diff options
Diffstat (limited to 'numpy')
| -rw-r--r-- | numpy/core/include/numpy/experimental_dtype_api.h | 306 | ||||
| -rw-r--r-- | numpy/core/include/numpy/ndarraytypes.h | 30 | ||||
| -rw-r--r-- | numpy/core/setup.py | 2 | ||||
| -rw-r--r-- | numpy/core/src/multiarray/array_method.c | 91 | ||||
| -rw-r--r-- | numpy/core/src/multiarray/array_method.h | 5 | ||||
| -rw-r--r-- | numpy/core/src/multiarray/descriptor.c | 27 | ||||
| -rw-r--r-- | numpy/core/src/multiarray/dtypemeta.c | 2 | ||||
| -rw-r--r-- | numpy/core/src/multiarray/dtypemeta.h | 44 | ||||
| -rw-r--r-- | numpy/core/src/multiarray/experimental_public_dtype_api.c | 363 | ||||
| -rw-r--r-- | numpy/core/src/multiarray/experimental_public_dtype_api.h | 18 | ||||
| -rw-r--r-- | numpy/core/src/multiarray/multiarraymodule.c | 5 |
11 files changed, 817 insertions, 76 deletions
diff --git a/numpy/core/include/numpy/experimental_dtype_api.h b/numpy/core/include/numpy/experimental_dtype_api.h new file mode 100644 index 000000000..22854a725 --- /dev/null +++ b/numpy/core/include/numpy/experimental_dtype_api.h @@ -0,0 +1,306 @@ +/* + * This header exports the new experimental DType API as proposed in + * NEPs 41 to 43. For background, please check these NEPs. Otherwise, + * this header also serves as documentation for the time being. + * + * Please do not hesitate to contact @seberg with questions. This is + * developed together with https://github.com/seberg/experimental_user_dtypes + * and those interested in experimenting are encouraged to contribute there. + * + * To use the functions defined in the header, call:: + * + * if (import_experimental_dtype_api(version) < 0) { + * return NULL; + * } + * + * in your module init. (A version mismatch will be reported, just update + * to the correct one, this will alert you of possible changes.) + * + * The two main symbols exported are: + * + * - PyUFunc_AddLoopFromSpec (Register a new loop for a ufunc) + * - PyArrayInitDTypeMeta_FromSpec (Create a new DType) + * + * Please check the in-line documentation for details and do not hesitate to + * ask for help. + * + * WARNING + * ======= + * + * By using this header, you understand that this is a fully experimental + * exposure. Details are expected to change, and some options may have no + * effect. (Please contact @seberg if you have questions!) + * If the exposure stops working, please file a bug report with NumPy. + * Further, a DType created using this API/header should still be expected + * to be incompatible with some functionality inside and outside of NumPy. + * In this case crashes must be expected. Please report any such problems + * so that they can be fixed before final exposure. + * Furthermore, expect missing checks for programming errors which the final + * API is expected to have. + * + * Symbols with a leading underscore are likely to not be included in the + * first public version, if these are central to your use-case, please let + * us know, so that we can reconsider. + * + * "Array-like" consumer API not yet under considerations + * ====================================================== + * + * The new DType API is designed in a way to make it potentially useful for + * alternative "array-like" implementations. This will require careful + * exposure of details and functions and is not part of this experimental API. + */ + +#ifndef NUMPY_CORE_INCLUDE_NUMPY_EXPERIMENTAL_DTYPE_API_H_ +#define NUMPY_CORE_INCLUDE_NUMPY_EXPERIMENTAL_DTYPE_API_H_ + +#include <Python.h> +#include "ndarraytypes.h" + + +/* + * Just a hack so I don't forget importing as much myself, I spend way too + * much time noticing it the first time around :). + */ +static void +__not_imported(void) +{ + printf("*****\nCritical error, dtype API not imported\n*****\n"); +} +static void *__uninitialized_table[] = { + &__not_imported, &__not_imported, &__not_imported, &__not_imported}; + + +static void **__experimental_dtype_api_table = __uninitialized_table; + +/* + * ****************************************************** + * ArrayMethod API (Casting and UFuncs) + * ****************************************************** + */ +/* + * NOTE: Expected changes: + * * invert logic of floating point error flag + * * probably split runtime and general flags into two + * * should possibly not use an enum for typdef for more stable ABI? + */ +typedef enum { + /* Flag for whether the GIL is required */ + NPY_METH_REQUIRES_PYAPI = 1 << 1, + /* + * Some functions cannot set floating point error flags, this flag + * gives us the option (not requirement) to skip floating point error + * setup/check. No function should set error flags and ignore them + * since it would interfere with chaining operations (e.g. casting). + */ + NPY_METH_NO_FLOATINGPOINT_ERRORS = 1 << 2, + /* Whether the method supports unaligned access (not runtime) */ + NPY_METH_SUPPORTS_UNALIGNED = 1 << 3, + + /* All flags which can change at runtime */ + NPY_METH_RUNTIME_FLAGS = ( + NPY_METH_REQUIRES_PYAPI | + NPY_METH_NO_FLOATINGPOINT_ERRORS), +} NPY_ARRAYMETHOD_FLAGS; + + +/* + * The main object for creating a new ArrayMethod. We use the typical `slots` + * mechanism used by the Python limited API (see below for the slot defs). + */ +typedef struct { + const char *name; + int nin, nout; + NPY_CASTING casting; + NPY_ARRAYMETHOD_FLAGS flags; + PyObject **dtypes; /* array of DType class objects */ + PyType_Slot *slots; +} PyArrayMethod_Spec; + + +typedef PyObject *_ufunc_addloop_fromspec_func( + PyObject *ufunc, PyArrayMethod_Spec *spec); +/* + * The main ufunc registration function. This adds a new implementation/loop + * to a ufunc. It replaces `PyUFunc_RegisterLoopForType`. + */ +#define PyUFunc_AddLoopFromSpec \ + (*(_ufunc_addloop_fromspec_func *)(__experimental_dtype_api_table[0])) + + +/* + * In addition to the normal casting levels, NPY_CAST_IS_VIEW indicates + * that no cast operation is necessary at all (although a copy usually will be) + * + * NOTE: The most likely modification here is to add an additional + * `view_offset` output to resolve_descriptors. If set, it would + * indicate both that it is a view and what offset to use. This means that + * e.g. `arr.imag` could be implemented by an ArrayMethod. + */ +#define NPY_CAST_IS_VIEW _NPY_CAST_IS_VIEW + +/* + * The resolve descriptors function, must be able to handle NULL values for + * all output (but not input) `given_descrs` and fill `loop_descrs`. + * Return -1 on error or 0 if the operation is not possible without an error + * set. (This may still be in flux.) + * Otherwise must return the "casting safety", for normal functions, this is + * almost always "safe" (or even "equivalent"?). + * + * `resolve_descriptors` is optional if all output DTypes are non-parametric. + */ +#define NPY_METH_resolve_descriptors 1 +typedef NPY_CASTING (resolve_descriptors_function)( + /* "method" is currently opaque (necessary e.g. to wrap Python) */ + PyObject *method, + /* DTypes the method was created for */ + PyObject **dtypes, + /* Input descriptors (instances). Outputs may be NULL. */ + PyArray_Descr **given_descrs, + /* Exact loop descriptors to use, must not hold references on error */ + PyArray_Descr **loop_descrs); + +/* NOT public yet: Signature needs adapting as external API. */ +#define _NPY_METH_get_loop 2 + +/* + * Current public API to define fast inner-loops. You must provide a + * strided loop. If this is a cast between two "versions" of the same dtype + * you must also provide an unaligned strided loop. + * Other loops are useful to optimize the very common contiguous case. + * + * NOTE: As of now, NumPy will NOT use unaligned loops in ufuncs! + */ +#define NPY_METH_strided_loop 3 +#define NPY_METH_contiguous_loop 4 +#define NPY_METH_unaligned_strided_loop 5 +#define NPY_METH_unaligned_contiguous_loop 6 + + +typedef struct { + PyObject *caller; /* E.g. the original ufunc, may be NULL */ + PyObject *method; /* The method "self". Currently an opaque object */ + + /* Operand descriptors, filled in by resolve_descriptors */ + PyArray_Descr **descriptors; + /* Structure may grow (this is harmless for DType authors) */ +} PyArrayMethod_Context; + +typedef int (PyArrayMethod_StridedLoop)(PyArrayMethod_Context *context, + char *const *data, const npy_intp *dimensions, const npy_intp *strides, + NpyAuxData *transferdata); + + + +/* + * **************************** + * DTYPE API + * **************************** + */ + +#define NPY_DT_ABSTRACT 1 << 1 +#define NPY_DT_PARAMETRIC 1 << 2 + +#define NPY_DT_discover_descr_from_pyobject 1 +#define _NPY_DT_is_known_scalar_type 2 +#define NPY_DT_default_descr 3 +#define NPY_DT_common_dtype 4 +#define NPY_DT_common_instance 5 +#define NPY_DT_setitem 6 +#define NPY_DT_getitem 7 + + +// TODO: These slots probably still need some thought, and/or a way to "grow"? +typedef struct{ + PyTypeObject *typeobj; /* type of python scalar or NULL */ + int flags; /* flags, including parametric and abstract */ + /* NULL terminated cast definitions. Use NULL for the newly created DType */ + PyArrayMethod_Spec **casts; + PyType_Slot *slots; + /* Baseclass or NULL (will always subclass `np.dtype`) */ + PyTypeObject *baseclass; +} PyArrayDTypeMeta_Spec; + + +/* + * DTypeMeta struct, the content may be made fully opaque (except the size). + * We may also move everything into a single `void *dt_slots`. + */ +typedef struct { + PyHeapTypeObject super; + PyArray_Descr *singleton; + int type_num; + PyTypeObject *scalar_type; + npy_uint64 flags; + void *dt_slots; + void *reserved[3]; +} PyArray_DTypeMeta; + + +#define PyArrayDTypeMeta_Type \ + (&(PyTypeObject *)__experimental_dtype_api_table[1]) + +typedef int __dtypemeta_fromspec( + PyArray_DTypeMeta *DType, PyArrayDTypeMeta_Spec *dtype_spec); +/* + * Finalize creation of a DTypeMeta. You must ensure that the DTypeMeta is + * a proper subclass. The DTypeMeta object has additional fields compared to + * a normal PyTypeObject! + * The only (easy) creation of a new DType is to create a static Type which + * inherits `PyArray_DescrType`, sets its type to `PyArrayDTypeMeta_Type` and + * uses `PyArray_DTypeMeta` defined above as the C-structure. + */ +#define PyArrayInitDTypeMeta_FromSpec \ + ((__dtypemeta_fromspec *)(__experimental_dtype_api_table[2])) + + + +/* + * ******************************** + * Initialization + * ******************************** + * + * Import the experimental API, the version must match the one defined in + * the header to ensure changes are taken into account. NumPy will further + * runtime-check this. + * You must call this function to use the symbols defined in this file. + */ +#define __EXPERIMENTAL_DTYPE_VERSION 1 + +static int +import_experimental_dtype_api(int version) +{ + if (version != __EXPERIMENTAL_DTYPE_VERSION) { + PyErr_Format(PyExc_RuntimeError, + "DType API version %d did not match header version %d. Please " + "update the import statement and check for API changes.", + version, __EXPERIMENTAL_DTYPE_VERSION); + return -1; + } + if (__experimental_dtype_api_table != __uninitialized_table) { + /* already imported. */ + return 0; + } + + PyObject *multiarray = PyImport_ImportModule("numpy.core._multiarray_umath"); + if (multiarray == NULL) { + return -1; + } + + PyObject *api = PyObject_CallMethod(multiarray, + "_get_experimental_dtype_api", "i", version); + Py_DECREF(multiarray); + if (api == NULL) { + return -1; + } + __experimental_dtype_api_table = PyCapsule_GetPointer(api, + "experimental_dtype_api_table"); + Py_DECREF(api); + + if (__experimental_dtype_api_table == NULL) { + __experimental_dtype_api_table = __uninitialized_table; + return -1; + } + return 0; +} + +#endif /* NUMPY_CORE_INCLUDE_NUMPY_EXPERIMENTAL_DTYPE_API_H_ */ diff --git a/numpy/core/include/numpy/ndarraytypes.h b/numpy/core/include/numpy/ndarraytypes.h index 740223882..8d810fa64 100644 --- a/numpy/core/include/numpy/ndarraytypes.h +++ b/numpy/core/include/numpy/ndarraytypes.h @@ -1858,32 +1858,14 @@ typedef void (PyDataMem_EventHookFunc)(void *inp, void *outp, size_t size, */ #if defined(NPY_INTERNAL_BUILD) && NPY_INTERNAL_BUILD /* - * The Structures defined in this block are considered private API and - * may change without warning! + * The Structures defined in this block are currently considered + * private API and may change without warning! + * Part of this (at least the size) is exepcted to be public API without + * further modifications. */ /* TODO: Make this definition public in the API, as soon as its settled */ NPY_NO_EXPORT extern PyTypeObject PyArrayDTypeMeta_Type; - typedef struct PyArray_DTypeMeta_tag PyArray_DTypeMeta; - - typedef PyArray_Descr *(discover_descr_from_pyobject_function)( - PyArray_DTypeMeta *cls, PyObject *obj); - - /* - * Before making this public, we should decide whether it should pass - * the type, or allow looking at the object. A possible use-case: - * `np.array(np.array([0]), dtype=np.ndarray)` - * Could consider arrays that are not `dtype=ndarray` "scalars". - */ - typedef int (is_known_scalar_type_function)( - PyArray_DTypeMeta *cls, PyTypeObject *obj); - - typedef PyArray_Descr *(default_descr_function)(PyArray_DTypeMeta *cls); - typedef PyArray_DTypeMeta *(common_dtype_function)( - PyArray_DTypeMeta *dtype1, PyArray_DTypeMeta *dtyep2); - typedef PyArray_Descr *(common_instance_function)( - PyArray_Descr *dtype1, PyArray_Descr *dtyep2); - /* * While NumPy DTypes would not need to be heap types the plan is to * make DTypes available in Python at which point they will be heap types. @@ -1894,7 +1876,7 @@ typedef void (PyDataMem_EventHookFunc)(void *inp, void *outp, size_t size, * it is a fairly complex construct which may be better to allow * refactoring of. */ - struct PyArray_DTypeMeta_tag { + typedef struct { PyHeapTypeObject super; /* @@ -1922,7 +1904,7 @@ typedef void (PyDataMem_EventHookFunc)(void *inp, void *outp, size_t size, */ void *dt_slots; void *reserved[3]; - }; + } PyArray_DTypeMeta; #endif /* NPY_INTERNAL_BUILD */ diff --git a/numpy/core/setup.py b/numpy/core/setup.py index bde81bf2f..f2524ae13 100644 --- a/numpy/core/setup.py +++ b/numpy/core/setup.py @@ -810,6 +810,7 @@ def configuration(parent_package='',top_path=None): join('src', 'multiarray', 'dragon4.h'), join('src', 'multiarray', 'einsum_debug.h'), join('src', 'multiarray', 'einsum_sumprod.h'), + join('src', 'multiarray', 'experimental_public_dtype_api.h'), join('src', 'multiarray', 'getset.h'), join('src', 'multiarray', 'hashdescr.h'), join('src', 'multiarray', 'iterators.h'), @@ -877,6 +878,7 @@ def configuration(parent_package='',top_path=None): join('src', 'multiarray', 'dtype_transfer.c'), join('src', 'multiarray', 'einsum.c.src'), join('src', 'multiarray', 'einsum_sumprod.c.src'), + join('src', 'multiarray', 'experimental_public_dtype_api.c'), join('src', 'multiarray', 'flagsobject.c'), join('src', 'multiarray', 'getset.c'), join('src', 'multiarray', 'hashdescr.c'), diff --git a/numpy/core/src/multiarray/array_method.c b/numpy/core/src/multiarray/array_method.c index c4db73c3b..406b0c6ff 100644 --- a/numpy/core/src/multiarray/array_method.c +++ b/numpy/core/src/multiarray/array_method.c @@ -58,16 +58,10 @@ default_resolve_descriptors( { int nin = method->nin; int nout = method->nout; - int all_defined = 1; for (int i = 0; i < nin + nout; i++) { PyArray_DTypeMeta *dtype = dtypes[i]; - if (dtype == NULL) { - output_descrs[i] = NULL; - all_defined = 0; - continue; - } - if (NPY_DTYPE(input_descrs[i]) == dtype) { + if (input_descrs[i] != NULL) { output_descrs[i] = ensure_dtype_nbo(input_descrs[i]); } else { @@ -77,41 +71,11 @@ default_resolve_descriptors( goto fail; } } - if (all_defined) { - return method->casting; - } - - if (NPY_UNLIKELY(nin == 0 || dtypes[0] == NULL)) { - /* Registration should reject this, so this would be indicates a bug */ - PyErr_SetString(PyExc_RuntimeError, - "Invalid use of default resolver without inputs or with " - "input or output DType incorrectly missing."); - goto fail; - } - /* We find the common dtype of all inputs, and use it for the unknowns */ - PyArray_DTypeMeta *common_dtype = dtypes[0]; - assert(common_dtype != NULL); - for (int i = 1; i < nin; i++) { - Py_SETREF(common_dtype, PyArray_CommonDType(common_dtype, dtypes[i])); - if (common_dtype == NULL) { - goto fail; - } - } - for (int i = nin; i < nin + nout; i++) { - if (output_descrs[i] != NULL) { - continue; - } - if (NPY_DTYPE(input_descrs[i]) == common_dtype) { - output_descrs[i] = ensure_dtype_nbo(input_descrs[i]); - } - else { - output_descrs[i] = NPY_DT_CALL_default_descr(common_dtype); - } - if (NPY_UNLIKELY(output_descrs[i] == NULL)) { - goto fail; - } - } - + /* + * If we relax the requirement for specifying all `dtypes` (e.g. allow + * abstract ones or unspecified outputs). We can use the common-dtype + * operation to provide a default here. + */ return method->casting; fail: @@ -219,9 +183,18 @@ validate_spec(PyArrayMethod_Spec *spec) } for (int i = 0; i < nargs; i++) { - if (spec->dtypes[i] == NULL && i < spec->nin) { + /* + * Note that we could allow for output dtypes to not be specified + * (the array-method would have to make sure to support this). + * We could even allow for some dtypes to be abstract. + * For now, assume that this is better handled in a promotion step. + * One problem with providing all DTypes is the definite need to + * hold references. We probably, eventually, have to implement + * traversal and trust the GC to deal with it. + */ + if (spec->dtypes[i] == NULL) { PyErr_Format(PyExc_TypeError, - "ArrayMethod must have well defined input DTypes. " + "ArrayMethod must provide all input and output DTypes. " "(method: %s)", spec->name); return -1; } @@ -231,10 +204,10 @@ validate_spec(PyArrayMethod_Spec *spec) "(method: %s)", spec->dtypes[i], spec->name); return -1; } - if (NPY_DT_is_abstract(spec->dtypes[i]) && i < spec->nin) { + if (NPY_DT_is_abstract(spec->dtypes[i])) { PyErr_Format(PyExc_TypeError, - "abstract DType %S are currently not allowed for inputs." - "(method: %s defined at %s)", spec->dtypes[i], spec->name); + "abstract DType %S are currently not supported." + "(method: %s)", spec->dtypes[i], spec->name); return -1; } } @@ -323,7 +296,7 @@ fill_arraymethod_from_slots( PyErr_Format(PyExc_TypeError, "Must specify output DTypes or use custom " "`resolve_descriptors` when there are no inputs. " - "(method: %s defined at %s)", spec->name); + "(method: %s)", spec->name); return -1; } } @@ -370,6 +343,26 @@ fill_arraymethod_from_slots( } +/* + * Public version of `PyArrayMethod_FromSpec_int` (see below). + * + * TODO: Error paths will probably need to be improved before a release into + * the non-experimental public API. + */ +NPY_NO_EXPORT PyObject * +PyArrayMethod_FromSpec(PyArrayMethod_Spec *spec) +{ + for (int i = 0; i < spec->nin + spec->nout; i++) { + if (!PyObject_TypeCheck(spec->dtypes[i], &PyArrayDTypeMeta_Type)) { + PyErr_SetString(PyExc_RuntimeError, + "ArrayMethod spec contained a non DType."); + return NULL; + } + } + return (PyObject *)PyArrayMethod_FromSpec_int(spec, 0); +} + + /** * Create a new ArrayMethod (internal version). * @@ -683,7 +676,7 @@ boundarraymethod__simple_strided_call( "All arrays must have the same length."); return NULL; } - if (i >= nout) { + if (i >= nin) { if (PyArray_FailUnlessWriteable( arrays[i], "_simple_strided_call() output") < 0) { return NULL; diff --git a/numpy/core/src/multiarray/array_method.h b/numpy/core/src/multiarray/array_method.h index 3017abf25..b29c7c077 100644 --- a/numpy/core/src/multiarray/array_method.h +++ b/numpy/core/src/multiarray/array_method.h @@ -170,6 +170,11 @@ PyArrayMethod_GetMaskedStridedLoop( NPY_ARRAYMETHOD_FLAGS *flags); + +NPY_NO_EXPORT PyObject * +PyArrayMethod_FromSpec(PyArrayMethod_Spec *spec); + + /* * TODO: This function is the internal version, and its error paths may * need better tests when a public version is exposed. diff --git a/numpy/core/src/multiarray/descriptor.c b/numpy/core/src/multiarray/descriptor.c index 082876aa2..6a09f92ac 100644 --- a/numpy/core/src/multiarray/descriptor.c +++ b/numpy/core/src/multiarray/descriptor.c @@ -2304,6 +2304,33 @@ arraydescr_new(PyTypeObject *subtype, PyObject *args, PyObject *kwds) { if (subtype != &PyArrayDescr_Type) { + if (Py_TYPE(subtype) == &PyArrayDTypeMeta_Type && + !(PyType_GetFlags(Py_TYPE(subtype)) & Py_TPFLAGS_HEAPTYPE) && + (NPY_DT_SLOTS((PyArray_DTypeMeta *)subtype)) != NULL) { + /* + * Appears to be a properly initialized user DType. Allocate + * it and initialize the main part as best we can. + * TODO: This should probably be a user function, and enforce + * things like the `elsize` being correctly set. + * TODO: This is EXPERIMENTAL API! + */ + PyArray_DTypeMeta *DType = (PyArray_DTypeMeta *)subtype; + PyArray_Descr *descr = (PyArray_Descr *)subtype->tp_alloc(subtype, 0); + if (descr == 0) { + PyErr_NoMemory(); + return NULL; + } + PyObject_Init((PyObject *)descr, subtype); + descr->f = &NPY_DT_SLOTS(DType)->f; + Py_XINCREF(DType->scalar_type); + descr->typeobj = DType->scalar_type; + descr->type_num = DType->type_num; + descr->flags = NPY_USE_GETITEM|NPY_USE_SETITEM; + descr->byteorder = '|'; /* If DType uses it, let it override */ + descr->elsize = -1; /* Initialize to invalid value */ + descr->hash = -1; + return (PyObject *)descr; + } /* The DTypeMeta class should prevent this from happening. */ PyErr_Format(PyExc_SystemError, "'%S' must not inherit np.dtype.__new__().", subtype); diff --git a/numpy/core/src/multiarray/dtypemeta.c b/numpy/core/src/multiarray/dtypemeta.c index cbde91b76..cd489d5e7 100644 --- a/numpy/core/src/multiarray/dtypemeta.c +++ b/numpy/core/src/multiarray/dtypemeta.c @@ -290,7 +290,7 @@ void_common_instance(PyArray_Descr *descr1, PyArray_Descr *descr2) return descr1; } -static int +NPY_NO_EXPORT int python_builtins_are_known_scalar_types( PyArray_DTypeMeta *NPY_UNUSED(cls), PyTypeObject *pytype) { diff --git a/numpy/core/src/multiarray/dtypemeta.h b/numpy/core/src/multiarray/dtypemeta.h index fb772c07d..05e9e2394 100644 --- a/numpy/core/src/multiarray/dtypemeta.h +++ b/numpy/core/src/multiarray/dtypemeta.h @@ -8,6 +8,35 @@ #define NPY_DT_PARAMETRIC 1 << 2 +typedef PyArray_Descr *(discover_descr_from_pyobject_function)( + PyArray_DTypeMeta *cls, PyObject *obj); + +/* + * Before making this public, we should decide whether it should pass + * the type, or allow looking at the object. A possible use-case: + * `np.array(np.array([0]), dtype=np.ndarray)` + * Could consider arrays that are not `dtype=ndarray` "scalars". + */ +typedef int (is_known_scalar_type_function)( + PyArray_DTypeMeta *cls, PyTypeObject *obj); + +typedef PyArray_Descr *(default_descr_function)(PyArray_DTypeMeta *cls); +typedef PyArray_DTypeMeta *(common_dtype_function)( + PyArray_DTypeMeta *dtype1, PyArray_DTypeMeta *dtype2); +typedef PyArray_Descr *(common_instance_function)( + PyArray_Descr *dtype1, PyArray_Descr *dtype2); + +/* + * TODO: These two functions are currently only used for experimental DType + * API support. Their relation should be "reversed": NumPy should + * always use them internally. + * There are open points about "casting safety" though, e.g. setting + * elements is currently always unsafe. + */ +typedef int(setitemfunction)(PyArray_Descr *, PyObject *, char *); +typedef PyObject *(getitemfunction)(PyArray_Descr *, char *); + + typedef struct { /* DType methods, these could be moved into its own struct */ discover_descr_from_pyobject_function *discover_descr_from_pyobject; @@ -16,6 +45,12 @@ typedef struct { common_dtype_function *common_dtype; common_instance_function *common_instance; /* + * Currently only used for experimental user DTypes. + * Typing as `void *` until NumPy itself uses these (directly). + */ + setitemfunction *setitem; + getitemfunction *getitem; + /* * The casting implementation (ArrayMethod) to convert between two * instances of this DType, stored explicitly for fast access: */ @@ -58,7 +93,10 @@ typedef struct { NPY_DT_SLOTS(dtype)->default_descr(dtype) #define NPY_DT_CALL_common_dtype(dtype, other) \ NPY_DT_SLOTS(dtype)->common_dtype(dtype, other) - +#define NPY_DT_CALL_getitem(descr, data_ptr) \ + NPY_DT_SLOTS(NPY_DTYPE(descr))->getitem(descr, data_ptr) +#define NPY_DT_CALL_setitem(descr, value, data_ptr) \ + NPY_DT_SLOTS(NPY_DTYPE(descr))->setitem(descr, value, data_ptr) /* * This function will hopefully be phased out or replaced, but was convenient @@ -78,6 +116,10 @@ PyArray_DTypeFromTypeNum(int typenum) NPY_NO_EXPORT int +python_builtins_are_known_scalar_types( + PyArray_DTypeMeta *cls, PyTypeObject *pytype); + +NPY_NO_EXPORT int dtypemeta_wrap_legacy_descriptor(PyArray_Descr *dtypem); #endif /* NUMPY_CORE_SRC_MULTIARRAY_DTYPEMETA_H_ */ diff --git a/numpy/core/src/multiarray/experimental_public_dtype_api.c b/numpy/core/src/multiarray/experimental_public_dtype_api.c new file mode 100644 index 000000000..1e8abe9d6 --- /dev/null +++ b/numpy/core/src/multiarray/experimental_public_dtype_api.c @@ -0,0 +1,363 @@ +#include <Python.h> + +#define NPY_NO_DEPRECATED_API NPY_API_VERSION +#define _UMATHMODULE +#define _MULTIARRAYMODULE +#include <numpy/npy_common.h> +#include "numpy/arrayobject.h" +#include "numpy/ufuncobject.h" +#include "common.h" + +#include "experimental_public_dtype_api.h" +#include "array_method.h" +#include "dtypemeta.h" +#include "array_coercion.h" +#include "convert_datatype.h" + + +#define EXPERIMENTAL_DTYPE_API_VERSION 1 + + +typedef struct{ + PyTypeObject *typeobj; /* type of python scalar or NULL */ + int flags; /* flags, including parametric and abstract */ + /* NULL terminated cast definitions. Use NULL for the newly created DType */ + PyArrayMethod_Spec **casts; + PyType_Slot *slots; +} PyArrayDTypeMeta_Spec; + + + +static PyArray_DTypeMeta * +dtype_does_not_promote( + PyArray_DTypeMeta *NPY_UNUSED(self), PyArray_DTypeMeta *NPY_UNUSED(other)) +{ + /* `other` is guaranteed not to be `self`, so we don't have to do much... */ + Py_INCREF(Py_NotImplemented); + return (PyArray_DTypeMeta *)Py_NotImplemented; +} + + +static PyArray_Descr * +discover_as_default(PyArray_DTypeMeta *cls, PyObject *NPY_UNUSED(obj)) +{ + return NPY_DT_CALL_default_descr(cls); +} + + +static PyArray_Descr * +use_new_as_default(PyArray_DTypeMeta *self) +{ + PyObject *res = PyObject_CallObject((PyObject *)self, NULL); + if (res == NULL) { + return NULL; + } + /* + * Lets not trust that the DType is implemented correctly + * TODO: Should probably do an exact type-check (at least unless this is + * an abstract DType). + */ + if (!PyArray_DescrCheck(res)) { + PyErr_Format(PyExc_RuntimeError, + "Instantiating %S did not return a dtype instance, this is " + "invalid (especially without a custom `default_descr()`).", + self); + Py_DECREF(res); + return NULL; + } + PyArray_Descr *descr = (PyArray_Descr *)res; + /* + * Should probably do some more sanity checks here on the descriptor + * to ensure the user is not being naughty. But in the end, we have + * only limited control anyway. + */ + return descr; +} + + +static int +legacy_setitem_using_DType(PyObject *obj, void *data, void *arr) +{ + if (arr == NULL) { + PyErr_SetString(PyExc_RuntimeError, + "Using legacy SETITEM with NULL array object is only " + "supported for basic NumPy DTypes."); + return -1; + } + setitemfunction *setitem; + setitem = NPY_DT_SLOTS(NPY_DTYPE(PyArray_DESCR(arr)))->setitem; + return setitem(PyArray_DESCR(arr), obj, data); +} + + +static PyObject * +legacy_getitem_using_DType(void *data, void *arr) +{ + if (arr == NULL) { + PyErr_SetString(PyExc_RuntimeError, + "Using legacy SETITEM with NULL array object is only " + "supported for basic NumPy DTypes."); + return NULL; + } + getitemfunction *getitem; + getitem = NPY_DT_SLOTS(NPY_DTYPE(PyArray_DESCR(arr)))->getitem; + return getitem(PyArray_DESCR(arr), data); +} + + +/* + * The descr->f structure used user-DTypes. Some functions may be filled + * from the user in the future and more could get defaults for compatibility. + */ +PyArray_ArrFuncs default_funcs = { + .setitem = &legacy_setitem_using_DType, + .getitem = &legacy_getitem_using_DType +}; + + +/* other slots are in order, so keep only last around: */ +#define NUM_DTYPE_SLOTS 7 + + +int +PyArrayInitDTypeMeta_FromSpec( + PyArray_DTypeMeta *DType, PyArrayDTypeMeta_Spec *spec) +{ + if (!PyObject_TypeCheck(DType, &PyArrayDTypeMeta_Type)) { + PyErr_SetString(PyExc_RuntimeError, + "Passed in DType must be a valid (initialized) DTypeMeta " + "instance!"); + return -1; + } + + if (spec->typeobj == NULL || !PyType_Check(spec->typeobj)) { + PyErr_SetString(PyExc_TypeError, + "Not giving a type object is currently not supported, but " + "is expected to be supported eventually. This would mean " + "that e.g. indexing a NumPy array will return a 0-D array " + "and not a scalar."); + return -1; + } + + if (DType->dt_slots != NULL) { + PyErr_Format(PyExc_RuntimeError, + "DType %R appears already registered?", DType); + return -1; + } + + /* Check and handle flags: */ + if (spec->flags & ~(NPY_DT_PARAMETRIC|NPY_DT_ABSTRACT)) { + PyErr_SetString(PyExc_RuntimeError, + "invalid DType flags specified, only parametric and abstract " + "are valid flags for user DTypes."); + return -1; + } + + DType->flags = spec->flags; + DType->dt_slots = PyMem_Calloc(1, sizeof(NPY_DType_Slots)); + if (DType->dt_slots == NULL) { + return -1; + } + + /* Set default values (where applicable) */ + NPY_DT_SLOTS(DType)->discover_descr_from_pyobject = &discover_as_default; + NPY_DT_SLOTS(DType)->is_known_scalar_type = ( + &python_builtins_are_known_scalar_types); + NPY_DT_SLOTS(DType)->default_descr = use_new_as_default; + NPY_DT_SLOTS(DType)->common_dtype = dtype_does_not_promote; + /* May need a default for non-parametric? */ + NPY_DT_SLOTS(DType)->common_instance = NULL; + NPY_DT_SLOTS(DType)->setitem = NULL; + NPY_DT_SLOTS(DType)->getitem = NULL; + + PyType_Slot *spec_slot = spec->slots; + while (1) { + int slot = spec_slot->slot; + void *pfunc = spec_slot->pfunc; + spec_slot++; + if (slot == 0) { + break; + } + if (slot > NUM_DTYPE_SLOTS || slot < 0) { + PyErr_Format(PyExc_RuntimeError, + "Invalid slot with value %d passed in.", slot); + return -1; + } + /* + * It is up to the user to get this right, and slots are sorted + * exactly like they are stored right now: + */ + void **current = (void **)(&( + NPY_DT_SLOTS(DType)->discover_descr_from_pyobject)); + current += slot - 1; + *current = pfunc; + } + if (NPY_DT_SLOTS(DType)->setitem == NULL + || NPY_DT_SLOTS(DType)->getitem == NULL) { + PyErr_SetString(PyExc_RuntimeError, + "A DType must provide a getitem/setitem (there may be an " + "exception here in the future if no scalar type is provided)"); + return -1; + } + + /* + * Now that the spec is read we can check that all required functions were + * defined by the user. + */ + if (spec->flags & NPY_DT_PARAMETRIC) { + if (NPY_DT_SLOTS(DType)->common_instance == NULL || + NPY_DT_SLOTS(DType)->discover_descr_from_pyobject + == &discover_as_default) { + PyErr_SetString(PyExc_RuntimeError, + "Parametric DType must define a common-instance and " + "descriptor discovery function!"); + return -1; + } + } + NPY_DT_SLOTS(DType)->f = default_funcs; + /* invalid type num. Ideally, we get away with it! */ + DType->type_num = -1; + + /* + * Handle the scalar type mapping. + */ + Py_INCREF(spec->typeobj); + DType->scalar_type = spec->typeobj; + if (PyType_GetFlags(spec->typeobj) & Py_TPFLAGS_HEAPTYPE) { + if (PyObject_SetAttrString((PyObject *)DType->scalar_type, + "__associated_array_dtype__", (PyObject *)DType) < 0) { + Py_DECREF(DType); + return -1; + } + } + if (_PyArray_MapPyTypeToDType(DType, DType->scalar_type, 0) < 0) { + Py_DECREF(DType); + return -1; + } + + /* Ensure cast dict is defined (not sure we have to do it here) */ + NPY_DT_SLOTS(DType)->castingimpls = PyDict_New(); + if (NPY_DT_SLOTS(DType)->castingimpls == NULL) { + return -1; + } + /* + * And now, register all the casts that are currently defined! + */ + PyArrayMethod_Spec **next_meth_spec = spec->casts; + while (1) { + PyArrayMethod_Spec *meth_spec = *next_meth_spec; + next_meth_spec++; + if (meth_spec == NULL) { + break; + } + /* + * The user doesn't know the name of DType yet, so we have to fill it + * in for them! + */ + for (int i=0; i < meth_spec->nin + meth_spec->nout; i++) { + if (meth_spec->dtypes[i] == NULL) { + meth_spec->dtypes[i] = DType; + } + } + /* Register the cast! */ + int res = PyArray_AddCastingImplementation_FromSpec(meth_spec, 0); + + /* Also clean up again, so nobody can get bad ideas... */ + for (int i=0; i < meth_spec->nin + meth_spec->nout; i++) { + if (meth_spec->dtypes[i] == DType) { + meth_spec->dtypes[i] = NULL; + } + } + + if (res < 0) { + return -1; + } + } + + if (NPY_DT_SLOTS(DType)->within_dtype_castingimpl == NULL) { + /* + * We expect this for now. We should have a default for DType that + * only supports simple copy (and possibly byte-order assuming that + * they swap the full itemsize). + */ + PyErr_SetString(PyExc_RuntimeError, + "DType must provide a function to cast (or just copy) between " + "its own instances!"); + return -1; + } + + /* And finally, we have to register all the casts! */ + return 0; +} + + +/* Function is defined in umath/dispatching.c (same/one compilation unit) */ +NPY_NO_EXPORT int +PyUFunc_AddLoop(PyUFuncObject *ufunc, PyObject *info, int ignore_duplicate); + +static int +PyUFunc_AddLoopFromSpec(PyObject *ufunc, PyArrayMethod_Spec *spec) +{ + if (!PyObject_TypeCheck(ufunc, &PyUFunc_Type)) { + PyErr_SetString(PyExc_TypeError, + "ufunc object passed is not a ufunc!"); + return -1; + } + PyBoundArrayMethodObject *bmeth = + (PyBoundArrayMethodObject *)PyArrayMethod_FromSpec(spec); + if (bmeth == NULL) { + return -1; + } + int nargs = bmeth->method->nin + bmeth->method->nout; + PyObject *dtypes = PyArray_TupleFromItems( + nargs, (PyObject **)bmeth->dtypes, 1); + if (dtypes == NULL) { + return -1; + } + PyObject *info = PyTuple_Pack(2, dtypes, bmeth->method); + Py_DECREF(bmeth); + Py_DECREF(dtypes); + if (info == NULL) { + return -1; + } + return PyUFunc_AddLoop((PyUFuncObject *)ufunc, info, 0); +} + + +NPY_NO_EXPORT PyObject * +_get_experimental_dtype_api(PyObject *NPY_UNUSED(mod), PyObject *arg) +{ + static void *experimental_api_table[] = { + &PyUFunc_AddLoopFromSpec, + &PyArrayDTypeMeta_Type, + &PyArrayInitDTypeMeta_FromSpec, + NULL, + }; + + char *env = getenv("NUMPY_EXPERIMENTAL_DTYPE_API"); + if (env == NULL || strcmp(env, "1") != 0) { + PyErr_Format(PyExc_RuntimeError, + "The new DType API is currently in an exploratory phase and " + "should NOT be used for production code. " + "Expect modifications and crashes! " + "To experiment with the new API you must set " + "`NUMPY_EXPERIMENTAL_DTYPE_API=1` as an environment variable."); + return NULL; + } + + long version = PyLong_AsLong(arg); + if (error_converting(version)) { + return NULL; + } + if (version != EXPERIMENTAL_DTYPE_API_VERSION) { + PyErr_Format(PyExc_RuntimeError, + "Experimental DType API version %d requested, but NumPy " + "is exporting version %d. Recompile your DType and/or upgrade " + "NumPy to match.", + version, EXPERIMENTAL_DTYPE_API_VERSION); + return NULL; + } + + return PyCapsule_New(&experimental_api_table, + "experimental_dtype_api_table", NULL); +} diff --git a/numpy/core/src/multiarray/experimental_public_dtype_api.h b/numpy/core/src/multiarray/experimental_public_dtype_api.h new file mode 100644 index 000000000..270cb82bf --- /dev/null +++ b/numpy/core/src/multiarray/experimental_public_dtype_api.h @@ -0,0 +1,18 @@ +/* + * This file exports the experimental dtype API as exposed via the + * `numpy/core/include/numpy/experimental_dtype_api.h` + * header file. + * + * This file is a stub, all important definitions are in the code file. + * + * NOTE: This file is considered in-flux, exploratory and transitional. + */ + +#ifndef NUMPY_CORE_SRC_MULTIARRAY_EXPERIMENTAL_PUBLIC_DTYPE_API_H_ +#define NUMPY_CORE_SRC_MULTIARRAY_EXPERIMENTAL_PUBLIC_DTYPE_API_H_ + +NPY_NO_EXPORT PyObject * +_get_experimental_dtype_api(PyObject *mod, PyObject *arg); + + +#endif /* NUMPY_CORE_SRC_MULTIARRAY_EXPERIMENTAL_PUBLIC_DTYPE_API_H_ */ diff --git a/numpy/core/src/multiarray/multiarraymodule.c b/numpy/core/src/multiarray/multiarraymodule.c index 5ceed1678..d211f01bc 100644 --- a/numpy/core/src/multiarray/multiarraymodule.c +++ b/numpy/core/src/multiarray/multiarraymodule.c @@ -68,6 +68,7 @@ NPY_NO_EXPORT int NPY_NUMUSERTYPES = 0; #include "typeinfo.h" #include "get_attr_string.h" +#include "experimental_public_dtype_api.h" /* _get_experimental_dtype_api */ /* ***************************************************************************** @@ -4419,7 +4420,9 @@ static struct PyMethodDef array_module_methods[] = { {"_discover_array_parameters", (PyCFunction)_discover_array_parameters, METH_VARARGS | METH_KEYWORDS, NULL}, {"_get_castingimpl", (PyCFunction)_get_castingimpl, - METH_VARARGS | METH_KEYWORDS, NULL}, + METH_VARARGS | METH_KEYWORDS, NULL}, + {"_get_experimental_dtype_api", (PyCFunction)_get_experimental_dtype_api, + METH_O, NULL}, /* from umath */ {"frompyfunc", (PyCFunction) ufunc_frompyfunc, |
