summaryrefslogtreecommitdiff
path: root/numpy
diff options
context:
space:
mode:
Diffstat (limited to 'numpy')
-rw-r--r--numpy/lib/histograms.py76
-rw-r--r--numpy/lib/tests/test_histograms.py44
2 files changed, 97 insertions, 23 deletions
diff --git a/numpy/lib/histograms.py b/numpy/lib/histograms.py
index 06b30f978..482eabe14 100644
--- a/numpy/lib/histograms.py
+++ b/numpy/lib/histograms.py
@@ -21,7 +21,7 @@ array_function_dispatch = functools.partial(
_range = range
-def _hist_bin_sqrt(x):
+def _hist_bin_sqrt(x, range):
"""
Square root histogram bin estimator.
@@ -38,10 +38,11 @@ def _hist_bin_sqrt(x):
-------
h : An estimate of the optimal bin width for the given data.
"""
+ del range # unused
return x.ptp() / np.sqrt(x.size)
-def _hist_bin_sturges(x):
+def _hist_bin_sturges(x, range):
"""
Sturges histogram bin estimator.
@@ -60,10 +61,11 @@ def _hist_bin_sturges(x):
-------
h : An estimate of the optimal bin width for the given data.
"""
+ del range # unused
return x.ptp() / (np.log2(x.size) + 1.0)
-def _hist_bin_rice(x):
+def _hist_bin_rice(x, range):
"""
Rice histogram bin estimator.
@@ -83,10 +85,11 @@ def _hist_bin_rice(x):
-------
h : An estimate of the optimal bin width for the given data.
"""
+ del range # unused
return x.ptp() / (2.0 * x.size ** (1.0 / 3))
-def _hist_bin_scott(x):
+def _hist_bin_scott(x, range):
"""
Scott histogram bin estimator.
@@ -104,10 +107,52 @@ def _hist_bin_scott(x):
-------
h : An estimate of the optimal bin width for the given data.
"""
+ del range # unused
return (24.0 * np.pi**0.5 / x.size)**(1.0 / 3.0) * np.std(x)
-def _hist_bin_doane(x):
+def _hist_bin_stone(x, range):
+ """
+ Histogram bin estimator based on minimizing the estimated integrated squared error (ISE).
+
+ The number of bins is chosen by minimizing the estimated ISE against the unknown true distribution.
+ The ISE is estimated using cross-validation and can be regarded as a generalization of Scott's rule.
+ https://en.wikipedia.org/wiki/Histogram#Scott.27s_normal_reference_rule
+
+ This paper by Stone appears to be the origination of this rule.
+ http://digitalassets.lib.berkeley.edu/sdtr/ucb/text/34.pdf
+
+ Parameters
+ ----------
+ x : array_like
+ Input data that is to be histogrammed, trimmed to range. May not
+ be empty.
+ range : (float, float)
+ The lower and upper range of the bins.
+
+ Returns
+ -------
+ h : An estimate of the optimal bin width for the given data.
+ """
+
+ n = x.size
+ ptp_x = np.ptp(x)
+ if n <= 1 or ptp_x == 0:
+ return 0
+
+ def jhat(nbins):
+ hh = ptp_x / nbins
+ p_k = np.histogram(x, bins=nbins, range=range)[0] / n
+ return (2 - (n + 1) * p_k.dot(p_k)) / hh
+
+ nbins_upper_bound = max(100, int(np.sqrt(n)))
+ nbins = min(_range(1, nbins_upper_bound + 1), key=jhat)
+ if nbins == nbins_upper_bound:
+ warnings.warn("The number of bins estimated may be suboptimal.", RuntimeWarning, stacklevel=2)
+ return ptp_x / nbins
+
+
+def _hist_bin_doane(x, range):
"""
Doane's histogram bin estimator.
@@ -125,6 +170,7 @@ def _hist_bin_doane(x):
-------
h : An estimate of the optimal bin width for the given data.
"""
+ del range # unused
if x.size > 2:
sg1 = np.sqrt(6.0 * (x.size - 2) / ((x.size + 1.0) * (x.size + 3)))
sigma = np.std(x)
@@ -141,7 +187,7 @@ def _hist_bin_doane(x):
return 0.0
-def _hist_bin_fd(x):
+def _hist_bin_fd(x, range):
"""
The Freedman-Diaconis histogram bin estimator.
@@ -166,11 +212,12 @@ def _hist_bin_fd(x):
-------
h : An estimate of the optimal bin width for the given data.
"""
+ del range # unused
iqr = np.subtract(*np.percentile(x, [75, 25]))
return 2.0 * iqr * x.size ** (-1.0 / 3.0)
-def _hist_bin_auto(x):
+def _hist_bin_auto(x, range):
"""
Histogram bin estimator that uses the minimum width of the
Freedman-Diaconis and Sturges estimators if the FD bandwidth is non zero
@@ -204,8 +251,9 @@ def _hist_bin_auto(x):
--------
_hist_bin_fd, _hist_bin_sturges
"""
- fd_bw = _hist_bin_fd(x)
- sturges_bw = _hist_bin_sturges(x)
+ fd_bw = _hist_bin_fd(x, range)
+ sturges_bw = _hist_bin_sturges(x, range)
+ del range # unused
if fd_bw:
return min(fd_bw, sturges_bw)
else:
@@ -213,7 +261,8 @@ def _hist_bin_auto(x):
return sturges_bw
# Private dict initialized at module load time
-_hist_bin_selectors = {'auto': _hist_bin_auto,
+_hist_bin_selectors = {'stone': _hist_bin_stone,
+ 'auto': _hist_bin_auto,
'doane': _hist_bin_doane,
'fd': _hist_bin_fd,
'rice': _hist_bin_rice,
@@ -348,7 +397,7 @@ def _get_bin_edges(a, bins, range, weights):
n_equal_bins = 1
else:
# Do not call selectors on empty arrays
- width = _hist_bin_selectors[bin_name](a)
+ width = _hist_bin_selectors[bin_name](a, (first_edge, last_edge))
if width:
n_equal_bins = int(np.ceil(_unsigned_subtract(last_edge, first_edge) / width))
else:
@@ -450,6 +499,11 @@ def histogram_bin_edges(a, bins=10, range=None, weights=None):
Less robust estimator that that takes into account data
variability and data size.
+ 'stone'
+ Estimator based on leave-one-out cross-validation estimate of
+ the integrated squared error. Can be regarded as a generalization
+ of Scott's rule.
+
'rice'
Estimator does not take variability into account, only data
size. Commonly overestimates number of bins required.
diff --git a/numpy/lib/tests/test_histograms.py b/numpy/lib/tests/test_histograms.py
index 5b51763b2..49c0d9720 100644
--- a/numpy/lib/tests/test_histograms.py
+++ b/numpy/lib/tests/test_histograms.py
@@ -431,7 +431,7 @@ class TestHistogramOptimBinNums(object):
def test_empty(self):
estimator_list = ['fd', 'scott', 'rice', 'sturges',
- 'doane', 'sqrt', 'auto']
+ 'doane', 'sqrt', 'auto', 'stone']
# check it can deal with empty data
for estimator in estimator_list:
a, b = histogram([], bins=estimator)
@@ -447,11 +447,11 @@ class TestHistogramOptimBinNums(object):
# Some basic sanity checking, with some fixed data.
# Checking for the correct number of bins
basic_test = {50: {'fd': 4, 'scott': 4, 'rice': 8, 'sturges': 7,
- 'doane': 8, 'sqrt': 8, 'auto': 7},
+ 'doane': 8, 'sqrt': 8, 'auto': 7, 'stone': 2},
500: {'fd': 8, 'scott': 8, 'rice': 16, 'sturges': 10,
- 'doane': 12, 'sqrt': 23, 'auto': 10},
+ 'doane': 12, 'sqrt': 23, 'auto': 10, 'stone': 9},
5000: {'fd': 17, 'scott': 17, 'rice': 35, 'sturges': 14,
- 'doane': 17, 'sqrt': 71, 'auto': 17}}
+ 'doane': 17, 'sqrt': 71, 'auto': 17, 'stone': 20}}
for testlen, expectedResults in basic_test.items():
# Create some sort of non uniform data to test with
@@ -471,11 +471,11 @@ class TestHistogramOptimBinNums(object):
precalculated.
"""
small_dat = {1: {'fd': 1, 'scott': 1, 'rice': 1, 'sturges': 1,
- 'doane': 1, 'sqrt': 1},
+ 'doane': 1, 'sqrt': 1, 'stone': 1},
2: {'fd': 2, 'scott': 1, 'rice': 3, 'sturges': 2,
- 'doane': 1, 'sqrt': 2},
+ 'doane': 1, 'sqrt': 2, 'stone': 1},
3: {'fd': 2, 'scott': 2, 'rice': 3, 'sturges': 3,
- 'doane': 3, 'sqrt': 2}}
+ 'doane': 3, 'sqrt': 2, 'stone': 1}}
for testlen, expectedResults in small_dat.items():
testdat = np.arange(testlen)
@@ -499,7 +499,7 @@ class TestHistogramOptimBinNums(object):
"""
novar_dataset = np.ones(100)
novar_resultdict = {'fd': 1, 'scott': 1, 'rice': 1, 'sturges': 1,
- 'doane': 1, 'sqrt': 1, 'auto': 1}
+ 'doane': 1, 'sqrt': 1, 'auto': 1, 'stone': 1}
for estimator, numbins in novar_resultdict.items():
a, b = np.histogram(novar_dataset, estimator)
@@ -538,12 +538,32 @@ class TestHistogramOptimBinNums(object):
xcenter = np.linspace(-10, 10, 50)
outlier_dataset = np.hstack((np.linspace(-110, -100, 5), xcenter))
- outlier_resultdict = {'fd': 21, 'scott': 5, 'doane': 11}
+ outlier_resultdict = {'fd': 21, 'scott': 5, 'doane': 11, 'stone': 6}
for estimator, numbins in outlier_resultdict.items():
a, b = np.histogram(outlier_dataset, estimator)
assert_equal(len(a), numbins)
+ def test_scott_vs_stone(self):
+ """Verify that Scott's rule and Stone's rule converges for normally distributed data"""
+
+ def nbins_ratio(seed, size):
+ rng = np.random.RandomState(seed)
+ x = rng.normal(loc=0, scale=2, size=size)
+ a, b = len(np.histogram(x, 'stone')[0]), len(np.histogram(x, 'scott')[0])
+ return a / (a + b)
+
+ ll = [[nbins_ratio(seed, size) for size in np.geomspace(start=10, stop=100, num=4).round().astype(int)]
+ for seed in range(256)]
+
+ # the average difference between the two methods decreases as the dataset size increases.
+ assert_almost_equal(abs(np.mean(ll, axis=0) - 0.5),
+ [0.1065248,
+ 0.0968844,
+ 0.0331818,
+ 0.0178057],
+ decimal=3)
+
def test_simple_range(self):
"""
Straightforward testing with a mixture of linspace data (for
@@ -555,11 +575,11 @@ class TestHistogramOptimBinNums(object):
# Checking for the correct number of bins
basic_test = {
50: {'fd': 8, 'scott': 8, 'rice': 15,
- 'sturges': 14, 'auto': 14},
+ 'sturges': 14, 'auto': 14, 'stone': 8},
500: {'fd': 15, 'scott': 16, 'rice': 32,
- 'sturges': 20, 'auto': 20},
+ 'sturges': 20, 'auto': 20, 'stone': 80},
5000: {'fd': 33, 'scott': 33, 'rice': 69,
- 'sturges': 27, 'auto': 33}
+ 'sturges': 27, 'auto': 33, 'stone': 80}
}
for testlen, expectedResults in basic_test.items():