summaryrefslogtreecommitdiff
path: root/doc/source/reference/random/multithreading.rst
blob: 6883d36728f9baf017528f04266aac3164b2ab4e (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
Multithreaded Generation
========================

The four core distributions (:meth:`~.Generator.random`,
:meth:`~.Generator.standard_normal`, :meth:`~.Generator.standard_exponential`,
and :meth:`~.Generator.standard_gamma`) all allow existing arrays to be filled
using the ``out`` keyword argument. Existing arrays need to be contiguous and
well-behaved (writable and aligned). Under normal circumstances, arrays
created using the common constructors such as :meth:`numpy.empty` will satisfy
these requirements.

This example makes use of Python 3 :mod:`concurrent.futures` to fill an array
using multiple threads.  Threads are long-lived so that repeated calls do not
require any additional overheads from thread creation. The underlying
BitGenerator is `PCG64` which is fast, has a long period and supports
using `PCG64.jumped` to return a new generator while advancing the
state. The random numbers generated are reproducible in the sense that the same
seed will produce the same outputs.

.. code-block:: ipython

    from numpy.random import Generator, PCG64
    import multiprocessing
    import concurrent.futures
    import numpy as np

    class MultithreadedRNG(object):
        def __init__(self, n, seed=None, threads=None):
            rg = PCG64(seed)
            if threads is None:
                threads = multiprocessing.cpu_count()
            self.threads = threads

            self._random_generators = [rg]
            last_rg = rg
            for _ in range(0, threads-1):
                new_rg = last_rg.jumped()
                self._random_generators.append(new_rg)
                last_rg = new_rg

            self.n = n
            self.executor = concurrent.futures.ThreadPoolExecutor(threads)
            self.values = np.empty(n)
            self.step = np.ceil(n / threads).astype(np.int)

        def fill(self):
            def _fill(random_state, out, first, last):
                random_state.standard_normal(out=out[first:last])

            futures = {}
            for i in range(self.threads):
                args = (_fill,
                        self._random_generators[i],
                        self.values,
                        i * self.step,
                        (i + 1) * self.step)
                futures[self.executor.submit(*args)] = i
            concurrent.futures.wait(futures)

        def __del__(self):
            self.executor.shutdown(False)


The multithreaded random number generator can be used to fill an array.
The ``values`` attributes shows the zero-value before the fill and the
random value after.

.. code-block:: ipython

    In [2]: mrng = MultithreadedRNG(10000000, seed=0)
    ...: print(mrng.values[-1])
    0.0

    In [3]: mrng.fill()
        ...: print(mrng.values[-1])
    3.296046120254392

The time required to produce using multiple threads can be compared to
the time required to generate using a single thread.

.. code-block:: ipython

    In [4]: print(mrng.threads)
        ...: %timeit mrng.fill()

    4
    32.8 ms ± 2.71 ms per loop (mean ± std. dev. of 7 runs, 10 loops each)

The single threaded call directly uses the BitGenerator.

.. code-block:: ipython

    In [5]: values = np.empty(10000000)
        ...: rg = Generator(PCG64())
        ...: %timeit rg.standard_normal(out=values)

    99.6 ms ± 222 µs per loop (mean ± std. dev. of 7 runs, 10 loops each)

The gains are substantial and the scaling is reasonable even for large that
are only moderately large.  The gains are even larger when compared to a call
that does not use an existing array due to array creation overhead.

.. code-block:: ipython

    In [6]: rg = Generator(PCG64())
        ...: %timeit rg.standard_normal(10000000)

    125 ms ± 309 µs per loop (mean ± std. dev. of 7 runs, 10 loops each)