diff options
Diffstat (limited to 'numpy/oldnumeric')
-rw-r--r-- | numpy/oldnumeric/arrayfns.py | 27 | ||||
-rw-r--r-- | numpy/oldnumeric/compat.py | 2 | ||||
-rw-r--r-- | numpy/oldnumeric/mlab.py | 12 | ||||
-rw-r--r-- | numpy/oldnumeric/rng.py | 12 |
4 files changed, 29 insertions, 24 deletions
diff --git a/numpy/oldnumeric/arrayfns.py b/numpy/oldnumeric/arrayfns.py index 4c31a6827..dbb910770 100644 --- a/numpy/oldnumeric/arrayfns.py +++ b/numpy/oldnumeric/arrayfns.py @@ -1,10 +1,11 @@ """Backward compatible with arrayfns from Numeric """ -__all__ = ['array_set', 'construct3', 'digitize', 'error', 'find_mask', 'histogram', 'index_sort', - 'interp', 'nz', 'reverse', 'span', 'to_corners', 'zmin_zmax'] +__all__ = ['array_set', 'construct3', 'digitize', 'error', 'find_mask', + 'histogram', 'index_sort', 'interp', 'nz', 'reverse', 'span', + 'to_corners', 'zmin_zmax'] -import numpy as nx +import numpy as np from numpy import asarray class error(Exception): @@ -14,7 +15,7 @@ def array_set(vals1, indices, vals2): indices = asarray(indices) if indices.ndim != 1: raise ValueError, "index array must be 1-d" - if not isinstance(vals1, ndarray): + if not isinstance(vals1, np.ndarray): raise TypeError, "vals1 must be an ndarray" vals1 = asarray(vals1) vals2 = asarray(vals2) @@ -31,7 +32,7 @@ def index_sort(arr): def interp(y, x, z, typ=None): """y(z) interpolated by treating y(x) as piecewise function """ - res = numpy.interp(z, x, y) + res = np.interp(z, x, y) if typ is None or typ == 'd': return res if typ == 'f': @@ -40,17 +41,17 @@ def interp(y, x, z, typ=None): raise error, "incompatible typecode" def nz(x): - x = asarray(x,dtype=nx.ubyte) + x = asarray(x,dtype=np.ubyte) if x.ndim != 1: raise TypeError, "intput must have 1 dimension." - indxs = nx.flatnonzero(x != 0) + indxs = np.flatnonzero(x != 0) return indxs[-1].item()+1 def reverse(x, n): x = asarray(x,dtype='d') if x.ndim != 2: raise ValueError, "input must be 2-d" - y = nx.empty_like(x) + y = np.empty_like(x) if n == 0: y[...] = x[::-1,:] elif n == 1: @@ -58,11 +59,11 @@ def reverse(x, n): return y def span(lo, hi, num, d2=0): - x = linspace(lo, hi, num) + x = np.linspace(lo, hi, num) if d2 <= 0: return x else: - ret = empty((d2,num),x.dtype) + ret = np.empty((d2,num),x.dtype) ret[...] = x return ret @@ -71,15 +72,15 @@ def zmin_zmax(z, ireg): ireg = asarray(ireg, dtype=int) if z.shape != ireg.shape or z.ndim != 2: raise ValueError, "z and ireg must be the same shape and 2-d" - ix, iy = nx.nonzero(ireg) + ix, iy = np.nonzero(ireg) # Now, add more indices x1m = ix - 1 y1m = iy-1 i1 = x1m>=0 i2 = y1m>=0 i3 = i1 & i2 - nix = nx.r_[ix, x1m[i1], x1m[i1], ix[i2] ] - niy = nx.r_[iy, iy[i1], y1m[i3], y1m[i2]] + nix = np.r_[ix, x1m[i1], x1m[i1], ix[i2] ] + niy = np.r_[iy, iy[i1], y1m[i3], y1m[i2]] # remove any negative indices zres = z[nix,niy] return zres.min().item(), zres.max().item() diff --git a/numpy/oldnumeric/compat.py b/numpy/oldnumeric/compat.py index 7f123fa69..3e1d53d0e 100644 --- a/numpy/oldnumeric/compat.py +++ b/numpy/oldnumeric/compat.py @@ -12,7 +12,7 @@ __all__ = ['NewAxis', import numpy.core.multiarray as multiarray import numpy.core.umath as um -from numpy.core.numeric import array, correlate +from numpy.core.numeric import array import functions import sys diff --git a/numpy/oldnumeric/mlab.py b/numpy/oldnumeric/mlab.py index 47be89e1b..c11e34c1f 100644 --- a/numpy/oldnumeric/mlab.py +++ b/numpy/oldnumeric/mlab.py @@ -1,6 +1,10 @@ # This module is for compatibility only. All functions are defined elsewhere. -__all__ = ['rand', 'tril', 'trapz', 'hanning', 'rot90', 'triu', 'diff', 'angle', 'roots', 'ptp', 'kaiser', 'randn', 'cumprod', 'diag', 'msort', 'LinearAlgebra', 'RandomArray', 'prod', 'std', 'hamming', 'flipud', 'max', 'blackman', 'corrcoef', 'bartlett', 'eye', 'squeeze', 'sinc', 'tri', 'cov', 'svd', 'min', 'median', 'fliplr', 'eig', 'mean'] +__all__ = ['rand', 'tril', 'trapz', 'hanning', 'rot90', 'triu', 'diff', 'angle', + 'roots', 'ptp', 'kaiser', 'randn', 'cumprod', 'diag', 'msort', + 'LinearAlgebra', 'RandomArray', 'prod', 'std', 'hamming', 'flipud', + 'max', 'blackman', 'corrcoef', 'bartlett', 'eye', 'squeeze', 'sinc', + 'tri', 'cov', 'svd', 'min', 'median', 'fliplr', 'eig', 'mean'] import numpy.oldnumeric.linear_algebra as LinearAlgebra import numpy.oldnumeric.random_array as RandomArray @@ -12,7 +16,7 @@ from numpy import tril, trapz as _Ntrapz, hanning, rot90, triu, diff, \ from numpy.linalg import eig, svd from numpy.random import rand, randn -import numpy as nn +import numpy as np from typeconv import convtypecode @@ -22,7 +26,7 @@ def eye(N, M=None, k=0, typecode=None, dtype=None): """ dtype = convtypecode(typecode, dtype) if M is None: M = N - m = nn.equal(nn.subtract.outer(nn.arange(N), nn.arange(M)),-k) + m = np.equal(np.subtract.outer(np.arange(N), np.arange(M)),-k) if m.dtype != dtype: return m.astype(dtype) @@ -32,7 +36,7 @@ def tri(N, M=None, k=0, typecode=None, dtype=None): """ dtype = convtypecode(typecode, dtype) if M is None: M = N - m = nn.greater_equal(nn.subtract.outer(nn.arange(N), nn.arange(M)),-k) + m = np.greater_equal(np.subtract.outer(np.arange(N), np.arange(M)),-k) if m.dtype != dtype: return m.astype(dtype) diff --git a/numpy/oldnumeric/rng.py b/numpy/oldnumeric/rng.py index fcf08bb37..b4c72a68c 100644 --- a/numpy/oldnumeric/rng.py +++ b/numpy/oldnumeric/rng.py @@ -4,9 +4,9 @@ # It is for backwards compatibility only. -__all__ = ['CreateGenerator','ExponentialDistribution','LogNormalDistribution','NormalDistribution', - 'UniformDistribution', 'error', 'default_distribution', 'random_sample', 'ranf', - 'standard_generator'] +__all__ = ['CreateGenerator','ExponentialDistribution','LogNormalDistribution', + 'NormalDistribution', 'UniformDistribution', 'error', 'ranf', + 'default_distribution', 'random_sample', 'standard_generator'] import numpy.random.mtrand as mt import math @@ -44,7 +44,7 @@ class ExponentialDistribution(Distribution): return 0.0 else: lambda_ = self._args[0] - return lambda_*exp(-lambda_*x) + return lambda_*math.exp(-lambda_*x) class LogNormalDistribution(Distribution): def __init__(self, m, s): @@ -61,7 +61,7 @@ class LogNormalDistribution(Distribution): def density(x): m,s = self._args y = (math.log(x)-self._mn)/self._sn - return self._fac*exp(-0.5*y*y)/x + return self._fac*math.exp(-0.5*y*y)/x class NormalDistribution(Distribution): @@ -76,7 +76,7 @@ class NormalDistribution(Distribution): def density(x): m,s = self._args y = (x-m)/s - return self._fac*exp(-0.5*y*y) + return self._fac*math.exp(-0.5*y*y) class UniformDistribution(Distribution): def __init__(self, a, b): |