summaryrefslogtreecommitdiff
path: root/numpy/polynomial
diff options
context:
space:
mode:
Diffstat (limited to 'numpy/polynomial')
-rw-r--r--numpy/polynomial/chebyshev.py4
-rw-r--r--numpy/polynomial/hermite.py2
-rw-r--r--numpy/polynomial/hermite_e.py2
-rw-r--r--numpy/polynomial/laguerre.py2
-rw-r--r--numpy/polynomial/polynomial.py4
-rw-r--r--numpy/polynomial/polyutils.py4
6 files changed, 9 insertions, 9 deletions
diff --git a/numpy/polynomial/chebyshev.py b/numpy/polynomial/chebyshev.py
index 2b3268aeb..89ce815d5 100644
--- a/numpy/polynomial/chebyshev.py
+++ b/numpy/polynomial/chebyshev.py
@@ -88,13 +88,13 @@ Notes
The implementations of multiplication, division, integration, and
differentiation use the algebraic identities [1]_:
-.. math ::
+.. math::
T_n(x) = \\frac{z^n + z^{-n}}{2} \\\\
z\\frac{dx}{dz} = \\frac{z - z^{-1}}{2}.
where
-.. math :: x = \\frac{z + z^{-1}}{2}.
+.. math:: x = \\frac{z + z^{-1}}{2}.
These identities allow a Chebyshev series to be expressed as a finite,
symmetric Laurent series. In this module, this sort of Laurent series
diff --git a/numpy/polynomial/hermite.py b/numpy/polynomial/hermite.py
index 9800063f0..9b0735a9a 100644
--- a/numpy/polynomial/hermite.py
+++ b/numpy/polynomial/hermite.py
@@ -419,7 +419,7 @@ def hermmulx(c):
.. math::
- xP_i(x) = (P_{i + 1}(x)/2 + i*P_{i - 1}(x))
+ xP_i(x) = (P_{i + 1}(x)/2 + i*P_{i - 1}(x))
Examples
--------
diff --git a/numpy/polynomial/hermite_e.py b/numpy/polynomial/hermite_e.py
index abd27361e..182c562c2 100644
--- a/numpy/polynomial/hermite_e.py
+++ b/numpy/polynomial/hermite_e.py
@@ -414,7 +414,7 @@ def hermemulx(c):
.. math::
- xP_i(x) = (P_{i + 1}(x) + iP_{i - 1}(x)))
+ xP_i(x) = (P_{i + 1}(x) + iP_{i - 1}(x)))
Examples
--------
diff --git a/numpy/polynomial/laguerre.py b/numpy/polynomial/laguerre.py
index f564be482..d9ca373dd 100644
--- a/numpy/polynomial/laguerre.py
+++ b/numpy/polynomial/laguerre.py
@@ -414,7 +414,7 @@ def lagmulx(c):
.. math::
- xP_i(x) = (-(i + 1)*P_{i + 1}(x) + (2i + 1)P_{i}(x) - iP_{i - 1}(x))
+ xP_i(x) = (-(i + 1)*P_{i + 1}(x) + (2i + 1)P_{i}(x) - iP_{i - 1}(x))
Examples
--------
diff --git a/numpy/polynomial/polynomial.py b/numpy/polynomial/polynomial.py
index 2fead88ab..3c2663b6c 100644
--- a/numpy/polynomial/polynomial.py
+++ b/numpy/polynomial/polynomial.py
@@ -1304,12 +1304,12 @@ def polyfit(x, y, deg, rcond=None, full=False, w=None):
The solution is the coefficients of the polynomial `p` that minimizes
the sum of the weighted squared errors
- .. math :: E = \\sum_j w_j^2 * |y_j - p(x_j)|^2,
+ .. math:: E = \\sum_j w_j^2 * |y_j - p(x_j)|^2,
where the :math:`w_j` are the weights. This problem is solved by
setting up the (typically) over-determined matrix equation:
- .. math :: V(x) * c = w * y,
+ .. math:: V(x) * c = w * y,
where `V` is the weighted pseudo Vandermonde matrix of `x`, `c` are the
coefficients to be solved for, `w` are the weights, and `y` are the
diff --git a/numpy/polynomial/polyutils.py b/numpy/polynomial/polyutils.py
index 3b0f0a9e5..a2bc75a4d 100644
--- a/numpy/polynomial/polyutils.py
+++ b/numpy/polynomial/polyutils.py
@@ -330,12 +330,12 @@ def mapdomain(x, old, new):
-----
Effectively, this implements:
- .. math ::
+ .. math::
x\\_out = new[0] + m(x - old[0])
where
- .. math ::
+ .. math::
m = \\frac{new[1]-new[0]}{old[1]-old[0]}
Examples