1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
|
.. sectionauthor:: adapted from "Guide to NumPy" by Travis E. Oliphant
.. _ufuncs-basics:
********************************************
Universal functions (:class:`.ufunc`) basics
********************************************
.. seealso:: :ref:`ufuncs`
.. index: ufunc, universal function, arithmetic, operation
A universal function (or :term:`ufunc` for short) is a function that
operates on :class:`ndarrays <numpy.ndarray>` in an element-by-element fashion,
supporting :ref:`array broadcasting <ufuncs.broadcasting>`, :ref:`type
casting <ufuncs.casting>`, and several other standard features. That
is, a ufunc is a ":term:`vectorized <vectorization>`" wrapper for a function
that takes a fixed number of specific inputs and produces a fixed number of
specific outputs.
In NumPy, universal functions are instances of the
:class:`numpy.ufunc` class. Many of the built-in functions are
implemented in compiled C code. The basic ufuncs operate on scalars, but
there is also a generalized kind for which the basic elements are sub-arrays
(vectors, matrices, etc.), and broadcasting is done over other dimensions.
The simplest example is the addition operator::
>>> np.array([0,2,3,4]) + np.array([1,1,-1,2])
array([1, 3, 2, 6])
One can also produce custom :class:`numpy.ufunc` instances using the
:func:`numpy.frompyfunc` factory function.
Ufunc methods
=============
All ufuncs have four methods. They can be found at
:ref:`ufuncs.methods`. However, these methods only make sense on scalar
ufuncs that take two input arguments and return one output argument.
Attempting to call these methods on other ufuncs will cause a
:exc:`ValueError`.
The reduce-like methods all take an *axis* keyword, a *dtype*
keyword, and an *out* keyword, and the arrays must all have dimension >= 1.
The *axis* keyword specifies the axis of the array over which the reduction
will take place (with negative values counting backwards). Generally, it is an
integer, though for :meth:`numpy.ufunc.reduce`, it can also be a tuple of
``int`` to reduce over several axes at once, or ``None``, to reduce over all
axes. For example::
>>> x = np.arange(9).reshape(3,3)
>>> x
array([[0, 1, 2],
[3, 4, 5],
[6, 7, 8]])
>>> np.add.reduce(x, 1)
array([ 3, 12, 21])
>>> np.add.reduce(x, (0, 1))
36
The *dtype* keyword allows you to manage a very common problem that arises
when naively using :meth:`.ufunc.reduce`. Sometimes you may
have an array of a certain data type and wish to add up all of its
elements, but the result does not fit into the data type of the
array. This commonly happens if you have an array of single-byte
integers. The *dtype* keyword allows you to alter the data type over which
the reduction takes place (and therefore the type of the output). Thus,
you can ensure that the output is a data type with precision large enough
to handle your output. The responsibility of altering the reduce type is
mostly up to you. There is one exception: if no *dtype* is given for a
reduction on the "add" or "multiply" operations, then if the input type is
an integer (or Boolean) data-type and smaller than the size of the
:class:`numpy.int_` data type, it will be internally upcast to the :class:`.int_`
(or :class:`numpy.uint`) data-type. In the previous example::
>>> x.dtype
dtype('int64')
>>> np.multiply.reduce(x, dtype=float)
array([ 0., 28., 80.])
Finally, the *out* keyword allows you to
provide an output array (for single-output ufuncs, which are currently the only
ones supported; for future extension, however, a tuple with a single argument
can be passed in). If *out* is given, the *dtype* argument is ignored.
Considering ``x`` from the previous example::
>>> y = np.zeros(3, dtype=int)
>>> y
array([0, 0, 0])
>>> np.multiply.reduce(x, dtype=float, out=y)
array([ 0, 28, 80])
Ufuncs also have a fifth method, :func:`numpy.ufunc.at`, that allows in place
operations to be performed using advanced indexing. No
:ref:`buffering <use-of-internal-buffers>` is used on the dimensions where
advanced indexing is used, so the advanced index can
list an item more than once and the operation will be performed on the result
of the previous operation for that item.
.. _ufuncs-output-type:
Output type determination
=========================
The output of the ufunc (and its methods) is not necessarily an
:class:`ndarray <numpy.ndarray>`, if all input arguments are not
:class:`ndarrays <numpy.ndarray>`. Indeed, if any input defines an
:obj:`~.class.__array_ufunc__` method,
control will be passed completely to that function, i.e., the ufunc is
:ref:`overridden <ufuncs.overrides>`.
If none of the inputs overrides the ufunc, then
all output arrays will be passed to the
:obj:`~.class.__array_prepare__` and
:obj:`~.class.__array_wrap__` methods of the input (besides
:class:`ndarrays <.ndarray>`, and scalars) that defines it **and** has
the highest :obj:`~.class.__array_priority__`
of any other input to the universal function. The default
:obj:`~.class.__array_priority__` of the
ndarray is 0.0, and the default :obj:`~.class.__array_priority__` of a subtype
is 0.0. Matrices have :obj:`~.class.__array_priority__` equal to 10.0.
All ufuncs can also take output arguments. If necessary, output will
be cast to the data-type(s) of the provided output array(s). If a class
with an :obj:`~.class.__array__` method is used for the output,
results will be written to the object returned by :obj:`~.class.__array__`.
Then, if the class also has an :obj:`~.class.__array_prepare__` method, it is
called so metadata may be determined based on the context of the ufunc (the
context consisting of the ufunc itself, the arguments passed to the ufunc, and
the ufunc domain.) The array object returned by
:obj:`~.class.__array_prepare__` is passed to the ufunc for computation.
Finally, if the class also has an :obj:`~.class.__array_wrap__` method, the
returned :class:`.ndarray` result will be passed to that method just before
passing control back to the caller.
.. _ufuncs.broadcasting:
Broadcasting
============
.. seealso:: :doc:`Broadcasting basics <basics.broadcasting>`
.. index:: broadcasting
Each universal function takes array inputs and produces array outputs
by performing the core function element-wise on the inputs (where an
element is generally a scalar, but can be a vector or higher-order
sub-array for generalized ufuncs). Standard
:ref:`broadcasting rules <general-broadcasting-rules>` are applied
so that inputs not sharing exactly the
same shapes can still be usefully operated on.
By these rules, if an input has a dimension size of 1 in its shape, the
first data entry in that dimension will be used for all calculations along
that dimension. In other words, the stepping machinery of the
:term:`ufunc` will simply not step along that dimension (the
:ref:`stride <memory-layout>` will be 0 for that dimension).
.. _ufuncs.casting:
Type casting rules
==================
.. index::
pair: ufunc; casting rules
.. note::
In NumPy 1.6.0, a type promotion API was created to encapsulate the
mechanism for determining output types. See the functions
:func:`numpy.result_type`, :func:`numpy.promote_types`, and
:func:`numpy.min_scalar_type` for more details.
At the core of every ufunc is a one-dimensional strided loop that
implements the actual function for a specific type combination. When a
ufunc is created, it is given a static list of inner loops and a
corresponding list of type signatures over which the ufunc operates.
The ufunc machinery uses this list to determine which inner loop to
use for a particular case. You can inspect the :attr:`.types
<.ufunc.types>` attribute for a particular ufunc to see which type
combinations have a defined inner loop and which output type they
produce (:ref:`character codes <arrays.scalars.character-codes>` are used
in said output for brevity).
Casting must be done on one or more of the inputs whenever the ufunc
does not have a core loop implementation for the input types provided.
If an implementation for the input types cannot be found, then the
algorithm searches for an implementation with a type signature to
which all of the inputs can be cast "safely." The first one it finds
in its internal list of loops is selected and performed, after all
necessary type casting. Recall that internal copies during ufuncs (even
for casting) are limited to the size of an internal buffer (which is user
settable).
.. note::
Universal functions in NumPy are flexible enough to have mixed type
signatures. Thus, for example, a universal function could be defined
that works with floating-point and integer values. See
:func:`numpy.ldexp` for an example.
By the above description, the casting rules are essentially
implemented by the question of when a data type can be cast "safely"
to another data type. The answer to this question can be determined in
Python with a function call: :func:`can_cast(fromtype, totype)
<numpy.can_cast>`. The example below shows the results of this call for
the 24 internally supported types on the author's 64-bit system. You
can generate this table for your system with the code given in the example.
.. rubric:: Example
Code segment showing the "can cast safely" table for a 64-bit system.
Generally the output depends on the system; your system might result in
a different table.
>>> mark = {False: ' -', True: ' Y'}
>>> def print_table(ntypes):
... print('X ' + ' '.join(ntypes))
... for row in ntypes:
... print(row, end='')
... for col in ntypes:
... print(mark[np.can_cast(row, col)], end='')
... print()
...
>>> print_table(np.typecodes['All'])
X ? b h i l q p B H I L Q P e f d g F D G S U V O M m
? Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y - Y
b - Y Y Y Y Y Y - - - - - - Y Y Y Y Y Y Y Y Y Y Y - Y
h - - Y Y Y Y Y - - - - - - - Y Y Y Y Y Y Y Y Y Y - Y
i - - - Y Y Y Y - - - - - - - - Y Y - Y Y Y Y Y Y - Y
l - - - - Y Y Y - - - - - - - - Y Y - Y Y Y Y Y Y - Y
q - - - - Y Y Y - - - - - - - - Y Y - Y Y Y Y Y Y - Y
p - - - - Y Y Y - - - - - - - - Y Y - Y Y Y Y Y Y - Y
B - - Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y - Y
H - - - Y Y Y Y - Y Y Y Y Y - Y Y Y Y Y Y Y Y Y Y - Y
I - - - - Y Y Y - - Y Y Y Y - - Y Y - Y Y Y Y Y Y - Y
L - - - - - - - - - - Y Y Y - - Y Y - Y Y Y Y Y Y - -
Q - - - - - - - - - - Y Y Y - - Y Y - Y Y Y Y Y Y - -
P - - - - - - - - - - Y Y Y - - Y Y - Y Y Y Y Y Y - -
e - - - - - - - - - - - - - Y Y Y Y Y Y Y Y Y Y Y - -
f - - - - - - - - - - - - - - Y Y Y Y Y Y Y Y Y Y - -
d - - - - - - - - - - - - - - - Y Y - Y Y Y Y Y Y - -
g - - - - - - - - - - - - - - - - Y - - Y Y Y Y Y - -
F - - - - - - - - - - - - - - - - - Y Y Y Y Y Y Y - -
D - - - - - - - - - - - - - - - - - - Y Y Y Y Y Y - -
G - - - - - - - - - - - - - - - - - - - Y Y Y Y Y - -
S - - - - - - - - - - - - - - - - - - - - Y Y Y Y - -
U - - - - - - - - - - - - - - - - - - - - - Y Y Y - -
V - - - - - - - - - - - - - - - - - - - - - - Y Y - -
O - - - - - - - - - - - - - - - - - - - - - - - Y - -
M - - - - - - - - - - - - - - - - - - - - - - Y Y Y -
m - - - - - - - - - - - - - - - - - - - - - - Y Y - Y
You should note that, while included in the table for completeness,
the 'S', 'U', and 'V' types cannot be operated on by ufuncs. Also,
note that on a 32-bit system the integer types may have different
sizes, resulting in a slightly altered table.
Mixed scalar-array operations use a different set of casting rules
that ensure that a scalar cannot "upcast" an array unless the scalar is
of a fundamentally different kind of data (i.e., under a different
hierarchy in the data-type hierarchy) than the array. This rule
enables you to use scalar constants in your code (which, as Python
types, are interpreted accordingly in ufuncs) without worrying about
whether the precision of the scalar constant will cause upcasting on
your large (small precision) array.
.. _use-of-internal-buffers:
Use of internal buffers
=======================
.. index:: buffers
Internally, buffers are used for misaligned data, swapped data, and
data that has to be converted from one data type to another. The size
of internal buffers is settable on a per-thread basis. There can
be up to :math:`2 (n_{\mathrm{inputs}} + n_{\mathrm{outputs}})`
buffers of the specified size created to handle the data from all the
inputs and outputs of a ufunc. The default size of a buffer is
10,000 elements. Whenever buffer-based calculation would be needed,
but all input arrays are smaller than the buffer size, those
misbehaved or incorrectly-typed arrays will be copied before the
calculation proceeds. Adjusting the size of the buffer may therefore
alter the speed at which ufunc calculations of various sorts are
completed. A simple interface for setting this variable is accessible
using the function :func:`numpy.setbufsize`.
Error handling
==============
.. index:: error handling
Universal functions can trip special floating-point status registers
in your hardware (such as divide-by-zero). If available on your
platform, these registers will be regularly checked during
calculation. Error handling is controlled on a per-thread basis,
and can be configured using the functions :func:`numpy.seterr` and
:func:`numpy.seterrcall`.
.. _ufuncs.overrides:
Overriding ufunc behavior
=========================
Classes (including ndarray subclasses) can override how ufuncs act on
them by defining certain special methods. For details, see
:ref:`arrays.classes`.
|