diff options
Diffstat (limited to 'numpy')
-rw-r--r-- | numpy/core/function_base.py | 8 | ||||
-rw-r--r-- | numpy/fft/pocketfft.py | 4 | ||||
-rw-r--r-- | numpy/lib/function_base.py | 11 | ||||
-rw-r--r-- | numpy/lib/twodim_base.py | 7 | ||||
-rw-r--r-- | numpy/random/mtrand/mtrand.pyx | 7 |
5 files changed, 2 insertions, 35 deletions
diff --git a/numpy/core/function_base.py b/numpy/core/function_base.py index 762328173..f8800b83e 100644 --- a/numpy/core/function_base.py +++ b/numpy/core/function_base.py @@ -110,9 +110,6 @@ def linspace(start, stop, num=50, endpoint=True, retstep=False, dtype=None, Graphical illustration: - >>> import matplotlib - >>> import matplotlib.pyplot - >>> matplotlib.pyplot.switch_backend('agg') >>> import matplotlib.pyplot as plt >>> N = 8 >>> y = np.zeros(N) @@ -263,9 +260,6 @@ def logspace(start, stop, num=50, endpoint=True, base=10.0, dtype=None, Graphical illustration: - >>> import matplotlib - >>> import matplotlib.pyplot - >>> matplotlib.pyplot.switch_backend('agg') >>> import matplotlib.pyplot as plt >>> N = 10 >>> x1 = np.logspace(0.1, 1, N, endpoint=True) @@ -379,8 +373,6 @@ def geomspace(start, stop, num=50, endpoint=True, dtype=None, axis=0): Graphical illustration of ``endpoint`` parameter: - >>> import matplotlib - >>> matplotlib.use('agg') >>> import matplotlib.pyplot as plt >>> N = 10 >>> y = np.zeros(N) diff --git a/numpy/fft/pocketfft.py b/numpy/fft/pocketfft.py index 794d13937..45dc162f6 100644 --- a/numpy/fft/pocketfft.py +++ b/numpy/fft/pocketfft.py @@ -163,8 +163,6 @@ def fft(a, n=None, axis=-1, norm=None): in the real part and anti-symmetric in the imaginary part, as described in the `numpy.fft` documentation: - >>> import matplotlib - >>> matplotlib.use('Agg') >>> import matplotlib.pyplot as plt >>> t = np.arange(256) >>> sp = np.fft.fft(np.sin(t)) @@ -258,8 +256,6 @@ def ifft(a, n=None, axis=-1, norm=None): Create and plot a band-limited signal with random phases: - >>> import matplotlib - >>> matplotlib.use('agg') >>> import matplotlib.pyplot as plt >>> t = np.arange(400) >>> n = np.zeros((400,), dtype=complex) diff --git a/numpy/lib/function_base.py b/numpy/lib/function_base.py index 274f957db..cee7b3a62 100644 --- a/numpy/lib/function_base.py +++ b/numpy/lib/function_base.py @@ -2593,8 +2593,6 @@ def blackman(M): Examples -------- - >>> import matplotlib - >>> matplotlib.use('agg') >>> import matplotlib.pyplot as plt >>> np.blackman(12) array([-1.38777878e-17, 3.26064346e-02, 1.59903635e-01, # may vary @@ -2811,9 +2809,6 @@ def hanning(M): Plot the window and its frequency response: - >>> import matplotlib - >>> import matplotlib.pyplot - >>> matplotlib.pyplot.switch_backend('agg') >>> import matplotlib.pyplot as plt >>> from numpy.fft import fft, fftshift >>> window = np.hanning(51) @@ -2914,9 +2909,6 @@ def hamming(M): Plot the window and the frequency response: - >>> import matplotlib - >>> import matplotlib.pyplot - >>> matplotlib.pyplot.switch_backend('agg') >>> import matplotlib.pyplot as plt >>> from numpy.fft import fft, fftshift >>> window = np.hamming(51) @@ -3192,8 +3184,6 @@ def kaiser(M, beta): Examples -------- - >>> import matplotlib - >>> matplotlib.use('agg') >>> import matplotlib.pyplot as plt >>> np.kaiser(12, 14) array([7.72686684e-06, 3.46009194e-03, 4.65200189e-02, # may vary @@ -3288,7 +3278,6 @@ def sinc(x): Examples -------- - >>> import matplotlib >>> import matplotlib.pyplot as plt >>> x = np.linspace(-4, 4, 41) >>> np.sinc(x) diff --git a/numpy/lib/twodim_base.py b/numpy/lib/twodim_base.py index 54d0240ef..e165c9b02 100644 --- a/numpy/lib/twodim_base.py +++ b/numpy/lib/twodim_base.py @@ -644,10 +644,7 @@ def histogram2d(x, y, bins=10, range=None, normed=None, weights=None, Examples -------- - >>> import matplotlib - >>> import matplotlib.pyplot - >>> matplotlib.pyplot.switch_backend('agg') - >>> import matplotlib as mpl + >>> from matplotlib.image import NonUniformImage >>> import matplotlib.pyplot as plt Construct a 2-D histogram with variable bin width. First define the bin @@ -684,7 +681,7 @@ def histogram2d(x, y, bins=10, range=None, normed=None, weights=None, >>> ax = fig.add_subplot(133, title='NonUniformImage: interpolated', ... aspect='equal', xlim=xedges[[0, -1]], ylim=yedges[[0, -1]]) - >>> im = mpl.image.NonUniformImage(ax, interpolation='bilinear') + >>> im = NonUniformImage(ax, interpolation='bilinear') >>> xcenters = (xedges[:-1] + xedges[1:]) / 2 >>> ycenters = (yedges[:-1] + yedges[1:]) / 2 >>> im.set_data(xcenters, ycenters, H) diff --git a/numpy/random/mtrand/mtrand.pyx b/numpy/random/mtrand/mtrand.pyx index 2a6daa88c..134bc2e09 100644 --- a/numpy/random/mtrand/mtrand.pyx +++ b/numpy/random/mtrand/mtrand.pyx @@ -2168,7 +2168,6 @@ cdef class RandomState: >>> NF = np.histogram(nc_vals, bins=50, density=True) >>> c_vals = np.random.f(dfnum, dfden, 1000000) >>> F = np.histogram(c_vals, bins=50, density=True) - >>> import matplotlib >>> import matplotlib.pyplot as plt >>> plt.plot(F[1][1:], F[0]) >>> plt.plot(NF[1][1:], NF[0]) @@ -2447,7 +2446,6 @@ cdef class RandomState: -------- Draw samples and plot the distribution: - >>> import matplotlib >>> import matplotlib.pyplot as plt >>> s = np.random.standard_cauchy(1000000) >>> s = s[(s>-25) & (s<25)] # truncate distribution so it plots well @@ -3285,7 +3283,6 @@ cdef class RandomState: >>> loc, scale = 10, 1 >>> s = np.random.logistic(loc, scale, 10000) - >>> import matplotlib >>> import matplotlib.pyplot as plt >>> count, bins, ignored = plt.hist(s, bins=50) @@ -3487,7 +3484,6 @@ cdef class RandomState: -------- Draw values from the distribution and plot the histogram - >>> import matplotlib >>> from matplotlib.pyplot import hist >>> values = hist(np.random.rayleigh(3, 100000), bins=200, density=True) @@ -4243,7 +4239,6 @@ cdef class RandomState: >>> ngood, nbad, nsamp = 100, 2, 10 # number of good, number of bad, and number of samples >>> s = np.random.hypergeometric(ngood, nbad, nsamp, 1000) - >>> import matplotlib >>> from matplotlib.pyplot import hist >>> hist(s) # note that it is very unlikely to grab both bad items @@ -4354,7 +4349,6 @@ cdef class RandomState: >>> a = .6 >>> s = np.random.logseries(a, 10000) - >>> import matplotlib >>> import matplotlib.pyplot as plt >>> count, bins, ignored = plt.hist(s) @@ -4736,7 +4730,6 @@ cdef class RandomState: >>> s = np.random.dirichlet((10, 5, 3), 20).transpose() - >>> import matplotlib >>> import matplotlib.pyplot as plt >>> plt.barh(range(20), s[0]) >>> plt.barh(range(20), s[1], left=s[0], color='g') |