diff options
Diffstat (limited to 'numpy')
| -rw-r--r-- | numpy/core/include/numpy/experimental_dtype_api.h | 6 | ||||
| -rw-r--r-- | numpy/core/src/umath/dispatching.c | 383 | ||||
| -rw-r--r-- | numpy/core/src/umath/dispatching.h | 14 | ||||
| -rw-r--r-- | numpy/core/src/umath/legacy_array_method.c | 34 | ||||
| -rw-r--r-- | numpy/core/src/umath/ufunc_object.c | 81 | ||||
| -rw-r--r-- | numpy/core/tests/test_datetime.py | 8 | ||||
| -rw-r--r-- | numpy/core/tests/test_ufunc.py | 63 |
7 files changed, 456 insertions, 133 deletions
diff --git a/numpy/core/include/numpy/experimental_dtype_api.h b/numpy/core/include/numpy/experimental_dtype_api.h index 554c7fb6c..effa66baf 100644 --- a/numpy/core/include/numpy/experimental_dtype_api.h +++ b/numpy/core/include/numpy/experimental_dtype_api.h @@ -181,6 +181,12 @@ typedef PyObject *_ufunc_addloop_fromspec_func( /* * Type of the C promoter function, which must be wrapped into a * PyCapsule with name "numpy._ufunc_promoter". + * + * Note that currently the output dtypes are always NULL unless they are + * also part of the signature. This is an implementation detail and could + * change in the future. However, in general promoters should not have a + * need for output dtypes. + * (There are potential use-cases, these are currently unsupported.) */ typedef int promoter_function(PyObject *ufunc, PyArray_DTypeMeta *op_dtypes[], PyArray_DTypeMeta *signature[], diff --git a/numpy/core/src/umath/dispatching.c b/numpy/core/src/umath/dispatching.c index 8e99c0420..664288084 100644 --- a/numpy/core/src/umath/dispatching.c +++ b/numpy/core/src/umath/dispatching.c @@ -46,12 +46,16 @@ #include "dispatching.h" #include "dtypemeta.h" +#include "common_dtype.h" #include "npy_hashtable.h" #include "legacy_array_method.h" #include "ufunc_object.h" #include "ufunc_type_resolution.h" +#define PROMOTION_DEBUG_TRACING 0 + + /* forward declaration */ static NPY_INLINE PyObject * promote_and_get_info_and_ufuncimpl(PyUFuncObject *ufunc, @@ -147,6 +151,23 @@ PyUFunc_AddLoop(PyUFuncObject *ufunc, PyObject *info, int ignore_duplicate) * (Based on `isinstance()`, the knowledge that non-abstract DTypes cannot * be subclassed is used, however.) * + * NOTE: This currently does not take into account output dtypes which do not + * have to match. The possible extension here is that if an output + * is given (and thus an output dtype), but not part of the signature + * we could ignore it for matching, but *prefer* a loop that matches + * better. + * Why is this not done currently? First, it seems a niche feature that + * loops can only be distinguished based on the output dtype. Second, + * there are some nasty theoretical things because: + * + * np.add(f4, f4, out=f8) + * np.add(f4, f4, out=f8, dtype=f8) + * + * are different, the first uses the f4 loop, the second the f8 loop. + * The problem is, that the current cache only uses the op_dtypes and + * both are `(f4, f4, f8)`. The cache would need to store also which + * output was provided by `dtype=`/`signature=`. + * * @param ufunc * @param op_dtypes The DTypes that are either passed in (defined by an * operand) or defined by the `signature` as also passed in as @@ -159,17 +180,35 @@ PyUFunc_AddLoop(PyUFuncObject *ufunc, PyObject *info, int ignore_duplicate) */ static int resolve_implementation_info(PyUFuncObject *ufunc, - PyArray_DTypeMeta *op_dtypes[], PyObject **out_info) + PyArray_DTypeMeta *op_dtypes[], npy_bool only_promoters, + PyObject **out_info) { int nin = ufunc->nin, nargs = ufunc->nargs; Py_ssize_t size = PySequence_Length(ufunc->_loops); PyObject *best_dtypes = NULL; PyObject *best_resolver_info = NULL; +#if PROMOTION_DEBUG_TRACING + printf("Promoting for '%s' promoters only: %d\n", + ufunc->name ? ufunc->name : "<unknown>", (int)only_promoters); + printf(" DTypes: "); + PyObject *tmp = PyArray_TupleFromItems(ufunc->nargs, op_dtypes, 1); + PyObject_Print(tmp, stdout, 0); + Py_DECREF(tmp); + printf("\n"); + Py_DECREF(tmp); +#endif + for (Py_ssize_t res_idx = 0; res_idx < size; res_idx++) { /* Test all resolvers */ PyObject *resolver_info = PySequence_Fast_GET_ITEM( ufunc->_loops, res_idx); + + if (only_promoters && PyObject_TypeCheck( + PyTuple_GET_ITEM(resolver_info, 1), &PyArrayMethod_Type)) { + continue; + } + PyObject *curr_dtypes = PyTuple_GET_ITEM(resolver_info, 0); /* * Test if the current resolver matches, it could make sense to @@ -179,20 +218,31 @@ resolve_implementation_info(PyUFuncObject *ufunc, npy_bool matches = NPY_TRUE; /* - * NOTE: We check also the output DType. In principle we do not - * have to strictly match it (unless it is provided by the - * `signature`). This assumes that a (fallback) promoter will - * unset the output DType if no exact match is found. + * NOTE: We currently match the output dtype exactly here, this is + * actually only necessary if the signature includes. + * Currently, we rely that op-dtypes[nin:nout] is NULLed if not. */ for (Py_ssize_t i = 0; i < nargs; i++) { PyArray_DTypeMeta *given_dtype = op_dtypes[i]; PyArray_DTypeMeta *resolver_dtype = ( (PyArray_DTypeMeta *)PyTuple_GET_ITEM(curr_dtypes, i)); assert((PyObject *)given_dtype != Py_None); - if (given_dtype == NULL && i >= nin) { - /* Unspecified out always matches (see below for inputs) */ - continue; + if (given_dtype == NULL) { + if (i >= nin) { + /* Unspecified out always matches (see below for inputs) */ + continue; + } + /* + * This is a reduce-like operation, which always have the form + * `(res_DType, op_DType, res_DType)`. If the first and last + * dtype of the loops match, this should be reduce-compatible. + */ + if (PyTuple_GET_ITEM(curr_dtypes, 0) + == PyTuple_GET_ITEM(curr_dtypes, 2)) { + continue; + } } + if (resolver_dtype == (PyArray_DTypeMeta *)Py_None) { /* always matches */ continue; @@ -204,24 +254,7 @@ resolve_implementation_info(PyUFuncObject *ufunc, matches = NPY_FALSE; break; } - if (given_dtype == NULL) { - /* - * If an input was not specified, this is a reduce-like - * operation: reductions use `(operand_DType, NULL, out_DType)` - * as they only have a single operand. This allows special - * reduce promotion rules useful for example for sum/product. - * E.g. `np.add.reduce([True, True])` promotes to integer. - * - * Continuing here allows a promoter to handle reduce-like - * promotions explicitly if necessary. - * TODO: The `!NPY_DT_is_abstract(resolver_dtype)` currently - * ensures that this is a promoter. If we allow - * `ArrayMethods` to use abstract DTypes, we may have to - * reject it here or the `ArrayMethod` has to implement - * the reduce promotion. - */ - continue; - } + int subclass = PyObject_IsSubclass( (PyObject *)given_dtype, (PyObject *)resolver_dtype); if (subclass < 0) { @@ -254,8 +287,12 @@ resolve_implementation_info(PyUFuncObject *ufunc, * In all cases, we give up resolution, since it would be * necessary to compare to two "best" cases. */ - int unambiguously_equally_good = 1; for (Py_ssize_t i = 0; i < nargs; i++) { + if (i == ufunc->nin && current_best != -1) { + /* inputs prefer one loop and outputs have lower priority */ + break; + } + int best; PyObject *prev_dtype = PyTuple_GET_ITEM(best_dtypes, i); @@ -265,50 +302,18 @@ resolve_implementation_info(PyUFuncObject *ufunc, /* equivalent, so this entry does not matter */ continue; } - /* - * TODO: Even if the input is not specified, if we have - * abstract DTypes and one is a subclass of the other, - * the subclass should be considered a better match - * (subclasses are always more specific). - */ - /* Whether this (normally output) dtype was specified at all */ if (op_dtypes[i] == NULL) { /* - * When DType is completely unspecified, prefer abstract - * over concrete, assuming it will resolve. - * Furthermore, we cannot decide which abstract/None - * is "better", only concrete ones which are subclasses - * of Abstract ones are defined as worse. + * If an a dtype is NULL it always matches, so there is no + * point in defining one as more precise than the other. */ - npy_bool prev_is_concrete = NPY_FALSE; - npy_bool new_is_concrete = NPY_FALSE; - if ((prev_dtype != Py_None) && - !NPY_DT_is_abstract((PyArray_DTypeMeta *)prev_dtype)) { - prev_is_concrete = NPY_TRUE; - } - if ((new_dtype != Py_None) && - !NPY_DT_is_abstract((PyArray_DTypeMeta *)new_dtype)) { - new_is_concrete = NPY_TRUE; - } - if (prev_is_concrete == new_is_concrete) { - best = -1; - } - else if (prev_is_concrete) { - unambiguously_equally_good = 0; - best = 1; - } - else { - unambiguously_equally_good = 0; - best = 0; - } + continue; } /* If either is None, the other is strictly more specific */ - else if (prev_dtype == Py_None) { - unambiguously_equally_good = 0; + if (prev_dtype == Py_None) { best = 1; } else if (new_dtype == Py_None) { - unambiguously_equally_good = 0; best = 0; } /* @@ -318,20 +323,25 @@ resolve_implementation_info(PyUFuncObject *ufunc, else if (!NPY_DT_is_abstract((PyArray_DTypeMeta *)prev_dtype) && !NPY_DT_is_abstract((PyArray_DTypeMeta *)new_dtype)) { /* - * Ambiguous unless the are identical (checked above), - * but since they are concrete it does not matter which - * best to compare. + * Ambiguous unless they are identical (checked above), + * or one matches exactly. */ - best = -1; + if (prev_dtype == (PyObject *)op_dtypes[i]) { + best = 0; + } + else if (new_dtype == (PyObject *)op_dtypes[i]) { + best = 1; + } + else { + best = -1; + } } else if (!NPY_DT_is_abstract((PyArray_DTypeMeta *)prev_dtype)) { /* old is not abstract, so better (both not possible) */ - unambiguously_equally_good = 0; best = 0; } else if (!NPY_DT_is_abstract((PyArray_DTypeMeta *)new_dtype)) { /* new is not abstract, so better (both not possible) */ - unambiguously_equally_good = 0; best = 1; } /* @@ -349,6 +359,10 @@ resolve_implementation_info(PyUFuncObject *ufunc, return -1; } + if (best == -1) { + /* no new info, nothing to update */ + continue; + } if ((current_best != -1) && (current_best != best)) { /* * We need a clear best, this could be tricky, unless @@ -367,15 +381,34 @@ resolve_implementation_info(PyUFuncObject *ufunc, if (current_best == -1) { /* - * TODO: It would be nice to have a "diagnostic mode" that - * informs if this happens! (An immediate error currently - * blocks later legacy resolution, but may work in the - * future.) + * We could not find a best loop, but promoters should be + * designed in a way to disambiguate such scenarios, so we + * retry the whole lookup using only promoters. + * (There is a small chance we already got two promoters. + * We just redo it anyway for simplicity.) */ - if (unambiguously_equally_good) { - /* unset the best resolver to indicate this */ - best_resolver_info = NULL; - continue; + if (!only_promoters) { + return resolve_implementation_info(ufunc, + op_dtypes, NPY_TRUE, out_info); + } + /* + * If this is already the retry, we are out of luck. Promoters + * should be designed in a way that this cannot happen! + * (It should be noted, that the retry might not find anything + * and we still do a legacy lookup later.) + */ + PyObject *given = PyArray_TupleFromItems( + ufunc->nargs, (PyObject **)op_dtypes, 1); + if (given != NULL) { + PyErr_Format(PyExc_RuntimeError, + "Could not find a loop for the inputs:\n %S\n" + "The two promoters %S and %S matched the input " + "equally well. Promoters must be designed " + "to be unambiguous. NOTE: This indicates an error " + "in NumPy or an extending library and should be " + "reported.", + given, best_dtypes, curr_dtypes); + Py_DECREF(given); } *out_info = NULL; return 0; @@ -648,7 +681,8 @@ promote_and_get_info_and_ufuncimpl(PyUFuncObject *ufunc, * in `resolve_implementation_info`. */ if (info == NULL) { - if (resolve_implementation_info(ufunc, op_dtypes, &info) < 0) { + if (resolve_implementation_info(ufunc, + op_dtypes, NPY_FALSE, &info) < 0) { return NULL; } if (info != NULL && PyObject_TypeCheck( @@ -663,35 +697,6 @@ promote_and_get_info_and_ufuncimpl(PyUFuncObject *ufunc, } return info; } - else if (info == NULL && op_dtypes[0] == NULL) { - /* - * If we have a reduction, fill in the unspecified input/array - * assuming it should have the same dtype as the operand input - * (or the output one if given). - * Then, try again. In some cases, this will choose different - * paths, such as `ll->?` instead of an `??->?` loop for `np.equal` - * when the input is `.l->.` (`.` meaning undefined). This will - * then cause an error. But cast to `?` would always lose - * information, and in many cases important information: - * - * ```python - * from operator import eq - * from functools import reduce - * - * reduce(eq, [1, 2, 3]) != reduce(eq, [True, True, True]) - * ``` - * - * The special cases being `logical_(and|or|xor)` which can always - * cast to boolean ahead of time and still give the right answer - * (unsafe cast to bool is fine here). We special case these at - * the time of this comment (NumPy 1.21). - */ - assert(ufunc->nin == 2 && ufunc->nout == 1); - op_dtypes[0] = op_dtypes[2] != NULL ? op_dtypes[2] : op_dtypes[1]; - Py_INCREF(op_dtypes[0]); - return promote_and_get_info_and_ufuncimpl(ufunc, - ops, signature, op_dtypes, allow_legacy_promotion, 1); - } } /* @@ -745,6 +750,14 @@ promote_and_get_info_and_ufuncimpl(PyUFuncObject *ufunc, * only work with DType (classes/types). This is because it has to ensure * that legacy (value-based promotion) is used when necessary. * + * NOTE: The machinery here currently ignores output arguments unless + * they are part of the signature. This slightly limits unsafe loop + * specializations, which is important for the `ensure_reduce_compatible` + * fallback mode. + * To fix this, the caching mechanism (and dispatching) can be extended. + * When/if that happens, the `ensure_reduce_compatible` could be + * deprecated (it should never kick in because promotion kick in first). + * * @param ufunc The ufunc object, used mainly for the fallback. * @param ops The array operands (used only for the fallback). * @param signature As input, the DType signature fixed explicitly by the user. @@ -754,9 +767,16 @@ promote_and_get_info_and_ufuncimpl(PyUFuncObject *ufunc, * either by the `signature` or by an `operand`. * (outputs and the second input can be NULL for reductions). * NOTE: In some cases, the promotion machinery may currently modify - * these. + * these including clearing the output. * @param force_legacy_promotion If set, we have to use the old type resolution * to implement value-based promotion/casting. + * @param ensure_reduce_compatible Must be set for reductions, in which case + * the found implementation is checked for reduce-like compatibility. + * If it is *not* compatible and `signature[2] != NULL`, we assume its + * output DType is correct (see NOTE above). + * If removed, promotion may require information about whether this + * is a reduction, so the more likely case is to always keep fixing this + * when necessary, but push down the handling so it can be cached. */ NPY_NO_EXPORT PyArrayMethodObject * promote_and_get_ufuncimpl(PyUFuncObject *ufunc, @@ -764,9 +784,10 @@ promote_and_get_ufuncimpl(PyUFuncObject *ufunc, PyArray_DTypeMeta *signature[], PyArray_DTypeMeta *op_dtypes[], npy_bool force_legacy_promotion, - npy_bool allow_legacy_promotion) + npy_bool allow_legacy_promotion, + npy_bool ensure_reduce_compatible) { - int nargs = ufunc->nargs; + int nin = ufunc->nin, nargs = ufunc->nargs; /* * Get the actual DTypes we operate with by mixing the operand array @@ -782,6 +803,15 @@ promote_and_get_ufuncimpl(PyUFuncObject *ufunc, Py_XSETREF(op_dtypes[i], signature[i]); assert(i >= ufunc->nin || !NPY_DT_is_abstract(signature[i])); } + else if (i >= nin) { + /* + * We currently just ignore outputs if not in signature, this will + * always give the/a correct result (limits registering specialized + * loops which include the cast). + * (See also comment in resolve_implementation_info.) + */ + Py_CLEAR(op_dtypes[i]); + } } if (force_legacy_promotion) { @@ -809,8 +839,26 @@ promote_and_get_ufuncimpl(PyUFuncObject *ufunc, PyArrayMethodObject *method = (PyArrayMethodObject *)PyTuple_GET_ITEM(info, 1); - /* Fill `signature` with final DTypes used by the ArrayMethod/inner-loop */ + /* + * In certain cases (only the logical ufuncs really), the loop we found may + * not be reduce-compatible. Since the machinery can't distinguish a + * reduction with an output from a normal ufunc call, we have to assume + * the result DType is correct and force it for the input (if not forced + * already). + * NOTE: This does assume that all loops are "safe" see the NOTE in this + * comment. That could be relaxed, in which case we may need to + * cache if a call was for a reduction. + */ PyObject *all_dtypes = PyTuple_GET_ITEM(info, 0); + if (ensure_reduce_compatible && signature[0] == NULL && + PyTuple_GET_ITEM(all_dtypes, 0) != PyTuple_GET_ITEM(all_dtypes, 2)) { + signature[0] = (PyArray_DTypeMeta *)PyTuple_GET_ITEM(all_dtypes, 2); + Py_INCREF(signature[0]); + return promote_and_get_ufuncimpl(ufunc, + ops, signature, op_dtypes, + force_legacy_promotion, allow_legacy_promotion, NPY_FALSE); + } + for (int i = 0; i < nargs; i++) { if (signature[i] == NULL) { signature[i] = (PyArray_DTypeMeta *)PyTuple_GET_ITEM(all_dtypes, i); @@ -826,6 +874,112 @@ promote_and_get_ufuncimpl(PyUFuncObject *ufunc, /* + * Generic promoter used by as a final fallback on ufuncs. Most operations are + * homogeneous, so we can try to find the homogeneous dtype on the inputs + * and use that. + * We need to special case the reduction case, where op_dtypes[0] == NULL + * is possible. + */ +NPY_NO_EXPORT int +default_ufunc_promoter(PyUFuncObject *ufunc, + PyArray_DTypeMeta *op_dtypes[], PyArray_DTypeMeta *signature[], + PyArray_DTypeMeta *new_op_dtypes[]) +{ + if (ufunc->type_resolver == &PyUFunc_SimpleBinaryComparisonTypeResolver + && signature[0] == NULL && signature[1] == NULL + && signature[2] != NULL && signature[2]->type_num != NPY_BOOL) { + /* bail out, this is _only_ to give future/deprecation warning! */ + return -1; + } + + /* If nin < 2 promotion is a no-op, so it should not be registered */ + assert(ufunc->nin > 1); + if (op_dtypes[0] == NULL) { + assert(ufunc->nin == 2 && ufunc->nout == 1); /* must be reduction */ + Py_INCREF(op_dtypes[1]); + new_op_dtypes[0] = op_dtypes[1]; + Py_INCREF(op_dtypes[1]); + new_op_dtypes[1] = op_dtypes[1]; + Py_INCREF(op_dtypes[1]); + new_op_dtypes[2] = op_dtypes[1]; + return 0; + } + PyArray_DTypeMeta *common = NULL; + /* + * If a signature is used and homogeneous in its outputs use that + * (Could/should likely be rather applied to inputs also, although outs + * only could have some advantage and input dtypes are rarely enforced.) + */ + for (int i = ufunc->nin; i < ufunc->nargs; i++) { + if (signature[i] != NULL) { + if (common == NULL) { + Py_INCREF(signature[i]); + common = signature[i]; + } + else if (common != signature[i]) { + Py_CLEAR(common); /* Not homogeneous, unset common */ + break; + } + } + } + /* Otherwise, use the common DType of all input operands */ + if (common == NULL) { + common = PyArray_PromoteDTypeSequence(ufunc->nin, op_dtypes); + if (common == NULL) { + if (PyErr_ExceptionMatches(PyExc_TypeError)) { + PyErr_Clear(); /* Do not propagate normal promotion errors */ + } + return -1; + } + } + + for (int i = 0; i < ufunc->nargs; i++) { + PyArray_DTypeMeta *tmp = common; + if (signature[i]) { + tmp = signature[i]; /* never replace a fixed one. */ + } + Py_INCREF(tmp); + new_op_dtypes[i] = tmp; + } + for (int i = ufunc->nin; i < ufunc->nargs; i++) { + Py_XINCREF(op_dtypes[i]); + new_op_dtypes[i] = op_dtypes[i]; + } + + Py_DECREF(common); + return 0; +} + + +/* + * In some cases, we assume that there will only ever be object loops, + * and the object loop should *always* be chosen. + * (in those cases more specific loops should not really be registered, but + * we do not check that.) + * + * We default to this for "old-style" ufuncs which have exactly one loop + * consisting only of objects (during registration time, numba mutates this + * but presumably). + */ +NPY_NO_EXPORT int +object_only_ufunc_promoter(PyUFuncObject *ufunc, + PyArray_DTypeMeta *NPY_UNUSED(op_dtypes[]), + PyArray_DTypeMeta *signature[], + PyArray_DTypeMeta *new_op_dtypes[]) +{ + PyArray_DTypeMeta *object_DType = PyArray_DTypeFromTypeNum(NPY_OBJECT); + + for (int i = 0; i < ufunc->nargs; i++) { + if (signature[i] == NULL) { + Py_INCREF(object_DType); + new_op_dtypes[i] = object_DType; + } + } + Py_DECREF(object_DType); + return 0; +} + +/* * Special promoter for the logical ufuncs. The logical ufuncs can always * use the ??->? and still get the correct output (as long as the output * is not supposed to be `object`). @@ -843,6 +997,12 @@ logical_ufunc_promoter(PyUFuncObject *NPY_UNUSED(ufunc), */ int force_object = 0; + if (signature[0] == NULL && signature[1] == NULL + && signature[2] != NULL && signature[2]->type_num != NPY_BOOL) { + /* bail out, this is _only_ to give future/deprecation warning! */ + return -1; + } + for (int i = 0; i < 3; i++) { PyArray_DTypeMeta *item; if (signature[i] != NULL) { @@ -913,4 +1073,3 @@ install_logical_ufunc_promoter(PyObject *ufunc) return PyUFunc_AddLoop((PyUFuncObject *)ufunc, info, 0); } - diff --git a/numpy/core/src/umath/dispatching.h b/numpy/core/src/umath/dispatching.h index 2f314615d..a7e9e88d0 100644 --- a/numpy/core/src/umath/dispatching.h +++ b/numpy/core/src/umath/dispatching.h @@ -20,13 +20,25 @@ promote_and_get_ufuncimpl(PyUFuncObject *ufunc, PyArray_DTypeMeta *signature[], PyArray_DTypeMeta *op_dtypes[], npy_bool force_legacy_promotion, - npy_bool allow_legacy_promotion); + npy_bool allow_legacy_promotion, + npy_bool ensure_reduce_compatible); NPY_NO_EXPORT PyObject * add_and_return_legacy_wrapping_ufunc_loop(PyUFuncObject *ufunc, PyArray_DTypeMeta *operation_dtypes[], int ignore_duplicate); NPY_NO_EXPORT int +default_ufunc_promoter(PyUFuncObject *ufunc, + PyArray_DTypeMeta *op_dtypes[], PyArray_DTypeMeta *signature[], + PyArray_DTypeMeta *new_op_dtypes[]); + +NPY_NO_EXPORT int +object_only_ufunc_promoter(PyUFuncObject *ufunc, + PyArray_DTypeMeta *NPY_UNUSED(op_dtypes[]), + PyArray_DTypeMeta *signature[], + PyArray_DTypeMeta *new_op_dtypes[]); + +NPY_NO_EXPORT int install_logical_ufunc_promoter(PyObject *ufunc); diff --git a/numpy/core/src/umath/legacy_array_method.c b/numpy/core/src/umath/legacy_array_method.c index a423823d4..99de63aac 100644 --- a/numpy/core/src/umath/legacy_array_method.c +++ b/numpy/core/src/umath/legacy_array_method.c @@ -123,10 +123,40 @@ simple_legacy_resolve_descriptors( PyArray_Descr **given_descrs, PyArray_Descr **output_descrs) { + int i = 0; int nin = method->nin; int nout = method->nout; - for (int i = 0; i < nin + nout; i++) { + if (nin == 2 && nout == 1 && given_descrs[2] != NULL + && dtypes[0] == dtypes[2]) { + /* + * Could be a reduction, which requires `descr[0] is descr[2]` + * (identity) at least currently. This is because `op[0] is op[2]`. + * (If the output descriptor is not passed, the below works.) + */ + output_descrs[2] = ensure_dtype_nbo(given_descrs[2]); + if (output_descrs[2] == NULL) { + Py_CLEAR(output_descrs[2]); + return -1; + } + Py_INCREF(output_descrs[2]); + output_descrs[0] = output_descrs[2]; + if (dtypes[1] == dtypes[2]) { + /* Same for the second one (accumulation is stricter) */ + Py_INCREF(output_descrs[2]); + output_descrs[1] = output_descrs[2]; + } + else { + output_descrs[1] = ensure_dtype_nbo(given_descrs[1]); + if (output_descrs[1] == NULL) { + i = 2; + goto fail; + } + } + return NPY_NO_CASTING; + } + + for (; i < nin + nout; i++) { if (given_descrs[i] != NULL) { output_descrs[i] = ensure_dtype_nbo(given_descrs[i]); } @@ -146,7 +176,7 @@ simple_legacy_resolve_descriptors( return NPY_NO_CASTING; fail: - for (int i = 0; i < nin + nout; i++) { + for (; i >= 0; i--) { Py_CLEAR(output_descrs[i]); } return -1; diff --git a/numpy/core/src/umath/ufunc_object.c b/numpy/core/src/umath/ufunc_object.c index 186f18a62..97dc9f00f 100644 --- a/numpy/core/src/umath/ufunc_object.c +++ b/numpy/core/src/umath/ufunc_object.c @@ -2717,11 +2717,11 @@ reducelike_promote_and_resolve(PyUFuncObject *ufunc, char *method) { /* - * Note that the `ops` is not realy correct. But legacy resolution + * Note that the `ops` is not really correct. But legacy resolution * cannot quite handle the correct ops (e.g. a NULL first item if `out` - * is NULL), and it should only matter in very strange cases. + * is NULL) so we pass `arr` instead in that case. */ - PyArrayObject *ops[3] = {arr, arr, NULL}; + PyArrayObject *ops[3] = {out ? out : arr, arr, out}; /* * TODO: If `out` is not provided, arguably `initial` could define * the first DType (and maybe also the out one), that way @@ -2741,11 +2741,12 @@ reducelike_promote_and_resolve(PyUFuncObject *ufunc, } PyArrayMethodObject *ufuncimpl = promote_and_get_ufuncimpl(ufunc, - ops, signature, operation_DTypes, NPY_FALSE, NPY_TRUE); - Py_DECREF(operation_DTypes[1]); + ops, signature, operation_DTypes, NPY_FALSE, NPY_FALSE, NPY_TRUE); + /* Output can currently get cleared, others XDECREF in case of error */ + Py_XDECREF(operation_DTypes[1]); if (out != NULL) { - Py_DECREF(operation_DTypes[0]); - Py_DECREF(operation_DTypes[2]); + Py_XDECREF(operation_DTypes[0]); + Py_XDECREF(operation_DTypes[2]); } if (ufuncimpl == NULL) { return NULL; @@ -2771,8 +2772,10 @@ reducelike_promote_and_resolve(PyUFuncObject *ufunc, if (out_descrs[0] != out_descrs[2] || ( enforce_uniform_args && out_descrs[0] != out_descrs[1])) { PyErr_Format(PyExc_TypeError, - "the resolved dtypes are not compatible with %s.%s", - ufunc_get_name_cstr(ufunc), method); + "the resolved dtypes are not compatible with %s.%s. " + "Resolved (%R, %R, %R)", + ufunc_get_name_cstr(ufunc), method, + out_descrs[0], out_descrs[1], out_descrs[2]); goto fail; } /* TODO: This really should _not_ be unsafe casting (same above)! */ @@ -4852,7 +4855,8 @@ ufunc_generic_fastcall(PyUFuncObject *ufunc, */ PyArrayMethodObject *ufuncimpl = promote_and_get_ufuncimpl(ufunc, operands, signature, - operand_DTypes, force_legacy_promotion, allow_legacy_promotion); + operand_DTypes, force_legacy_promotion, allow_legacy_promotion, + NPY_FALSE); if (ufuncimpl == NULL) { goto fail; } @@ -5190,6 +5194,61 @@ PyUFunc_FromFuncAndDataAndSignatureAndIdentity(PyUFuncGenericFunction *func, voi info = add_and_return_legacy_wrapping_ufunc_loop(ufunc, op_dtypes, 1); if (info == NULL) { + Py_DECREF(ufunc); + return NULL; + } + } + + PyObject *promoter = NULL; + if (ufunc->ntypes == 1) { + npy_bool all_object = NPY_TRUE; + for (int i = 0; i < ufunc->nargs; i++) { + if (ufunc->types[i] != NPY_OBJECT) { + all_object = NPY_FALSE; + break; + } + } + if (all_object) { + promoter = PyCapsule_New(&object_only_ufunc_promoter, + "numpy._ufunc_promoter", NULL); + if (promoter == NULL) { + Py_DECREF(ufunc); + return NULL; + } + } + } + if (promoter == NULL && ufunc->nin > 1) { + promoter = PyCapsule_New(&default_ufunc_promoter, + "numpy._ufunc_promoter", NULL); + if (promoter == NULL) { + Py_DECREF(ufunc); + return NULL; + } + } + if (promoter != NULL) { + /* Always install default promoter using the common DType */ + PyObject *dtype_tuple = PyTuple_New(ufunc->nargs); + if (dtype_tuple == NULL) { + Py_DECREF(promoter); + Py_DECREF(ufunc); + return NULL; + } + for (int i = 0; i < ufunc->nargs; i++) { + Py_INCREF(Py_None); + PyTuple_SET_ITEM(dtype_tuple, i, Py_None); + } + PyObject *info = PyTuple_Pack(2, dtype_tuple, promoter); + Py_DECREF(dtype_tuple); + Py_DECREF(promoter); + if (info == NULL) { + Py_DECREF(ufunc); + return NULL; + } + + int res = PyUFunc_AddLoop((PyUFuncObject *)ufunc, info, 0); + Py_DECREF(info); + if (res < 0) { + Py_DECREF(ufunc); return NULL; } } @@ -5963,7 +6022,7 @@ ufunc_at(PyUFuncObject *ufunc, PyObject *args) PyArrayMethodObject *ufuncimpl = promote_and_get_ufuncimpl(ufunc, operands, signature, operand_DTypes, - force_legacy_promotion, allow_legacy_promotion); + force_legacy_promotion, allow_legacy_promotion, NPY_FALSE); if (ufuncimpl == NULL) { goto fail; } diff --git a/numpy/core/tests/test_datetime.py b/numpy/core/tests/test_datetime.py index b95d669a8..50da7b800 100644 --- a/numpy/core/tests/test_datetime.py +++ b/numpy/core/tests/test_datetime.py @@ -2033,15 +2033,15 @@ class TestDateTime: # subtracting two datetime64 works, but we cannot reduce it, since # the result of that subtraction will have a different dtype. arr = np.array(["2021-12-02", "2019-05-12"], dtype="M8[ms]") - msg = r"the resolved dtypes are not compatible with subtract\." + msg = r"ufunc 'subtract' did not contain a loop with signature " - with pytest.raises(TypeError, match=msg + "reduce"): + with pytest.raises(TypeError, match=msg): np.subtract.reduce(arr) - with pytest.raises(TypeError, match=msg + "accumulate"): + with pytest.raises(TypeError, match=msg): np.subtract.accumulate(arr) - with pytest.raises(TypeError, match=msg + "reduceat"): + with pytest.raises(TypeError, match=msg): np.subtract.reduceat(arr, [0]) def test_datetime_busday_offset(self): diff --git a/numpy/core/tests/test_ufunc.py b/numpy/core/tests/test_ufunc.py index ef0bac957..76e4cdcfd 100644 --- a/numpy/core/tests/test_ufunc.py +++ b/numpy/core/tests/test_ufunc.py @@ -1762,12 +1762,15 @@ class TestUfunc: result = _rational_tests.test_add(a, b) assert_equal(result, target) - # But since we use the old type resolver, this may not work - # for dtype variations unless the output dtype is given: + # This works even more generally, so long the default common-dtype + # promoter works out: result = _rational_tests.test_add(a, b.astype(np.uint16), out=c) assert_equal(result, target) + + # But, it can be fooled, e.g. (use scalars, which forces legacy + # type resolution to kick in, which then fails): with assert_raises(TypeError): - _rational_tests.test_add(a, b.astype(np.uint16)) + _rational_tests.test_add(a, np.uint16(2)) def test_operand_flags(self): a = np.arange(16, dtype='l').reshape(4, 4) @@ -2123,6 +2126,17 @@ class TestUfunc: c = np.array([1., 2.]) assert_array_equal(ufunc(a, c), ufunc([True, True], True)) assert ufunc.reduce(a) == True + # check that the output has no effect: + out = np.zeros(2, dtype=np.int32) + expected = ufunc([True, True], True).astype(out.dtype) + assert_array_equal(ufunc(a, c, out=out), expected) + out = np.zeros((), dtype=np.int32) + assert ufunc.reduce(a, out=out) == True + # Last check, test reduction when out and a match (the complexity here + # is that the "i,i->?" may seem right, but should not match. + a = np.array([3], dtype="i") + out = np.zeros((), dtype=a.dtype) + assert ufunc.reduce(a, out=out) == 1 @pytest.mark.parametrize("ufunc", [np.logical_and, np.logical_or, np.logical_xor]) @@ -2134,6 +2148,49 @@ class TestUfunc: # It would be safe, but not equiv casting: ufunc(a, c, out=out, casting="equiv") + def test_reducelike_out_promotes(self): + # Check that the out argument to reductions is considered for + # promotion. See also gh-20455. + # Note that these paths could prefer `initial=` in the future and + # do not up-cast to the default integer for add and prod + arr = np.ones(1000, dtype=np.uint8) + out = np.zeros((), dtype=np.uint16) + assert np.add.reduce(arr, out=out) == 1000 + arr[:10] = 2 + assert np.multiply.reduce(arr, out=out) == 2**10 + + # For legacy dtypes, the signature currently has to be forced if `out=` + # is passed. The two paths below should differ, without `dtype=` the + # expected result should be: `np.prod(arr.astype("f8")).astype("f4")`! + arr = np.full(5, 2**25-1, dtype=np.int64) + + # float32 and int64 promote to float64: + res = np.zeros((), dtype=np.float32) + # If `dtype=` is passed, the calculation is forced to float32: + single_res = np.zeros((), dtype=np.float32) + np.multiply.reduce(arr, out=single_res, dtype=np.float32) + assert single_res != res + + def test_reducelike_output_needs_identical_cast(self): + # Checks the case where the we have a simple byte-swap works, maily + # tests that this is not rejected directly. + # (interesting because we require descriptor identity in reducelikes). + arr = np.ones(20, dtype="f8") + out = np.empty((), dtype=arr.dtype.newbyteorder()) + expected = np.add.reduce(arr) + np.add.reduce(arr, out=out) + assert_array_equal(expected, out) + # Check reduceat: + out = np.empty(2, dtype=arr.dtype.newbyteorder()) + expected = np.add.reduceat(arr, [0, 1]) + np.add.reduceat(arr, [0, 1], out=out) + assert_array_equal(expected, out) + # And accumulate: + out = np.empty(arr.shape, dtype=arr.dtype.newbyteorder()) + expected = np.add.accumulate(arr) + np.add.accumulate(arr, out=out) + assert_array_equal(expected, out) + def test_reduce_noncontig_output(self): # Check that reduction deals with non-contiguous output arrays # appropriately. |
