summaryrefslogtreecommitdiff
path: root/numpy/oldnumeric
diff options
context:
space:
mode:
Diffstat (limited to 'numpy/oldnumeric')
-rw-r--r--numpy/oldnumeric/compat.py5
-rw-r--r--numpy/oldnumeric/random_array.py48
2 files changed, 25 insertions, 28 deletions
diff --git a/numpy/oldnumeric/compat.py b/numpy/oldnumeric/compat.py
index 1d376dd12..369fa5000 100644
--- a/numpy/oldnumeric/compat.py
+++ b/numpy/oldnumeric/compat.py
@@ -11,13 +11,10 @@ __all__ = ['NewAxis',
import numpy.core.multiarray as multiarray
import numpy.core.umath as um
-from numpy.core.numeric import array, correlate, outer, cross
-from numpy.core.umath import sign, absolute, multiply
+from numpy.core.numeric import array, correlate
import functions
import sys
-import types
-
from cPickle import dump, dumps
mu = multiarray
diff --git a/numpy/oldnumeric/random_array.py b/numpy/oldnumeric/random_array.py
index 84e923e13..0b06ee959 100644
--- a/numpy/oldnumeric/random_array.py
+++ b/numpy/oldnumeric/random_array.py
@@ -72,30 +72,30 @@ def standard_normal(shape=[]):
return mt.standard_normal(shape)
def normal(mean, std, shape=[]):
- """normal(mean, std, n) or normal(mean, std, [n, m, ...]) returns
- array of random numbers randomly distributed with specified mean and
- standard deviation"""
- if shape == []:
- shape = None
- return mt.normal(mean, std, shape)
+ """normal(mean, std, n) or normal(mean, std, [n, m, ...]) returns
+ array of random numbers randomly distributed with specified mean and
+ standard deviation"""
+ if shape == []:
+ shape = None
+ return mt.normal(mean, std, shape)
def multivariate_normal(mean, cov, shape=[]):
- """multivariate_normal(mean, cov) or multivariate_normal(mean, cov, [m, n, ...])
- returns an array containing multivariate normally distributed random numbers
- with specified mean and covariance.
-
- mean must be a 1 dimensional array. cov must be a square two dimensional
- array with the same number of rows and columns as mean has elements.
-
- The first form returns a single 1-D array containing a multivariate
- normal.
-
- The second form returns an array of shape (m, n, ..., cov.shape[0]).
- In this case, output[i,j,...,:] is a 1-D array containing a multivariate
- normal."""
- if shape == []:
- shape = None
- return mt.multivariate_normal(mean, cov, shape)
+ """multivariate_normal(mean, cov) or multivariate_normal(mean, cov, [m, n, ...])
+ returns an array containing multivariate normally distributed random numbers
+ with specified mean and covariance.
+
+ mean must be a 1 dimensional array. cov must be a square two dimensional
+ array with the same number of rows and columns as mean has elements.
+
+ The first form returns a single 1-D array containing a multivariate
+ normal.
+
+ The second form returns an array of shape (m, n, ..., cov.shape[0]).
+ In this case, output[i,j,...,:] is a 1-D array containing a multivariate
+ normal."""
+ if shape == []:
+ shape = None
+ return mt.multivariate_normal(mean, cov, shape)
def exponential(mean, shape=[]):
"""exponential(mean, n) or exponential(mean, [n, m, ...]) returns array
@@ -195,8 +195,8 @@ def mean_var_test(x, type, mean, var, skew=[]):
print "(should be about ", mean, "):", x_mean
print "Variance of those random numbers (should be about ", var, "):", x_var
if skew != []:
- x_skew = (Numeric.sum(x_minus_mean*x_minus_mean*x_minus_mean,axis=0)/9998.)/x_var**(3./2.)
- print "Skewness of those random numbers (should be about ", skew, "):", x_skew
+ x_skew = (Numeric.sum(x_minus_mean*x_minus_mean*x_minus_mean,axis=0)/9998.)/x_var**(3./2.)
+ print "Skewness of those random numbers (should be about ", skew, "):", x_skew
def test():
obj = mt.get_state()