diff options
Diffstat (limited to 'numpy/random/mtrand.pyi')
-rw-r--r-- | numpy/random/mtrand.pyi | 579 |
1 files changed, 579 insertions, 0 deletions
diff --git a/numpy/random/mtrand.pyi b/numpy/random/mtrand.pyi new file mode 100644 index 000000000..3137b0a95 --- /dev/null +++ b/numpy/random/mtrand.pyi @@ -0,0 +1,579 @@ +import sys +from typing import Any, Callable, Dict, Optional, Tuple, Type, Union, overload + +from numpy import ( + bool_, + dtype, + float32, + float64, + int8, + int16, + int32, + int64, + int_, + ndarray, + uint, + uint8, + uint16, + uint32, + uint64, +) +from numpy.random.bit_generator import BitGenerator +from numpy.typing import ( + ArrayLike, + _ArrayLikeFloat_co, + _ArrayLikeInt_co, + _DoubleCodes, + _DTypeLikeBool, + _DTypeLikeInt, + _DTypeLikeUInt, + _Float32Codes, + _Float64Codes, + _Int8Codes, + _Int16Codes, + _Int32Codes, + _Int64Codes, + _IntCodes, + _ShapeLike, + _SingleCodes, + _SupportsDType, + _UInt8Codes, + _UInt16Codes, + _UInt32Codes, + _UInt64Codes, + _UIntCodes, +) + +if sys.version_info >= (3, 8): + from typing import Literal +else: + from typing_extensions import Literal + +_DTypeLikeFloat32 = Union[ + dtype[float32], + _SupportsDType[dtype[float32]], + Type[float32], + _Float32Codes, + _SingleCodes, +] + +_DTypeLikeFloat64 = Union[ + dtype[float64], + _SupportsDType[dtype[float64]], + Type[float], + Type[float64], + _Float64Codes, + _DoubleCodes, +] + +class RandomState: + _bit_generator: BitGenerator + def __init__(self, seed: Union[None, _ArrayLikeInt_co, BitGenerator] = ...) -> None: ... + def __repr__(self) -> str: ... + def __str__(self) -> str: ... + def __getstate__(self) -> Dict[str, Any]: ... + def __setstate__(self, state: Dict[str, Any]) -> None: ... + def __reduce__(self) -> Tuple[Callable[[str], RandomState], Tuple[str], Dict[str, Any]]: ... + def seed(self, seed: Optional[_ArrayLikeFloat_co] = ...) -> None: ... + @overload + def get_state(self, legacy: Literal[False] = ...) -> Dict[str, Any]: ... + @overload + def get_state( + self, legacy: Literal[True] = ... + ) -> Union[Dict[str, Any], Tuple[str, ndarray[Any, dtype[uint32]], int, int, float]]: ... + def set_state( + self, state: Union[Dict[str, Any], Tuple[str, ndarray[Any, dtype[uint32]], int, int, float]] + ) -> None: ... + @overload + def random_sample(self, size: None = ...) -> float: ... # type: ignore[misc] + @overload + def random_sample(self, size: _ShapeLike = ...) -> ndarray[Any, dtype[float64]]: ... + @overload + def random(self, size: None = ...) -> float: ... # type: ignore[misc] + @overload + def random(self, size: _ShapeLike = ...) -> ndarray[Any, dtype[float64]]: ... + @overload + def beta(self, a: float, b: float, size: None = ...) -> float: ... # type: ignore[misc] + @overload + def beta( + self, a: _ArrayLikeFloat_co, b: _ArrayLikeFloat_co, size: Optional[_ShapeLike] = ... + ) -> ndarray[Any, dtype[float64]]: ... + @overload + def exponential(self, scale: float = ..., size: None = ...) -> float: ... # type: ignore[misc] + @overload + def exponential( + self, scale: _ArrayLikeFloat_co = ..., size: Optional[_ShapeLike] = ... + ) -> ndarray[Any, dtype[float64]]: ... + @overload + def standard_exponential(self, size: None = ...) -> float: ... # type: ignore[misc] + @overload + def standard_exponential(self, size: _ShapeLike = ...) -> ndarray[Any, dtype[float64]]: ... + @overload + def tomaxint(self, size: None = ...) -> int: ... # type: ignore[misc] + @overload + def tomaxint(self, size: _ShapeLike = ...) -> ndarray[Any, dtype[int_]]: ... + @overload + def randint( # type: ignore[misc] + self, + low: int, + high: Optional[int] = ..., + ) -> int: ... + @overload + def randint( # type: ignore[misc] + self, + low: int, + high: Optional[int] = ..., + size: None = ..., + dtype: _DTypeLikeBool = ..., + ) -> bool: ... + @overload + def randint( # type: ignore[misc] + self, + low: int, + high: Optional[int] = ..., + size: None = ..., + dtype: Union[_DTypeLikeInt, _DTypeLikeUInt] = ..., + ) -> int: ... + @overload + def randint( # type: ignore[misc] + self, + low: _ArrayLikeInt_co, + high: Optional[_ArrayLikeInt_co] = ..., + size: Optional[_ShapeLike] = ..., + ) -> ndarray[Any, dtype[int_]]: ... + @overload + def randint( # type: ignore[misc] + self, + low: _ArrayLikeInt_co, + high: Optional[_ArrayLikeInt_co] = ..., + size: Optional[_ShapeLike] = ..., + dtype: _DTypeLikeBool = ..., + ) -> ndarray[Any, dtype[bool_]]: ... + @overload + def randint( # type: ignore[misc] + self, + low: _ArrayLikeInt_co, + high: Optional[_ArrayLikeInt_co] = ..., + size: Optional[_ShapeLike] = ..., + dtype: Union[dtype[int8], Type[int8], _Int8Codes, _SupportsDType[dtype[int8]]] = ..., + ) -> ndarray[Any, dtype[int8]]: ... + @overload + def randint( # type: ignore[misc] + self, + low: _ArrayLikeInt_co, + high: Optional[_ArrayLikeInt_co] = ..., + size: Optional[_ShapeLike] = ..., + dtype: Union[dtype[int16], Type[int16], _Int16Codes, _SupportsDType[dtype[int16]]] = ..., + ) -> ndarray[Any, dtype[int16]]: ... + @overload + def randint( # type: ignore[misc] + self, + low: _ArrayLikeInt_co, + high: Optional[_ArrayLikeInt_co] = ..., + size: Optional[_ShapeLike] = ..., + dtype: Union[dtype[int32], Type[int32], _Int32Codes, _SupportsDType[dtype[int32]]] = ..., + ) -> ndarray[Any, dtype[Union[int32]]]: ... + @overload + def randint( # type: ignore[misc] + self, + low: _ArrayLikeInt_co, + high: Optional[_ArrayLikeInt_co] = ..., + size: Optional[_ShapeLike] = ..., + dtype: Optional[ + Union[dtype[int64], Type[int64], _Int64Codes, _SupportsDType[dtype[int64]]] + ] = ..., + ) -> ndarray[Any, dtype[int64]]: ... + @overload + def randint( # type: ignore[misc] + self, + low: _ArrayLikeInt_co, + high: Optional[_ArrayLikeInt_co] = ..., + size: Optional[_ShapeLike] = ..., + dtype: Union[dtype[uint8], Type[uint8], _UInt8Codes, _SupportsDType[dtype[uint8]]] = ..., + ) -> ndarray[Any, dtype[uint8]]: ... + @overload + def randint( # type: ignore[misc] + self, + low: _ArrayLikeInt_co, + high: Optional[_ArrayLikeInt_co] = ..., + size: Optional[_ShapeLike] = ..., + dtype: Union[ + dtype[uint16], Type[uint16], _UInt16Codes, _SupportsDType[dtype[uint16]] + ] = ..., + ) -> ndarray[Any, dtype[Union[uint16]]]: ... + @overload + def randint( # type: ignore[misc] + self, + low: _ArrayLikeInt_co, + high: Optional[_ArrayLikeInt_co] = ..., + size: Optional[_ShapeLike] = ..., + dtype: Union[ + dtype[uint32], Type[uint32], _UInt32Codes, _SupportsDType[dtype[uint32]] + ] = ..., + ) -> ndarray[Any, dtype[uint32]]: ... + @overload + def randint( # type: ignore[misc] + self, + low: _ArrayLikeInt_co, + high: Optional[_ArrayLikeInt_co] = ..., + size: Optional[_ShapeLike] = ..., + dtype: Union[ + dtype[uint64], Type[uint64], _UInt64Codes, _SupportsDType[dtype[uint64]] + ] = ..., + ) -> ndarray[Any, dtype[uint64]]: ... + @overload + def randint( # type: ignore[misc] + self, + low: _ArrayLikeInt_co, + high: Optional[_ArrayLikeInt_co] = ..., + size: Optional[_ShapeLike] = ..., + dtype: Union[ + dtype[int_], Type[int], Type[int_], _IntCodes, _SupportsDType[dtype[int_]] + ] = ..., + ) -> ndarray[Any, dtype[int_]]: ... + @overload + def randint( # type: ignore[misc] + self, + low: _ArrayLikeInt_co, + high: Optional[_ArrayLikeInt_co] = ..., + size: Optional[_ShapeLike] = ..., + dtype: Union[dtype[uint], Type[uint], _UIntCodes, _SupportsDType[dtype[uint]]] = ..., + ) -> ndarray[Any, dtype[uint]]: ... + def bytes(self, length: int) -> bytes: ... + @overload + def choice( + self, + a: int, + size: None = ..., + replace: bool = ..., + p: Optional[_ArrayLikeFloat_co] = ..., + ) -> int: ... + @overload + def choice( + self, + a: int, + size: _ShapeLike = ..., + replace: bool = ..., + p: Optional[_ArrayLikeFloat_co] = ..., + ) -> ndarray[Any, dtype[int_]]: ... + @overload + def choice( + self, + a: ArrayLike, + size: None = ..., + replace: bool = ..., + p: Optional[_ArrayLikeFloat_co] = ..., + ) -> Any: ... + @overload + def choice( + self, + a: ArrayLike, + size: _ShapeLike = ..., + replace: bool = ..., + p: Optional[_ArrayLikeFloat_co] = ..., + ) -> ndarray[Any, Any]: ... + @overload + def uniform(self, low: float = ..., high: float = ..., size: None = ...) -> float: ... # type: ignore[misc] + @overload + def uniform( + self, + low: _ArrayLikeFloat_co = ..., + high: _ArrayLikeFloat_co = ..., + size: Optional[_ShapeLike] = ..., + ) -> ndarray[Any, dtype[float64]]: ... + @overload + def rand(self) -> float: ... + @overload + def rand(self, *args: int) -> ndarray[Any, dtype[float64]]: ... + @overload + def randn(self) -> float: ... + @overload + def randn(self, *args: int) -> ndarray[Any, dtype[float64]]: ... + @overload + def random_integers(self, low: int, high: Optional[int] = ..., size: None = ...) -> int: ... # type: ignore[misc] + @overload + def random_integers( + self, + low: _ArrayLikeInt_co, + high: Optional[_ArrayLikeInt_co] = ..., + size: Optional[_ShapeLike] = ..., + ) -> ndarray[Any, dtype[int_]]: ... + @overload + def standard_normal(self, size: None = ...) -> float: ... # type: ignore[misc] + @overload + def standard_normal( # type: ignore[misc] + self, size: _ShapeLike = ... + ) -> ndarray[Any, dtype[float64]]: ... + @overload + def normal(self, loc: float = ..., scale: float = ..., size: None = ...) -> float: ... # type: ignore[misc] + @overload + def normal( + self, + loc: _ArrayLikeFloat_co = ..., + scale: _ArrayLikeFloat_co = ..., + size: Optional[_ShapeLike] = ..., + ) -> ndarray[Any, dtype[float64]]: ... + @overload + def standard_gamma( # type: ignore[misc] + self, + shape: float, + size: None = ..., + ) -> float: ... + @overload + def standard_gamma( + self, + shape: _ArrayLikeFloat_co, + size: Optional[_ShapeLike] = ..., + ) -> ndarray[Any, dtype[float64]]: ... + @overload + def gamma(self, shape: float, scale: float = ..., size: None = ...) -> float: ... # type: ignore[misc] + @overload + def gamma( + self, + shape: _ArrayLikeFloat_co, + scale: _ArrayLikeFloat_co = ..., + size: Optional[_ShapeLike] = ..., + ) -> ndarray[Any, dtype[float64]]: ... + @overload + def f(self, dfnum: float, dfden: float, size: None = ...) -> float: ... # type: ignore[misc] + @overload + def f( + self, dfnum: _ArrayLikeFloat_co, dfden: _ArrayLikeFloat_co, size: Optional[_ShapeLike] = ... + ) -> ndarray[Any, dtype[float64]]: ... + @overload + def noncentral_f(self, dfnum: float, dfden: float, nonc: float, size: None = ...) -> float: ... # type: ignore[misc] + @overload + def noncentral_f( + self, + dfnum: _ArrayLikeFloat_co, + dfden: _ArrayLikeFloat_co, + nonc: _ArrayLikeFloat_co, + size: Optional[_ShapeLike] = ..., + ) -> ndarray[Any, dtype[float64]]: ... + @overload + def chisquare(self, df: float, size: None = ...) -> float: ... # type: ignore[misc] + @overload + def chisquare( + self, df: _ArrayLikeFloat_co, size: Optional[_ShapeLike] = ... + ) -> ndarray[Any, dtype[float64]]: ... + @overload + def noncentral_chisquare(self, df: float, nonc: float, size: None = ...) -> float: ... # type: ignore[misc] + @overload + def noncentral_chisquare( + self, df: _ArrayLikeFloat_co, nonc: _ArrayLikeFloat_co, size: Optional[_ShapeLike] = ... + ) -> ndarray[Any, dtype[float64]]: ... + @overload + def standard_t(self, df: float, size: None = ...) -> float: ... # type: ignore[misc] + @overload + def standard_t( + self, df: _ArrayLikeFloat_co, size: None = ... + ) -> ndarray[Any, dtype[float64]]: ... + @overload + def standard_t( + self, df: _ArrayLikeFloat_co, size: _ShapeLike = ... + ) -> ndarray[Any, dtype[float64]]: ... + @overload + def vonmises(self, mu: float, kappa: float, size: None = ...) -> float: ... # type: ignore[misc] + @overload + def vonmises( + self, mu: _ArrayLikeFloat_co, kappa: _ArrayLikeFloat_co, size: Optional[_ShapeLike] = ... + ) -> ndarray[Any, dtype[float64]]: ... + @overload + def pareto(self, a: float, size: None = ...) -> float: ... # type: ignore[misc] + @overload + def pareto( + self, a: _ArrayLikeFloat_co, size: Optional[_ShapeLike] = ... + ) -> ndarray[Any, dtype[float64]]: ... + @overload + def weibull(self, a: float, size: None = ...) -> float: ... # type: ignore[misc] + @overload + def weibull( + self, a: _ArrayLikeFloat_co, size: Optional[_ShapeLike] = ... + ) -> ndarray[Any, dtype[float64]]: ... + @overload + def power(self, a: float, size: None = ...) -> float: ... # type: ignore[misc] + @overload + def power( + self, a: _ArrayLikeFloat_co, size: Optional[_ShapeLike] = ... + ) -> ndarray[Any, dtype[float64]]: ... + @overload + def standard_cauchy(self, size: None = ...) -> float: ... # type: ignore[misc] + @overload + def standard_cauchy(self, size: _ShapeLike = ...) -> ndarray[Any, dtype[float64]]: ... + @overload + def laplace(self, loc: float = ..., scale: float = ..., size: None = ...) -> float: ... # type: ignore[misc] + @overload + def laplace( + self, + loc: _ArrayLikeFloat_co = ..., + scale: _ArrayLikeFloat_co = ..., + size: Optional[_ShapeLike] = ..., + ) -> ndarray[Any, dtype[float64]]: ... + @overload + def gumbel(self, loc: float = ..., scale: float = ..., size: None = ...) -> float: ... # type: ignore[misc] + @overload + def gumbel( + self, + loc: _ArrayLikeFloat_co = ..., + scale: _ArrayLikeFloat_co = ..., + size: Optional[_ShapeLike] = ..., + ) -> ndarray[Any, dtype[float64]]: ... + @overload + def logistic(self, loc: float = ..., scale: float = ..., size: None = ...) -> float: ... # type: ignore[misc] + @overload + def logistic( + self, + loc: _ArrayLikeFloat_co = ..., + scale: _ArrayLikeFloat_co = ..., + size: Optional[_ShapeLike] = ..., + ) -> ndarray[Any, dtype[float64]]: ... + @overload + def lognormal(self, mean: float = ..., sigma: float = ..., size: None = ...) -> float: ... # type: ignore[misc] + @overload + def lognormal( + self, + mean: _ArrayLikeFloat_co = ..., + sigma: _ArrayLikeFloat_co = ..., + size: Optional[_ShapeLike] = ..., + ) -> ndarray[Any, dtype[float64]]: ... + @overload + def rayleigh(self, scale: float = ..., size: None = ...) -> float: ... # type: ignore[misc] + @overload + def rayleigh( + self, scale: _ArrayLikeFloat_co = ..., size: Optional[_ShapeLike] = ... + ) -> ndarray[Any, dtype[float64]]: ... + @overload + def wald(self, mean: float, scale: float, size: None = ...) -> float: ... # type: ignore[misc] + @overload + def wald( + self, mean: _ArrayLikeFloat_co, scale: _ArrayLikeFloat_co, size: Optional[_ShapeLike] = ... + ) -> ndarray[Any, dtype[float64]]: ... + @overload + def triangular(self, left: float, mode: float, right: float, size: None = ...) -> float: ... # type: ignore[misc] + @overload + def triangular( + self, + left: _ArrayLikeFloat_co, + mode: _ArrayLikeFloat_co, + right: _ArrayLikeFloat_co, + size: Optional[_ShapeLike] = ..., + ) -> ndarray[Any, dtype[float64]]: ... + @overload + def binomial(self, n: int, p: float, size: None = ...) -> int: ... # type: ignore[misc] + @overload + def binomial( + self, n: _ArrayLikeInt_co, p: _ArrayLikeFloat_co, size: Optional[_ShapeLike] = ... + ) -> ndarray[Any, dtype[int_]]: ... + @overload + def negative_binomial(self, n: float, p: float, size: None = ...) -> int: ... # type: ignore[misc] + @overload + def negative_binomial( + self, n: _ArrayLikeFloat_co, p: _ArrayLikeFloat_co, size: Optional[_ShapeLike] = ... + ) -> ndarray[Any, dtype[int_]]: ... + @overload + def poisson(self, lam: float = ..., size: None = ...) -> int: ... # type: ignore[misc] + @overload + def poisson( + self, lam: _ArrayLikeFloat_co = ..., size: Optional[_ShapeLike] = ... + ) -> ndarray[Any, dtype[int_]]: ... + @overload + def zipf(self, a: float, size: None = ...) -> int: ... # type: ignore[misc] + @overload + def zipf( + self, a: _ArrayLikeFloat_co, size: Optional[_ShapeLike] = ... + ) -> ndarray[Any, dtype[int_]]: ... + @overload + def geometric(self, p: float, size: None = ...) -> int: ... # type: ignore[misc] + @overload + def geometric( + self, p: _ArrayLikeFloat_co, size: Optional[_ShapeLike] = ... + ) -> ndarray[Any, dtype[int_]]: ... + @overload + def hypergeometric(self, ngood: int, nbad: int, nsample: int, size: None = ...) -> int: ... # type: ignore[misc] + @overload + def hypergeometric( + self, + ngood: _ArrayLikeInt_co, + nbad: _ArrayLikeInt_co, + nsample: _ArrayLikeInt_co, + size: Optional[_ShapeLike] = ..., + ) -> ndarray[Any, dtype[int_]]: ... + @overload + def logseries(self, p: float, size: None = ...) -> int: ... # type: ignore[misc] + @overload + def logseries( + self, p: _ArrayLikeFloat_co, size: Optional[_ShapeLike] = ... + ) -> ndarray[Any, dtype[int_]]: ... + def multivariate_normal( + self, + mean: _ArrayLikeFloat_co, + cov: _ArrayLikeFloat_co, + size: Optional[_ShapeLike] = ..., + check_valid: Literal["warn", "raise", "ignore"] = ..., + tol: float = ..., + ) -> ndarray[Any, dtype[float64]]: ... + def multinomial( + self, n: _ArrayLikeInt_co, pvals: _ArrayLikeFloat_co, size: Optional[_ShapeLike] = ... + ) -> ndarray[Any, dtype[int_]]: ... + def dirichlet( + self, alpha: _ArrayLikeFloat_co, size: Optional[_ShapeLike] = ... + ) -> ndarray[Any, dtype[float64]]: ... + def shuffle(self, x: ArrayLike) -> None: ... + @overload + def permutation(self, x: int) -> ndarray[Any, dtype[int_]]: ... + @overload + def permutation(self, x: ArrayLike) -> ndarray[Any, Any]: ... + +_rand: RandomState + +beta = _rand.beta +binomial = _rand.binomial +bytes = _rand.bytes +chisquare = _rand.chisquare +choice = _rand.choice +dirichlet = _rand.dirichlet +exponential = _rand.exponential +f = _rand.f +gamma = _rand.gamma +get_state = _rand.get_state +geometric = _rand.geometric +gumbel = _rand.gumbel +hypergeometric = _rand.hypergeometric +laplace = _rand.laplace +logistic = _rand.logistic +lognormal = _rand.lognormal +logseries = _rand.logseries +multinomial = _rand.multinomial +multivariate_normal = _rand.multivariate_normal +negative_binomial = _rand.negative_binomial +noncentral_chisquare = _rand.noncentral_chisquare +noncentral_f = _rand.noncentral_f +normal = _rand.normal +pareto = _rand.pareto +permutation = _rand.permutation +poisson = _rand.poisson +power = _rand.power +rand = _rand.rand +randint = _rand.randint +randn = _rand.randn +random = _rand.random +random_integers = _rand.random_integers +random_sample = _rand.random_sample +rayleigh = _rand.rayleigh +seed = _rand.seed +set_state = _rand.set_state +shuffle = _rand.shuffle +standard_cauchy = _rand.standard_cauchy +standard_exponential = _rand.standard_exponential +standard_gamma = _rand.standard_gamma +standard_normal = _rand.standard_normal +standard_t = _rand.standard_t +triangular = _rand.triangular +uniform = _rand.uniform +vonmises = _rand.vonmises +wald = _rand.wald +weibull = _rand.weibull +zipf = _rand.zipf +# Two legacy that are trivial wrappers around random_sample +sample = _rand.random_sample +ranf = _rand.random_sample |