1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
|
.. currentmodule:: numpy
.. _arrays.ndarray:
******************************************
The N-dimensional array (:class:`ndarray`)
******************************************
An :class:`ndarray` is a (usually fixed-size) multidimensional
container of items of the same type and size. The number of dimensions
and items in an array is defined by its :attr:`shape <ndarray.shape>`,
which is a :class:`tuple` of *N* non-negative integers that specify the
sizes of each dimension. The type of items in the array is specified by
a separate :ref:`data-type object (dtype) <arrays.dtypes>`, one of which
is associated with each ndarray.
As with other container objects in Python, the contents of an
:class:`ndarray` can be accessed and modified by :ref:`indexing or
slicing <arrays.indexing>` the array (using, for example, *N* integers),
and via the methods and attributes of the :class:`ndarray`.
.. index:: view, base
Different :class:`ndarrays <ndarray>` can share the same data, so that
changes made in one :class:`ndarray` may be visible in another. That
is, an ndarray can be a *"view"* to another ndarray, and the data it
is referring to is taken care of by the *"base"* ndarray. ndarrays can
also be views to memory owned by Python :class:`strings <str>` or
objects implementing the :class:`buffer` or :ref:`array
<arrays.interface>` interfaces.
.. admonition:: Example
A 2-dimensional array of size 2 x 3, composed of 4-byte integer
elements:
>>> x = np.array([[1, 2, 3], [4, 5, 6]], np.int32)
>>> type(x)
<class 'numpy.ndarray'>
>>> x.shape
(2, 3)
>>> x.dtype
dtype('int32')
The array can be indexed using Python container-like syntax:
>>> # The element of x in the *second* row, *third* column, namely, 6.
>>> x[1, 2]
6
For example :ref:`slicing <arrays.indexing>` can produce views of
the array:
>>> y = x[:,1]
>>> y
array([2, 5], dtype=int32)
>>> y[0] = 9 # this also changes the corresponding element in x
>>> y
array([9, 5], dtype=int32)
>>> x
array([[1, 9, 3],
[4, 5, 6]], dtype=int32)
Constructing arrays
===================
New arrays can be constructed using the routines detailed in
:ref:`routines.array-creation`, and also by using the low-level
:class:`ndarray` constructor:
.. autosummary::
:toctree: generated/
ndarray
.. _arrays.ndarray.indexing:
Indexing arrays
===============
Arrays can be indexed using an extended Python slicing syntax,
``array[selection]``. Similar syntax is also used for accessing
fields in a :term:`structured data type`.
.. seealso:: :ref:`Array Indexing <arrays.indexing>`.
.. _memory-layout:
Internal memory layout of an ndarray
====================================
An instance of class :class:`ndarray` consists of a contiguous
one-dimensional segment of computer memory (owned by the array, or by
some other object), combined with an indexing scheme that maps *N*
integers into the location of an item in the block. The ranges in
which the indices can vary is specified by the :obj:`shape
<ndarray.shape>` of the array. How many bytes each item takes and how
the bytes are interpreted is defined by the :ref:`data-type object
<arrays.dtypes>` associated with the array.
.. index:: C-order, Fortran-order, row-major, column-major, stride,
offset
A segment of memory is inherently 1-dimensional, and there are many
different schemes for arranging the items of an *N*-dimensional array
in a 1-dimensional block. NumPy is flexible, and :class:`ndarray`
objects can accommodate any *strided indexing scheme*. In a strided
scheme, the N-dimensional index :math:`(n_0, n_1, ..., n_{N-1})`
corresponds to the offset (in bytes):
.. math:: n_{\mathrm{offset}} = \sum_{k=0}^{N-1} s_k n_k
from the beginning of the memory block associated with the
array. Here, :math:`s_k` are integers which specify the :obj:`strides
<ndarray.strides>` of the array. The :term:`column-major` order (used,
for example, in the Fortran language and in *Matlab*) and
:term:`row-major` order (used in C) schemes are just specific kinds of
strided scheme, and correspond to memory that can be *addressed* by the strides:
.. math::
s_k^{\mathrm{column}} = \mathrm{itemsize} \prod_{j=0}^{k-1} d_j ,
\quad s_k^{\mathrm{row}} = \mathrm{itemsize} \prod_{j=k+1}^{N-1} d_j .
.. index:: single-segment, contiguous, non-contiguous
where :math:`d_j` `= self.shape[j]`.
Both the C and Fortran orders are :term:`contiguous`, *i.e.,*
single-segment, memory layouts, in which every part of the
memory block can be accessed by some combination of the indices.
.. note::
`Contiguous arrays` and `single-segment arrays` are synonymous
and are used interchangeably throughout the documentation.
While a C-style and Fortran-style contiguous array, which has the corresponding
flags set, can be addressed with the above strides, the actual strides may be
different. This can happen in two cases:
1. If ``self.shape[k] == 1`` then for any legal index ``index[k] == 0``.
This means that in the formula for the offset :math:`n_k = 0` and thus
:math:`s_k n_k = 0` and the value of :math:`s_k` `= self.strides[k]` is
arbitrary.
2. If an array has no elements (``self.size == 0``) there is no legal
index and the strides are never used. Any array with no elements may be
considered C-style and Fortran-style contiguous.
Point 1. means that ``self`` and ``self.squeeze()`` always have the same
contiguity and ``aligned`` flags value. This also means
that even a high dimensional array could be C-style and Fortran-style
contiguous at the same time.
.. index:: aligned
An array is considered aligned if the memory offsets for all elements and the
base offset itself is a multiple of `self.itemsize`. Understanding
`memory-alignment` leads to better performance on most hardware.
.. warning::
It does *not* generally hold that ``self.strides[-1] == self.itemsize``
for C-style contiguous arrays or ``self.strides[0] == self.itemsize`` for
Fortran-style contiguous arrays is true.
``NPY_RELAXED_STRIDES_DEBUG=1`` can be used to help find errors when
incorrectly relying on the strides in C-extension code (see below warning).
Data in new :class:`ndarrays <ndarray>` is in the :term:`row-major` (C)
order, unless otherwise specified, but, for example, :ref:`basic
array slicing <arrays.indexing>` often produces :term:`views <view>`
in a different scheme.
.. seealso: :ref:`Indexing <arrays.ndarray.indexing>`_
.. note::
Several algorithms in NumPy work on arbitrarily strided arrays.
However, some algorithms require single-segment arrays. When an
irregularly strided array is passed in to such algorithms, a copy
is automatically made.
.. _arrays.ndarray.attributes:
Array attributes
================
Array attributes reflect information that is intrinsic to the array
itself. Generally, accessing an array through its attributes allows
you to get and sometimes set intrinsic properties of the array without
creating a new array. The exposed attributes are the core parts of an
array and only some of them can be reset meaningfully without creating
a new array. Information on each attribute is given below.
Memory layout
-------------
The following attributes contain information about the memory layout
of the array:
.. autosummary::
:toctree: generated/
ndarray.flags
ndarray.shape
ndarray.strides
ndarray.ndim
ndarray.data
ndarray.size
ndarray.itemsize
ndarray.nbytes
ndarray.base
Data type
---------
.. seealso:: :ref:`Data type objects <arrays.dtypes>`
The data type object associated with the array can be found in the
:attr:`dtype <ndarray.dtype>` attribute:
.. autosummary::
:toctree: generated/
ndarray.dtype
Other attributes
----------------
.. autosummary::
:toctree: generated/
ndarray.T
ndarray.real
ndarray.imag
ndarray.flat
.. _arrays.ndarray.array-interface:
Array interface
---------------
.. seealso:: :ref:`arrays.interface`.
================================== ===================================
:obj:`~object.__array_interface__` Python-side of the array interface
:obj:`~object.__array_struct__` C-side of the array interface
================================== ===================================
:mod:`ctypes` foreign function interface
----------------------------------------
.. autosummary::
:toctree: generated/
ndarray.ctypes
.. _array.ndarray.methods:
Array methods
=============
An :class:`ndarray` object has many methods which operate on or with
the array in some fashion, typically returning an array result. These
methods are briefly explained below. (Each method's docstring has a
more complete description.)
For the following methods there are also corresponding functions in
:mod:`numpy`: :func:`all`, :func:`any`, :func:`argmax`,
:func:`argmin`, :func:`argpartition`, :func:`argsort`, :func:`choose`,
:func:`clip`, :func:`compress`, :func:`copy`, :func:`cumprod`,
:func:`cumsum`, :func:`diagonal`, :func:`imag`, :func:`max <amax>`,
:func:`mean`, :func:`min <amin>`, :func:`nonzero`, :func:`partition`,
:func:`prod`, :func:`ptp`, :func:`put`, :func:`ravel`, :func:`real`,
:func:`repeat`, :func:`reshape`, :func:`round <around>`,
:func:`searchsorted`, :func:`sort`, :func:`squeeze`, :func:`std`,
:func:`sum`, :func:`swapaxes`, :func:`take`, :func:`trace`,
:func:`transpose`, :func:`var`.
Array conversion
----------------
.. autosummary::
:toctree: generated/
ndarray.item
ndarray.tolist
ndarray.itemset
ndarray.tostring
ndarray.tobytes
ndarray.tofile
ndarray.dump
ndarray.dumps
ndarray.astype
ndarray.byteswap
ndarray.copy
ndarray.view
ndarray.getfield
ndarray.setflags
ndarray.fill
Shape manipulation
------------------
For reshape, resize, and transpose, the single tuple argument may be
replaced with ``n`` integers which will be interpreted as an n-tuple.
.. autosummary::
:toctree: generated/
ndarray.reshape
ndarray.resize
ndarray.transpose
ndarray.swapaxes
ndarray.flatten
ndarray.ravel
ndarray.squeeze
Item selection and manipulation
-------------------------------
For array methods that take an *axis* keyword, it defaults to
*None*. If axis is *None*, then the array is treated as a 1-D
array. Any other value for *axis* represents the dimension along which
the operation should proceed.
.. autosummary::
:toctree: generated/
ndarray.take
ndarray.put
ndarray.repeat
ndarray.choose
ndarray.sort
ndarray.argsort
ndarray.partition
ndarray.argpartition
ndarray.searchsorted
ndarray.nonzero
ndarray.compress
ndarray.diagonal
Calculation
-----------
.. index:: axis
Many of these methods take an argument named *axis*. In such cases,
- If *axis* is *None* (the default), the array is treated as a 1-D
array and the operation is performed over the entire array. This
behavior is also the default if self is a 0-dimensional array or
array scalar. (An array scalar is an instance of the types/classes
float32, float64, etc., whereas a 0-dimensional array is an ndarray
instance containing precisely one array scalar.)
- If *axis* is an integer, then the operation is done over the given
axis (for each 1-D subarray that can be created along the given axis).
.. admonition:: Example of the *axis* argument
A 3-dimensional array of size 3 x 3 x 3, summed over each of its
three axes
>>> x = np.arange(27).reshape((3,3,3))
>>> x
array([[[ 0, 1, 2],
[ 3, 4, 5],
[ 6, 7, 8]],
[[ 9, 10, 11],
[12, 13, 14],
[15, 16, 17]],
[[18, 19, 20],
[21, 22, 23],
[24, 25, 26]]])
>>> x.sum(axis=0)
array([[27, 30, 33],
[36, 39, 42],
[45, 48, 51]])
>>> # for sum, axis is the first keyword, so we may omit it,
>>> # specifying only its value
>>> x.sum(0), x.sum(1), x.sum(2)
(array([[27, 30, 33],
[36, 39, 42],
[45, 48, 51]]),
array([[ 9, 12, 15],
[36, 39, 42],
[63, 66, 69]]),
array([[ 3, 12, 21],
[30, 39, 48],
[57, 66, 75]]))
The parameter *dtype* specifies the data type over which a reduction
operation (like summing) should take place. The default reduce data
type is the same as the data type of *self*. To avoid overflow, it can
be useful to perform the reduction using a larger data type.
For several methods, an optional *out* argument can also be provided
and the result will be placed into the output array given. The *out*
argument must be an :class:`ndarray` and have the same number of
elements. It can have a different data type in which case casting will
be performed.
.. autosummary::
:toctree: generated/
ndarray.max
ndarray.argmax
ndarray.min
ndarray.argmin
ndarray.ptp
ndarray.clip
ndarray.conj
ndarray.round
ndarray.trace
ndarray.sum
ndarray.cumsum
ndarray.mean
ndarray.var
ndarray.std
ndarray.prod
ndarray.cumprod
ndarray.all
ndarray.any
Arithmetic, matrix multiplication, and comparison operations
============================================================
.. index:: comparison, arithmetic, matrix, operation, operator
Arithmetic and comparison operations on :class:`ndarrays <ndarray>`
are defined as element-wise operations, and generally yield
:class:`ndarray` objects as results.
Each of the arithmetic operations (``+``, ``-``, ``*``, ``/``, ``//``,
``%``, ``divmod()``, ``**`` or ``pow()``, ``<<``, ``>>``, ``&``,
``^``, ``|``, ``~``) and the comparisons (``==``, ``<``, ``>``,
``<=``, ``>=``, ``!=``) is equivalent to the corresponding
universal function (or :term:`ufunc` for short) in NumPy. For
more information, see the section on :ref:`Universal Functions
<ufuncs>`.
Comparison operators:
.. autosummary::
:toctree: generated/
ndarray.__lt__
ndarray.__le__
ndarray.__gt__
ndarray.__ge__
ndarray.__eq__
ndarray.__ne__
Truth value of an array (:class:`bool() <bool>`):
.. autosummary::
:toctree: generated/
ndarray.__bool__
.. note::
Truth-value testing of an array invokes
:meth:`ndarray.__bool__`, which raises an error if the number of
elements in the array is larger than 1, because the truth value
of such arrays is ambiguous. Use :meth:`.any() <ndarray.any>` and
:meth:`.all() <ndarray.all>` instead to be clear about what is meant
in such cases. (If the number of elements is 0, the array evaluates
to ``False``.)
Unary operations:
.. autosummary::
:toctree: generated/
ndarray.__neg__
ndarray.__pos__
ndarray.__abs__
ndarray.__invert__
Arithmetic:
.. autosummary::
:toctree: generated/
ndarray.__add__
ndarray.__sub__
ndarray.__mul__
ndarray.__truediv__
ndarray.__floordiv__
ndarray.__mod__
ndarray.__divmod__
ndarray.__pow__
ndarray.__lshift__
ndarray.__rshift__
ndarray.__and__
ndarray.__or__
ndarray.__xor__
.. note::
- Any third argument to :func:`pow()` is silently ignored,
as the underlying :func:`ufunc <power>` takes only two arguments.
- Because :class:`ndarray` is a built-in type (written in C), the
``__r{op}__`` special methods are not directly defined.
- The functions called to implement many arithmetic special methods
for arrays can be modified using :class:`__array_ufunc__ <numpy.class.__array_ufunc__>`.
Arithmetic, in-place:
.. autosummary::
:toctree: generated/
ndarray.__iadd__
ndarray.__isub__
ndarray.__imul__
ndarray.__itruediv__
ndarray.__ifloordiv__
ndarray.__imod__
ndarray.__ipow__
ndarray.__ilshift__
ndarray.__irshift__
ndarray.__iand__
ndarray.__ior__
ndarray.__ixor__
.. warning::
In place operations will perform the calculation using the
precision decided by the data type of the two operands, but will
silently downcast the result (if necessary) so it can fit back into
the array. Therefore, for mixed precision calculations, ``A {op}=
B`` can be different than ``A = A {op} B``. For example, suppose
``a = ones((3,3))``. Then, ``a += 3j`` is different than ``a = a +
3j``: while they both perform the same computation, ``a += 3``
casts the result to fit back in ``a``, whereas ``a = a + 3j``
re-binds the name ``a`` to the result.
Matrix Multiplication:
.. autosummary::
:toctree: generated/
ndarray.__matmul__
.. note::
Matrix operators ``@`` and ``@=`` were introduced in Python 3.5
following :pep:`465`, and the ``@`` operator has been introduced in NumPy
1.10.0. Further information can be found in the :func:`matmul` documentation.
Special methods
===============
For standard library functions:
.. autosummary::
:toctree: generated/
ndarray.__copy__
ndarray.__deepcopy__
ndarray.__reduce__
ndarray.__setstate__
Basic customization:
.. autosummary::
:toctree: generated/
ndarray.__new__
ndarray.__array__
ndarray.__array_wrap__
Container customization: (see :ref:`Indexing <arrays.indexing>`)
.. autosummary::
:toctree: generated/
ndarray.__len__
ndarray.__getitem__
ndarray.__setitem__
ndarray.__contains__
Conversion; the operations :class:`int() <int>`,
:class:`float() <float>` and :class:`complex() <complex>`.
They work only on arrays that have one element in them
and return the appropriate scalar.
.. autosummary::
:toctree: generated/
ndarray.__int__
ndarray.__float__
ndarray.__complex__
String representations:
.. autosummary::
:toctree: generated/
ndarray.__str__
ndarray.__repr__
Utility method for typing:
.. autosummary::
:toctree: generated/
ndarray.__class_getitem__
|