summaryrefslogtreecommitdiff
path: root/numpy/oldnumeric
diff options
context:
space:
mode:
Diffstat (limited to 'numpy/oldnumeric')
-rw-r--r--numpy/oldnumeric/arrayfns.py27
-rw-r--r--numpy/oldnumeric/compat.py2
-rw-r--r--numpy/oldnumeric/mlab.py12
-rw-r--r--numpy/oldnumeric/rng.py12
4 files changed, 29 insertions, 24 deletions
diff --git a/numpy/oldnumeric/arrayfns.py b/numpy/oldnumeric/arrayfns.py
index 4c31a6827..dbb910770 100644
--- a/numpy/oldnumeric/arrayfns.py
+++ b/numpy/oldnumeric/arrayfns.py
@@ -1,10 +1,11 @@
"""Backward compatible with arrayfns from Numeric
"""
-__all__ = ['array_set', 'construct3', 'digitize', 'error', 'find_mask', 'histogram', 'index_sort',
- 'interp', 'nz', 'reverse', 'span', 'to_corners', 'zmin_zmax']
+__all__ = ['array_set', 'construct3', 'digitize', 'error', 'find_mask',
+ 'histogram', 'index_sort', 'interp', 'nz', 'reverse', 'span',
+ 'to_corners', 'zmin_zmax']
-import numpy as nx
+import numpy as np
from numpy import asarray
class error(Exception):
@@ -14,7 +15,7 @@ def array_set(vals1, indices, vals2):
indices = asarray(indices)
if indices.ndim != 1:
raise ValueError, "index array must be 1-d"
- if not isinstance(vals1, ndarray):
+ if not isinstance(vals1, np.ndarray):
raise TypeError, "vals1 must be an ndarray"
vals1 = asarray(vals1)
vals2 = asarray(vals2)
@@ -31,7 +32,7 @@ def index_sort(arr):
def interp(y, x, z, typ=None):
"""y(z) interpolated by treating y(x) as piecewise function
"""
- res = numpy.interp(z, x, y)
+ res = np.interp(z, x, y)
if typ is None or typ == 'd':
return res
if typ == 'f':
@@ -40,17 +41,17 @@ def interp(y, x, z, typ=None):
raise error, "incompatible typecode"
def nz(x):
- x = asarray(x,dtype=nx.ubyte)
+ x = asarray(x,dtype=np.ubyte)
if x.ndim != 1:
raise TypeError, "intput must have 1 dimension."
- indxs = nx.flatnonzero(x != 0)
+ indxs = np.flatnonzero(x != 0)
return indxs[-1].item()+1
def reverse(x, n):
x = asarray(x,dtype='d')
if x.ndim != 2:
raise ValueError, "input must be 2-d"
- y = nx.empty_like(x)
+ y = np.empty_like(x)
if n == 0:
y[...] = x[::-1,:]
elif n == 1:
@@ -58,11 +59,11 @@ def reverse(x, n):
return y
def span(lo, hi, num, d2=0):
- x = linspace(lo, hi, num)
+ x = np.linspace(lo, hi, num)
if d2 <= 0:
return x
else:
- ret = empty((d2,num),x.dtype)
+ ret = np.empty((d2,num),x.dtype)
ret[...] = x
return ret
@@ -71,15 +72,15 @@ def zmin_zmax(z, ireg):
ireg = asarray(ireg, dtype=int)
if z.shape != ireg.shape or z.ndim != 2:
raise ValueError, "z and ireg must be the same shape and 2-d"
- ix, iy = nx.nonzero(ireg)
+ ix, iy = np.nonzero(ireg)
# Now, add more indices
x1m = ix - 1
y1m = iy-1
i1 = x1m>=0
i2 = y1m>=0
i3 = i1 & i2
- nix = nx.r_[ix, x1m[i1], x1m[i1], ix[i2] ]
- niy = nx.r_[iy, iy[i1], y1m[i3], y1m[i2]]
+ nix = np.r_[ix, x1m[i1], x1m[i1], ix[i2] ]
+ niy = np.r_[iy, iy[i1], y1m[i3], y1m[i2]]
# remove any negative indices
zres = z[nix,niy]
return zres.min().item(), zres.max().item()
diff --git a/numpy/oldnumeric/compat.py b/numpy/oldnumeric/compat.py
index 7f123fa69..3e1d53d0e 100644
--- a/numpy/oldnumeric/compat.py
+++ b/numpy/oldnumeric/compat.py
@@ -12,7 +12,7 @@ __all__ = ['NewAxis',
import numpy.core.multiarray as multiarray
import numpy.core.umath as um
-from numpy.core.numeric import array, correlate
+from numpy.core.numeric import array
import functions
import sys
diff --git a/numpy/oldnumeric/mlab.py b/numpy/oldnumeric/mlab.py
index 47be89e1b..c11e34c1f 100644
--- a/numpy/oldnumeric/mlab.py
+++ b/numpy/oldnumeric/mlab.py
@@ -1,6 +1,10 @@
# This module is for compatibility only. All functions are defined elsewhere.
-__all__ = ['rand', 'tril', 'trapz', 'hanning', 'rot90', 'triu', 'diff', 'angle', 'roots', 'ptp', 'kaiser', 'randn', 'cumprod', 'diag', 'msort', 'LinearAlgebra', 'RandomArray', 'prod', 'std', 'hamming', 'flipud', 'max', 'blackman', 'corrcoef', 'bartlett', 'eye', 'squeeze', 'sinc', 'tri', 'cov', 'svd', 'min', 'median', 'fliplr', 'eig', 'mean']
+__all__ = ['rand', 'tril', 'trapz', 'hanning', 'rot90', 'triu', 'diff', 'angle',
+ 'roots', 'ptp', 'kaiser', 'randn', 'cumprod', 'diag', 'msort',
+ 'LinearAlgebra', 'RandomArray', 'prod', 'std', 'hamming', 'flipud',
+ 'max', 'blackman', 'corrcoef', 'bartlett', 'eye', 'squeeze', 'sinc',
+ 'tri', 'cov', 'svd', 'min', 'median', 'fliplr', 'eig', 'mean']
import numpy.oldnumeric.linear_algebra as LinearAlgebra
import numpy.oldnumeric.random_array as RandomArray
@@ -12,7 +16,7 @@ from numpy import tril, trapz as _Ntrapz, hanning, rot90, triu, diff, \
from numpy.linalg import eig, svd
from numpy.random import rand, randn
-import numpy as nn
+import numpy as np
from typeconv import convtypecode
@@ -22,7 +26,7 @@ def eye(N, M=None, k=0, typecode=None, dtype=None):
"""
dtype = convtypecode(typecode, dtype)
if M is None: M = N
- m = nn.equal(nn.subtract.outer(nn.arange(N), nn.arange(M)),-k)
+ m = np.equal(np.subtract.outer(np.arange(N), np.arange(M)),-k)
if m.dtype != dtype:
return m.astype(dtype)
@@ -32,7 +36,7 @@ def tri(N, M=None, k=0, typecode=None, dtype=None):
"""
dtype = convtypecode(typecode, dtype)
if M is None: M = N
- m = nn.greater_equal(nn.subtract.outer(nn.arange(N), nn.arange(M)),-k)
+ m = np.greater_equal(np.subtract.outer(np.arange(N), np.arange(M)),-k)
if m.dtype != dtype:
return m.astype(dtype)
diff --git a/numpy/oldnumeric/rng.py b/numpy/oldnumeric/rng.py
index fcf08bb37..b4c72a68c 100644
--- a/numpy/oldnumeric/rng.py
+++ b/numpy/oldnumeric/rng.py
@@ -4,9 +4,9 @@
# It is for backwards compatibility only.
-__all__ = ['CreateGenerator','ExponentialDistribution','LogNormalDistribution','NormalDistribution',
- 'UniformDistribution', 'error', 'default_distribution', 'random_sample', 'ranf',
- 'standard_generator']
+__all__ = ['CreateGenerator','ExponentialDistribution','LogNormalDistribution',
+ 'NormalDistribution', 'UniformDistribution', 'error', 'ranf',
+ 'default_distribution', 'random_sample', 'standard_generator']
import numpy.random.mtrand as mt
import math
@@ -44,7 +44,7 @@ class ExponentialDistribution(Distribution):
return 0.0
else:
lambda_ = self._args[0]
- return lambda_*exp(-lambda_*x)
+ return lambda_*math.exp(-lambda_*x)
class LogNormalDistribution(Distribution):
def __init__(self, m, s):
@@ -61,7 +61,7 @@ class LogNormalDistribution(Distribution):
def density(x):
m,s = self._args
y = (math.log(x)-self._mn)/self._sn
- return self._fac*exp(-0.5*y*y)/x
+ return self._fac*math.exp(-0.5*y*y)/x
class NormalDistribution(Distribution):
@@ -76,7 +76,7 @@ class NormalDistribution(Distribution):
def density(x):
m,s = self._args
y = (x-m)/s
- return self._fac*exp(-0.5*y*y)
+ return self._fac*math.exp(-0.5*y*y)
class UniformDistribution(Distribution):
def __init__(self, a, b):