diff options
Diffstat (limited to 'numpy/random/tests')
-rw-r--r-- | numpy/random/tests/test_direct.py | 40 | ||||
-rw-r--r-- | numpy/random/tests/test_generator_mt19937.py | 2 | ||||
-rw-r--r-- | numpy/random/tests/test_generator_mt19937_regressions.py | 50 | ||||
-rw-r--r-- | numpy/random/tests/test_randomstate.py | 4 |
4 files changed, 73 insertions, 23 deletions
diff --git a/numpy/random/tests/test_direct.py b/numpy/random/tests/test_direct.py index 58d966adf..fa2ae866b 100644 --- a/numpy/random/tests/test_direct.py +++ b/numpy/random/tests/test_direct.py @@ -148,6 +148,46 @@ def test_seedsequence(): assert len(dummy.spawn(10)) == 10 +def test_generator_spawning(): + """ Test spawning new generators and bit_generators directly. + """ + rng = np.random.default_rng() + seq = rng.bit_generator.seed_seq + new_ss = seq.spawn(5) + expected_keys = [seq.spawn_key + (i,) for i in range(5)] + assert [c.spawn_key for c in new_ss] == expected_keys + + new_bgs = rng.bit_generator.spawn(5) + expected_keys = [seq.spawn_key + (i,) for i in range(5, 10)] + assert [bg.seed_seq.spawn_key for bg in new_bgs] == expected_keys + + new_rngs = rng.spawn(5) + expected_keys = [seq.spawn_key + (i,) for i in range(10, 15)] + found_keys = [rng.bit_generator.seed_seq.spawn_key for rng in new_rngs] + assert found_keys == expected_keys + + # Sanity check that streams are actually different: + assert new_rngs[0].uniform() != new_rngs[1].uniform() + + +def test_non_spawnable(): + from numpy.random.bit_generator import ISeedSequence + + class FakeSeedSequence: + def generate_state(self, n_words, dtype=np.uint32): + return np.zeros(n_words, dtype=dtype) + + ISeedSequence.register(FakeSeedSequence) + + rng = np.random.default_rng(FakeSeedSequence()) + + with pytest.raises(TypeError, match="The underlying SeedSequence"): + rng.spawn(5) + + with pytest.raises(TypeError, match="The underlying SeedSequence"): + rng.bit_generator.spawn(5) + + class Base: dtype = np.uint64 data2 = data1 = {} diff --git a/numpy/random/tests/test_generator_mt19937.py b/numpy/random/tests/test_generator_mt19937.py index 54a5b73a3..5c4c2cbf9 100644 --- a/numpy/random/tests/test_generator_mt19937.py +++ b/numpy/random/tests/test_generator_mt19937.py @@ -345,6 +345,8 @@ class TestIntegers: endpoint=endpoint, dtype=dt) assert_raises(ValueError, self.rfunc, 1, [0], endpoint=endpoint, dtype=dt) + assert_raises(ValueError, self.rfunc, [ubnd+1], [ubnd], + endpoint=endpoint, dtype=dt) def test_bounds_checking_array(self, endpoint): for dt in self.itype: diff --git a/numpy/random/tests/test_generator_mt19937_regressions.py b/numpy/random/tests/test_generator_mt19937_regressions.py index 0227d6502..7c2b6867c 100644 --- a/numpy/random/tests/test_generator_mt19937_regressions.py +++ b/numpy/random/tests/test_generator_mt19937_regressions.py @@ -3,32 +3,32 @@ import numpy as np import pytest from numpy.random import Generator, MT19937 -mt19937 = Generator(MT19937()) - class TestRegression: + def setup_method(self): + self.mt19937 = Generator(MT19937(121263137472525314065)) + def test_vonmises_range(self): # Make sure generated random variables are in [-pi, pi]. # Regression test for ticket #986. for mu in np.linspace(-7., 7., 5): - r = mt19937.vonmises(mu, 1, 50) + r = self.mt19937.vonmises(mu, 1, 50) assert_(np.all(r > -np.pi) and np.all(r <= np.pi)) def test_hypergeometric_range(self): # Test for ticket #921 - assert_(np.all(mt19937.hypergeometric(3, 18, 11, size=10) < 4)) - assert_(np.all(mt19937.hypergeometric(18, 3, 11, size=10) > 0)) + assert_(np.all(self.mt19937.hypergeometric(3, 18, 11, size=10) < 4)) + assert_(np.all(self.mt19937.hypergeometric(18, 3, 11, size=10) > 0)) # Test for ticket #5623 args = (2**20 - 2, 2**20 - 2, 2**20 - 2) # Check for 32-bit systems - assert_(mt19937.hypergeometric(*args) > 0) + assert_(self.mt19937.hypergeometric(*args) > 0) def test_logseries_convergence(self): # Test for ticket #923 N = 1000 - mt19937 = Generator(MT19937(0)) - rvsn = mt19937.logseries(0.8, size=N) + rvsn = self.mt19937.logseries(0.8, size=N) # these two frequency counts should be close to theoretical # numbers with this large sample # theoretical large N result is 0.49706795 @@ -65,41 +65,38 @@ class TestRegression: # Test for multivariate_normal issue with 'size' argument. # Check that the multivariate_normal size argument can be a # numpy integer. - mt19937.multivariate_normal([0], [[0]], size=1) - mt19937.multivariate_normal([0], [[0]], size=np.int_(1)) - mt19937.multivariate_normal([0], [[0]], size=np.int64(1)) + self.mt19937.multivariate_normal([0], [[0]], size=1) + self.mt19937.multivariate_normal([0], [[0]], size=np.int_(1)) + self.mt19937.multivariate_normal([0], [[0]], size=np.int64(1)) def test_beta_small_parameters(self): # Test that beta with small a and b parameters does not produce # NaNs due to roundoff errors causing 0 / 0, gh-5851 - mt19937 = Generator(MT19937(1234567890)) - x = mt19937.beta(0.0001, 0.0001, size=100) + x = self.mt19937.beta(0.0001, 0.0001, size=100) assert_(not np.any(np.isnan(x)), 'Nans in mt19937.beta') def test_choice_sum_of_probs_tolerance(self): # The sum of probs should be 1.0 with some tolerance. # For low precision dtypes the tolerance was too tight. # See numpy github issue 6123. - mt19937 = Generator(MT19937(1234)) a = [1, 2, 3] counts = [4, 4, 2] for dt in np.float16, np.float32, np.float64: probs = np.array(counts, dtype=dt) / sum(counts) - c = mt19937.choice(a, p=probs) + c = self.mt19937.choice(a, p=probs) assert_(c in a) with pytest.raises(ValueError): - mt19937.choice(a, p=probs*0.9) + self.mt19937.choice(a, p=probs*0.9) def test_shuffle_of_array_of_different_length_strings(self): # Test that permuting an array of different length strings # will not cause a segfault on garbage collection # Tests gh-7710 - mt19937 = Generator(MT19937(1234)) a = np.array(['a', 'a' * 1000]) for _ in range(100): - mt19937.shuffle(a) + self.mt19937.shuffle(a) # Force Garbage Collection - should not segfault. import gc @@ -109,17 +106,17 @@ class TestRegression: # Test that permuting an array of objects will not cause # a segfault on garbage collection. # See gh-7719 - mt19937 = Generator(MT19937(1234)) a = np.array([np.arange(1), np.arange(4)], dtype=object) for _ in range(1000): - mt19937.shuffle(a) + self.mt19937.shuffle(a) # Force Garbage Collection - should not segfault. import gc gc.collect() def test_permutation_subclass(self): + class N(np.ndarray): pass @@ -142,9 +139,16 @@ class TestRegression: assert_array_equal(m.__array__(), np.arange(5)) def test_gamma_0(self): - assert mt19937.standard_gamma(0.0) == 0.0 - assert_array_equal(mt19937.standard_gamma([0.0]), 0.0) + assert self.mt19937.standard_gamma(0.0) == 0.0 + assert_array_equal(self.mt19937.standard_gamma([0.0]), 0.0) - actual = mt19937.standard_gamma([0.0], dtype='float') + actual = self.mt19937.standard_gamma([0.0], dtype='float') expected = np.array([0.], dtype=np.float32) assert_array_equal(actual, expected) + + def test_geometric_tiny_prob(self): + # Regression test for gh-17007. + # When p = 1e-30, the probability that a sample will exceed 2**63-1 + # is 0.9999999999907766, so we expect the result to be all 2**63-1. + assert_array_equal(self.mt19937.geometric(p=1e-30, size=3), + np.iinfo(np.int64).max) diff --git a/numpy/random/tests/test_randomstate.py b/numpy/random/tests/test_randomstate.py index 8b911cb3a..3a2961098 100644 --- a/numpy/random/tests/test_randomstate.py +++ b/numpy/random/tests/test_randomstate.py @@ -812,6 +812,10 @@ class TestRandomDist: alpha = np.array([5.4e-01, -1.0e-16]) assert_raises(ValueError, random.dirichlet, alpha) + def test_dirichlet_zero_alpha(self): + y = random.default_rng().dirichlet([5, 9, 0, 8]) + assert_equal(y[2], 0) + def test_dirichlet_alpha_non_contiguous(self): a = np.array([51.72840233779265162, -1.0, 39.74494232180943953]) alpha = a[::2] |