summaryrefslogtreecommitdiff
path: root/numpy
diff options
context:
space:
mode:
Diffstat (limited to 'numpy')
-rw-r--r--numpy/matlib.py8
-rw-r--r--numpy/polynomial/polynomial.py2
-rw-r--r--numpy/random/_generator.pyx9
-rw-r--r--numpy/random/mtrand.pyx17
4 files changed, 23 insertions, 13 deletions
diff --git a/numpy/matlib.py b/numpy/matlib.py
index bd6b63289..e929fd9b1 100644
--- a/numpy/matlib.py
+++ b/numpy/matlib.py
@@ -300,9 +300,10 @@ def randn(*args):
Notes
-----
- For random samples from :math:`N(\\mu, \\sigma^2)`, use:
+ For random samples from the normal distribution with mean ``mu`` and
+ standard deviation ``sigma``, use::
- ``sigma * np.matlib.randn(...) + mu``
+ sigma * np.matlib.randn(...) + mu
Examples
--------
@@ -314,7 +315,8 @@ def randn(*args):
matrix([[ 0.99734545, 0.2829785 , -1.50629471],
[-0.57860025, 1.65143654, -2.42667924]])
- Two-by-four matrix of samples from :math:`N(3, 6.25)`:
+ Two-by-four matrix of samples from the normal distribution with
+ mean 3 and standard deviation 2.5:
>>> 2.5 * np.matlib.randn((2, 4)) + 3
matrix([[1.92771843, 6.16484065, 0.83314899, 1.30278462],
diff --git a/numpy/polynomial/polynomial.py b/numpy/polynomial/polynomial.py
index 8e2c6f002..d102f5a30 100644
--- a/numpy/polynomial/polynomial.py
+++ b/numpy/polynomial/polynomial.py
@@ -1339,7 +1339,7 @@ def polyfit(x, y, deg, rcond=None, full=False, w=None):
>>> np.random.seed(123)
>>> from numpy.polynomial import polynomial as P
>>> x = np.linspace(-1,1,51) # x "data": [-1, -0.96, ..., 0.96, 1]
- >>> y = x**3 - x + np.random.randn(len(x)) # x^3 - x + N(0,1) "noise"
+ >>> y = x**3 - x + np.random.randn(len(x)) # x^3 - x + Gaussian noise
>>> c, stats = P.polyfit(x,y,3,full=True)
>>> np.random.seed(123)
>>> c # c[0], c[2] should be approx. 0, c[1] approx. -1, c[3] approx. 1
diff --git a/numpy/random/_generator.pyx b/numpy/random/_generator.pyx
index 0019c4bcd..8092c8e7a 100644
--- a/numpy/random/_generator.pyx
+++ b/numpy/random/_generator.pyx
@@ -1001,7 +1001,8 @@ cdef class Generator:
Notes
-----
- For random samples from :math:`N(\\mu, \\sigma^2)`, use one of::
+ For random samples from the normal distribution with mean ``mu`` and
+ standard deviation ``sigma``, use one of::
mu + sigma * rng.standard_normal(size=...)
rng.normal(mu, sigma, size=...)
@@ -1022,7 +1023,8 @@ cdef class Generator:
>>> s.shape
(3, 4, 2)
- Two-by-four array of samples from :math:`N(3, 6.25)`:
+ Two-by-four array of samples from the normal distribution with
+ mean 3 and standard deviation 2.5:
>>> 3 + 2.5 * rng.standard_normal(size=(2, 4))
array([[-4.49401501, 4.00950034, -1.81814867, 7.29718677], # random
@@ -1126,7 +1128,8 @@ cdef class Generator:
... linewidth=2, color='r')
>>> plt.show()
- Two-by-four array of samples from N(3, 6.25):
+ Two-by-four array of samples from the normal distribution with
+ mean 3 and standard deviation 2.5:
>>> np.random.default_rng().normal(3, 2.5, size=(2, 4))
array([[-4.49401501, 4.00950034, -1.81814867, 7.29718677], # random
diff --git a/numpy/random/mtrand.pyx b/numpy/random/mtrand.pyx
index 408d5a332..19d23f6a8 100644
--- a/numpy/random/mtrand.pyx
+++ b/numpy/random/mtrand.pyx
@@ -1224,16 +1224,18 @@ cdef class RandomState:
Notes
-----
- For random samples from :math:`N(\\mu, \\sigma^2)`, use:
+ For random samples from the normal distribution with mean ``mu`` and
+ standard deviation ``sigma``, use::
- ``sigma * np.random.randn(...) + mu``
+ sigma * np.random.randn(...) + mu
Examples
--------
>>> np.random.randn()
2.1923875335537315 # random
- Two-by-four array of samples from N(3, 6.25):
+ Two-by-four array of samples from the normal distribution with
+ mean 3 and standard deviation 2.5:
>>> 3 + 2.5 * np.random.randn(2, 4)
array([[-4.49401501, 4.00950034, -1.81814867, 7.29718677], # random
@@ -1373,7 +1375,8 @@ cdef class RandomState:
Notes
-----
- For random samples from :math:`N(\\mu, \\sigma^2)`, use one of::
+ For random samples from the normal distribution with mean ``mu`` and
+ standard deviation ``sigma``, use one of::
mu + sigma * np.random.standard_normal(size=...)
np.random.normal(mu, sigma, size=...)
@@ -1393,7 +1396,8 @@ cdef class RandomState:
>>> s.shape
(3, 4, 2)
- Two-by-four array of samples from :math:`N(3, 6.25)`:
+ Two-by-four array of samples from the normal distribution with
+ mean 3 and standard deviation 2.5:
>>> 3 + 2.5 * np.random.standard_normal(size=(2, 4))
array([[-4.49401501, 4.00950034, -1.81814867, 7.29718677], # random
@@ -1500,7 +1504,8 @@ cdef class RandomState:
... linewidth=2, color='r')
>>> plt.show()
- Two-by-four array of samples from N(3, 6.25):
+ Two-by-four array of samples from the normal distribution with
+ mean 3 and standard deviation 2.5:
>>> np.random.normal(3, 2.5, size=(2, 4))
array([[-4.49401501, 4.00950034, -1.81814867, 7.29718677], # random