, 0, 0] * 2)
+ a_pickled = pickle.loads(a.dumps())
+ assert_equal(a_pickled._mask, a._mask)
+ assert_equal(a_pickled, a)
+ assert_(isinstance(a_pickled._data, np.matrix))
+
+ def test_count_mean_with_matrix(self):
+ m = masked_array(np.matrix([[1, 2], [3, 4]]), mask=np.zeros((2, 2)))
+
+ assert_equal(m.count(axis=0).shape, (1, 2))
+ assert_equal(m.count(axis=1).shape, (2, 1))
+
+ # Make sure broadcasting inside mean and var work
+ assert_equal(m.mean(axis=0), [[2., 3.]])
+ assert_equal(m.mean(axis=1), [[1.5], [3.5]])
+
+ def test_flat(self):
+ # Test that flat can return items even for matrices [#4585, #4615]
+ # test simple access
+ test = masked_array(np.matrix([[1, 2, 3]]), mask=[0, 0, 1])
+ assert_equal(test.flat[1], 2)
+ assert_equal(test.flat[2], masked)
+ assert_(np.all(test.flat[0:2] == test[0, 0:2]))
+ # Test flat on masked_matrices
+ test = masked_array(np.matrix([[1, 2, 3]]), mask=[0, 0, 1])
+ test.flat = masked_array([3, 2, 1], mask=[1, 0, 0])
+ control = masked_array(np.matrix([[3, 2, 1]]), mask=[1, 0, 0])
+ assert_equal(test, control)
+ # Test setting
+ test = masked_array(np.matrix([[1, 2, 3]]), mask=[0, 0, 1])
+ testflat = test.flat
+ testflat[:] = testflat[[2, 1, 0]]
+ assert_equal(test, control)
+ testflat[0] = 9
+ # test that matrices keep the correct shape (#4615)
+ a = masked_array(np.matrix(np.eye(2)), mask=0)
+ b = a.flat
+ b01 = b[:2]
+ assert_equal(b01.data, np.array([[1., 0.]]))
+ assert_equal(b01.mask, np.array([[False, False]]))
+
+ def test_allany_onmatrices(self):
+ x = np.array([[0.13, 0.26, 0.90],
+ [0.28, 0.33, 0.63],
+ [0.31, 0.87, 0.70]])
+ X = np.matrix(x)
+ m = np.array([[True, False, False],
+ [False, False, False],
+ [True, True, False]], dtype=np.bool_)
+ mX = masked_array(X, mask=m)
+ mXbig = (mX > 0.5)
+ mXsmall = (mX < 0.5)
+
+ assert_(not mXbig.all())
+ assert_(mXbig.any())
+ assert_equal(mXbig.all(0), np.matrix([False, False, True]))
+ assert_equal(mXbig.all(1), np.matrix([False, False, True]).T)
+ assert_equal(mXbig.any(0), np.matrix([False, False, True]))
+ assert_equal(mXbig.any(1), np.matrix([True, True, True]).T)
+
+ assert_(not mXsmall.all())
+ assert_(mXsmall.any())
+ assert_equal(mXsmall.all(0), np.matrix([True, True, False]))
+ assert_equal(mXsmall.all(1), np.matrix([False, False, False]).T)
+ assert_equal(mXsmall.any(0), np.matrix([True, True, False]))
+ assert_equal(mXsmall.any(1), np.matrix([True, True, False]).T)
+
+ def test_compressed(self):
+ a = masked_array(np.matrix([1, 2, 3, 4]), mask=[0, 0, 0, 0])
+ b = a.compressed()
+ assert_equal(b, a)
+ assert_(isinstance(b, np.matrix))
+ a[0, 0] = masked
+ b = a.compressed()
+ assert_equal(b, [[2, 3, 4]])
+
+ def test_ravel(self):
+ a = masked_array(np.matrix([1, 2, 3, 4, 5]), mask=[[0, 1, 0, 0, 0]])
+ aravel = a.ravel()
+ assert_equal(aravel.shape, (1, 5))
+ assert_equal(aravel._mask.shape, a.shape)
+
+ def test_view(self):
+ # Test view w/ flexible dtype
+ iterator = list(zip(np.arange(10), np.random.rand(10)))
+ data = np.array(iterator)
+ a = masked_array(iterator, dtype=[('a', float), ('b', float)])
+ a.mask[0] = (1, 0)
+ test = a.view((float, 2), np.matrix)
+ assert_equal(test, data)
+ assert_(isinstance(test, np.matrix))
+ assert_(not isinstance(test, MaskedArray))
+
+
+class TestSubclassing(object):
+ # Test suite for masked subclasses of ndarray.
+
+ def setup(self):
+ x = np.arange(5, dtype='float')
+ mx = MMatrix(x, mask=[0, 1, 0, 0, 0])
+ self.data = (x, mx)
+
+ def test_maskedarray_subclassing(self):
+ # Tests subclassing MaskedArray
+ (x, mx) = self.data
+ assert_(isinstance(mx._data, np.matrix))
+
+ def test_masked_unary_operations(self):
+ # Tests masked_unary_operation
+ (x, mx) = self.data
+ with np.errstate(divide='ignore'):
+ assert_(isinstance(log(mx), MMatrix))
+ assert_equal(log(x), np.log(x))
+
+ def test_masked_binary_operations(self):
+ # Tests masked_binary_operation
+ (x, mx) = self.data
+ # Result should be a MMatrix
+ assert_(isinstance(add(mx, mx), MMatrix))
+ assert_(isinstance(add(mx, x), MMatrix))
+ # Result should work
+ assert_equal(add(mx, x), mx+x)
+ assert_(isinstance(add(mx, mx)._data, np.matrix))
+ assert_(isinstance(add.outer(mx, mx), MMatrix))
+ assert_(isinstance(hypot(mx, mx), MMatrix))
+ assert_(isinstance(hypot(mx, x), MMatrix))
+
+ def test_masked_binary_operations2(self):
+ # Tests domained_masked_binary_operation
+ (x, mx) = self.data
+ xmx = masked_array(mx.data.__array__(), mask=mx.mask)
+ assert_(isinstance(divide(mx, mx), MMatrix))
+ assert_(isinstance(divide(mx, x), MMatrix))
+ assert_equal(divide(mx, mx), divide(xmx, xmx))