summaryrefslogtreecommitdiff
path: root/doc/source/user/basics.creation.rst
blob: 3ee501889666bcab0700a832dd56c1ea3112870e (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
.. _arrays.creation:

**************
Array creation
**************

.. seealso:: :ref:`Array creation routines <routines.array-creation>`

Introduction
============

There are 6 general mechanisms for creating arrays:

1) Conversion from other Python structures (i.e. lists and tuples)
2) Intrinsic NumPy array creation functions (e.g. arange, ones, zeros,
   etc.)
3) Replicating, joining, or mutating existing arrays
4) Reading arrays from disk, either from standard or custom formats
5) Creating arrays from raw bytes through the use of strings or buffers
6) Use of special library functions (e.g., random)

You can use these methods to create ndarrays or :ref:`structured_arrays`.
This document will cover general methods for ndarray creation. 

1) Converting Python sequences to NumPy Arrays
==============================================

NumPy arrays can be defined using Python sequences such as lists and
tuples. Lists and tuples are defined using ``[...]`` and ``(...)``,
respectively. Lists and tuples can define ndarray creation:

* a list of numbers will create a 1D array, 
* a list of lists will create a 2D array, 
* further nested lists will create higher-dimensional arrays. In general, any array object is called an **ndarray** in NumPy.

::

  >>> a1D = np.array([1, 2, 3, 4])
  >>> a2D = np.array([[1, 2], [3, 4]])
  >>> a3D = np.array([[[1, 2], [3, 4]], [[5, 6], [7, 8]]])

When you use :func:`numpy.array` to define a new array, you should
consider the :doc:`dtype <basics.types>` of the elements in the array,
which can be specified explicitly. This feature gives you
more control over the underlying data structures and how the elements
are handled in C/C++ functions. If you are not careful with ``dtype``
assignments, you can get unwanted overflow, as such 

::

  >>> a = np.array([127, 128, 129], dtype=np.int8)
  >>> a
  array([ 127, -128, -127], dtype=int8)

An 8-bit signed integer represents integers from -128 to 127.
Assigning the ``int8`` array to integers outside of this range results
in overflow. This feature can often be misunderstood. If you
perform calculations with mismatching ``dtypes``, you can get unwanted
results,  for example::

    >>> a = np.array([2, 3, 4], dtype=np.uint32)
    >>> b = np.array([5, 6, 7], dtype=np.uint32)
    >>> c_unsigned32 = a - b
    >>> print('unsigned c:', c_unsigned32, c_unsigned32.dtype)
    unsigned c: [4294967293 4294967293 4294967293] uint32
    >>> c_signed32 = a - b.astype(np.int32)
    >>> print('signed c:', c_signed32, c_signed32.dtype)
    signed c: [-3 -3 -3] int64

Notice when you perform operations with two arrays of the same
``dtype``: ``uint32``, the resulting array is the same type. When you
perform operations with different ``dtype``, NumPy will 
assign a new type that satisfies all of the array elements involved in
the computation, here ``uint32`` and ``int32`` can both be represented in
as ``int64``. 

The default NumPy behavior is to create arrays in either 32 or 64-bit signed
integers (platform dependent and matches C ``long`` size) or double precision
floating point numbers. If you expect your
integer arrays to be a specific type, then you need to specify the dtype while
you create the array.

2) Intrinsic NumPy array creation functions
===========================================

..
  40 functions seems like a small number, but the routies.array-creation
  has ~47. I'm sure there are more. 

NumPy has over 40 built-in functions for creating arrays as laid
out in the :ref:`Array creation routines <routines.array-creation>`.
These functions can be split into roughly three categories, based on the
dimension of the array they create:

1) 1D arrays
2) 2D arrays
3) ndarrays

1 - 1D array creation functions
-------------------------------

The 1D array creation functions e.g. :func:`numpy.linspace` and
:func:`numpy.arange` generally need at least two inputs, ``start`` and
``stop``. 

:func:`numpy.arange` creates arrays with regularly incrementing values.
Check the documentation for complete information and examples. A few
examples are shown::

 >>> np.arange(10)
 array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])
 >>> np.arange(2, 10, dtype=float)
 array([2., 3., 4., 5., 6., 7., 8., 9.])
 >>> np.arange(2, 3, 0.1)
 array([2. , 2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.7, 2.8, 2.9])

Note: best practice for :func:`numpy.arange` is to use integer start, end, and
step values. There are some subtleties regarding ``dtype``. In the second
example, the ``dtype`` is defined. In the third example, the array is
``dtype=float`` to accommodate the step size of ``0.1``. Due to roundoff error,
the ``stop`` value is sometimes included. 

:func:`numpy.linspace` will create arrays with a specified number of elements, and
spaced equally between the specified beginning and end values. For
example: ::

 >>> np.linspace(1., 4., 6)
 array([1. ,  1.6,  2.2,  2.8,  3.4,  4. ])

The advantage of this creation function is that you guarantee the
number of elements and the starting and end point. The previous
``arange(start, stop, step)`` will not include the value ``stop``.

2 - 2D array creation functions
-------------------------------

The 2D array creation functions e.g. :func:`numpy.eye`, :func:`numpy.diag`, and :func:`numpy.vander`
define properties of special matrices represented as 2D arrays. 

``np.eye(n, m)`` defines a 2D identity matrix. The elements where i=j (row index and column index are equal) are 1
and the rest are 0, as such::

 >>> np.eye(3)
 array([[1., 0., 0.],
        [0., 1., 0.],
        [0., 0., 1.]])
 >>> np.eye(3, 5)
 array([[1., 0., 0., 0., 0.],
        [0., 1., 0., 0., 0.],
        [0., 0., 1., 0., 0.]])

:func:`numpy.diag` can define either a square 2D array with given values along
the diagonal *or* if given a 2D array returns a 1D array that is
only the diagonal elements. The two array creation functions can be helpful while
doing linear algebra, as such::
 
 >>> np.diag([1, 2, 3])
 array([[1, 0, 0],
        [0, 2, 0],
        [0, 0, 3]])
 >>> np.diag([1, 2, 3], 1)
 array([[0, 1, 0, 0],
        [0, 0, 2, 0],
        [0, 0, 0, 3],
        [0, 0, 0, 0]])
 >>> a = np.array([[1, 2], [3, 4]])
 >>> np.diag(a)
 array([1, 4])

``vander(x, n)`` defines a Vandermonde matrix as a 2D NumPy array. Each column
of the Vandermonde matrix is a decreasing power of the input 1D array or
list or tuple,
``x`` where the highest polynomial order is ``n-1``. This array creation
routine is helpful in generating linear least squares models, as such::
 
 >>> np.vander(np.linspace(0, 2, 5), 2)
 array([[0. , 1. ],
       [0.5, 1. ],
       [1. , 1. ],
       [1.5, 1. ],
       [2. , 1. ]])
 >>> np.vander([1, 2, 3, 4], 2)
 array([[1, 1],
        [2, 1],
        [3, 1],
        [4, 1]])
 >>> np.vander((1, 2, 3, 4), 4)
 array([[ 1,  1,  1,  1],
        [ 8,  4,  2,  1],
        [27,  9,  3,  1],
        [64, 16,  4,  1]])
 
3 - general ndarray creation functions
--------------------------------------

The ndarray creation functions e.g. :func:`numpy.ones`,
:func:`numpy.zeros`, and :meth:`~numpy.random.Generator.random` define
arrays based upon the desired shape.  The  ndarray creation functions
can create arrays with any dimension by specifying how many dimensions
and length along that dimension in a tuple or list. 

:func:`numpy.zeros` will create an array filled with 0 values with the
specified shape. The default dtype is ``float64``::

 >>> np.zeros((2, 3))
 array([[0., 0., 0.], 
        [0., 0., 0.]])
 >>> np.zeros((2, 3, 2))
 array([[[0., 0.],
         [0., 0.],
         [0., 0.]],
 <BLANKLINE>        
        [[0., 0.],
         [0., 0.],
         [0., 0.]]])

:func:`numpy.ones` will create an array filled with 1 values. It is identical to
``zeros`` in all other respects as such::

 >>> np.ones((2, 3))
 array([[1., 1., 1.], 
        [1., 1., 1.]])
 >>> np.ones((2, 3, 2))
 array([[[1., 1.],
         [1., 1.],
         [1., 1.]],
 <BLANKLINE>
        [[1., 1.],
         [1., 1.],
         [1., 1.]]])

The :meth:`~numpy.random.Generator.random` method of the result of
``default_rng`` will create an array filled with random
values between 0 and 1. It is included with the :func:`numpy.random`
library. Below, two arrays are created with shapes (2,3) and (2,3,2),
respectively. The seed is set to 42 so you can reproduce these
pseudorandom numbers::

 >>> from numpy.random import default_rng
 >>> default_rng(42).random((2,3))
 array([[0.77395605, 0.43887844, 0.85859792],
        [0.69736803, 0.09417735, 0.97562235]])
 >>> default_rng(42).random((2,3,2))
 array([[[0.77395605, 0.43887844],
         [0.85859792, 0.69736803],
         [0.09417735, 0.97562235]],
        [[0.7611397 , 0.78606431],
         [0.12811363, 0.45038594],
         [0.37079802, 0.92676499]]])

:func:`numpy.indices` will create a set of arrays (stacked as a one-higher
dimensioned array), one per dimension with each representing variation in that
dimension: ::

 >>> np.indices((3,3))
 array([[[0, 0, 0], 
         [1, 1, 1], 
         [2, 2, 2]], 
        [[0, 1, 2], 
         [0, 1, 2], 
         [0, 1, 2]]])

This is particularly useful for evaluating functions of multiple dimensions on
a regular grid.

3) Replicating, joining, or mutating existing arrays
====================================================

Once you have created arrays, you can replicate, join, or mutate those
existing arrays to create new arrays. When you assign an array or its
elements to a new variable, you have to explicitly :func:`numpy.copy` the array,
otherwise the variable is a view into the original array. Consider the
following example::

 >>> a = np.array([1, 2, 3, 4, 5, 6])
 >>> b = a[:2]
 >>> b += 1
 >>> print('a =', a, '; b =', b)
 a = [2 3 3 4 5 6] ; b = [2 3]

In this example, you did not create a new array. You created a variable,
``b`` that viewed the first 2 elements of ``a``. When you added 1 to ``b`` you
would get the same result by adding 1 to ``a[:2]``. If you want to create a
*new* array, use the :func:`numpy.copy` array creation routine as such::

 >>> a = np.array([1, 2, 3, 4])
 >>> b = a[:2].copy()
 >>> b += 1
 >>> print('a = ', a, 'b = ', b)
 a =  [1 2 3 4] b =  [2 3]

For more information and examples look at :ref:`Copies and Views
<quickstart.copies-and-views>`.

There are a number of routines to join existing arrays e.g. :func:`numpy.vstack`,
:func:`numpy.hstack`, and :func:`numpy.block`. Here is an example of joining four 2-by-2
arrays into a 4-by-4 array using ``block``::

 >>> A = np.ones((2, 2))
 >>> B = np.eye(2, 2)
 >>> C = np.zeros((2, 2))
 >>> D = np.diag((-3, -4))
 >>> np.block([[A, B], [C, D]])
 array([[ 1.,  1.,  1.,  0.],
        [ 1.,  1.,  0.,  1.],
        [ 0.,  0., -3.,  0.],
        [ 0.,  0.,  0., -4.]])

Other routines use similar syntax to join ndarrays. Check the
routine's documentation for further examples and syntax. 

4) Reading arrays from disk, either from standard or custom formats
===================================================================

This is the most common case of large array creation. The details depend
greatly on the format of data on disk. This section gives general pointers on
how to handle various formats. For more detailed examples of IO look at
:ref:`How to Read and Write files <how-to-io>`. 

Standard Binary Formats
-----------------------

Various fields have standard formats for array data. The following lists the
ones with known Python libraries to read them and return NumPy arrays (there
may be others for which it is possible to read and convert to NumPy arrays so
check the last section as well)
::

 HDF5: h5py
 FITS: Astropy

Examples of formats that cannot be read directly but for which it is not hard to
convert are those formats supported by libraries like PIL (able to read and
write many image formats such as jpg, png, etc).

Common ASCII Formats
--------------------

Delimited files such as comma separated value (csv) and tab separated
value (tsv) files are used for programs like Excel and LabView. Python
functions can read and parse these files line-by-line. NumPy has two
standard routines for importing a file with delimited data :func:`numpy.loadtxt`
and :func:`numpy.genfromtxt`. These functions have more involved use cases in
:doc:`how-to-io`. A simple example given a ``simple.csv``:

.. code-block:: bash

 $ cat simple.csv
 x, y
 0, 0
 1, 1
 2, 4
 3, 9

Importing ``simple.csv`` is accomplished using :func:`numpy.loadtxt`::

 >>> np.loadtxt('simple.csv', delimiter = ',', skiprows = 1) # doctest: +SKIP
 array([[0., 0.],
        [1., 1.],
        [2., 4.],
        [3., 9.]])


More generic ASCII files can be read using `scipy.io` and `Pandas
<https://pandas.pydata.org/>`_.

5) Creating arrays from raw bytes through the use of strings or buffers
=======================================================================

There are a variety of approaches one can use. If the file has a relatively
simple format then one can write a simple I/O library and use the NumPy
``fromfile()`` function and ``.tofile()`` method to read and write NumPy arrays
directly (mind your byteorder though!) If a good C or C++ library exists that
read the data, one can wrap that library with a variety of techniques though
that certainly is much more work and requires significantly more advanced
knowledge to interface with C or C++.

6) Use of special library functions (e.g., SciPy, Pandas, and OpenCV)
=====================================================================

NumPy is the fundamental library for array containers in the Python Scientific Computing
stack. Many Python libraries, including SciPy, Pandas, and OpenCV, use NumPy ndarrays
as the common format for data exchange, These libraries can create,
operate on, and work with NumPy arrays.