diff options
Diffstat (limited to 'numpy/oldnumeric/mlab.py')
-rw-r--r-- | numpy/oldnumeric/mlab.py | 128 |
1 files changed, 0 insertions, 128 deletions
diff --git a/numpy/oldnumeric/mlab.py b/numpy/oldnumeric/mlab.py deleted file mode 100644 index 2b357612c..000000000 --- a/numpy/oldnumeric/mlab.py +++ /dev/null @@ -1,128 +0,0 @@ -"""This module is for compatibility only. All functions are defined elsewhere. - -""" -from __future__ import division, absolute_import, print_function - -__all__ = ['rand', 'tril', 'trapz', 'hanning', 'rot90', 'triu', 'diff', 'angle', - 'roots', 'ptp', 'kaiser', 'randn', 'cumprod', 'diag', 'msort', - 'LinearAlgebra', 'RandomArray', 'prod', 'std', 'hamming', 'flipud', - 'max', 'blackman', 'corrcoef', 'bartlett', 'eye', 'squeeze', 'sinc', - 'tri', 'cov', 'svd', 'min', 'median', 'fliplr', 'eig', 'mean'] - -import numpy.oldnumeric.linear_algebra as LinearAlgebra -import numpy.oldnumeric.random_array as RandomArray -from numpy import tril, trapz as _Ntrapz, hanning, rot90, triu, diff, \ - angle, roots, ptp as _Nptp, kaiser, cumprod as _Ncumprod, \ - diag, msort, prod as _Nprod, std as _Nstd, hamming, flipud, \ - amax as _Nmax, amin as _Nmin, blackman, bartlett, \ - squeeze, sinc, median, fliplr, mean as _Nmean, transpose - -from numpy.linalg import eig, svd -from numpy.random import rand, randn -import numpy as np - -from .typeconv import convtypecode - -def eye(N, M=None, k=0, typecode=None, dtype=None): - """ eye returns a N-by-M 2-d array where the k-th diagonal is all ones, - and everything else is zeros. - """ - dtype = convtypecode(typecode, dtype) - if M is None: M = N - m = np.equal(np.subtract.outer(np.arange(N), np.arange(M)), -k) - if m.dtype != dtype: - return m.astype(dtype) - -def tri(N, M=None, k=0, typecode=None, dtype=None): - """ returns a N-by-M array where all the diagonals starting from - lower left corner up to the k-th are all ones. - """ - dtype = convtypecode(typecode, dtype) - if M is None: M = N - m = np.greater_equal(np.subtract.outer(np.arange(N), np.arange(M)), -k) - if m.dtype != dtype: - return m.astype(dtype) - -def trapz(y, x=None, axis=-1): - return _Ntrapz(y, x, axis=axis) - -def ptp(x, axis=0): - return _Nptp(x, axis) - -def cumprod(x, axis=0): - return _Ncumprod(x, axis) - -def max(x, axis=0): - return _Nmax(x, axis) - -def min(x, axis=0): - return _Nmin(x, axis) - -def prod(x, axis=0): - return _Nprod(x, axis) - -def std(x, axis=0): - N = asarray(x).shape[axis] - return _Nstd(x, axis)*sqrt(N/(N-1.)) - -def mean(x, axis=0): - return _Nmean(x, axis) - -# This is exactly the same cov function as in MLab -def cov(m, y=None, rowvar=0, bias=0): - if y is None: - y = m - else: - y = y - if rowvar: - m = transpose(m) - y = transpose(y) - if (m.shape[0] == 1): - m = transpose(m) - if (y.shape[0] == 1): - y = transpose(y) - N = m.shape[0] - if (y.shape[0] != N): - raise ValueError("x and y must have the same number of observations") - m = m - _Nmean(m, axis=0) - y = y - _Nmean(y, axis=0) - if bias: - fact = N*1.0 - else: - fact = N-1.0 - return squeeze(dot(transpose(m), conjugate(y)) / fact) - -from numpy import sqrt, multiply -def corrcoef(x, y=None): - c = cov(x, y) - d = diag(c) - return c/sqrt(multiply.outer(d, d)) - -from .compat import * -from .functions import * -from .precision import * -from .ufuncs import * -from .misc import * - -from . import compat -from . import precision -from . import functions -from . import misc -from . import ufuncs - -import numpy -__version__ = numpy.__version__ -del numpy - -__all__ += ['__version__'] -__all__ += compat.__all__ -__all__ += precision.__all__ -__all__ += functions.__all__ -__all__ += ufuncs.__all__ -__all__ += misc.__all__ - -del compat -del functions -del precision -del ufuncs -del misc |