summaryrefslogtreecommitdiff
path: root/numpy/random/examples/numba/extending.py
diff options
context:
space:
mode:
Diffstat (limited to 'numpy/random/examples/numba/extending.py')
-rw-r--r--numpy/random/examples/numba/extending.py77
1 files changed, 77 insertions, 0 deletions
diff --git a/numpy/random/examples/numba/extending.py b/numpy/random/examples/numba/extending.py
new file mode 100644
index 000000000..72e903b1f
--- /dev/null
+++ b/numpy/random/examples/numba/extending.py
@@ -0,0 +1,77 @@
+import datetime as dt
+
+import numpy as np
+import numba as nb
+
+from randomgen import Xoroshiro128
+
+x = Xoroshiro128()
+f = x.ctypes.next_uint32
+s = x.ctypes.state
+
+
+@nb.jit(nopython=True)
+def bounded_uint(lb, ub, state):
+ mask = delta = ub - lb
+ mask |= mask >> 1
+ mask |= mask >> 2
+ mask |= mask >> 4
+ mask |= mask >> 8
+ mask |= mask >> 16
+
+ val = f(state) & mask
+ while val > delta:
+ val = f(state) & mask
+
+ return lb + val
+
+
+print(bounded_uint(323, 2394691, s.value))
+
+
+@nb.jit(nopython=True)
+def bounded_uints(lb, ub, n, state):
+ out = np.empty(n, dtype=np.uint32)
+ for i in range(n):
+ out[i] = bounded_uint(lb, ub, state)
+
+
+bounded_uints(323, 2394691, 10000000, s.value)
+
+g = x.cffi.next_double
+cffi_state = x.cffi.state
+state_addr = x.cffi.state_address
+
+
+def normals(n, state):
+ out = np.empty(n)
+ for i in range((n + 1) // 2):
+ x1 = 2.0 * g(state) - 1.0
+ x2 = 2.0 * g(state) - 1.0
+ r2 = x1 * x1 + x2 * x2
+ while r2 >= 1.0 or r2 == 0.0:
+ x1 = 2.0 * g(state) - 1.0
+ x2 = 2.0 * g(state) - 1.0
+ r2 = x1 * x1 + x2 * x2
+ f = np.sqrt(-2.0 * np.log(r2) / r2)
+ out[2 * i] = f * x1
+ if 2 * i + 1 < n:
+ out[2 * i + 1] = f * x2
+ return out
+
+
+print(normals(10, cffi_state).var())
+# Warm up
+normalsj = nb.jit(normals, nopython=True)
+normalsj(1, state_addr)
+
+start = dt.datetime.now()
+normalsj(1000000, state_addr)
+ms = 1000 * (dt.datetime.now() - start).total_seconds()
+print('1,000,000 Polar-transform (numba/Xoroshiro128) randoms in '
+ '{ms:0.1f}ms'.format(ms=ms))
+
+start = dt.datetime.now()
+np.random.standard_normal(1000000)
+ms = 1000 * (dt.datetime.now() - start).total_seconds()
+print('1,000,000 Polar-transform (NumPy) randoms in {ms:0.1f}ms'.format(ms=ms))