summaryrefslogtreecommitdiff
path: root/numpy/random/src/dsfmt/dSFMT.c
diff options
context:
space:
mode:
Diffstat (limited to 'numpy/random/src/dsfmt/dSFMT.c')
-rw-r--r--numpy/random/src/dsfmt/dSFMT.c626
1 files changed, 0 insertions, 626 deletions
diff --git a/numpy/random/src/dsfmt/dSFMT.c b/numpy/random/src/dsfmt/dSFMT.c
deleted file mode 100644
index 0f122c26c..000000000
--- a/numpy/random/src/dsfmt/dSFMT.c
+++ /dev/null
@@ -1,626 +0,0 @@
-/**
- * @file dSFMT.c
- * @brief double precision SIMD-oriented Fast Mersenne Twister (dSFMT)
- * based on IEEE 754 format.
- *
- * @author Mutsuo Saito (Hiroshima University)
- * @author Makoto Matsumoto (Hiroshima University)
- *
- * Copyright (C) 2007,2008 Mutsuo Saito, Makoto Matsumoto and Hiroshima
- * University. All rights reserved.
- *
- * The new BSD License is applied to this software, see LICENSE.txt
- */
-#include <stdio.h>
-#include <stdlib.h>
-#include <string.h>
-
-#include "dSFMT-params.h"
-
-#include "dSFMT-common.h"
-#include "dSFMT-jump.h"
-#include "dSFMT-poly.h"
-
-#if defined(__cplusplus)
-extern "C" {
-#endif
-
-/** dsfmt internal state vector */
-dsfmt_t dsfmt_global_data;
-/** dsfmt mexp for check */
-static const int dsfmt_mexp = DSFMT_MEXP;
-
-/*----------------
- STATIC FUNCTIONS
- ----------------*/
-inline static uint32_t ini_func1(uint32_t x);
-inline static uint32_t ini_func2(uint32_t x);
-inline static void gen_rand_array_c1o2(dsfmt_t *dsfmt, w128_t *array, int size);
-inline static void gen_rand_array_c0o1(dsfmt_t *dsfmt, w128_t *array, int size);
-inline static void gen_rand_array_o0c1(dsfmt_t *dsfmt, w128_t *array, int size);
-inline static void gen_rand_array_o0o1(dsfmt_t *dsfmt, w128_t *array, int size);
-inline static int idxof(int i);
-static void initial_mask(dsfmt_t *dsfmt);
-static void period_certification(dsfmt_t *dsfmt);
-
-#if defined(HAVE_SSE2)
-/** 1 in 64bit for sse2 */
-static const union X128I_T sse2_int_one = {{1, 1}};
-/** 2.0 double for sse2 */
-static const union X128D_T sse2_double_two = {{2.0, 2.0}};
-/** -1.0 double for sse2 */
-static const union X128D_T sse2_double_m_one = {{-1.0, -1.0}};
-#endif
-
-/**
- * This function simulate a 32-bit array index overlapped to 64-bit
- * array of LITTLE ENDIAN in BIG ENDIAN machine.
- */
-#if defined(DSFMT_BIG_ENDIAN)
-inline static int idxof(int i) { return i ^ 1; }
-#else
-inline static int idxof(int i) { return i; }
-#endif
-
-#if defined(HAVE_SSE2)
-/**
- * This function converts the double precision floating point numbers which
- * distribute uniformly in the range [1, 2) to those which distribute uniformly
- * in the range [0, 1).
- * @param w 128bit stracture of double precision floating point numbers (I/O)
- */
-inline static void convert_c0o1(w128_t *w) {
- w->sd = _mm_add_pd(w->sd, sse2_double_m_one.d128);
-}
-
-/**
- * This function converts the double precision floating point numbers which
- * distribute uniformly in the range [1, 2) to those which distribute uniformly
- * in the range (0, 1].
- * @param w 128bit stracture of double precision floating point numbers (I/O)
- */
-inline static void convert_o0c1(w128_t *w) {
- w->sd = _mm_sub_pd(sse2_double_two.d128, w->sd);
-}
-
-/**
- * This function converts the double precision floating point numbers which
- * distribute uniformly in the range [1, 2) to those which distribute uniformly
- * in the range (0, 1).
- * @param w 128bit stracture of double precision floating point numbers (I/O)
- */
-inline static void convert_o0o1(w128_t *w) {
- w->si = _mm_or_si128(w->si, sse2_int_one.i128);
- w->sd = _mm_add_pd(w->sd, sse2_double_m_one.d128);
-}
-#else /* standard C and altivec */
-/**
- * This function converts the double precision floating point numbers which
- * distribute uniformly in the range [1, 2) to those which distribute uniformly
- * in the range [0, 1).
- * @param w 128bit stracture of double precision floating point numbers (I/O)
- */
-inline static void convert_c0o1(w128_t *w) {
- w->d[0] -= 1.0;
- w->d[1] -= 1.0;
-}
-
-/**
- * This function converts the double precision floating point numbers which
- * distribute uniformly in the range [1, 2) to those which distribute uniformly
- * in the range (0, 1].
- * @param w 128bit stracture of double precision floating point numbers (I/O)
- */
-inline static void convert_o0c1(w128_t *w) {
- w->d[0] = 2.0 - w->d[0];
- w->d[1] = 2.0 - w->d[1];
-}
-
-/**
- * This function converts the double precision floating point numbers which
- * distribute uniformly in the range [1, 2) to those which distribute uniformly
- * in the range (0, 1).
- * @param w 128bit stracture of double precision floating point numbers (I/O)
- */
-inline static void convert_o0o1(w128_t *w) {
- w->u[0] |= 1;
- w->u[1] |= 1;
- w->d[0] -= 1.0;
- w->d[1] -= 1.0;
-}
-#endif
-
-/**
- * This function fills the user-specified array with double precision
- * floating point pseudorandom numbers of the IEEE 754 format.
- * @param dsfmt dsfmt state vector.
- * @param array an 128-bit array to be filled by pseudorandom numbers.
- * @param size number of 128-bit pseudorandom numbers to be generated.
- */
-inline static void gen_rand_array_c1o2(dsfmt_t *dsfmt, w128_t *array,
- int size) {
- int i, j;
- w128_t lung;
-
- lung = dsfmt->status[DSFMT_N];
- do_recursion(&array[0], &dsfmt->status[0], &dsfmt->status[DSFMT_POS1], &lung);
- for (i = 1; i < DSFMT_N - DSFMT_POS1; i++) {
- do_recursion(&array[i], &dsfmt->status[i], &dsfmt->status[i + DSFMT_POS1],
- &lung);
- }
- for (; i < DSFMT_N; i++) {
- do_recursion(&array[i], &dsfmt->status[i], &array[i + DSFMT_POS1 - DSFMT_N],
- &lung);
- }
- for (; i < size - DSFMT_N; i++) {
- do_recursion(&array[i], &array[i - DSFMT_N],
- &array[i + DSFMT_POS1 - DSFMT_N], &lung);
- }
- for (j = 0; j < 2 * DSFMT_N - size; j++) {
- dsfmt->status[j] = array[j + size - DSFMT_N];
- }
- for (; i < size; i++, j++) {
- do_recursion(&array[i], &array[i - DSFMT_N],
- &array[i + DSFMT_POS1 - DSFMT_N], &lung);
- dsfmt->status[j] = array[i];
- }
- dsfmt->status[DSFMT_N] = lung;
-}
-
-/**
- * This function fills the user-specified array with double precision
- * floating point pseudorandom numbers of the IEEE 754 format.
- * @param dsfmt dsfmt state vector.
- * @param array an 128-bit array to be filled by pseudorandom numbers.
- * @param size number of 128-bit pseudorandom numbers to be generated.
- */
-inline static void gen_rand_array_c0o1(dsfmt_t *dsfmt, w128_t *array,
- int size) {
- int i, j;
- w128_t lung;
-
- lung = dsfmt->status[DSFMT_N];
- do_recursion(&array[0], &dsfmt->status[0], &dsfmt->status[DSFMT_POS1], &lung);
- for (i = 1; i < DSFMT_N - DSFMT_POS1; i++) {
- do_recursion(&array[i], &dsfmt->status[i], &dsfmt->status[i + DSFMT_POS1],
- &lung);
- }
- for (; i < DSFMT_N; i++) {
- do_recursion(&array[i], &dsfmt->status[i], &array[i + DSFMT_POS1 - DSFMT_N],
- &lung);
- }
- for (; i < size - DSFMT_N; i++) {
- do_recursion(&array[i], &array[i - DSFMT_N],
- &array[i + DSFMT_POS1 - DSFMT_N], &lung);
- convert_c0o1(&array[i - DSFMT_N]);
- }
- for (j = 0; j < 2 * DSFMT_N - size; j++) {
- dsfmt->status[j] = array[j + size - DSFMT_N];
- }
- for (; i < size; i++, j++) {
- do_recursion(&array[i], &array[i - DSFMT_N],
- &array[i + DSFMT_POS1 - DSFMT_N], &lung);
- dsfmt->status[j] = array[i];
- convert_c0o1(&array[i - DSFMT_N]);
- }
- for (i = size - DSFMT_N; i < size; i++) {
- convert_c0o1(&array[i]);
- }
- dsfmt->status[DSFMT_N] = lung;
-}
-
-/**
- * This function fills the user-specified array with double precision
- * floating point pseudorandom numbers of the IEEE 754 format.
- * @param dsfmt dsfmt state vector.
- * @param array an 128-bit array to be filled by pseudorandom numbers.
- * @param size number of 128-bit pseudorandom numbers to be generated.
- */
-inline static void gen_rand_array_o0o1(dsfmt_t *dsfmt, w128_t *array,
- int size) {
- int i, j;
- w128_t lung;
-
- lung = dsfmt->status[DSFMT_N];
- do_recursion(&array[0], &dsfmt->status[0], &dsfmt->status[DSFMT_POS1], &lung);
- for (i = 1; i < DSFMT_N - DSFMT_POS1; i++) {
- do_recursion(&array[i], &dsfmt->status[i], &dsfmt->status[i + DSFMT_POS1],
- &lung);
- }
- for (; i < DSFMT_N; i++) {
- do_recursion(&array[i], &dsfmt->status[i], &array[i + DSFMT_POS1 - DSFMT_N],
- &lung);
- }
- for (; i < size - DSFMT_N; i++) {
- do_recursion(&array[i], &array[i - DSFMT_N],
- &array[i + DSFMT_POS1 - DSFMT_N], &lung);
- convert_o0o1(&array[i - DSFMT_N]);
- }
- for (j = 0; j < 2 * DSFMT_N - size; j++) {
- dsfmt->status[j] = array[j + size - DSFMT_N];
- }
- for (; i < size; i++, j++) {
- do_recursion(&array[i], &array[i - DSFMT_N],
- &array[i + DSFMT_POS1 - DSFMT_N], &lung);
- dsfmt->status[j] = array[i];
- convert_o0o1(&array[i - DSFMT_N]);
- }
- for (i = size - DSFMT_N; i < size; i++) {
- convert_o0o1(&array[i]);
- }
- dsfmt->status[DSFMT_N] = lung;
-}
-
-/**
- * This function fills the user-specified array with double precision
- * floating point pseudorandom numbers of the IEEE 754 format.
- * @param dsfmt dsfmt state vector.
- * @param array an 128-bit array to be filled by pseudorandom numbers.
- * @param size number of 128-bit pseudorandom numbers to be generated.
- */
-inline static void gen_rand_array_o0c1(dsfmt_t *dsfmt, w128_t *array,
- int size) {
- int i, j;
- w128_t lung;
-
- lung = dsfmt->status[DSFMT_N];
- do_recursion(&array[0], &dsfmt->status[0], &dsfmt->status[DSFMT_POS1], &lung);
- for (i = 1; i < DSFMT_N - DSFMT_POS1; i++) {
- do_recursion(&array[i], &dsfmt->status[i], &dsfmt->status[i + DSFMT_POS1],
- &lung);
- }
- for (; i < DSFMT_N; i++) {
- do_recursion(&array[i], &dsfmt->status[i], &array[i + DSFMT_POS1 - DSFMT_N],
- &lung);
- }
- for (; i < size - DSFMT_N; i++) {
- do_recursion(&array[i], &array[i - DSFMT_N],
- &array[i + DSFMT_POS1 - DSFMT_N], &lung);
- convert_o0c1(&array[i - DSFMT_N]);
- }
- for (j = 0; j < 2 * DSFMT_N - size; j++) {
- dsfmt->status[j] = array[j + size - DSFMT_N];
- }
- for (; i < size; i++, j++) {
- do_recursion(&array[i], &array[i - DSFMT_N],
- &array[i + DSFMT_POS1 - DSFMT_N], &lung);
- dsfmt->status[j] = array[i];
- convert_o0c1(&array[i - DSFMT_N]);
- }
- for (i = size - DSFMT_N; i < size; i++) {
- convert_o0c1(&array[i]);
- }
- dsfmt->status[DSFMT_N] = lung;
-}
-
-/**
- * This function represents a function used in the initialization
- * by init_by_array
- * @param x 32-bit integer
- * @return 32-bit integer
- */
-static uint32_t ini_func1(uint32_t x) {
- return (x ^ (x >> 27)) * (uint32_t)1664525UL;
-}
-
-/**
- * This function represents a function used in the initialization
- * by init_by_array
- * @param x 32-bit integer
- * @return 32-bit integer
- */
-static uint32_t ini_func2(uint32_t x) {
- return (x ^ (x >> 27)) * (uint32_t)1566083941UL;
-}
-
-/**
- * This function initializes the internal state array to fit the IEEE
- * 754 format.
- * @param dsfmt dsfmt state vector.
- */
-static void initial_mask(dsfmt_t *dsfmt) {
- int i;
- uint64_t *psfmt;
-
- psfmt = &dsfmt->status[0].u[0];
- for (i = 0; i < DSFMT_N * 2; i++) {
- psfmt[i] = (psfmt[i] & DSFMT_LOW_MASK) | DSFMT_HIGH_CONST;
- }
-}
-
-/**
- * This function certificate the period of 2^{SFMT_MEXP}-1.
- * @param dsfmt dsfmt state vector.
- */
-static void period_certification(dsfmt_t *dsfmt) {
- uint64_t pcv[2] = {DSFMT_PCV1, DSFMT_PCV2};
- uint64_t tmp[2];
- uint64_t inner;
- int i;
-#if (DSFMT_PCV2 & 1) != 1
- int j;
- uint64_t work;
-#endif
-
- tmp[0] = (dsfmt->status[DSFMT_N].u[0] ^ DSFMT_FIX1);
- tmp[1] = (dsfmt->status[DSFMT_N].u[1] ^ DSFMT_FIX2);
-
- inner = tmp[0] & pcv[0];
- inner ^= tmp[1] & pcv[1];
- for (i = 32; i > 0; i >>= 1) {
- inner ^= inner >> i;
- }
- inner &= 1;
- /* check OK */
- if (inner == 1) {
- return;
- }
- /* check NG, and modification */
-#if (DSFMT_PCV2 & 1) == 1
- dsfmt->status[DSFMT_N].u[1] ^= 1;
-#else
- for (i = 1; i >= 0; i--) {
- work = 1;
- for (j = 0; j < 64; j++) {
- if ((work & pcv[i]) != 0) {
- dsfmt->status[DSFMT_N].u[i] ^= work;
- return;
- }
- work = work << 1;
- }
- }
-#endif
- return;
-}
-
-/*----------------
- PUBLIC FUNCTIONS
- ----------------*/
-/**
- * This function returns the identification string. The string shows
- * the Mersenne exponent, and all parameters of this generator.
- * @return id string.
- */
-const char *dsfmt_get_idstring(void) { return DSFMT_IDSTR; }
-
-/**
- * This function returns the minimum size of array used for \b
- * fill_array functions.
- * @return minimum size of array used for fill_array functions.
- */
-int dsfmt_get_min_array_size(void) { return DSFMT_N64; }
-
-/**
- * This function fills the internal state array with double precision
- * floating point pseudorandom numbers of the IEEE 754 format.
- * @param dsfmt dsfmt state vector.
- */
-void dsfmt_gen_rand_all(dsfmt_t *dsfmt) {
- int i;
- w128_t lung;
-
- lung = dsfmt->status[DSFMT_N];
- do_recursion(&dsfmt->status[0], &dsfmt->status[0], &dsfmt->status[DSFMT_POS1],
- &lung);
- for (i = 1; i < DSFMT_N - DSFMT_POS1; i++) {
- do_recursion(&dsfmt->status[i], &dsfmt->status[i],
- &dsfmt->status[i + DSFMT_POS1], &lung);
- }
- for (; i < DSFMT_N; i++) {
- do_recursion(&dsfmt->status[i], &dsfmt->status[i],
- &dsfmt->status[i + DSFMT_POS1 - DSFMT_N], &lung);
- }
- dsfmt->status[DSFMT_N] = lung;
-}
-
-/**
- * This function generates double precision floating point
- * pseudorandom numbers which distribute in the range [1, 2) to the
- * specified array[] by one call. The number of pseudorandom numbers
- * is specified by the argument \b size, which must be at least (SFMT_MEXP
- * / 128) * 2 and a multiple of two. The function
- * get_min_array_size() returns this minimum size. The generation by
- * this function is much faster than the following fill_array_xxx functions.
- *
- * For initialization, init_gen_rand() or init_by_array() must be called
- * before the first call of this function. This function can not be
- * used after calling genrand_xxx functions, without initialization.
- *
- * @param dsfmt dsfmt state vector.
- * @param array an array where pseudorandom numbers are filled
- * by this function. The pointer to the array must be "aligned"
- * (namely, must be a multiple of 16) in the SIMD version, since it
- * refers to the address of a 128-bit integer. In the standard C
- * version, the pointer is arbitrary.
- *
- * @param size the number of 64-bit pseudorandom integers to be
- * generated. size must be a multiple of 2, and greater than or equal
- * to (SFMT_MEXP / 128) * 2.
- *
- * @note \b memalign or \b posix_memalign is available to get aligned
- * memory. Mac OSX doesn't have these functions, but \b malloc of OSX
- * returns the pointer to the aligned memory block.
- */
-void dsfmt_fill_array_close1_open2(dsfmt_t *dsfmt, double array[], int size) {
- assert(size % 2 == 0);
- assert(size >= DSFMT_N64);
- gen_rand_array_c1o2(dsfmt, (w128_t *)array, size / 2);
-}
-
-/**
- * This function generates double precision floating point
- * pseudorandom numbers which distribute in the range (0, 1] to the
- * specified array[] by one call. This function is the same as
- * fill_array_close1_open2() except the distribution range.
- *
- * @param dsfmt dsfmt state vector.
- * @param array an array where pseudorandom numbers are filled
- * by this function.
- * @param size the number of pseudorandom numbers to be generated.
- * see also \sa fill_array_close1_open2()
- */
-void dsfmt_fill_array_open_close(dsfmt_t *dsfmt, double array[], int size) {
- assert(size % 2 == 0);
- assert(size >= DSFMT_N64);
- gen_rand_array_o0c1(dsfmt, (w128_t *)array, size / 2);
-}
-
-/**
- * This function generates double precision floating point
- * pseudorandom numbers which distribute in the range [0, 1) to the
- * specified array[] by one call. This function is the same as
- * fill_array_close1_open2() except the distribution range.
- *
- * @param array an array where pseudorandom numbers are filled
- * by this function.
- * @param dsfmt dsfmt state vector.
- * @param size the number of pseudorandom numbers to be generated.
- * see also \sa fill_array_close1_open2()
- */
-void dsfmt_fill_array_close_open(dsfmt_t *dsfmt, double array[], int size) {
- assert(size % 2 == 0);
- assert(size >= DSFMT_N64);
- gen_rand_array_c0o1(dsfmt, (w128_t *)array, size / 2);
-}
-
-/**
- * This function generates double precision floating point
- * pseudorandom numbers which distribute in the range (0, 1) to the
- * specified array[] by one call. This function is the same as
- * fill_array_close1_open2() except the distribution range.
- *
- * @param dsfmt dsfmt state vector.
- * @param array an array where pseudorandom numbers are filled
- * by this function.
- * @param size the number of pseudorandom numbers to be generated.
- * see also \sa fill_array_close1_open2()
- */
-void dsfmt_fill_array_open_open(dsfmt_t *dsfmt, double array[], int size) {
- assert(size % 2 == 0);
- assert(size >= DSFMT_N64);
- gen_rand_array_o0o1(dsfmt, (w128_t *)array, size / 2);
-}
-
-#if defined(__INTEL_COMPILER)
-#pragma warning(disable : 981)
-#endif
-/**
- * This function initializes the internal state array with a 32-bit
- * integer seed.
- * @param dsfmt dsfmt state vector.
- * @param seed a 32-bit integer used as the seed.
- * @param mexp caller's mersenne expornent
- */
-void dsfmt_chk_init_gen_rand(dsfmt_t *dsfmt, uint32_t seed, int mexp) {
- int i;
- uint32_t *psfmt;
-
- /* make sure caller program is compiled with the same MEXP */
- if (mexp != dsfmt_mexp) {
- fprintf(stderr, "DSFMT_MEXP doesn't match with dSFMT.c\n");
- exit(1);
- }
- psfmt = &dsfmt->status[0].u32[0];
- psfmt[idxof(0)] = seed;
- for (i = 1; i < (DSFMT_N + 1) * 4; i++) {
- psfmt[idxof(i)] =
- 1812433253UL * (psfmt[idxof(i - 1)] ^ (psfmt[idxof(i - 1)] >> 30)) + i;
- }
- initial_mask(dsfmt);
- period_certification(dsfmt);
- dsfmt->idx = DSFMT_N64;
-}
-
-/**
- * This function initializes the internal state array,
- * with an array of 32-bit integers used as the seeds
- * @param dsfmt dsfmt state vector.
- * @param init_key the array of 32-bit integers, used as a seed.
- * @param key_length the length of init_key.
- * @param mexp caller's mersenne expornent
- */
-void dsfmt_chk_init_by_array(dsfmt_t *dsfmt, uint32_t init_key[],
- int key_length, int mexp) {
- int i, j, count;
- uint32_t r;
- uint32_t *psfmt32;
- int lag;
- int mid;
- int size = (DSFMT_N + 1) * 4; /* pulmonary */
-
- /* make sure caller program is compiled with the same MEXP */
- if (mexp != dsfmt_mexp) {
- fprintf(stderr, "DSFMT_MEXP doesn't match with dSFMT.c\n");
- exit(1);
- }
- if (size >= 623) {
- lag = 11;
- } else if (size >= 68) {
- lag = 7;
- } else if (size >= 39) {
- lag = 5;
- } else {
- lag = 3;
- }
- mid = (size - lag) / 2;
-
- psfmt32 = &dsfmt->status[0].u32[0];
- memset(dsfmt->status, 0x8b, sizeof(dsfmt->status));
- if (key_length + 1 > size) {
- count = key_length + 1;
- } else {
- count = size;
- }
- r = ini_func1(psfmt32[idxof(0)] ^ psfmt32[idxof(mid % size)] ^
- psfmt32[idxof((size - 1) % size)]);
- psfmt32[idxof(mid % size)] += r;
- r += key_length;
- psfmt32[idxof((mid + lag) % size)] += r;
- psfmt32[idxof(0)] = r;
- count--;
- for (i = 1, j = 0; (j < count) && (j < key_length); j++) {
- r = ini_func1(psfmt32[idxof(i)] ^ psfmt32[idxof((i + mid) % size)] ^
- psfmt32[idxof((i + size - 1) % size)]);
- psfmt32[idxof((i + mid) % size)] += r;
- r += init_key[j] + i;
- psfmt32[idxof((i + mid + lag) % size)] += r;
- psfmt32[idxof(i)] = r;
- i = (i + 1) % size;
- }
- for (; j < count; j++) {
- r = ini_func1(psfmt32[idxof(i)] ^ psfmt32[idxof((i + mid) % size)] ^
- psfmt32[idxof((i + size - 1) % size)]);
- psfmt32[idxof((i + mid) % size)] += r;
- r += i;
- psfmt32[idxof((i + mid + lag) % size)] += r;
- psfmt32[idxof(i)] = r;
- i = (i + 1) % size;
- }
- for (j = 0; j < size; j++) {
- r = ini_func2(psfmt32[idxof(i)] + psfmt32[idxof((i + mid) % size)] +
- psfmt32[idxof((i + size - 1) % size)]);
- psfmt32[idxof((i + mid) % size)] ^= r;
- r -= i;
- psfmt32[idxof((i + mid + lag) % size)] ^= r;
- psfmt32[idxof(i)] = r;
- i = (i + 1) % size;
- }
- initial_mask(dsfmt);
- period_certification(dsfmt);
- dsfmt->idx = DSFMT_N64;
-}
-#if defined(__INTEL_COMPILER)
-#pragma warning(default : 981)
-#endif
-
-#if defined(__cplusplus)
-}
-#endif
-
-extern inline double dsfmt_next_double(dsfmt_state *state);
-
-extern inline uint64_t dsfmt_next64(dsfmt_state *state);
-
-extern inline uint32_t dsfmt_next32(dsfmt_state *state);
-
-void dsfmt_jump(dsfmt_state *state) { dSFMT_jump(state->state, poly_128); }; \ No newline at end of file