diff options
Diffstat (limited to 'numpy/tests/typing/pass/simple.py')
-rw-r--r-- | numpy/tests/typing/pass/simple.py | 176 |
1 files changed, 0 insertions, 176 deletions
diff --git a/numpy/tests/typing/pass/simple.py b/numpy/tests/typing/pass/simple.py deleted file mode 100644 index e0157ab81..000000000 --- a/numpy/tests/typing/pass/simple.py +++ /dev/null @@ -1,176 +0,0 @@ -"""Simple expression that should pass with mypy.""" -import operator - -import numpy as np -from typing import Iterable # noqa: F401 - -# Basic checks -array = np.array([1, 2]) - - -def ndarray_func(x): - # type: (np.ndarray) -> np.ndarray - return x - - -ndarray_func(np.array([1, 2])) -array == 1 -array.dtype == float - -# Array creation routines checks -ndarray_func(np.zeros([1, 2])) -ndarray_func(np.ones([1, 2])) -ndarray_func(np.empty([1, 2])) - -ndarray_func(np.zeros_like(array)) -ndarray_func(np.ones_like(array)) -ndarray_func(np.empty_like(array)) - -# Dtype construction -np.dtype(float) -np.dtype(np.float64) -np.dtype(None) -np.dtype("float64") -np.dtype(np.dtype(float)) -np.dtype(("U", 10)) -np.dtype((np.int32, (2, 2))) -# Define the arguments on the previous line to prevent bidirectional -# type inference in mypy from broadening the types. -two_tuples_dtype = [("R", "u1"), ("G", "u1"), ("B", "u1")] -np.dtype(two_tuples_dtype) - -three_tuples_dtype = [("R", "u1", 2)] -np.dtype(three_tuples_dtype) - -mixed_tuples_dtype = [("R", "u1"), ("G", np.unicode_, 1)] -np.dtype(mixed_tuples_dtype) - -shape_tuple_dtype = [("R", "u1", (2, 2))] -np.dtype(shape_tuple_dtype) - -shape_like_dtype = [("R", "u1", (2, 2)), ("G", np.unicode_, 1)] -np.dtype(shape_like_dtype) - -object_dtype = [("field1", object)] -np.dtype(object_dtype) - -np.dtype({"col1": ("U10", 0), "col2": ("float32", 10)}) -np.dtype((np.int32, {"real": (np.int16, 0), "imag": (np.int16, 2)})) -np.dtype((np.int32, (np.int8, 4))) - -# Dtype comparision -np.dtype(float) == float -np.dtype(float) != np.float64 -np.dtype(float) < None -np.dtype(float) <= "float64" -np.dtype(float) > np.dtype(float) -np.dtype(float) >= np.dtype(("U", 10)) - -# Iteration and indexing -def iterable_func(x): - # type: (Iterable) -> Iterable - return x - - -iterable_func(array) -[element for element in array] -iter(array) -zip(array, array) -array[1] -array[:] -array[...] -array[:] = 0 - -array_2d = np.ones((3, 3)) -array_2d[:2, :2] -array_2d[..., 0] -array_2d[:2, :2] = 0 - -# Other special methods -len(array) -str(array) -array_scalar = np.array(1) -int(array_scalar) -float(array_scalar) -# currently does not work due to https://github.com/python/typeshed/issues/1904 -# complex(array_scalar) -bytes(array_scalar) -operator.index(array_scalar) -bool(array_scalar) - -# comparisons -array < 1 -array <= 1 -array == 1 -array != 1 -array > 1 -array >= 1 -1 < array -1 <= array -1 == array -1 != array -1 > array -1 >= array - -# binary arithmetic -array + 1 -1 + array -array += 1 - -array - 1 -1 - array -array -= 1 - -array * 1 -1 * array -array *= 1 - -nonzero_array = np.array([1, 2]) -array / 1 -1 / nonzero_array -float_array = np.array([1.0, 2.0]) -float_array /= 1 - -array // 1 -1 // nonzero_array -array //= 1 - -array % 1 -1 % nonzero_array -array %= 1 - -divmod(array, 1) -divmod(1, nonzero_array) - -array ** 1 -1 ** array -array **= 1 - -array << 1 -1 << array -array <<= 1 - -array >> 1 -1 >> array -array >>= 1 - -array & 1 -1 & array -array &= 1 - -array ^ 1 -1 ^ array -array ^= 1 - -array | 1 -1 | array -array |= 1 - -# unary arithmetic --array -+array -abs(array) -~array - -# Other methods -np.array([1, 2]).transpose() |