summaryrefslogtreecommitdiff
path: root/numpy/testing/utils.py
diff options
context:
space:
mode:
Diffstat (limited to 'numpy/testing/utils.py')
-rw-r--r--numpy/testing/utils.py2218
1 files changed, 5 insertions, 2213 deletions
diff --git a/numpy/testing/utils.py b/numpy/testing/utils.py
index 88034322d..7ecb68f47 100644
--- a/numpy/testing/utils.py
+++ b/numpy/testing/utils.py
@@ -1,29 +1,8 @@
"""
-Utility function to facilitate testing.
+Back compatibility utils module. It will import the appropriate
+set of tools
"""
-from __future__ import division, absolute_import, print_function
-
-import os
-import sys
-import re
-import operator
-import warnings
-from functools import partial, wraps
-import shutil
-import contextlib
-from tempfile import mkdtemp, mkstemp
-from unittest.case import SkipTest
-
-from numpy.core import(
- float32, empty, arange, array_repr, ndarray, isnat, array)
-from numpy.lib.utils import deprecate
-
-if sys.version_info[0] >= 3:
- from io import StringIO
-else:
- from StringIO import StringIO
-
__all__ = [
'assert_equal', 'assert_almost_equal', 'assert_approx_equal',
'assert_array_equal', 'assert_array_less', 'assert_string_equal',
@@ -34,2195 +13,8 @@ __all__ = [
'assert_array_max_ulp', 'assert_warns', 'assert_no_warnings',
'assert_allclose', 'IgnoreException', 'clear_and_catch_warnings',
'SkipTest', 'KnownFailureException', 'temppath', 'tempdir', 'IS_PYPY',
- 'HAS_REFCOUNT', 'suppress_warnings'
+ 'HAS_REFCOUNT', 'suppress_warnings', 'assert_array_compare',
+ '_assert_valid_refcount', '_gen_alignment_data',
]
-
-class KnownFailureException(Exception):
- '''Raise this exception to mark a test as a known failing test.'''
- pass
-
-
-KnownFailureTest = KnownFailureException # backwards compat
-verbose = 0
-
-IS_PYPY = '__pypy__' in sys.modules
-HAS_REFCOUNT = getattr(sys, 'getrefcount', None) is not None
-
-
-def import_nose():
- """ Import nose only when needed.
- """
- nose_is_good = True
- minimum_nose_version = (1, 0, 0)
- try:
- import nose
- except ImportError:
- nose_is_good = False
- else:
- if nose.__versioninfo__ < minimum_nose_version:
- nose_is_good = False
-
- if not nose_is_good:
- msg = ('Need nose >= %d.%d.%d for tests - see '
- 'http://nose.readthedocs.io' %
- minimum_nose_version)
- raise ImportError(msg)
-
- return nose
-
-
-def assert_(val, msg=''):
- """
- Assert that works in release mode.
- Accepts callable msg to allow deferring evaluation until failure.
-
- The Python built-in ``assert`` does not work when executing code in
- optimized mode (the ``-O`` flag) - no byte-code is generated for it.
-
- For documentation on usage, refer to the Python documentation.
-
- """
- __tracebackhide__ = True # Hide traceback for py.test
- if not val:
- try:
- smsg = msg()
- except TypeError:
- smsg = msg
- raise AssertionError(smsg)
-
-
-def gisnan(x):
- """like isnan, but always raise an error if type not supported instead of
- returning a TypeError object.
-
- Notes
- -----
- isnan and other ufunc sometimes return a NotImplementedType object instead
- of raising any exception. This function is a wrapper to make sure an
- exception is always raised.
-
- This should be removed once this problem is solved at the Ufunc level."""
- from numpy.core import isnan
- st = isnan(x)
- if isinstance(st, type(NotImplemented)):
- raise TypeError("isnan not supported for this type")
- return st
-
-
-def gisfinite(x):
- """like isfinite, but always raise an error if type not supported instead of
- returning a TypeError object.
-
- Notes
- -----
- isfinite and other ufunc sometimes return a NotImplementedType object instead
- of raising any exception. This function is a wrapper to make sure an
- exception is always raised.
-
- This should be removed once this problem is solved at the Ufunc level."""
- from numpy.core import isfinite, errstate
- with errstate(invalid='ignore'):
- st = isfinite(x)
- if isinstance(st, type(NotImplemented)):
- raise TypeError("isfinite not supported for this type")
- return st
-
-
-def gisinf(x):
- """like isinf, but always raise an error if type not supported instead of
- returning a TypeError object.
-
- Notes
- -----
- isinf and other ufunc sometimes return a NotImplementedType object instead
- of raising any exception. This function is a wrapper to make sure an
- exception is always raised.
-
- This should be removed once this problem is solved at the Ufunc level."""
- from numpy.core import isinf, errstate
- with errstate(invalid='ignore'):
- st = isinf(x)
- if isinstance(st, type(NotImplemented)):
- raise TypeError("isinf not supported for this type")
- return st
-
-
-@deprecate(message="numpy.testing.rand is deprecated in numpy 1.11. "
- "Use numpy.random.rand instead.")
-def rand(*args):
- """Returns an array of random numbers with the given shape.
-
- This only uses the standard library, so it is useful for testing purposes.
- """
- import random
- from numpy.core import zeros, float64
- results = zeros(args, float64)
- f = results.flat
- for i in range(len(f)):
- f[i] = random.random()
- return results
-
-
-if os.name == 'nt':
- # Code "stolen" from enthought/debug/memusage.py
- def GetPerformanceAttributes(object, counter, instance=None,
- inum=-1, format=None, machine=None):
- # NOTE: Many counters require 2 samples to give accurate results,
- # including "% Processor Time" (as by definition, at any instant, a
- # thread's CPU usage is either 0 or 100). To read counters like this,
- # you should copy this function, but keep the counter open, and call
- # CollectQueryData() each time you need to know.
- # See http://msdn.microsoft.com/library/en-us/dnperfmo/html/perfmonpt2.asp
- # My older explanation for this was that the "AddCounter" process forced
- # the CPU to 100%, but the above makes more sense :)
- import win32pdh
- if format is None:
- format = win32pdh.PDH_FMT_LONG
- path = win32pdh.MakeCounterPath( (machine, object, instance, None, inum, counter))
- hq = win32pdh.OpenQuery()
- try:
- hc = win32pdh.AddCounter(hq, path)
- try:
- win32pdh.CollectQueryData(hq)
- type, val = win32pdh.GetFormattedCounterValue(hc, format)
- return val
- finally:
- win32pdh.RemoveCounter(hc)
- finally:
- win32pdh.CloseQuery(hq)
-
- def memusage(processName="python", instance=0):
- # from win32pdhutil, part of the win32all package
- import win32pdh
- return GetPerformanceAttributes("Process", "Virtual Bytes",
- processName, instance,
- win32pdh.PDH_FMT_LONG, None)
-elif sys.platform[:5] == 'linux':
-
- def memusage(_proc_pid_stat='/proc/%s/stat' % (os.getpid())):
- """
- Return virtual memory size in bytes of the running python.
-
- """
- try:
- f = open(_proc_pid_stat, 'r')
- l = f.readline().split(' ')
- f.close()
- return int(l[22])
- except Exception:
- return
-else:
- def memusage():
- """
- Return memory usage of running python. [Not implemented]
-
- """
- raise NotImplementedError
-
-
-if sys.platform[:5] == 'linux':
- def jiffies(_proc_pid_stat='/proc/%s/stat' % (os.getpid()),
- _load_time=[]):
- """
- Return number of jiffies elapsed.
-
- Return number of jiffies (1/100ths of a second) that this
- process has been scheduled in user mode. See man 5 proc.
-
- """
- import time
- if not _load_time:
- _load_time.append(time.time())
- try:
- f = open(_proc_pid_stat, 'r')
- l = f.readline().split(' ')
- f.close()
- return int(l[13])
- except Exception:
- return int(100*(time.time()-_load_time[0]))
-else:
- # os.getpid is not in all platforms available.
- # Using time is safe but inaccurate, especially when process
- # was suspended or sleeping.
- def jiffies(_load_time=[]):
- """
- Return number of jiffies elapsed.
-
- Return number of jiffies (1/100ths of a second) that this
- process has been scheduled in user mode. See man 5 proc.
-
- """
- import time
- if not _load_time:
- _load_time.append(time.time())
- return int(100*(time.time()-_load_time[0]))
-
-
-def build_err_msg(arrays, err_msg, header='Items are not equal:',
- verbose=True, names=('ACTUAL', 'DESIRED'), precision=8):
- msg = ['\n' + header]
- if err_msg:
- if err_msg.find('\n') == -1 and len(err_msg) < 79-len(header):
- msg = [msg[0] + ' ' + err_msg]
- else:
- msg.append(err_msg)
- if verbose:
- for i, a in enumerate(arrays):
-
- if isinstance(a, ndarray):
- # precision argument is only needed if the objects are ndarrays
- r_func = partial(array_repr, precision=precision)
- else:
- r_func = repr
-
- try:
- r = r_func(a)
- except Exception as exc:
- r = '[repr failed for <{}>: {}]'.format(type(a).__name__, exc)
- if r.count('\n') > 3:
- r = '\n'.join(r.splitlines()[:3])
- r += '...'
- msg.append(' %s: %s' % (names[i], r))
- return '\n'.join(msg)
-
-
-def assert_equal(actual, desired, err_msg='', verbose=True):
- """
- Raises an AssertionError if two objects are not equal.
-
- Given two objects (scalars, lists, tuples, dictionaries or numpy arrays),
- check that all elements of these objects are equal. An exception is raised
- at the first conflicting values.
-
- Parameters
- ----------
- actual : array_like
- The object to check.
- desired : array_like
- The expected object.
- err_msg : str, optional
- The error message to be printed in case of failure.
- verbose : bool, optional
- If True, the conflicting values are appended to the error message.
-
- Raises
- ------
- AssertionError
- If actual and desired are not equal.
-
- Examples
- --------
- >>> np.testing.assert_equal([4,5], [4,6])
- ...
- <type 'exceptions.AssertionError'>:
- Items are not equal:
- item=1
- ACTUAL: 5
- DESIRED: 6
-
- """
- __tracebackhide__ = True # Hide traceback for py.test
- if isinstance(desired, dict):
- if not isinstance(actual, dict):
- raise AssertionError(repr(type(actual)))
- assert_equal(len(actual), len(desired), err_msg, verbose)
- for k, i in desired.items():
- if k not in actual:
- raise AssertionError(repr(k))
- assert_equal(actual[k], desired[k], 'key=%r\n%s' % (k, err_msg), verbose)
- return
- if isinstance(desired, (list, tuple)) and isinstance(actual, (list, tuple)):
- assert_equal(len(actual), len(desired), err_msg, verbose)
- for k in range(len(desired)):
- assert_equal(actual[k], desired[k], 'item=%r\n%s' % (k, err_msg), verbose)
- return
- from numpy.core import ndarray, isscalar, signbit
- from numpy.lib import iscomplexobj, real, imag
- if isinstance(actual, ndarray) or isinstance(desired, ndarray):
- return assert_array_equal(actual, desired, err_msg, verbose)
- msg = build_err_msg([actual, desired], err_msg, verbose=verbose)
-
- # Handle complex numbers: separate into real/imag to handle
- # nan/inf/negative zero correctly
- # XXX: catch ValueError for subclasses of ndarray where iscomplex fail
- try:
- usecomplex = iscomplexobj(actual) or iscomplexobj(desired)
- except ValueError:
- usecomplex = False
-
- if usecomplex:
- if iscomplexobj(actual):
- actualr = real(actual)
- actuali = imag(actual)
- else:
- actualr = actual
- actuali = 0
- if iscomplexobj(desired):
- desiredr = real(desired)
- desiredi = imag(desired)
- else:
- desiredr = desired
- desiredi = 0
- try:
- assert_equal(actualr, desiredr)
- assert_equal(actuali, desiredi)
- except AssertionError:
- raise AssertionError(msg)
-
- # isscalar test to check cases such as [np.nan] != np.nan
- if isscalar(desired) != isscalar(actual):
- raise AssertionError(msg)
-
- # Inf/nan/negative zero handling
- try:
- # If one of desired/actual is not finite, handle it specially here:
- # check that both are nan if any is a nan, and test for equality
- # otherwise
- if not (gisfinite(desired) and gisfinite(actual)):
- isdesnan = gisnan(desired)
- isactnan = gisnan(actual)
- if isdesnan or isactnan:
- if not (isdesnan and isactnan):
- raise AssertionError(msg)
- else:
- if not desired == actual:
- raise AssertionError(msg)
- return
- elif desired == 0 and actual == 0:
- if not signbit(desired) == signbit(actual):
- raise AssertionError(msg)
- # If TypeError or ValueError raised while using isnan and co, just handle
- # as before
- except (TypeError, ValueError, NotImplementedError):
- pass
-
- try:
- # If both are NaT (and have the same dtype -- datetime or timedelta)
- # they are considered equal.
- if (isnat(desired) == isnat(actual) and
- array(desired).dtype.type == array(actual).dtype.type):
- return
- else:
- raise AssertionError(msg)
-
- # If TypeError or ValueError raised while using isnan and co, just handle
- # as before
- except (TypeError, ValueError, NotImplementedError):
- pass
-
- # Explicitly use __eq__ for comparison, ticket #2552
- if not (desired == actual):
- raise AssertionError(msg)
-
-
-def print_assert_equal(test_string, actual, desired):
- """
- Test if two objects are equal, and print an error message if test fails.
-
- The test is performed with ``actual == desired``.
-
- Parameters
- ----------
- test_string : str
- The message supplied to AssertionError.
- actual : object
- The object to test for equality against `desired`.
- desired : object
- The expected result.
-
- Examples
- --------
- >>> np.testing.print_assert_equal('Test XYZ of func xyz', [0, 1], [0, 1])
- >>> np.testing.print_assert_equal('Test XYZ of func xyz', [0, 1], [0, 2])
- Traceback (most recent call last):
- ...
- AssertionError: Test XYZ of func xyz failed
- ACTUAL:
- [0, 1]
- DESIRED:
- [0, 2]
-
- """
- __tracebackhide__ = True # Hide traceback for py.test
- import pprint
-
- if not (actual == desired):
- msg = StringIO()
- msg.write(test_string)
- msg.write(' failed\nACTUAL: \n')
- pprint.pprint(actual, msg)
- msg.write('DESIRED: \n')
- pprint.pprint(desired, msg)
- raise AssertionError(msg.getvalue())
-
-
-def assert_almost_equal(actual,desired,decimal=7,err_msg='',verbose=True):
- """
- Raises an AssertionError if two items are not equal up to desired
- precision.
-
- .. note:: It is recommended to use one of `assert_allclose`,
- `assert_array_almost_equal_nulp` or `assert_array_max_ulp`
- instead of this function for more consistent floating point
- comparisons.
-
- The test verifies that the elements of ``actual`` and ``desired`` satisfy.
-
- ``abs(desired-actual) < 1.5 * 10**(-decimal)``
-
- That is a looser test than originally documented, but agrees with what the
- actual implementation in `assert_array_almost_equal` did up to rounding
- vagaries. An exception is raised at conflicting values. For ndarrays this
- delegates to assert_array_almost_equal
-
- Parameters
- ----------
- actual : array_like
- The object to check.
- desired : array_like
- The expected object.
- decimal : int, optional
- Desired precision, default is 7.
- err_msg : str, optional
- The error message to be printed in case of failure.
- verbose : bool, optional
- If True, the conflicting values are appended to the error message.
-
- Raises
- ------
- AssertionError
- If actual and desired are not equal up to specified precision.
-
- See Also
- --------
- assert_allclose: Compare two array_like objects for equality with desired
- relative and/or absolute precision.
- assert_array_almost_equal_nulp, assert_array_max_ulp, assert_equal
-
- Examples
- --------
- >>> import numpy.testing as npt
- >>> npt.assert_almost_equal(2.3333333333333, 2.33333334)
- >>> npt.assert_almost_equal(2.3333333333333, 2.33333334, decimal=10)
- ...
- <type 'exceptions.AssertionError'>:
- Items are not equal:
- ACTUAL: 2.3333333333333002
- DESIRED: 2.3333333399999998
-
- >>> npt.assert_almost_equal(np.array([1.0,2.3333333333333]),
- ... np.array([1.0,2.33333334]), decimal=9)
- ...
- <type 'exceptions.AssertionError'>:
- Arrays are not almost equal
- <BLANKLINE>
- (mismatch 50.0%)
- x: array([ 1. , 2.33333333])
- y: array([ 1. , 2.33333334])
-
- """
- __tracebackhide__ = True # Hide traceback for py.test
- from numpy.core import ndarray
- from numpy.lib import iscomplexobj, real, imag
-
- # Handle complex numbers: separate into real/imag to handle
- # nan/inf/negative zero correctly
- # XXX: catch ValueError for subclasses of ndarray where iscomplex fail
- try:
- usecomplex = iscomplexobj(actual) or iscomplexobj(desired)
- except ValueError:
- usecomplex = False
-
- def _build_err_msg():
- header = ('Arrays are not almost equal to %d decimals' % decimal)
- return build_err_msg([actual, desired], err_msg, verbose=verbose,
- header=header)
-
- if usecomplex:
- if iscomplexobj(actual):
- actualr = real(actual)
- actuali = imag(actual)
- else:
- actualr = actual
- actuali = 0
- if iscomplexobj(desired):
- desiredr = real(desired)
- desiredi = imag(desired)
- else:
- desiredr = desired
- desiredi = 0
- try:
- assert_almost_equal(actualr, desiredr, decimal=decimal)
- assert_almost_equal(actuali, desiredi, decimal=decimal)
- except AssertionError:
- raise AssertionError(_build_err_msg())
-
- if isinstance(actual, (ndarray, tuple, list)) \
- or isinstance(desired, (ndarray, tuple, list)):
- return assert_array_almost_equal(actual, desired, decimal, err_msg)
- try:
- # If one of desired/actual is not finite, handle it specially here:
- # check that both are nan if any is a nan, and test for equality
- # otherwise
- if not (gisfinite(desired) and gisfinite(actual)):
- if gisnan(desired) or gisnan(actual):
- if not (gisnan(desired) and gisnan(actual)):
- raise AssertionError(_build_err_msg())
- else:
- if not desired == actual:
- raise AssertionError(_build_err_msg())
- return
- except (NotImplementedError, TypeError):
- pass
- if abs(desired - actual) >= 1.5 * 10.0**(-decimal):
- raise AssertionError(_build_err_msg())
-
-
-def assert_approx_equal(actual,desired,significant=7,err_msg='',verbose=True):
- """
- Raises an AssertionError if two items are not equal up to significant
- digits.
-
- .. note:: It is recommended to use one of `assert_allclose`,
- `assert_array_almost_equal_nulp` or `assert_array_max_ulp`
- instead of this function for more consistent floating point
- comparisons.
-
- Given two numbers, check that they are approximately equal.
- Approximately equal is defined as the number of significant digits
- that agree.
-
- Parameters
- ----------
- actual : scalar
- The object to check.
- desired : scalar
- The expected object.
- significant : int, optional
- Desired precision, default is 7.
- err_msg : str, optional
- The error message to be printed in case of failure.
- verbose : bool, optional
- If True, the conflicting values are appended to the error message.
-
- Raises
- ------
- AssertionError
- If actual and desired are not equal up to specified precision.
-
- See Also
- --------
- assert_allclose: Compare two array_like objects for equality with desired
- relative and/or absolute precision.
- assert_array_almost_equal_nulp, assert_array_max_ulp, assert_equal
-
- Examples
- --------
- >>> np.testing.assert_approx_equal(0.12345677777777e-20, 0.1234567e-20)
- >>> np.testing.assert_approx_equal(0.12345670e-20, 0.12345671e-20,
- significant=8)
- >>> np.testing.assert_approx_equal(0.12345670e-20, 0.12345672e-20,
- significant=8)
- ...
- <type 'exceptions.AssertionError'>:
- Items are not equal to 8 significant digits:
- ACTUAL: 1.234567e-021
- DESIRED: 1.2345672000000001e-021
-
- the evaluated condition that raises the exception is
-
- >>> abs(0.12345670e-20/1e-21 - 0.12345672e-20/1e-21) >= 10**-(8-1)
- True
-
- """
- __tracebackhide__ = True # Hide traceback for py.test
- import numpy as np
-
- (actual, desired) = map(float, (actual, desired))
- if desired == actual:
- return
- # Normalized the numbers to be in range (-10.0,10.0)
- # scale = float(pow(10,math.floor(math.log10(0.5*(abs(desired)+abs(actual))))))
- with np.errstate(invalid='ignore'):
- scale = 0.5*(np.abs(desired) + np.abs(actual))
- scale = np.power(10, np.floor(np.log10(scale)))
- try:
- sc_desired = desired/scale
- except ZeroDivisionError:
- sc_desired = 0.0
- try:
- sc_actual = actual/scale
- except ZeroDivisionError:
- sc_actual = 0.0
- msg = build_err_msg([actual, desired], err_msg,
- header='Items are not equal to %d significant digits:' %
- significant,
- verbose=verbose)
- try:
- # If one of desired/actual is not finite, handle it specially here:
- # check that both are nan if any is a nan, and test for equality
- # otherwise
- if not (gisfinite(desired) and gisfinite(actual)):
- if gisnan(desired) or gisnan(actual):
- if not (gisnan(desired) and gisnan(actual)):
- raise AssertionError(msg)
- else:
- if not desired == actual:
- raise AssertionError(msg)
- return
- except (TypeError, NotImplementedError):
- pass
- if np.abs(sc_desired - sc_actual) >= np.power(10., -(significant-1)):
- raise AssertionError(msg)
-
-
-def assert_array_compare(comparison, x, y, err_msg='', verbose=True,
- header='', precision=6, equal_nan=True,
- equal_inf=True):
- __tracebackhide__ = True # Hide traceback for py.test
- from numpy.core import array, isnan, isinf, any, inf
- x = array(x, copy=False, subok=True)
- y = array(y, copy=False, subok=True)
-
- def isnumber(x):
- return x.dtype.char in '?bhilqpBHILQPefdgFDG'
-
- def istime(x):
- return x.dtype.char in "Mm"
-
- def chk_same_position(x_id, y_id, hasval='nan'):
- """Handling nan/inf: check that x and y have the nan/inf at the same
- locations."""
- try:
- assert_array_equal(x_id, y_id)
- except AssertionError:
- msg = build_err_msg([x, y],
- err_msg + '\nx and y %s location mismatch:'
- % (hasval), verbose=verbose, header=header,
- names=('x', 'y'), precision=precision)
- raise AssertionError(msg)
-
- try:
- cond = (x.shape == () or y.shape == ()) or x.shape == y.shape
- if not cond:
- msg = build_err_msg([x, y],
- err_msg
- + '\n(shapes %s, %s mismatch)' % (x.shape,
- y.shape),
- verbose=verbose, header=header,
- names=('x', 'y'), precision=precision)
- raise AssertionError(msg)
-
- if isnumber(x) and isnumber(y):
- has_nan = has_inf = False
- if equal_nan:
- x_isnan, y_isnan = isnan(x), isnan(y)
- # Validate that NaNs are in the same place
- has_nan = any(x_isnan) or any(y_isnan)
- if has_nan:
- chk_same_position(x_isnan, y_isnan, hasval='nan')
-
- if equal_inf:
- x_isinf, y_isinf = isinf(x), isinf(y)
- # Validate that infinite values are in the same place
- has_inf = any(x_isinf) or any(y_isinf)
- if has_inf:
- # Check +inf and -inf separately, since they are different
- chk_same_position(x == +inf, y == +inf, hasval='+inf')
- chk_same_position(x == -inf, y == -inf, hasval='-inf')
-
- if has_nan and has_inf:
- x = x[~(x_isnan | x_isinf)]
- y = y[~(y_isnan | y_isinf)]
- elif has_nan:
- x = x[~x_isnan]
- y = y[~y_isnan]
- elif has_inf:
- x = x[~x_isinf]
- y = y[~y_isinf]
-
- # Only do the comparison if actual values are left
- if x.size == 0:
- return
-
- elif istime(x) and istime(y):
- # If one is datetime64 and the other timedelta64 there is no point
- if equal_nan and x.dtype.type == y.dtype.type:
- x_isnat, y_isnat = isnat(x), isnat(y)
-
- if any(x_isnat) or any(y_isnat):
- chk_same_position(x_isnat, y_isnat, hasval="NaT")
-
- if any(x_isnat) or any(y_isnat):
- x = x[~x_isnat]
- y = y[~y_isnat]
-
- val = comparison(x, y)
-
- if isinstance(val, bool):
- cond = val
- reduced = [0]
- else:
- reduced = val.ravel()
- cond = reduced.all()
- reduced = reduced.tolist()
- if not cond:
- match = 100-100.0*reduced.count(1)/len(reduced)
- msg = build_err_msg([x, y],
- err_msg
- + '\n(mismatch %s%%)' % (match,),
- verbose=verbose, header=header,
- names=('x', 'y'), precision=precision)
- if not cond:
- raise AssertionError(msg)
- except ValueError:
- import traceback
- efmt = traceback.format_exc()
- header = 'error during assertion:\n\n%s\n\n%s' % (efmt, header)
-
- msg = build_err_msg([x, y], err_msg, verbose=verbose, header=header,
- names=('x', 'y'), precision=precision)
- raise ValueError(msg)
-
-
-def assert_array_equal(x, y, err_msg='', verbose=True):
- """
- Raises an AssertionError if two array_like objects are not equal.
-
- Given two array_like objects, check that the shape is equal and all
- elements of these objects are equal. An exception is raised at
- shape mismatch or conflicting values. In contrast to the standard usage
- in numpy, NaNs are compared like numbers, no assertion is raised if
- both objects have NaNs in the same positions.
-
- The usual caution for verifying equality with floating point numbers is
- advised.
-
- Parameters
- ----------
- x : array_like
- The actual object to check.
- y : array_like
- The desired, expected object.
- err_msg : str, optional
- The error message to be printed in case of failure.
- verbose : bool, optional
- If True, the conflicting values are appended to the error message.
-
- Raises
- ------
- AssertionError
- If actual and desired objects are not equal.
-
- See Also
- --------
- assert_allclose: Compare two array_like objects for equality with desired
- relative and/or absolute precision.
- assert_array_almost_equal_nulp, assert_array_max_ulp, assert_equal
-
- Examples
- --------
- The first assert does not raise an exception:
-
- >>> np.testing.assert_array_equal([1.0,2.33333,np.nan],
- ... [np.exp(0),2.33333, np.nan])
-
- Assert fails with numerical inprecision with floats:
-
- >>> np.testing.assert_array_equal([1.0,np.pi,np.nan],
- ... [1, np.sqrt(np.pi)**2, np.nan])
- ...
- <type 'exceptions.ValueError'>:
- AssertionError:
- Arrays are not equal
- <BLANKLINE>
- (mismatch 50.0%)
- x: array([ 1. , 3.14159265, NaN])
- y: array([ 1. , 3.14159265, NaN])
-
- Use `assert_allclose` or one of the nulp (number of floating point values)
- functions for these cases instead:
-
- >>> np.testing.assert_allclose([1.0,np.pi,np.nan],
- ... [1, np.sqrt(np.pi)**2, np.nan],
- ... rtol=1e-10, atol=0)
-
- """
- __tracebackhide__ = True # Hide traceback for py.test
- assert_array_compare(operator.__eq__, x, y, err_msg=err_msg,
- verbose=verbose, header='Arrays are not equal')
-
-
-def assert_array_almost_equal(x, y, decimal=6, err_msg='', verbose=True):
- """
- Raises an AssertionError if two objects are not equal up to desired
- precision.
-
- .. note:: It is recommended to use one of `assert_allclose`,
- `assert_array_almost_equal_nulp` or `assert_array_max_ulp`
- instead of this function for more consistent floating point
- comparisons.
-
- The test verifies identical shapes and that the elements of ``actual`` and
- ``desired`` satisfy.
-
- ``abs(desired-actual) < 1.5 * 10**(-decimal)``
-
- That is a looser test than originally documented, but agrees with what the
- actual implementation did up to rounding vagaries. An exception is raised
- at shape mismatch or conflicting values. In contrast to the standard usage
- in numpy, NaNs are compared like numbers, no assertion is raised if both
- objects have NaNs in the same positions.
-
- Parameters
- ----------
- x : array_like
- The actual object to check.
- y : array_like
- The desired, expected object.
- decimal : int, optional
- Desired precision, default is 6.
- err_msg : str, optional
- The error message to be printed in case of failure.
- verbose : bool, optional
- If True, the conflicting values are appended to the error message.
-
- Raises
- ------
- AssertionError
- If actual and desired are not equal up to specified precision.
-
- See Also
- --------
- assert_allclose: Compare two array_like objects for equality with desired
- relative and/or absolute precision.
- assert_array_almost_equal_nulp, assert_array_max_ulp, assert_equal
-
- Examples
- --------
- the first assert does not raise an exception
-
- >>> np.testing.assert_array_almost_equal([1.0,2.333,np.nan],
- [1.0,2.333,np.nan])
-
- >>> np.testing.assert_array_almost_equal([1.0,2.33333,np.nan],
- ... [1.0,2.33339,np.nan], decimal=5)
- ...
- <type 'exceptions.AssertionError'>:
- AssertionError:
- Arrays are not almost equal
- <BLANKLINE>
- (mismatch 50.0%)
- x: array([ 1. , 2.33333, NaN])
- y: array([ 1. , 2.33339, NaN])
-
- >>> np.testing.assert_array_almost_equal([1.0,2.33333,np.nan],
- ... [1.0,2.33333, 5], decimal=5)
- <type 'exceptions.ValueError'>:
- ValueError:
- Arrays are not almost equal
- x: array([ 1. , 2.33333, NaN])
- y: array([ 1. , 2.33333, 5. ])
-
- """
- __tracebackhide__ = True # Hide traceback for py.test
- from numpy.core import around, number, float_, result_type, array
- from numpy.core.numerictypes import issubdtype
- from numpy.core.fromnumeric import any as npany
-
- def compare(x, y):
- try:
- if npany(gisinf(x)) or npany( gisinf(y)):
- xinfid = gisinf(x)
- yinfid = gisinf(y)
- if not (xinfid == yinfid).all():
- return False
- # if one item, x and y is +- inf
- if x.size == y.size == 1:
- return x == y
- x = x[~xinfid]
- y = y[~yinfid]
- except (TypeError, NotImplementedError):
- pass
-
- # make sure y is an inexact type to avoid abs(MIN_INT); will cause
- # casting of x later.
- dtype = result_type(y, 1.)
- y = array(y, dtype=dtype, copy=False, subok=True)
- z = abs(x - y)
-
- if not issubdtype(z.dtype, number):
- z = z.astype(float_) # handle object arrays
-
- return z < 1.5 * 10.0**(-decimal)
-
- assert_array_compare(compare, x, y, err_msg=err_msg, verbose=verbose,
- header=('Arrays are not almost equal to %d decimals' % decimal),
- precision=decimal)
-
-
-def assert_array_less(x, y, err_msg='', verbose=True):
- """
- Raises an AssertionError if two array_like objects are not ordered by less
- than.
-
- Given two array_like objects, check that the shape is equal and all
- elements of the first object are strictly smaller than those of the
- second object. An exception is raised at shape mismatch or incorrectly
- ordered values. Shape mismatch does not raise if an object has zero
- dimension. In contrast to the standard usage in numpy, NaNs are
- compared, no assertion is raised if both objects have NaNs in the same
- positions.
-
-
-
- Parameters
- ----------
- x : array_like
- The smaller object to check.
- y : array_like
- The larger object to compare.
- err_msg : string
- The error message to be printed in case of failure.
- verbose : bool
- If True, the conflicting values are appended to the error message.
-
- Raises
- ------
- AssertionError
- If actual and desired objects are not equal.
-
- See Also
- --------
- assert_array_equal: tests objects for equality
- assert_array_almost_equal: test objects for equality up to precision
-
-
-
- Examples
- --------
- >>> np.testing.assert_array_less([1.0, 1.0, np.nan], [1.1, 2.0, np.nan])
- >>> np.testing.assert_array_less([1.0, 1.0, np.nan], [1, 2.0, np.nan])
- ...
- <type 'exceptions.ValueError'>:
- Arrays are not less-ordered
- (mismatch 50.0%)
- x: array([ 1., 1., NaN])
- y: array([ 1., 2., NaN])
-
- >>> np.testing.assert_array_less([1.0, 4.0], 3)
- ...
- <type 'exceptions.ValueError'>:
- Arrays are not less-ordered
- (mismatch 50.0%)
- x: array([ 1., 4.])
- y: array(3)
-
- >>> np.testing.assert_array_less([1.0, 2.0, 3.0], [4])
- ...
- <type 'exceptions.ValueError'>:
- Arrays are not less-ordered
- (shapes (3,), (1,) mismatch)
- x: array([ 1., 2., 3.])
- y: array([4])
-
- """
- __tracebackhide__ = True # Hide traceback for py.test
- assert_array_compare(operator.__lt__, x, y, err_msg=err_msg,
- verbose=verbose,
- header='Arrays are not less-ordered',
- equal_inf=False)
-
-
-def runstring(astr, dict):
- exec(astr, dict)
-
-
-def assert_string_equal(actual, desired):
- """
- Test if two strings are equal.
-
- If the given strings are equal, `assert_string_equal` does nothing.
- If they are not equal, an AssertionError is raised, and the diff
- between the strings is shown.
-
- Parameters
- ----------
- actual : str
- The string to test for equality against the expected string.
- desired : str
- The expected string.
-
- Examples
- --------
- >>> np.testing.assert_string_equal('abc', 'abc')
- >>> np.testing.assert_string_equal('abc', 'abcd')
- Traceback (most recent call last):
- File "<stdin>", line 1, in <module>
- ...
- AssertionError: Differences in strings:
- - abc+ abcd? +
-
- """
- # delay import of difflib to reduce startup time
- __tracebackhide__ = True # Hide traceback for py.test
- import difflib
-
- if not isinstance(actual, str):
- raise AssertionError(repr(type(actual)))
- if not isinstance(desired, str):
- raise AssertionError(repr(type(desired)))
- if re.match(r'\A'+desired+r'\Z', actual, re.M):
- return
-
- diff = list(difflib.Differ().compare(actual.splitlines(1), desired.splitlines(1)))
- diff_list = []
- while diff:
- d1 = diff.pop(0)
- if d1.startswith(' '):
- continue
- if d1.startswith('- '):
- l = [d1]
- d2 = diff.pop(0)
- if d2.startswith('? '):
- l.append(d2)
- d2 = diff.pop(0)
- if not d2.startswith('+ '):
- raise AssertionError(repr(d2))
- l.append(d2)
- if diff:
- d3 = diff.pop(0)
- if d3.startswith('? '):
- l.append(d3)
- else:
- diff.insert(0, d3)
- if re.match(r'\A'+d2[2:]+r'\Z', d1[2:]):
- continue
- diff_list.extend(l)
- continue
- raise AssertionError(repr(d1))
- if not diff_list:
- return
- msg = 'Differences in strings:\n%s' % (''.join(diff_list)).rstrip()
- if actual != desired:
- raise AssertionError(msg)
-
-
-def rundocs(filename=None, raise_on_error=True):
- """
- Run doctests found in the given file.
-
- By default `rundocs` raises an AssertionError on failure.
-
- Parameters
- ----------
- filename : str
- The path to the file for which the doctests are run.
- raise_on_error : bool
- Whether to raise an AssertionError when a doctest fails. Default is
- True.
-
- Notes
- -----
- The doctests can be run by the user/developer by adding the ``doctests``
- argument to the ``test()`` call. For example, to run all tests (including
- doctests) for `numpy.lib`:
-
- >>> np.lib.test(doctests=True) #doctest: +SKIP
- """
- from numpy.compat import npy_load_module
- import doctest
- if filename is None:
- f = sys._getframe(1)
- filename = f.f_globals['__file__']
- name = os.path.splitext(os.path.basename(filename))[0]
- m = npy_load_module(name, filename)
-
- tests = doctest.DocTestFinder().find(m)
- runner = doctest.DocTestRunner(verbose=False)
-
- msg = []
- if raise_on_error:
- out = lambda s: msg.append(s)
- else:
- out = None
-
- for test in tests:
- runner.run(test, out=out)
-
- if runner.failures > 0 and raise_on_error:
- raise AssertionError("Some doctests failed:\n%s" % "\n".join(msg))
-
-
-def raises(*args,**kwargs):
- nose = import_nose()
- return nose.tools.raises(*args,**kwargs)
-
-
-def assert_raises(*args, **kwargs):
- """
- assert_raises(exception_class, callable, *args, **kwargs)
- assert_raises(exception_class)
-
- Fail unless an exception of class exception_class is thrown
- by callable when invoked with arguments args and keyword
- arguments kwargs. If a different type of exception is
- thrown, it will not be caught, and the test case will be
- deemed to have suffered an error, exactly as for an
- unexpected exception.
-
- Alternatively, `assert_raises` can be used as a context manager:
-
- >>> from numpy.testing import assert_raises
- >>> with assert_raises(ZeroDivisionError):
- ... 1 / 0
-
- is equivalent to
-
- >>> def div(x, y):
- ... return x / y
- >>> assert_raises(ZeroDivisionError, div, 1, 0)
-
- """
- __tracebackhide__ = True # Hide traceback for py.test
- nose = import_nose()
- return nose.tools.assert_raises(*args,**kwargs)
-
-
-def assert_raises_regex(exception_class, expected_regexp, *args, **kwargs):
- """
- assert_raises_regex(exception_class, expected_regexp, callable, *args,
- **kwargs)
- assert_raises_regex(exception_class, expected_regexp)
-
- Fail unless an exception of class exception_class and with message that
- matches expected_regexp is thrown by callable when invoked with arguments
- args and keyword arguments kwargs.
-
- Alternatively, can be used as a context manager like `assert_raises`.
-
- Name of this function adheres to Python 3.2+ reference, but should work in
- all versions down to 2.6.
-
- Notes
- -----
- .. versionadded:: 1.9.0
-
- """
- __tracebackhide__ = True # Hide traceback for py.test
- nose = import_nose()
-
- if sys.version_info.major >= 3:
- funcname = nose.tools.assert_raises_regex
- else:
- # Only present in Python 2.7, missing from unittest in 2.6
- funcname = nose.tools.assert_raises_regexp
-
- return funcname(exception_class, expected_regexp, *args, **kwargs)
-
-
-def decorate_methods(cls, decorator, testmatch=None):
- """
- Apply a decorator to all methods in a class matching a regular expression.
-
- The given decorator is applied to all public methods of `cls` that are
- matched by the regular expression `testmatch`
- (``testmatch.search(methodname)``). Methods that are private, i.e. start
- with an underscore, are ignored.
-
- Parameters
- ----------
- cls : class
- Class whose methods to decorate.
- decorator : function
- Decorator to apply to methods
- testmatch : compiled regexp or str, optional
- The regular expression. Default value is None, in which case the
- nose default (``re.compile(r'(?:^|[\\b_\\.%s-])[Tt]est' % os.sep)``)
- is used.
- If `testmatch` is a string, it is compiled to a regular expression
- first.
-
- """
- if testmatch is None:
- testmatch = re.compile(r'(?:^|[\\b_\\.%s-])[Tt]est' % os.sep)
- else:
- testmatch = re.compile(testmatch)
- cls_attr = cls.__dict__
-
- # delayed import to reduce startup time
- from inspect import isfunction
-
- methods = [_m for _m in cls_attr.values() if isfunction(_m)]
- for function in methods:
- try:
- if hasattr(function, 'compat_func_name'):
- funcname = function.compat_func_name
- else:
- funcname = function.__name__
- except AttributeError:
- # not a function
- continue
- if testmatch.search(funcname) and not funcname.startswith('_'):
- setattr(cls, funcname, decorator(function))
- return
-
-
-def measure(code_str,times=1,label=None):
- """
- Return elapsed time for executing code in the namespace of the caller.
-
- The supplied code string is compiled with the Python builtin ``compile``.
- The precision of the timing is 10 milli-seconds. If the code will execute
- fast on this timescale, it can be executed many times to get reasonable
- timing accuracy.
-
- Parameters
- ----------
- code_str : str
- The code to be timed.
- times : int, optional
- The number of times the code is executed. Default is 1. The code is
- only compiled once.
- label : str, optional
- A label to identify `code_str` with. This is passed into ``compile``
- as the second argument (for run-time error messages).
-
- Returns
- -------
- elapsed : float
- Total elapsed time in seconds for executing `code_str` `times` times.
-
- Examples
- --------
- >>> etime = np.testing.measure('for i in range(1000): np.sqrt(i**2)',
- ... times=times)
- >>> print("Time for a single execution : ", etime / times, "s")
- Time for a single execution : 0.005 s
-
- """
- frame = sys._getframe(1)
- locs, globs = frame.f_locals, frame.f_globals
-
- code = compile(code_str,
- 'Test name: %s ' % label,
- 'exec')
- i = 0
- elapsed = jiffies()
- while i < times:
- i += 1
- exec(code, globs, locs)
- elapsed = jiffies() - elapsed
- return 0.01*elapsed
-
-
-def _assert_valid_refcount(op):
- """
- Check that ufuncs don't mishandle refcount of object `1`.
- Used in a few regression tests.
- """
- if not HAS_REFCOUNT:
- return True
- import numpy as np
-
- b = np.arange(100*100).reshape(100, 100)
- c = b
- i = 1
-
- rc = sys.getrefcount(i)
- for j in range(15):
- d = op(b, c)
- assert_(sys.getrefcount(i) >= rc)
- del d # for pyflakes
-
-
-def assert_allclose(actual, desired, rtol=1e-7, atol=0, equal_nan=True,
- err_msg='', verbose=True):
- """
- Raises an AssertionError if two objects are not equal up to desired
- tolerance.
-
- The test is equivalent to ``allclose(actual, desired, rtol, atol)``.
- It compares the difference between `actual` and `desired` to
- ``atol + rtol * abs(desired)``.
-
- .. versionadded:: 1.5.0
-
- Parameters
- ----------
- actual : array_like
- Array obtained.
- desired : array_like
- Array desired.
- rtol : float, optional
- Relative tolerance.
- atol : float, optional
- Absolute tolerance.
- equal_nan : bool, optional.
- If True, NaNs will compare equal.
- err_msg : str, optional
- The error message to be printed in case of failure.
- verbose : bool, optional
- If True, the conflicting values are appended to the error message.
-
- Raises
- ------
- AssertionError
- If actual and desired are not equal up to specified precision.
-
- See Also
- --------
- assert_array_almost_equal_nulp, assert_array_max_ulp
-
- Examples
- --------
- >>> x = [1e-5, 1e-3, 1e-1]
- >>> y = np.arccos(np.cos(x))
- >>> assert_allclose(x, y, rtol=1e-5, atol=0)
-
- """
- __tracebackhide__ = True # Hide traceback for py.test
- import numpy as np
-
- def compare(x, y):
- return np.core.numeric.isclose(x, y, rtol=rtol, atol=atol,
- equal_nan=equal_nan)
-
- actual, desired = np.asanyarray(actual), np.asanyarray(desired)
- header = 'Not equal to tolerance rtol=%g, atol=%g' % (rtol, atol)
- assert_array_compare(compare, actual, desired, err_msg=str(err_msg),
- verbose=verbose, header=header, equal_nan=equal_nan)
-
-
-def assert_array_almost_equal_nulp(x, y, nulp=1):
- """
- Compare two arrays relatively to their spacing.
-
- This is a relatively robust method to compare two arrays whose amplitude
- is variable.
-
- Parameters
- ----------
- x, y : array_like
- Input arrays.
- nulp : int, optional
- The maximum number of unit in the last place for tolerance (see Notes).
- Default is 1.
-
- Returns
- -------
- None
-
- Raises
- ------
- AssertionError
- If the spacing between `x` and `y` for one or more elements is larger
- than `nulp`.
-
- See Also
- --------
- assert_array_max_ulp : Check that all items of arrays differ in at most
- N Units in the Last Place.
- spacing : Return the distance between x and the nearest adjacent number.
-
- Notes
- -----
- An assertion is raised if the following condition is not met::
-
- abs(x - y) <= nulps * spacing(maximum(abs(x), abs(y)))
-
- Examples
- --------
- >>> x = np.array([1., 1e-10, 1e-20])
- >>> eps = np.finfo(x.dtype).eps
- >>> np.testing.assert_array_almost_equal_nulp(x, x*eps/2 + x)
-
- >>> np.testing.assert_array_almost_equal_nulp(x, x*eps + x)
- Traceback (most recent call last):
- ...
- AssertionError: X and Y are not equal to 1 ULP (max is 2)
-
- """
- __tracebackhide__ = True # Hide traceback for py.test
- import numpy as np
- ax = np.abs(x)
- ay = np.abs(y)
- ref = nulp * np.spacing(np.where(ax > ay, ax, ay))
- if not np.all(np.abs(x-y) <= ref):
- if np.iscomplexobj(x) or np.iscomplexobj(y):
- msg = "X and Y are not equal to %d ULP" % nulp
- else:
- max_nulp = np.max(nulp_diff(x, y))
- msg = "X and Y are not equal to %d ULP (max is %g)" % (nulp, max_nulp)
- raise AssertionError(msg)
-
-
-def assert_array_max_ulp(a, b, maxulp=1, dtype=None):
- """
- Check that all items of arrays differ in at most N Units in the Last Place.
-
- Parameters
- ----------
- a, b : array_like
- Input arrays to be compared.
- maxulp : int, optional
- The maximum number of units in the last place that elements of `a` and
- `b` can differ. Default is 1.
- dtype : dtype, optional
- Data-type to convert `a` and `b` to if given. Default is None.
-
- Returns
- -------
- ret : ndarray
- Array containing number of representable floating point numbers between
- items in `a` and `b`.
-
- Raises
- ------
- AssertionError
- If one or more elements differ by more than `maxulp`.
-
- See Also
- --------
- assert_array_almost_equal_nulp : Compare two arrays relatively to their
- spacing.
-
- Examples
- --------
- >>> a = np.linspace(0., 1., 100)
- >>> res = np.testing.assert_array_max_ulp(a, np.arcsin(np.sin(a)))
-
- """
- __tracebackhide__ = True # Hide traceback for py.test
- import numpy as np
- ret = nulp_diff(a, b, dtype)
- if not np.all(ret <= maxulp):
- raise AssertionError("Arrays are not almost equal up to %g ULP" %
- maxulp)
- return ret
-
-
-def nulp_diff(x, y, dtype=None):
- """For each item in x and y, return the number of representable floating
- points between them.
-
- Parameters
- ----------
- x : array_like
- first input array
- y : array_like
- second input array
- dtype : dtype, optional
- Data-type to convert `x` and `y` to if given. Default is None.
-
- Returns
- -------
- nulp : array_like
- number of representable floating point numbers between each item in x
- and y.
-
- Examples
- --------
- # By definition, epsilon is the smallest number such as 1 + eps != 1, so
- # there should be exactly one ULP between 1 and 1 + eps
- >>> nulp_diff(1, 1 + np.finfo(x.dtype).eps)
- 1.0
- """
- import numpy as np
- if dtype:
- x = np.array(x, dtype=dtype)
- y = np.array(y, dtype=dtype)
- else:
- x = np.array(x)
- y = np.array(y)
-
- t = np.common_type(x, y)
- if np.iscomplexobj(x) or np.iscomplexobj(y):
- raise NotImplementedError("_nulp not implemented for complex array")
-
- x = np.array(x, dtype=t)
- y = np.array(y, dtype=t)
-
- if not x.shape == y.shape:
- raise ValueError("x and y do not have the same shape: %s - %s" %
- (x.shape, y.shape))
-
- def _diff(rx, ry, vdt):
- diff = np.array(rx-ry, dtype=vdt)
- return np.abs(diff)
-
- rx = integer_repr(x)
- ry = integer_repr(y)
- return _diff(rx, ry, t)
-
-
-def _integer_repr(x, vdt, comp):
- # Reinterpret binary representation of the float as sign-magnitude:
- # take into account two-complement representation
- # See also
- # http://www.cygnus-software.com/papers/comparingfloats/comparingfloats.htm
- rx = x.view(vdt)
- if not (rx.size == 1):
- rx[rx < 0] = comp - rx[rx < 0]
- else:
- if rx < 0:
- rx = comp - rx
-
- return rx
-
-
-def integer_repr(x):
- """Return the signed-magnitude interpretation of the binary representation of
- x."""
- import numpy as np
- if x.dtype == np.float32:
- return _integer_repr(x, np.int32, np.int32(-2**31))
- elif x.dtype == np.float64:
- return _integer_repr(x, np.int64, np.int64(-2**63))
- else:
- raise ValueError("Unsupported dtype %s" % x.dtype)
-
-
-# The following two classes are copied from python 2.6 warnings module (context
-# manager)
-class WarningMessage(object):
-
- """
- Holds the result of a single showwarning() call.
-
- Deprecated in 1.8.0
-
- Notes
- -----
- `WarningMessage` is copied from the Python 2.6 warnings module,
- so it can be used in NumPy with older Python versions.
-
- """
-
- _WARNING_DETAILS = ("message", "category", "filename", "lineno", "file",
- "line")
-
- def __init__(self, message, category, filename, lineno, file=None,
- line=None):
- local_values = locals()
- for attr in self._WARNING_DETAILS:
- setattr(self, attr, local_values[attr])
- if category:
- self._category_name = category.__name__
- else:
- self._category_name = None
-
- def __str__(self):
- return ("{message : %r, category : %r, filename : %r, lineno : %s, "
- "line : %r}" % (self.message, self._category_name,
- self.filename, self.lineno, self.line))
-
-
-class WarningManager(object):
- """
- A context manager that copies and restores the warnings filter upon
- exiting the context.
-
- The 'record' argument specifies whether warnings should be captured by a
- custom implementation of ``warnings.showwarning()`` and be appended to a
- list returned by the context manager. Otherwise None is returned by the
- context manager. The objects appended to the list are arguments whose
- attributes mirror the arguments to ``showwarning()``.
-
- The 'module' argument is to specify an alternative module to the module
- named 'warnings' and imported under that name. This argument is only useful
- when testing the warnings module itself.
-
- Deprecated in 1.8.0
-
- Notes
- -----
- `WarningManager` is a copy of the ``catch_warnings`` context manager
- from the Python 2.6 warnings module, with slight modifications.
- It is copied so it can be used in NumPy with older Python versions.
-
- """
-
- def __init__(self, record=False, module=None):
- self._record = record
- if module is None:
- self._module = sys.modules['warnings']
- else:
- self._module = module
- self._entered = False
-
- def __enter__(self):
- if self._entered:
- raise RuntimeError("Cannot enter %r twice" % self)
- self._entered = True
- self._filters = self._module.filters
- self._module.filters = self._filters[:]
- self._showwarning = self._module.showwarning
- if self._record:
- log = []
-
- def showwarning(*args, **kwargs):
- log.append(WarningMessage(*args, **kwargs))
- self._module.showwarning = showwarning
- return log
- else:
- return None
-
- def __exit__(self):
- if not self._entered:
- raise RuntimeError("Cannot exit %r without entering first" % self)
- self._module.filters = self._filters
- self._module.showwarning = self._showwarning
-
-
-@contextlib.contextmanager
-def _assert_warns_context(warning_class, name=None):
- __tracebackhide__ = True # Hide traceback for py.test
- with suppress_warnings() as sup:
- l = sup.record(warning_class)
- yield
- if not len(l) > 0:
- name_str = " when calling %s" % name if name is not None else ""
- raise AssertionError("No warning raised" + name_str)
-
-
-def assert_warns(warning_class, *args, **kwargs):
- """
- Fail unless the given callable throws the specified warning.
-
- A warning of class warning_class should be thrown by the callable when
- invoked with arguments args and keyword arguments kwargs.
- If a different type of warning is thrown, it will not be caught.
-
- If called with all arguments other than the warning class omitted, may be
- used as a context manager:
-
- with assert_warns(SomeWarning):
- do_something()
-
- The ability to be used as a context manager is new in NumPy v1.11.0.
-
- .. versionadded:: 1.4.0
-
- Parameters
- ----------
- warning_class : class
- The class defining the warning that `func` is expected to throw.
- func : callable
- The callable to test.
- \\*args : Arguments
- Arguments passed to `func`.
- \\*\\*kwargs : Kwargs
- Keyword arguments passed to `func`.
-
- Returns
- -------
- The value returned by `func`.
-
- """
- if not args:
- return _assert_warns_context(warning_class)
-
- func = args[0]
- args = args[1:]
- with _assert_warns_context(warning_class, name=func.__name__):
- return func(*args, **kwargs)
-
-
-@contextlib.contextmanager
-def _assert_no_warnings_context(name=None):
- __tracebackhide__ = True # Hide traceback for py.test
- with warnings.catch_warnings(record=True) as l:
- warnings.simplefilter('always')
- yield
- if len(l) > 0:
- name_str = " when calling %s" % name if name is not None else ""
- raise AssertionError("Got warnings%s: %s" % (name_str, l))
-
-
-def assert_no_warnings(*args, **kwargs):
- """
- Fail if the given callable produces any warnings.
-
- If called with all arguments omitted, may be used as a context manager:
-
- with assert_no_warnings():
- do_something()
-
- The ability to be used as a context manager is new in NumPy v1.11.0.
-
- .. versionadded:: 1.7.0
-
- Parameters
- ----------
- func : callable
- The callable to test.
- \\*args : Arguments
- Arguments passed to `func`.
- \\*\\*kwargs : Kwargs
- Keyword arguments passed to `func`.
-
- Returns
- -------
- The value returned by `func`.
-
- """
- if not args:
- return _assert_no_warnings_context()
-
- func = args[0]
- args = args[1:]
- with _assert_no_warnings_context(name=func.__name__):
- return func(*args, **kwargs)
-
-
-def _gen_alignment_data(dtype=float32, type='binary', max_size=24):
- """
- generator producing data with different alignment and offsets
- to test simd vectorization
-
- Parameters
- ----------
- dtype : dtype
- data type to produce
- type : string
- 'unary': create data for unary operations, creates one input
- and output array
- 'binary': create data for unary operations, creates two input
- and output array
- max_size : integer
- maximum size of data to produce
-
- Returns
- -------
- if type is 'unary' yields one output, one input array and a message
- containing information on the data
- if type is 'binary' yields one output array, two input array and a message
- containing information on the data
-
- """
- ufmt = 'unary offset=(%d, %d), size=%d, dtype=%r, %s'
- bfmt = 'binary offset=(%d, %d, %d), size=%d, dtype=%r, %s'
- for o in range(3):
- for s in range(o + 2, max(o + 3, max_size)):
- if type == 'unary':
- inp = lambda: arange(s, dtype=dtype)[o:]
- out = empty((s,), dtype=dtype)[o:]
- yield out, inp(), ufmt % (o, o, s, dtype, 'out of place')
- d = inp()
- yield d, d, ufmt % (o, o, s, dtype, 'in place')
- yield out[1:], inp()[:-1], ufmt % \
- (o + 1, o, s - 1, dtype, 'out of place')
- yield out[:-1], inp()[1:], ufmt % \
- (o, o + 1, s - 1, dtype, 'out of place')
- yield inp()[:-1], inp()[1:], ufmt % \
- (o, o + 1, s - 1, dtype, 'aliased')
- yield inp()[1:], inp()[:-1], ufmt % \
- (o + 1, o, s - 1, dtype, 'aliased')
- if type == 'binary':
- inp1 = lambda: arange(s, dtype=dtype)[o:]
- inp2 = lambda: arange(s, dtype=dtype)[o:]
- out = empty((s,), dtype=dtype)[o:]
- yield out, inp1(), inp2(), bfmt % \
- (o, o, o, s, dtype, 'out of place')
- d = inp1()
- yield d, d, inp2(), bfmt % \
- (o, o, o, s, dtype, 'in place1')
- d = inp2()
- yield d, inp1(), d, bfmt % \
- (o, o, o, s, dtype, 'in place2')
- yield out[1:], inp1()[:-1], inp2()[:-1], bfmt % \
- (o + 1, o, o, s - 1, dtype, 'out of place')
- yield out[:-1], inp1()[1:], inp2()[:-1], bfmt % \
- (o, o + 1, o, s - 1, dtype, 'out of place')
- yield out[:-1], inp1()[:-1], inp2()[1:], bfmt % \
- (o, o, o + 1, s - 1, dtype, 'out of place')
- yield inp1()[1:], inp1()[:-1], inp2()[:-1], bfmt % \
- (o + 1, o, o, s - 1, dtype, 'aliased')
- yield inp1()[:-1], inp1()[1:], inp2()[:-1], bfmt % \
- (o, o + 1, o, s - 1, dtype, 'aliased')
- yield inp1()[:-1], inp1()[:-1], inp2()[1:], bfmt % \
- (o, o, o + 1, s - 1, dtype, 'aliased')
-
-
-class IgnoreException(Exception):
- "Ignoring this exception due to disabled feature"
-
-
-@contextlib.contextmanager
-def tempdir(*args, **kwargs):
- """Context manager to provide a temporary test folder.
-
- All arguments are passed as this to the underlying tempfile.mkdtemp
- function.
-
- """
- tmpdir = mkdtemp(*args, **kwargs)
- try:
- yield tmpdir
- finally:
- shutil.rmtree(tmpdir)
-
-
-@contextlib.contextmanager
-def temppath(*args, **kwargs):
- """Context manager for temporary files.
-
- Context manager that returns the path to a closed temporary file. Its
- parameters are the same as for tempfile.mkstemp and are passed directly
- to that function. The underlying file is removed when the context is
- exited, so it should be closed at that time.
-
- Windows does not allow a temporary file to be opened if it is already
- open, so the underlying file must be closed after opening before it
- can be opened again.
-
- """
- fd, path = mkstemp(*args, **kwargs)
- os.close(fd)
- try:
- yield path
- finally:
- os.remove(path)
-
-
-class clear_and_catch_warnings(warnings.catch_warnings):
- """ Context manager that resets warning registry for catching warnings
-
- Warnings can be slippery, because, whenever a warning is triggered, Python
- adds a ``__warningregistry__`` member to the *calling* module. This makes
- it impossible to retrigger the warning in this module, whatever you put in
- the warnings filters. This context manager accepts a sequence of `modules`
- as a keyword argument to its constructor and:
-
- * stores and removes any ``__warningregistry__`` entries in given `modules`
- on entry;
- * resets ``__warningregistry__`` to its previous state on exit.
-
- This makes it possible to trigger any warning afresh inside the context
- manager without disturbing the state of warnings outside.
-
- For compatibility with Python 3.0, please consider all arguments to be
- keyword-only.
-
- Parameters
- ----------
- record : bool, optional
- Specifies whether warnings should be captured by a custom
- implementation of ``warnings.showwarning()`` and be appended to a list
- returned by the context manager. Otherwise None is returned by the
- context manager. The objects appended to the list are arguments whose
- attributes mirror the arguments to ``showwarning()``.
- modules : sequence, optional
- Sequence of modules for which to reset warnings registry on entry and
- restore on exit. To work correctly, all 'ignore' filters should
- filter by one of these modules.
-
- Examples
- --------
- >>> import warnings
- >>> with clear_and_catch_warnings(modules=[np.core.fromnumeric]):
- ... warnings.simplefilter('always')
- ... warnings.filterwarnings('ignore', module='np.core.fromnumeric')
- ... # do something that raises a warning but ignore those in
- ... # np.core.fromnumeric
- """
- class_modules = ()
-
- def __init__(self, record=False, modules=()):
- self.modules = set(modules).union(self.class_modules)
- self._warnreg_copies = {}
- super(clear_and_catch_warnings, self).__init__(record=record)
-
- def __enter__(self):
- for mod in self.modules:
- if hasattr(mod, '__warningregistry__'):
- mod_reg = mod.__warningregistry__
- self._warnreg_copies[mod] = mod_reg.copy()
- mod_reg.clear()
- return super(clear_and_catch_warnings, self).__enter__()
-
- def __exit__(self, *exc_info):
- super(clear_and_catch_warnings, self).__exit__(*exc_info)
- for mod in self.modules:
- if hasattr(mod, '__warningregistry__'):
- mod.__warningregistry__.clear()
- if mod in self._warnreg_copies:
- mod.__warningregistry__.update(self._warnreg_copies[mod])
-
-
-class suppress_warnings(object):
- """
- Context manager and decorator doing much the same as
- ``warnings.catch_warnings``.
-
- However, it also provides a filter mechanism to work around
- http://bugs.python.org/issue4180.
-
- This bug causes Python before 3.4 to not reliably show warnings again
- after they have been ignored once (even within catch_warnings). It
- means that no "ignore" filter can be used easily, since following
- tests might need to see the warning. Additionally it allows easier
- specificity for testing warnings and can be nested.
-
- Parameters
- ----------
- forwarding_rule : str, optional
- One of "always", "once", "module", or "location". Analogous to
- the usual warnings module filter mode, it is useful to reduce
- noise mostly on the outmost level. Unsuppressed and unrecorded
- warnings will be forwarded based on this rule. Defaults to "always".
- "location" is equivalent to the warnings "default", match by exact
- location the warning warning originated from.
-
- Notes
- -----
- Filters added inside the context manager will be discarded again
- when leaving it. Upon entering all filters defined outside a
- context will be applied automatically.
-
- When a recording filter is added, matching warnings are stored in the
- ``log`` attribute as well as in the list returned by ``record``.
-
- If filters are added and the ``module`` keyword is given, the
- warning registry of this module will additionally be cleared when
- applying it, entering the context, or exiting it. This could cause
- warnings to appear a second time after leaving the context if they
- were configured to be printed once (default) and were already
- printed before the context was entered.
-
- Nesting this context manager will work as expected when the
- forwarding rule is "always" (default). Unfiltered and unrecorded
- warnings will be passed out and be matched by the outer level.
- On the outmost level they will be printed (or caught by another
- warnings context). The forwarding rule argument can modify this
- behaviour.
-
- Like ``catch_warnings`` this context manager is not threadsafe.
-
- Examples
- --------
- >>> with suppress_warnings() as sup:
- ... sup.filter(DeprecationWarning, "Some text")
- ... sup.filter(module=np.ma.core)
- ... log = sup.record(FutureWarning, "Does this occur?")
- ... command_giving_warnings()
- ... # The FutureWarning was given once, the filtered warnings were
- ... # ignored. All other warnings abide outside settings (may be
- ... # printed/error)
- ... assert_(len(log) == 1)
- ... assert_(len(sup.log) == 1) # also stored in log attribute
-
- Or as a decorator:
-
- >>> sup = suppress_warnings()
- >>> sup.filter(module=np.ma.core) # module must match exact
- >>> @sup
- >>> def some_function():
- ... # do something which causes a warning in np.ma.core
- ... pass
- """
- def __init__(self, forwarding_rule="always"):
- self._entered = False
-
- # Suppressions are either instance or defined inside one with block:
- self._suppressions = []
-
- if forwarding_rule not in {"always", "module", "once", "location"}:
- raise ValueError("unsupported forwarding rule.")
- self._forwarding_rule = forwarding_rule
-
- def _clear_registries(self):
- if hasattr(warnings, "_filters_mutated"):
- # clearing the registry should not be necessary on new pythons,
- # instead the filters should be mutated.
- warnings._filters_mutated()
- return
- # Simply clear the registry, this should normally be harmless,
- # note that on new pythons it would be invalidated anyway.
- for module in self._tmp_modules:
- if hasattr(module, "__warningregistry__"):
- module.__warningregistry__.clear()
-
- def _filter(self, category=Warning, message="", module=None, record=False):
- if record:
- record = [] # The log where to store warnings
- else:
- record = None
- if self._entered:
- if module is None:
- warnings.filterwarnings(
- "always", category=category, message=message)
- else:
- module_regex = module.__name__.replace('.', r'\.') + '$'
- warnings.filterwarnings(
- "always", category=category, message=message,
- module=module_regex)
- self._tmp_modules.add(module)
- self._clear_registries()
-
- self._tmp_suppressions.append(
- (category, message, re.compile(message, re.I), module, record))
- else:
- self._suppressions.append(
- (category, message, re.compile(message, re.I), module, record))
-
- return record
-
- def filter(self, category=Warning, message="", module=None):
- """
- Add a new suppressing filter or apply it if the state is entered.
-
- Parameters
- ----------
- category : class, optional
- Warning class to filter
- message : string, optional
- Regular expression matching the warning message.
- module : module, optional
- Module to filter for. Note that the module (and its file)
- must match exactly and cannot be a submodule. This may make
- it unreliable for external modules.
-
- Notes
- -----
- When added within a context, filters are only added inside
- the context and will be forgotten when the context is exited.
- """
- self._filter(category=category, message=message, module=module,
- record=False)
-
- def record(self, category=Warning, message="", module=None):
- """
- Append a new recording filter or apply it if the state is entered.
-
- All warnings matching will be appended to the ``log`` attribute.
-
- Parameters
- ----------
- category : class, optional
- Warning class to filter
- message : string, optional
- Regular expression matching the warning message.
- module : module, optional
- Module to filter for. Note that the module (and its file)
- must match exactly and cannot be a submodule. This may make
- it unreliable for external modules.
-
- Returns
- -------
- log : list
- A list which will be filled with all matched warnings.
-
- Notes
- -----
- When added within a context, filters are only added inside
- the context and will be forgotten when the context is exited.
- """
- return self._filter(category=category, message=message, module=module,
- record=True)
-
- def __enter__(self):
- if self._entered:
- raise RuntimeError("cannot enter suppress_warnings twice.")
-
- self._orig_show = warnings.showwarning
- self._filters = warnings.filters
- warnings.filters = self._filters[:]
-
- self._entered = True
- self._tmp_suppressions = []
- self._tmp_modules = set()
- self._forwarded = set()
-
- self.log = [] # reset global log (no need to keep same list)
-
- for cat, mess, _, mod, log in self._suppressions:
- if log is not None:
- del log[:] # clear the log
- if mod is None:
- warnings.filterwarnings(
- "always", category=cat, message=mess)
- else:
- module_regex = mod.__name__.replace('.', r'\.') + '$'
- warnings.filterwarnings(
- "always", category=cat, message=mess,
- module=module_regex)
- self._tmp_modules.add(mod)
- warnings.showwarning = self._showwarning
- self._clear_registries()
-
- return self
-
- def __exit__(self, *exc_info):
- warnings.showwarning = self._orig_show
- warnings.filters = self._filters
- self._clear_registries()
- self._entered = False
- del self._orig_show
- del self._filters
-
- def _showwarning(self, message, category, filename, lineno,
- *args, **kwargs):
- use_warnmsg = kwargs.pop("use_warnmsg", None)
- for cat, _, pattern, mod, rec in (
- self._suppressions + self._tmp_suppressions)[::-1]:
- if (issubclass(category, cat) and
- pattern.match(message.args[0]) is not None):
- if mod is None:
- # Message and category match, either recorded or ignored
- if rec is not None:
- msg = WarningMessage(message, category, filename,
- lineno, **kwargs)
- self.log.append(msg)
- rec.append(msg)
- return
- # Use startswith, because warnings strips the c or o from
- # .pyc/.pyo files.
- elif mod.__file__.startswith(filename):
- # The message and module (filename) match
- if rec is not None:
- msg = WarningMessage(message, category, filename,
- lineno, **kwargs)
- self.log.append(msg)
- rec.append(msg)
- return
-
- # There is no filter in place, so pass to the outside handler
- # unless we should only pass it once
- if self._forwarding_rule == "always":
- if use_warnmsg is None:
- self._orig_show(message, category, filename, lineno,
- *args, **kwargs)
- else:
- self._orig_showmsg(use_warnmsg)
- return
-
- if self._forwarding_rule == "once":
- signature = (message.args, category)
- elif self._forwarding_rule == "module":
- signature = (message.args, category, filename)
- elif self._forwarding_rule == "location":
- signature = (message.args, category, filename, lineno)
-
- if signature in self._forwarded:
- return
- self._forwarded.add(signature)
- if use_warnmsg is None:
- self._orig_show(message, category, filename, lineno, *args,
- **kwargs)
- else:
- self._orig_showmsg(use_warnmsg)
-
- def __call__(self, func):
- """
- Function decorator to apply certain suppressions to a whole
- function.
- """
- @wraps(func)
- def new_func(*args, **kwargs):
- with self:
- return func(*args, **kwargs)
-
- return new_func
+from .nose_tools.utils import *