summaryrefslogtreecommitdiff
path: root/numpy/random/__init__.py
diff options
context:
space:
mode:
Diffstat (limited to 'numpy/random/__init__.py')
-rw-r--r--numpy/random/__init__.py62
1 files changed, 53 insertions, 9 deletions
diff --git a/numpy/random/__init__.py b/numpy/random/__init__.py
index 82aefce5f..965ab5ea9 100644
--- a/numpy/random/__init__.py
+++ b/numpy/random/__init__.py
@@ -6,17 +6,15 @@ Random Number Generation
==================== =========================================================
Utility functions
==============================================================================
-random Uniformly distributed values of a given shape.
+random_sample Uniformly distributed floats over ``[0, 1)``.
+random Alias for `random_sample`.
bytes Uniformly distributed random bytes.
random_integers Uniformly distributed integers in a given range.
-random_sample Uniformly distributed floats in a given range.
-random Alias for random_sample
-ranf Alias for random_sample
-sample Alias for random_sample
-choice Generate a weighted random sample from a given array-like
permutation Randomly permute a sequence / generate a random sequence.
shuffle Randomly permute a sequence in place.
seed Seed the random number generator.
+choice Random sample from 1-D array.
+
==================== =========================================================
==================== =========================================================
@@ -90,9 +88,55 @@ from __future__ import division, absolute_import, print_function
import warnings
-# To get sub-modules
-from .info import __doc__, __all__
-
+__all__ = [
+ 'beta',
+ 'binomial',
+ 'bytes',
+ 'chisquare',
+ 'choice',
+ 'dirichlet',
+ 'exponential',
+ 'f',
+ 'gamma',
+ 'geometric',
+ 'get_state',
+ 'gumbel',
+ 'hypergeometric',
+ 'laplace',
+ 'logistic',
+ 'lognormal',
+ 'logseries',
+ 'multinomial',
+ 'multivariate_normal',
+ 'negative_binomial',
+ 'noncentral_chisquare',
+ 'noncentral_f',
+ 'normal',
+ 'pareto',
+ 'permutation',
+ 'poisson',
+ 'power',
+ 'rand',
+ 'randint',
+ 'randn',
+ 'random_integers',
+ 'random_sample',
+ 'rayleigh',
+ 'seed',
+ 'set_state',
+ 'shuffle',
+ 'standard_cauchy',
+ 'standard_exponential',
+ 'standard_gamma',
+ 'standard_normal',
+ 'standard_t',
+ 'triangular',
+ 'uniform',
+ 'vonmises',
+ 'wald',
+ 'weibull',
+ 'zipf'
+]
with warnings.catch_warnings():
warnings.filterwarnings("ignore", message="numpy.ndarray size changed")