summaryrefslogtreecommitdiff
path: root/numpy
diff options
context:
space:
mode:
Diffstat (limited to 'numpy')
-rw-r--r--numpy/linalg/linalg.py56
-rw-r--r--numpy/linalg/tests/test_linalg.py29
2 files changed, 66 insertions, 19 deletions
diff --git a/numpy/linalg/linalg.py b/numpy/linalg/linalg.py
index ae0da3685..b063a2ede 100644
--- a/numpy/linalg/linalg.py
+++ b/numpy/linalg/linalg.py
@@ -22,8 +22,9 @@ from numpy.core import array, asarray, zeros, empty, transpose, \
intc, single, double, csingle, cdouble, inexact, complexfloating, \
newaxis, ravel, all, Inf, dot, add, multiply, identity, sqrt, \
maximum, flatnonzero, diagonal, arange, fastCopyAndTranspose, sum, \
- isfinite, size, finfo, absolute, log, exp, errstate, geterrobj
-from numpy.lib import triu
+ isfinite, size, finfo, absolute, log, exp, errstate, geterrobj, \
+ float64, float128
+from numpy.lib import triu, asfarray
from numpy.linalg import lapack_lite, _umath_linalg
from numpy.matrixlib.defmatrix import matrix_power
from numpy.compat import asbytes
@@ -1865,7 +1866,8 @@ def lstsq(a, b, rcond=-1):
st = s[:min(n, m)].copy().astype(result_real_t)
return wrap(x), wrap(resids), results['rank'], st
-def norm(x, ord=None):
+
+def norm(x, ord=None, axis=None):
"""
Matrix or vector norm.
@@ -1880,11 +1882,14 @@ def norm(x, ord=None):
ord : {non-zero int, inf, -inf, 'fro'}, optional
Order of the norm (see table under ``Notes``). inf means numpy's
`inf` object.
+ axis : int or None, optional
+ If `axis` is not None, it specifies the axis of `x` along which to
+ compute the vector norms.
Returns
-------
- n : float
- Norm of the matrix or vector.
+ n : float or ndarray
+ Norm of the matrix or vector(s).
Notes
-----
@@ -1967,29 +1972,52 @@ def norm(x, ord=None):
>>> LA.norm(a, -3)
nan
+ Using the `axis` argument:
+
+ >>> c = np.array([[ 1, 2, 3],
+ ... [-1, 1, 4]])
+ >>> LA.norm(c, axis=0)
+ array([ 1.41421356, 2.23606798, 5. ])
+ >>> LA.norm(c, axis=1)
+ array([ 3.74165739, 4.24264069])
+ >>> LA.norm(c, ord=1, axis=1)
+ array([6, 6])
+
"""
x = asarray(x)
- if ord is None: # check the default case first and handle it immediately
+
+ # Check the default case first and handle it immediately.
+ if ord is None and axis is None:
+ s = (x.conj() * x).real
return sqrt(add.reduce((x.conj() * x).ravel().real))
nd = x.ndim
- if nd == 1:
+ if nd == 1 or axis is not None:
if ord == Inf:
- return abs(x).max()
+ return abs(x).max(axis=axis)
elif ord == -Inf:
- return abs(x).min()
+ return abs(x).min(axis=axis)
elif ord == 0:
- return (x != 0).sum() # Zero norm
+ # Zero norm
+ return (x != 0).sum(axis=axis)
elif ord == 1:
- return abs(x).sum() # special case for speedup
- elif ord == 2:
- return sqrt(((x.conj()*x).real).sum()) # special case for speedup
+ # special case for speedup
+ return add.reduce(abs(x), axis=axis)
+ elif ord is None or ord == 2:
+ # special case for speedup
+ s = (x.conj() * x).real
+ return sqrt(add.reduce(s, axis=axis))
else:
try:
ord + 1
except TypeError:
raise ValueError("Invalid norm order for vectors.")
- return ((abs(x)**ord).sum())**(1.0/ord)
+ if x.dtype != float128:
+ # Convert to a float type, so integer arrays give
+ # float results. Don't apply asfarray to float128 arrays,
+ # because it will downcast to float64.
+ absx = asfarray(abs(x))
+ return add.reduce(absx**ord, axis=axis)**(1.0/ord)
elif nd == 2:
if ord == 2:
return svd(x, compute_uv=0).max()
diff --git a/numpy/linalg/tests/test_linalg.py b/numpy/linalg/tests/test_linalg.py
index 2dc55ab5e..fdb243271 100644
--- a/numpy/linalg/tests/test_linalg.py
+++ b/numpy/linalg/tests/test_linalg.py
@@ -523,9 +523,9 @@ class _TestNorm(TestCase):
assert_equal(norm(atleast_2d(array([], dtype=self.dt))), 0.0)
def test_vector(self):
- a = [1.0,2.0,3.0,4.0]
- b = [-1.0,-2.0,-3.0,-4.0]
- c = [-1.0, 2.0,-3.0, 4.0]
+ a = [1, 2, 3, 4]
+ b = [-1, -2, -3, -4]
+ c = [-1, 2, -3, 4]
def _test(v):
np.testing.assert_almost_equal(norm(v), 30**0.5, decimal=self.dec)
@@ -548,8 +548,7 @@ class _TestNorm(TestCase):
_test(v)
def test_matrix(self):
- A = matrix([[1.,3.],[5.,7.]], dtype=self.dt)
- A = matrix([[1.,3.],[5.,7.]], dtype=self.dt)
+ A = matrix([[1, 3], [5, 7]], dtype=self.dt)
assert_almost_equal(norm(A), 84**0.5)
assert_almost_equal(norm(A,'fro'), 84**0.5)
assert_almost_equal(norm(A,inf), 12.0)
@@ -563,6 +562,21 @@ class _TestNorm(TestCase):
self.assertRaises(ValueError, norm, A, -3)
self.assertRaises(ValueError, norm, A, 0)
+ def test_axis(self):
+ # Compare the use of `axis` with computing the norm of each row
+ # or column separately.
+ A = array([[1, 2, 3], [4, 5, 6]], dtype=self.dt)
+ for order in [None, -1, 0, 1, 2, 3, np.Inf, -np.Inf]:
+ expected0 = [norm(A[:,k], ord=order) for k in range(A.shape[1])]
+ assert_almost_equal(norm(A, ord=order, axis=0), expected0)
+ expected1 = [norm(A[k,:], ord=order) for k in range(A.shape[0])]
+ assert_almost_equal(norm(A, ord=order, axis=1), expected1)
+
+ # Check bad case. Using `axis` implies vector norms are being
+ # computed, so also using `ord='fro'` raises a ValueError
+ # (just like `norm([1,2,3], ord='fro')` does).
+ self.assertRaises(ValueError, norm, A, 'fro', 0)
+
class TestNormDouble(_TestNorm):
dt = np.double
@@ -574,6 +588,11 @@ class TestNormSingle(_TestNorm):
dec = 6
+class TestNormInt64(_TestNorm):
+ dt = np.int64
+ dec = 12
+
+
class TestMatrixRank(object):
def test_matrix_rank(self):
# Full rank matrix