diff options
Diffstat (limited to 'numpy')
-rw-r--r-- | numpy/core/include/numpy/ndarrayobject.h | 2 | ||||
-rw-r--r-- | numpy/core/src/common/lowlevel_strided_loops.h | 4 | ||||
-rw-r--r-- | numpy/core/src/common/numpyos.c | 2 | ||||
-rw-r--r-- | numpy/core/src/umath/ufunc_object.c | 2 | ||||
-rw-r--r-- | numpy/doc/glossary.py | 2 | ||||
-rw-r--r-- | numpy/doc/subclassing.py | 2 | ||||
-rw-r--r-- | numpy/fft/_pocketfft.py | 8 | ||||
-rw-r--r-- | numpy/lib/npyio.py | 2 | ||||
-rw-r--r-- | numpy/ma/extras.py | 2 | ||||
-rw-r--r-- | numpy/matrixlib/defmatrix.py | 2 | ||||
-rw-r--r-- | numpy/polynomial/chebyshev.py | 4 | ||||
-rw-r--r-- | numpy/polynomial/hermite.py | 8 | ||||
-rw-r--r-- | numpy/polynomial/hermite_e.py | 8 | ||||
-rw-r--r-- | numpy/polynomial/laguerre.py | 8 | ||||
-rw-r--r-- | numpy/polynomial/legendre.py | 4 | ||||
-rw-r--r-- | numpy/testing/_private/noseclasses.py | 2 | ||||
-rw-r--r-- | numpy/testing/_private/utils.py | 4 |
17 files changed, 33 insertions, 33 deletions
diff --git a/numpy/core/include/numpy/ndarrayobject.h b/numpy/core/include/numpy/ndarrayobject.h index b18d75f35..5ef1f10aa 100644 --- a/numpy/core/include/numpy/ndarrayobject.h +++ b/numpy/core/include/numpy/ndarrayobject.h @@ -214,7 +214,7 @@ PyArray_DiscardWritebackIfCopy(PyArrayObject *arr) /* Check to see if this key in the dictionary is the "title" entry of the tuple (i.e. a duplicate dictionary entry in the fields - dict. + dict). */ static NPY_INLINE int diff --git a/numpy/core/src/common/lowlevel_strided_loops.h b/numpy/core/src/common/lowlevel_strided_loops.h index 9208d5499..f2f12a55b 100644 --- a/numpy/core/src/common/lowlevel_strided_loops.h +++ b/numpy/core/src/common/lowlevel_strided_loops.h @@ -638,7 +638,7 @@ npy_bswap8_unaligned(char * x) * * Here is example code for a single array: * - * if (PyArray_TRIVIALLY_ITERABLE(self) { + * if (PyArray_TRIVIALLY_ITERABLE(self)) { * char *data; * npy_intp count, stride; * @@ -656,7 +656,7 @@ npy_bswap8_unaligned(char * x) * * Here is example code for a pair of arrays: * - * if (PyArray_TRIVIALLY_ITERABLE_PAIR(a1, a2) { + * if (PyArray_TRIVIALLY_ITERABLE_PAIR(a1, a2)) { * char *data1, *data2; * npy_intp count, stride1, stride2; * diff --git a/numpy/core/src/common/numpyos.c b/numpy/core/src/common/numpyos.c index 7a629f46f..42a71777b 100644 --- a/numpy/core/src/common/numpyos.c +++ b/numpy/core/src/common/numpyos.c @@ -248,7 +248,7 @@ check_ascii_format(const char *format) * Fix the generated string: make sure the decimal is ., that exponent has a * minimal number of digits, and that it has a decimal + one digit after that * decimal if decimal argument != 0 (Same effect that 'Z' format in - * PyOS_ascii_formatd + * PyOS_ascii_formatd) */ static char* fix_ascii_format(char* buf, size_t buflen, int decimal) diff --git a/numpy/core/src/umath/ufunc_object.c b/numpy/core/src/umath/ufunc_object.c index f34fbaf7f..c57199c79 100644 --- a/numpy/core/src/umath/ufunc_object.c +++ b/numpy/core/src/umath/ufunc_object.c @@ -2926,7 +2926,7 @@ PyUFunc_GeneralizedFunction(PyUFuncObject *ufunc, /* * The first nop strides are for the inner loop (but only can - * copy them after removing the core axes + * copy them after removing the core axes) */ memcpy(inner_strides, NpyIter_GetInnerStrideArray(iter), NPY_SIZEOF_INTP * nop); diff --git a/numpy/doc/glossary.py b/numpy/doc/glossary.py index 6d2e0010f..16a3b9241 100644 --- a/numpy/doc/glossary.py +++ b/numpy/doc/glossary.py @@ -159,7 +159,7 @@ Glossary field In a :term:`structured data type`, each sub-type is called a `field`. - The `field` has a name (a string), a type (any valid dtype, and + The `field` has a name (a string), a type (any valid dtype), and an optional `title`. See :ref:`arrays.dtypes` Fortran order diff --git a/numpy/doc/subclassing.py b/numpy/doc/subclassing.py index 5a54ddd90..7dc10e1c8 100644 --- a/numpy/doc/subclassing.py +++ b/numpy/doc/subclassing.py @@ -72,7 +72,7 @@ class, that points to the data in the original. There are other points in the use of ndarrays where we need such views, such as copying arrays (``c_arr.copy()``), creating ufunc output arrays (see also :ref:`array-wrap`), and reducing methods (like -``c_arr.mean()``. +``c_arr.mean()``). Relationship of view casting and new-from-template -------------------------------------------------- diff --git a/numpy/fft/_pocketfft.py b/numpy/fft/_pocketfft.py index 3eab242e5..e9f554fe7 100644 --- a/numpy/fft/_pocketfft.py +++ b/numpy/fft/_pocketfft.py @@ -524,8 +524,8 @@ def hfft(a, n=None, axis=-1, norm=None): domain and is real in the frequency domain. So here it's `hfft` for which you must supply the length of the result if it is to be odd. - * even: ``ihfft(hfft(a, 2*len(a) - 2) == a``, within roundoff error, - * odd: ``ihfft(hfft(a, 2*len(a) - 1) == a``, within roundoff error. + * even: ``ihfft(hfft(a, 2*len(a) - 2)) == a``, within roundoff error, + * odd: ``ihfft(hfft(a, 2*len(a) - 1)) == a``, within roundoff error. The correct interpretation of the hermitian input depends on the length of the original data, as given by `n`. This is because each input shape could @@ -604,8 +604,8 @@ def ihfft(a, n=None, axis=-1, norm=None): domain and is real in the frequency domain. So here it's `hfft` for which you must supply the length of the result if it is to be odd: - * even: ``ihfft(hfft(a, 2*len(a) - 2) == a``, within roundoff error, - * odd: ``ihfft(hfft(a, 2*len(a) - 1) == a``, within roundoff error. + * even: ``ihfft(hfft(a, 2*len(a) - 2)) == a``, within roundoff error, + * odd: ``ihfft(hfft(a, 2*len(a) - 1)) == a``, within roundoff error. Examples -------- diff --git a/numpy/lib/npyio.py b/numpy/lib/npyio.py index 1d62fc6e4..f5a548433 100644 --- a/numpy/lib/npyio.py +++ b/numpy/lib/npyio.py @@ -1655,7 +1655,7 @@ def genfromtxt(fname, dtype=float, comments='#', delimiter=None, ----- * When spaces are used as delimiters, or when no delimiter has been given as input, there should not be any missing data between two fields. - * When the variables are named (either by a flexible dtype or with `names`, + * When the variables are named (either by a flexible dtype or with `names`), there must not be any header in the file (else a ValueError exception is raised). * Individual values are not stripped of spaces by default. diff --git a/numpy/ma/extras.py b/numpy/ma/extras.py index 31648fb2e..f86ebf551 100644 --- a/numpy/ma/extras.py +++ b/numpy/ma/extras.py @@ -811,7 +811,7 @@ def compress_nd(x, axis=None): ---------- x : array_like, MaskedArray The array to operate on. If not a MaskedArray instance (or if no array - elements are masked, `x` is interpreted as a MaskedArray with `mask` + elements are masked), `x` is interpreted as a MaskedArray with `mask` set to `nomask`. axis : tuple of ints or int, optional Which dimensions to suppress slices from can be configured with this diff --git a/numpy/matrixlib/defmatrix.py b/numpy/matrixlib/defmatrix.py index 12ac74cb2..d1a1211aa 100644 --- a/numpy/matrixlib/defmatrix.py +++ b/numpy/matrixlib/defmatrix.py @@ -802,7 +802,7 @@ class matrix(N.ndarray): ------- ret : matrix object If `self` is non-singular, `ret` is such that ``ret * self`` == - ``self * ret`` == ``np.matrix(np.eye(self[0,:].size)`` all return + ``self * ret`` == ``np.matrix(np.eye(self[0,:].size))`` all return ``True``. Raises diff --git a/numpy/polynomial/chebyshev.py b/numpy/polynomial/chebyshev.py index 1329ba07d..4ddb0c688 100644 --- a/numpy/polynomial/chebyshev.py +++ b/numpy/polynomial/chebyshev.py @@ -1471,7 +1471,7 @@ def chebvander2d(x, y, deg): ------- vander2d : ndarray The shape of the returned matrix is ``x.shape + (order,)``, where - :math:`order = (deg[0]+1)*(deg([1]+1)`. The dtype will be the same + :math:`order = (deg[0]+1)*(deg[1]+1)`. The dtype will be the same as the converted `x` and `y`. See Also @@ -1525,7 +1525,7 @@ def chebvander3d(x, y, z, deg): ------- vander3d : ndarray The shape of the returned matrix is ``x.shape + (order,)``, where - :math:`order = (deg[0]+1)*(deg([1]+1)*(deg[2]+1)`. The dtype will + :math:`order = (deg[0]+1)*(deg[1]+1)*(deg[2]+1)`. The dtype will be the same as the converted `x`, `y`, and `z`. See Also diff --git a/numpy/polynomial/hermite.py b/numpy/polynomial/hermite.py index 44b26f5ee..487d8dfdb 100644 --- a/numpy/polynomial/hermite.py +++ b/numpy/polynomial/hermite.py @@ -1194,7 +1194,7 @@ def hermvander2d(x, y, deg): ------- vander2d : ndarray The shape of the returned matrix is ``x.shape + (order,)``, where - :math:`order = (deg[0]+1)*(deg([1]+1)`. The dtype will be the same + :math:`order = (deg[0]+1)*(deg[1]+1)`. The dtype will be the same as the converted `x` and `y`. See Also @@ -1248,7 +1248,7 @@ def hermvander3d(x, y, z, deg): ------- vander3d : ndarray The shape of the returned matrix is ``x.shape + (order,)``, where - :math:`order = (deg[0]+1)*(deg([1]+1)*(deg[2]+1)`. The dtype will + :math:`order = (deg[0]+1)*(deg[1]+1)*(deg[2]+1)`. The dtype will be the same as the converted `x`, `y`, and `z`. See Also @@ -1369,8 +1369,8 @@ def hermfit(x, y, deg, rcond=None, full=False, w=None): Fits using Hermite series are probably most useful when the data can be approximated by ``sqrt(w(x)) * p(x)``, where `w(x)` is the Hermite - weight. In that case the weight ``sqrt(w(x[i])`` should be used - together with data values ``y[i]/sqrt(w(x[i])``. The weight function is + weight. In that case the weight ``sqrt(w(x[i]))`` should be used + together with data values ``y[i]/sqrt(w(x[i]))``. The weight function is available as `hermweight`. References diff --git a/numpy/polynomial/hermite_e.py b/numpy/polynomial/hermite_e.py index 1a18843ec..cbec15184 100644 --- a/numpy/polynomial/hermite_e.py +++ b/numpy/polynomial/hermite_e.py @@ -1187,7 +1187,7 @@ def hermevander2d(x, y, deg): ------- vander2d : ndarray The shape of the returned matrix is ``x.shape + (order,)``, where - :math:`order = (deg[0]+1)*(deg([1]+1)`. The dtype will be the same + :math:`order = (deg[0]+1)*(deg[1]+1)`. The dtype will be the same as the converted `x` and `y`. See Also @@ -1241,7 +1241,7 @@ def hermevander3d(x, y, z, deg): ------- vander3d : ndarray The shape of the returned matrix is ``x.shape + (order,)``, where - :math:`order = (deg[0]+1)*(deg([1]+1)*(deg[2]+1)`. The dtype will + :math:`order = (deg[0]+1)*(deg[1]+1)*(deg[2]+1)`. The dtype will be the same as the converted `x`, `y`, and `z`. See Also @@ -1362,8 +1362,8 @@ def hermefit(x, y, deg, rcond=None, full=False, w=None): Fits using HermiteE series are probably most useful when the data can be approximated by ``sqrt(w(x)) * p(x)``, where `w(x)` is the HermiteE - weight. In that case the weight ``sqrt(w(x[i])`` should be used - together with data values ``y[i]/sqrt(w(x[i])``. The weight function is + weight. In that case the weight ``sqrt(w(x[i]))`` should be used + together with data values ``y[i]/sqrt(w(x[i]))``. The weight function is available as `hermeweight`. References diff --git a/numpy/polynomial/laguerre.py b/numpy/polynomial/laguerre.py index 89bb8e168..5b66d943e 100644 --- a/numpy/polynomial/laguerre.py +++ b/numpy/polynomial/laguerre.py @@ -1194,7 +1194,7 @@ def lagvander2d(x, y, deg): ------- vander2d : ndarray The shape of the returned matrix is ``x.shape + (order,)``, where - :math:`order = (deg[0]+1)*(deg([1]+1)`. The dtype will be the same + :math:`order = (deg[0]+1)*(deg[1]+1)`. The dtype will be the same as the converted `x` and `y`. See Also @@ -1248,7 +1248,7 @@ def lagvander3d(x, y, z, deg): ------- vander3d : ndarray The shape of the returned matrix is ``x.shape + (order,)``, where - :math:`order = (deg[0]+1)*(deg([1]+1)*(deg[2]+1)`. The dtype will + :math:`order = (deg[0]+1)*(deg[1]+1)*(deg[2]+1)`. The dtype will be the same as the converted `x`, `y`, and `z`. See Also @@ -1369,8 +1369,8 @@ def lagfit(x, y, deg, rcond=None, full=False, w=None): Fits using Laguerre series are probably most useful when the data can be approximated by ``sqrt(w(x)) * p(x)``, where `w(x)` is the Laguerre - weight. In that case the weight ``sqrt(w(x[i])`` should be used - together with data values ``y[i]/sqrt(w(x[i])``. The weight function is + weight. In that case the weight ``sqrt(w(x[i]))`` should be used + together with data values ``y[i]/sqrt(w(x[i]))``. The weight function is available as `lagweight`. References diff --git a/numpy/polynomial/legendre.py b/numpy/polynomial/legendre.py index 85fd5b18b..47e47a7b6 100644 --- a/numpy/polynomial/legendre.py +++ b/numpy/polynomial/legendre.py @@ -1211,7 +1211,7 @@ def legvander2d(x, y, deg): ------- vander2d : ndarray The shape of the returned matrix is ``x.shape + (order,)``, where - :math:`order = (deg[0]+1)*(deg([1]+1)`. The dtype will be the same + :math:`order = (deg[0]+1)*(deg[1]+1)`. The dtype will be the same as the converted `x` and `y`. See Also @@ -1265,7 +1265,7 @@ def legvander3d(x, y, z, deg): ------- vander3d : ndarray The shape of the returned matrix is ``x.shape + (order,)``, where - :math:`order = (deg[0]+1)*(deg([1]+1)*(deg[2]+1)`. The dtype will + :math:`order = (deg[0]+1)*(deg[1]+1)*(deg[2]+1)`. The dtype will be the same as the converted `x`, `y`, and `z`. See Also diff --git a/numpy/testing/_private/noseclasses.py b/numpy/testing/_private/noseclasses.py index 493bacfdd..69e19e959 100644 --- a/numpy/testing/_private/noseclasses.py +++ b/numpy/testing/_private/noseclasses.py @@ -210,7 +210,7 @@ class NumpyDoctest(npd.Doctest): # starting Python and executing "import numpy as np", and, # for SciPy packages, an additional import of the local # package (so that scipy.linalg.basic.py's doctests have an - # implicit "from scipy import linalg" as well. + # implicit "from scipy import linalg" as well). # # Note: __file__ allows the doctest in NoseTester to run # without producing an error diff --git a/numpy/testing/_private/utils.py b/numpy/testing/_private/utils.py index 4569efa91..4097a6738 100644 --- a/numpy/testing/_private/utils.py +++ b/numpy/testing/_private/utils.py @@ -1620,7 +1620,7 @@ def assert_array_max_ulp(a, b, maxulp=1, dtype=None): ----- For computing the ULP difference, this API does not differentiate between various representations of NAN (ULP difference between 0x7fc00000 and 0xffc00000 - is zero. + is zero). See Also -------- @@ -1666,7 +1666,7 @@ def nulp_diff(x, y, dtype=None): ----- For computing the ULP difference, this API does not differentiate between various representations of NAN (ULP difference between 0x7fc00000 and 0xffc00000 - is zero. + is zero). Examples -------- |