1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
|
.. _array_api:
********************************
Array API Standard Compatibility
********************************
.. note::
The ``numpy.array_api`` module is still experimental. See `NEP 47
<https://numpy.org/neps/nep-0047-array-api-standard.html>`__.
NumPy includes a reference implementation of the `array API standard
<https://data-apis.org/array-api/latest/>`__ in ``numpy.array_api``. `NEP 47
<https://numpy.org/neps/nep-0047-array-api-standard.html>`__ describes the
motivation and scope for implementing the array API standard in NumPy.
The ``numpy.array_api`` module serves as a minimal, reference implementation
of the array API standard. In being minimal, the module only implements those
things that are explicitly required by the specification. Certain things are
allowed by the specification but are explicitly disallowed in
``numpy.array_api``. This is so that the module can serve as a reference
implementation for users of the array API standard. Any consumer of the array
API can test their code against ``numpy.array_api`` and be sure that they
aren't using any features that aren't guaranteed by the spec, and which may
not be present in other conforming libraries.
The ``numpy.array_api`` module is not documented here. For a listing of the
functions present in the array API specification, refer to the `array API
standard <https://data-apis.org/array-api/latest/>`__. The ``numpy.array_api``
implementation is functionally complete, so all functionality described in the
standard is implemented.
.. _array_api-differences:
Table of Differences between ``numpy.array_api`` and ``numpy``
==============================================================
This table outlines the primary differences between ``numpy.array_api`` from
the main ``numpy`` namespace. There are three types of differences:
1. **Strictness**. Things that are only done so that ``numpy.array_api`` is a
strict, minimal implementation. They aren't actually required by the spec,
and other conforming libraries may not follow them. In most cases, spec
does not specify or require any behavior outside of the given domain. The
main ``numpy`` namespace would not need to change in any way to be
spec-compatible for these.
2. **Compatible**. Things that could be added to the main ``numpy`` namespace
without breaking backwards compatibility.
3. **Breaking**. Things that would break backwards compatibility if
implemented in the main ``numpy`` namespace.
Name Differences
----------------
Many functions have been renamed in the spec from NumPy. These are otherwise
identical in behavior, and are thus all **compatible** changes, unless
otherwise noted.
.. _array_api-name-changes:
Function Name Changes
~~~~~~~~~~~~~~~~~~~~~
The following functions are named differently in the array API
.. list-table::
:header-rows: 1
* - Array API name
- NumPy namespace name
- Notes
* - ``acos``
- ``arccos``
-
* - ``acosh``
- ``arccosh``
-
* - ``asin``
- ``arcsin``
-
* - ``asinh``
- ``arcsinh``
-
* - ``atan``
- ``arctan``
-
* - ``atan2``
- ``arctan2``
-
* - ``atanh``
- ``arctanh``
-
* - ``bitwise_left_shift``
- ``left_shift``
-
* - ``bitwise_invert``
- ``invert``
-
* - ``bitwise_right_shift``
- ``right_shift``
-
* - ``bool``
- ``bool_``
- This is **breaking** because ``np.bool`` is currently a deprecated
alias for the built-in ``bool``.
* - ``concat``
- ``concatenate``
-
* - ``matrix_norm`` and ``vector_norm``
- ``norm``
- ``matrix_norm`` and ``vector_norm`` each do a limited subset of what
``np.norm`` does.
* - ``permute_dims``
- ``transpose``
- Unlike ``np.transpose``, the ``axis`` keyword-argument to
``permute_dims`` is required.
* - ``pow``
- ``power``
-
* - ``unique_all``, ``unique_counts``, ``unique_inverse``, and
``unique_values``
- ``unique``
- Each is equivalent to ``np.unique`` with certain flags set.
Function instead of method
~~~~~~~~~~~~~~~~~~~~~~~~~~
- ``astype`` is a function in the array API, whereas it is a method on
``ndarray`` in ``numpy``.
``linalg`` Namespace Differences
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
These functions are in the ``linalg`` sub-namespace in the array API, but are
only in the top-level namespace in NumPy:
- ``cross``
- ``diagonal``
- ``matmul`` (*)
- ``outer``
- ``tensordot`` (*)
- ``trace``
(*): These functions are also in the top-level namespace in the array API.
Keyword Argument Renames
~~~~~~~~~~~~~~~~~~~~~~~~
The following functions have keyword arguments that have been renamed. The
functionality of the keyword argument is identical unless otherwise stated.
Renamed keyword arguments with the same semantic definition may be considered
either **compatible** or **breaking**, depending on how the change is
implemented.
Note, this page does not list function keyword arguments that are in the main
``numpy`` namespace but not in the array API. Such keyword arguments are
omitted from ``numpy.array_api`` for **strictness**, as the spec allows
functions to include additional keyword arguments from those required.
.. list-table::
:header-rows: 1
* - Function
- Array API keyword name
- NumPy keyword name
- Notes
* - ``argsort`` and ``sort``
- ``stable``
- ``kind``
- The definitions of ``stable`` and ``kind`` differ, as do the default
values. The change of the default value makes this **breaking**. See
:ref:`array_api-set-functions-differences`.
* - ``matrix_rank``
- ``rtol``
- ``tol``
- The definitions of ``rtol`` and ``tol`` differ, as do the default
values. The change of the default value makes this **breaking**. See
:ref:`array_api-linear-algebra-differences`.
* - ``pinv``
- ``rtol``
- ``rcond``
- The definitions of ``rtol`` and ``rcond`` are the same, but their
default values differ, making this **breaking**. See
:ref:`array_api-linear-algebra-differences`.
* - ``std`` and ``var``
- ``correction``
- ``ddof``
-
* - ``reshape``
- ``shape``
- ``newshape``
- The argument may be passed as a positional or keyword argument for both
NumPy and the array API.
.. _array_api-type-promotion-differences:
Type Promotion Differences
--------------------------
Type promotion is the biggest area where NumPy deviates from the spec. The
most notable difference is that NumPy does value-based casting in many cases.
The spec explicitly disallows value-based casting. In the array API, the
result type of any operation is always determined entirely by the input types,
independently of values or shapes.
.. list-table::
:header-rows: 1
* - Feature
- Type
- Notes
* - Limited set of dtypes.
- **Strictness**
- ``numpy.array_api`` only implements those `dtypes that are required by
the spec
<https://data-apis.org/array-api/latest/API_specification/data_types.html>`__.
* - Operators (like ``+``) with Python scalars only accept matching
scalar types.
- **Strictness**
- For example, ``<int32 array> + 1.0`` is not allowed. See `the spec
rules for mixing arrays and Python scalars
<https://data-apis.org/array-api/latest/API_specification/type_promotion.html#mixing-arrays-with-python-scalars>`__.
* - Operators (like ``+``) with Python scalars always return the same dtype
as the array.
- **Breaking**
- For example, ``numpy.array_api.asarray(0., dtype=float32) + 1e64`` is a
``float32`` array.
* - In-place operators are disallowed when the left-hand side would be
promoted.
- **Breaking**
- Example: ``a = np.array(1, dtype=np.int8); a += np.array(1, dtype=np.int16)``. The spec explicitly disallows this.
* - In-place operators are disallowed when the right-hand side operand
cannot broadcast to the shape of the left-hand side operand.
- **Strictness**
- This so-called "reverse broadcasting" should not be allowed. Example:
``a = np.empty((2, 3, 4)); a += np.empty((3, 4))`` should error. See
https://github.com/numpy/numpy/issues/10404.
* - ``int`` promotion for operators is only specified for integers within
the bounds of the dtype.
- **Strictness**
- ``numpy.array_api`` fallsback to ``np.ndarray`` behavior (either
cast or raise ``OverflowError``).
* - ``__pow__`` and ``__rpow__`` do not do value-based casting for 0-D
arrays.
- **Breaking**
- For example, ``np.array(0., dtype=float32)**np.array(0.,
dtype=float64)`` is ``float32``. Note that this is value-based casting
on 0-D arrays, not scalars.
* - No cross-kind casting.
- **Strictness**
- Namely, boolean, integer, and floating-point data types do not cast to
each other, except explicitly with ``astype`` (this is separate from
the behavior with Python scalars).
* - No casting unsigned integer dtypes to floating dtypes (e.g., ``int64 +
uint64 -> float64``.
- **Strictness**
-
* - ``can_cast`` and ``result_type`` are restricted.
- **Strictness**
- The ``numpy.array_api`` implementations disallow cross-kind casting.
* - ``sum`` and ``prod`` always upcast ``float32`` to ``float64`` when
``dtype=None``.
- **Breaking**
-
Indexing Differences
--------------------
The spec requires only a subset of indexing, but all indexing rules in the
spec are compatible with NumPy's more broad indexing rules.
.. list-table::
:header-rows: 1
* - Feature
- Type
- Notes
* - No implicit ellipses (``...``).
- **Strictness**
- If an index does not include an ellipsis, all axes must be indexed.
* - The start and stop of a slice may not be out of bounds.
- **Strictness**
- For a slice ``i:j:k``, only the following are allowed:
- ``i`` or ``j`` omitted (``None``).
- ``-n <= i <= max(0, n - 1)``.
- For ``k > 0`` or ``k`` omitted (``None``), ``-n <= j <= n``.
- For ``k < 0``, ``-n - 1 <= j <= max(0, n - 1)``.
* - Boolean array indices are only allowed as the sole index.
- **Strictness**
-
* - Integer array indices are not allowed at all.
- **Strictness**
- With the exception of 0-D arrays, which are treated like integers.
.. _array_api-type-strictness:
Type Strictness
---------------
Functions in ``numpy.array_api`` restrict their inputs to only those dtypes
that are explicitly required by the spec, even when the wrapped corresponding
NumPy function would allow a broader set. Here, we list each function and the
dtypes that are allowed in ``numpy.array_api``. These are **strictness**
differences because the spec does not require that other dtypes result in an
error. The categories here are defined as follows:
- **Floating-point**: ``float32`` or ``float64``.
- **Integer**: Any signed or unsigned integer dtype (``int8``, ``int16``,
``int32``, ``int64``, ``uint8``, ``uint16``, ``uint32``, or ``uint64``).
- **Boolean**: ``bool``.
- **Integer or boolean**: Any signed or unsigned integer dtype, or ``bool``.
For two-argument functions, both arguments must be integer or both must be
``bool``.
- **Numeric**: Any integer or floating-point dtype. For two-argument
functions, both arguments must be integer or both must be
floating-point.
- **All**: Any of the above dtype categories. For two-argument functions, both
arguments must be the same kind (integer, floating-point, or boolean).
In all cases, the return dtype is chosen according to `the rules outlined in
the spec
<https://data-apis.org/array-api/latest/API_specification/type_promotion.html>`__,
and does not differ from NumPy's return dtype for any of the allowed input
dtypes, except in the cases mentioned specifically in the subsections below.
Elementwise Functions
~~~~~~~~~~~~~~~~~~~~~
.. list-table::
:header-rows: 1
* - Function Name
- Dtypes
* - ``abs``
- Numeric
* - ``acos``
- Floating-point
* - ``acosh``
- Floating-point
* - ``add``
- Numeric
* - ``asin`` (*)
- Floating-point
* - ``asinh`` (*)
- Floating-point
* - ``atan`` (*)
- Floating-point
* - ``atan2`` (*)
- Floating-point
* - ``atanh`` (*)
- Floating-point
* - ``bitwise_and``
- Integer or boolean
* - ``bitwise_invert``
- Integer or boolean
* - ``bitwise_left_shift`` (*)
- Integer
* - ``bitwise_or``
- Integer or boolean
* - ``bitwise_right_shift`` (*)
- Integer
* - ``bitwise_xor``
- Integer or boolean
* - ``ceil``
- Numeric
* - ``cos``
- Floating-point
* - ``cosh``
- Floating-point
* - ``divide``
- Floating-point
* - ``equal``
- All
* - ``exp``
- Floating-point
* - ``expm1``
- Floating-point
* - ``floor``
- Numeric
* - ``floor_divide``
- Numeric
* - ``greater``
- Numeric
* - ``greater_equal``
- Numeric
* - ``isfinite``
- Numeric
* - ``isinf``
- Numeric
* - ``isnan``
- Numeric
* - ``less``
- Numeric
* - ``less_equal``
- Numeric
* - ``log``
- Floating-point
* - ``logaddexp``
- Floating-point
* - ``log10``
- Floating-point
* - ``log1p``
- Floating-point
* - ``log2``
- Floating-point
* - ``logical_and``
- Boolean
* - ``logical_not``
- Boolean
* - ``logical_or``
- Boolean
* - ``logical_xor``
- Boolean
* - ``multiply``
- Numeric
* - ``negative``
- Numeric
* - ``not_equal``
- All
* - ``positive``
- Numeric
* - ``pow`` (*)
- Numeric
* - ``remainder``
- Numeric
* - ``round``
- Numeric
* - ``sign``
- Numeric
* - ``sin``
- Floating-point
* - ``sinh``
- Floating-point
* - ``sqrt``
- Floating-point
* - ``square``
- Numeric
* - ``subtract``
- Numeric
* - ``tan``
- Floating-point
* - ``tanh``
- Floating-point
* - ``trunc``
- Numeric
(*) These functions have different names from the main ``numpy`` namespace.
See :ref:`array_api-name-changes`.
Creation Functions
~~~~~~~~~~~~~~~~~~
.. list-table::
:header-rows: 1
* - Function Name
- Dtypes
* - ``meshgrid``
- Any (all input dtypes must be the same)
Linear Algebra Functions
~~~~~~~~~~~~~~~~~~~~~~~~
.. list-table::
:header-rows: 1
* - Function Name
- Dtypes
* - ``cholesky``
- Floating-point
* - ``cross``
- Numeric
* - ``det``
- Floating-point
* - ``diagonal``
- Any
* - ``eigh``
- Floating-point
* - ``eighvals``
- Floating-point
* - ``inv``
- Floating-point
* - ``matmul``
- Numeric
* - ``matrix_norm`` (*)
- Floating-point
* - ``matrix_power``
- Floating-point
* - ``matrix_rank``
- Floating-point
* - ``matrix_transpose`` (**)
- Any
* - ``outer``
- Numeric
* - ``pinv``
- Floating-point
* - ``qr``
- Floating-point
* - ``slogdet``
- Floating-point
* - ``solve``
- Floating-point
* - ``svd``
- Floating-point
* - ``svdvals`` (**)
- Floating-point
* - ``tensordot``
- Numeric
* - ``trace``
- Numeric
* - ``vecdot`` (**)
- Numeric
* - ``vector_norm`` (*)
- Floating-point
(*) These functions are split from ``norm`` from the main ``numpy`` namespace.
See :ref:`array_api-name-changes`.
(**) These functions are new in the array API and are not in the main
``numpy`` namespace.
Array Object
~~~~~~~~~~~~
All the special ``__operator__`` methods on the array object behave
identically to their corresponding functions (see `the spec
<https://data-apis.org/array-api/latest/API_specification/array_object.html#methods>`__
for a list of which methods correspond to which functions). The exception is
that operators explicitly allow Python scalars according to the `rules
outlined in the spec
<https://data-apis.org/array-api/latest/API_specification/type_promotion.html#mixing-arrays-with-python-scalars>`__
(see :ref:`array_api-type-promotion-differences`).
Array Object Differences
------------------------
.. list-table::
:header-rows: 1
* - Feature
- Type
- Notes
* - No array scalars
- **Strictness**
- The spec does not have array scalars, only 0-D arrays. However, other
than the promotion differences outlined in
:ref:`array_api-type-promotion-differences`, scalars duck type as 0-D
arrays for the purposes of the spec. The are immutable, but the spec
`does not require mutability
<https://data-apis.org/array-api/latest/design_topics/copies_views_and_mutation.html>`__.
* - ``bool()``, ``int()``, and ``float()`` only work on 0-D arrays.
- **Strictness**
- See https://github.com/numpy/numpy/issues/10404.
* - ``__imatmul__``
- **Compatible**
- ``np.ndarray`` does not currently implement ``__imatmul``. Note that
``a @= b`` should only defined when it does not change the shape of
``a``.
* - The ``mT`` attribute for matrix transpose.
- **Compatible**
- See `the spec definition
<https://data-apis.org/array-api/latest/API_specification/generated/signatures.array_object.array.mT.html>`__
for ``mT``.
* - The ``T`` attribute should error if the input is not 2-dimensional.
- **Breaking**
- See `the note in the spec
<https://data-apis.org/array-api/latest/API_specification/generated/signatures.array_object.array.T.html>`__.
* - New method ``to_device`` and attribute ``device``
- **Compatible**
- The methods would effectively not do anything since NumPy is CPU only
Creation Functions Differences
------------------------------
.. list-table::
:header-rows: 1
* - Feature
- Type
- Notes
* - ``copy`` keyword argument to ``asarray``
- **Compatible**
-
* - New ``device`` keyword argument to all array creation functions
(``asarray``, ``arange``, ``empty``, ``empty_like``, ``eye``, ``full``,
``full_like``, ``linspace``, ``ones``, ``ones_like``, ``zeros``, and
``zeros_like``).
- **Compatible**
- ``device`` would effectively do nothing, since NumPy is CPU only.
Elementwise Functions Differences
---------------------------------
.. list-table::
:header-rows: 1
* - Feature
- Type
- Notes
* - Various functions have been renamed.
- **Compatible**
- See :ref:`array_api-name-changes`.
* - Elementwise functions are only defined for given input type
combinations.
- **Strictness**
- See :ref:`array_api-type-strictness`.
* - ``bitwise_left_shift`` and ``bitwise_right_shift`` are only defined for
``x2`` nonnegative.
- **Strictness**
-
* - ``ceil``, ``floor``, and ``trunc`` return an integer with integer
input.
- **Breaking**
- ``np.ceil``, ``np.floor``, and ``np.trunc`` return a floating-point
dtype on integer dtype input.
.. _array_api-linear-algebra-differences:
Linear Algebra Differences
--------------------------
.. list-table::
:header-rows: 1
* - Feature
- Type
- Notes
* - ``cholesky`` includes an ``upper`` keyword argument.
- **Compatible**
-
* - ``cross`` does not allow size 2 vectors (only size 3).
- **Breaking**
-
* - ``diagonal`` operates on the last two axes.
- **Breaking**
- Strictly speaking this can be **compatible** because ``diagonal`` is
moved to the ``linalg`` namespace.
* - ``eigh``, ``qr``, ``slogdet`` and ``svd`` return a named tuple.
- **Compatible**
- The corresponding ``numpy`` functions return a ``tuple``, with the
resulting arrays in the same order.
* - New functions ``matrix_norm`` and ``vector_norm``.
- **Compatible**
- The ``norm`` function has been omitted from the array API and split
into ``matrix_norm`` for matrix norms and ``vector_norm`` for vector
norms. Note that ``vector_norm`` supports any number of axes, whereas
``np.linalg.norm`` only supports a single axis for vector norms.
* - ``matrix_rank`` has an ``rtol`` keyword argument instead of ``tol``.
- **Breaking**
- In the array API, ``rtol`` filters singular values smaller than
``rtol * largest_singular_value``. In ``np.linalg.matrix_rank``,
``tol`` filters singular values smaller than ``tol``. Furthermore, the
default value for ``rtol`` is ``max(M, N) * eps``, whereas the default
value of ``tol`` in ``np.linalg.matrix_rank`` is ``S.max() *
max(M, N) * eps``, where ``S`` is the singular values of the input. The
new flag name is compatible but the default change is breaking
* - ``matrix_rank`` does not support 1-dimensional arrays.
- **Breaking**
-
* - New function ``matrix_transpose``.
- **Compatible**
- Unlike ``np.transpose``, ``matrix_transpose`` only transposes the last
two axes. See `the spec definition
<https://data-apis.org/array-api/latest/API_specification/generated/signatures.linear_algebra_functions.matrix_transpose.html#signatures.linear_algebra_functions.matrix_transpose>`__
* - ``outer`` only supports 1-dimensional arrays.
- **Breaking**
- The spec currently only specifies behavior on 1-D arrays but future
behavior will likely be to broadcast, rather than flatten, which is
what ``np.outer`` does.
* - ``pinv`` has an ``rtol`` keyword argument instead of ``rcond``
- **Breaking**
- The meaning of ``rtol`` and ``rcond`` is the same, but the default
value for ``rtol`` is ``max(M, N) * eps``, whereas the default value
for ``rcond`` is ``1e-15``. The new flag name is compatible but the
default change is breaking.
* - ``solve`` only accepts ``x2`` as a vector when it is exactly
1-dimensional.
- **Breaking**
- The ``np.linalg.solve`` behavior is ambiguous. See `this numpy issue
<https://github.com/numpy/numpy/issues/15349>`__ and `this array API
specification issue
<https://github.com/data-apis/array-api/issues/285>`__ for more
details.
* - New function ``svdvals``.
- **Compatible**
- Equivalent to ``np.linalg.svd(compute_uv=False)``.
* - The ``axis`` keyword to ``tensordot`` must be a tuple.
- **Compatible**
- In ``np.tensordot``, it can also be an array or array-like.
* - ``trace`` operates on the last two axes.
- **Breaking**
- ``np.trace`` operates on the first two axes by default. Note that the
array API ``trace`` does not allow specifying which axes to operate on.
Manipulation Functions Differences
----------------------------------
.. list-table::
:header-rows: 1
* - Feature
- Type
- Notes
* - Various functions have been renamed
- **Compatible**
- See :ref:`array_api-name-changes`.
* - ``concat`` has different default casting rules from ``np.concatenate``
- **Strictness**
- No cross-kind casting. No value-based casting on scalars (when axis=None).
* - ``stack`` has different default casting rules from ``np.stack``
- **Strictness**
- No cross-kind casting.
* - New function ``permute_dims``.
- **Compatible**
- Unlike ``np.transpose``, the ``axis`` keyword argument to
``permute_dims`` is required.
* - ``reshape`` function has a ``copy`` keyword argument
- **Compatible**
- See https://github.com/numpy/numpy/issues/9818.
Set Functions Differences
-------------------------
.. list-table::
:header-rows: 1
* - Feature
- Type
- Notes
* - New functions ``unique_all``, ``unique_counts``, ``unique_inverse``,
and ``unique_values``.
- **Compatible**
- See :ref:`array_api-name-changes`.
* - The four ``unique_*`` functions return a named tuple.
- **Compatible**
-
* - ``unique_all`` and ``unique_indices`` return indices with the same
shape as ``x``.
- **Compatible**
- See https://github.com/numpy/numpy/issues/20638.
.. _array_api-set-functions-differences:
Set Functions Differences
-------------------------
.. list-table::
:header-rows: 1
* - Feature
- Type
- Notes
* - ``argsort`` and ``sort`` have a ``stable`` keyword argument instead of
``kind``.
- **Breaking**
- ``stable`` is a boolean keyword argument, defaulting to ``True``.
``kind`` takes a string, defaulting to ``"quicksort"``. ``stable=True``
is equivalent to ``kind="stable"`` and ``kind=False`` is equivalent to
``kind="quicksort"``, although any sorting algorithm is allowed by the
spec when ``stable=False``. The new flag name is compatible but the
default change is breaking.
* - ``argsort`` and ``sort`` have a ``descending`` keyword argument.
- **Compatible**
-
Statistical Functions Differences
---------------------------------
.. list-table::
:header-rows: 1
* - Feature
- Type
- Notes
* - ``sum`` and ``prod`` always upcast ``float32`` to ``float64`` when
``dtype=None``.
- **Breaking**
-
* - The ``std`` and ``var`` functions have a ``correction`` keyword
argument instead of ``ddof``.
- **Compatible**
-
Other Differences
-----------------
.. list-table::
:header-rows: 1
* - Feature
- Type
- Notes
* - Dtypes can only be spelled as dtype objects.
- **Strictness**
- For example, ``numpy.array_api.asarray([0], dtype='int32')`` is not
allowed.
* - ``asarray`` is not implicitly called in any function.
- **Strictness**
- The exception is Python operators, which accept Python scalars in
certain cases (see :ref:`array_api-type-promotion-differences`).
* - ``tril`` and ``triu`` require the input to be at least 2-D.
- **Strictness**
-
* - finfo() return type uses ``float`` for the various attributes.
- **Strictness**
- The spec allows duck typing, so ``finfo`` returning dtype
scalars is considered type compatible with ``float``.
* - Positional arguments in every function are positional-only.
- **Breaking**
- See the spec for the exact signature of each function. Note that NumPy
ufuncs already use positional-only arguments, but non-ufuncs like
``asarray`` generally do not.
|