1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
|
===================
NumPy quickstart
===================
.. currentmodule:: numpy
.. testsetup::
>>> import numpy as np
>>> import sys
Prerequisites
=============
You'll need to know a bit of Python. For a refresher, see the `Python
tutorial <https://docs.python.org/tutorial/>`__.
To work the examples, you'll need ``matplotlib`` installed
in addition to NumPy.
**Learner profile**
This is a quick overview of arrays in NumPy. It demonstrates how n-dimensional
(:math:`n>=2`) arrays are represented and can be manipulated. In particular, if
you don't know how to apply common functions to n-dimensional arrays (without
using for-loops), or if you want to understand axis and shape properties for
n-dimensional arrays, this article might be of help.
**Learning Objectives**
After reading, you should be able to:
- Understand the difference between one-, two- and n-dimensional arrays in
NumPy;
- Understand how to apply some linear algebra operations to n-dimensional
arrays without using for-loops;
- Understand axis and shape properties for n-dimensional arrays.
.. _quickstart.the-basics:
The Basics
==========
NumPy's main object is the homogeneous multidimensional array. It is a
table of elements (usually numbers), all of the same type, indexed by a
tuple of non-negative integers. In NumPy dimensions are called *axes*.
For example, the array for the coordinates of a point in 3D space,
``[1, 2, 1]``, has one axis. That axis has 3 elements in it, so we say
it has a length of 3. In the example pictured below, the array has 2
axes. The first axis has a length of 2, the second axis has a length of
3.
::
[[1., 0., 0.],
[0., 1., 2.]]
NumPy's array class is called ``ndarray``. It is also known by the alias
``array``. Note that ``numpy.array`` is not the same as the Standard
Python Library class ``array.array``, which only handles one-dimensional
arrays and offers less functionality. The more important attributes of
an ``ndarray`` object are:
ndarray.ndim
the number of axes (dimensions) of the array.
ndarray.shape
the dimensions of the array. This is a tuple of integers indicating
the size of the array in each dimension. For a matrix with *n* rows
and *m* columns, ``shape`` will be ``(n,m)``. The length of the
``shape`` tuple is therefore the number of axes, ``ndim``.
ndarray.size
the total number of elements of the array. This is equal to the
product of the elements of ``shape``.
ndarray.dtype
an object describing the type of the elements in the array. One can
create or specify dtype's using standard Python types. Additionally
NumPy provides types of its own. numpy.int32, numpy.int16, and
numpy.float64 are some examples.
ndarray.itemsize
the size in bytes of each element of the array. For example, an
array of elements of type ``float64`` has ``itemsize`` 8 (=64/8),
while one of type ``complex32`` has ``itemsize`` 4 (=32/8). It is
equivalent to ``ndarray.dtype.itemsize``.
ndarray.data
the buffer containing the actual elements of the array. Normally, we
won't need to use this attribute because we will access the elements
in an array using indexing facilities.
An example
----------
>>> import numpy as np
>>> a = np.arange(15).reshape(3, 5)
>>> a
array([[ 0, 1, 2, 3, 4],
[ 5, 6, 7, 8, 9],
[10, 11, 12, 13, 14]])
>>> a.shape
(3, 5)
>>> a.ndim
2
>>> a.dtype.name
'int64'
>>> a.itemsize
8
>>> a.size
15
>>> type(a)
<class 'numpy.ndarray'>
>>> b = np.array([6, 7, 8])
>>> b
array([6, 7, 8])
>>> type(b)
<class 'numpy.ndarray'>
.. _quickstart.array-creation:
Array Creation
--------------
There are several ways to create arrays.
For example, you can create an array from a regular Python list or tuple
using the ``array`` function. The type of the resulting array is deduced
from the type of the elements in the sequences.
::
>>> import numpy as np
>>> a = np.array([2, 3, 4])
>>> a
array([2, 3, 4])
>>> a.dtype
dtype('int64')
>>> b = np.array([1.2, 3.5, 5.1])
>>> b.dtype
dtype('float64')
A frequent error consists in calling ``array`` with multiple arguments,
rather than providing a single sequence as an argument.
::
>>> a = np.array(1, 2, 3, 4) # WRONG
Traceback (most recent call last):
...
TypeError: array() takes from 1 to 2 positional arguments but 4 were given
>>> a = np.array([1, 2, 3, 4]) # RIGHT
``array`` transforms sequences of sequences into two-dimensional arrays,
sequences of sequences of sequences into three-dimensional arrays, and
so on.
::
>>> b = np.array([(1.5, 2, 3), (4, 5, 6)])
>>> b
array([[1.5, 2. , 3. ],
[4. , 5. , 6. ]])
The type of the array can also be explicitly specified at creation time:
::
>>> c = np.array([[1, 2], [3, 4]], dtype=complex)
>>> c
array([[1.+0.j, 2.+0.j],
[3.+0.j, 4.+0.j]])
Often, the elements of an array are originally unknown, but its size is
known. Hence, NumPy offers several functions to create
arrays with initial placeholder content. These minimize the necessity of
growing arrays, an expensive operation.
The function ``zeros`` creates an array full of zeros, the function
``ones`` creates an array full of ones, and the function ``empty``
creates an array whose initial content is random and depends on the
state of the memory. By default, the dtype of the created array is
``float64``, but it can be specified via the key word argument ``dtype``.
::
>>> np.zeros((3, 4))
array([[0., 0., 0., 0.],
[0., 0., 0., 0.],
[0., 0., 0., 0.]])
>>> np.ones((2, 3, 4), dtype=np.int16)
array([[[1, 1, 1, 1],
[1, 1, 1, 1],
[1, 1, 1, 1]],
<BLANKLINE>
[[1, 1, 1, 1],
[1, 1, 1, 1],
[1, 1, 1, 1]]], dtype=int16)
>>> np.empty((2, 3)) #doctest: +SKIP
array([[3.73603959e-262, 6.02658058e-154, 6.55490914e-260], # may vary
[5.30498948e-313, 3.14673309e-307, 1.00000000e+000]])
To create sequences of numbers, NumPy provides the ``arange`` function
which is analogous to the Python built-in ``range``, but returns an
array.
::
>>> np.arange(10, 30, 5)
array([10, 15, 20, 25])
>>> np.arange(0, 2, 0.3) # it accepts float arguments
array([0. , 0.3, 0.6, 0.9, 1.2, 1.5, 1.8])
When ``arange`` is used with floating point arguments, it is generally
not possible to predict the number of elements obtained, due to the
finite floating point precision. For this reason, it is usually better
to use the function ``linspace`` that receives as an argument the number
of elements that we want, instead of the step::
>>> from numpy import pi
>>> np.linspace(0, 2, 9) # 9 numbers from 0 to 2
array([0. , 0.25, 0.5 , 0.75, 1. , 1.25, 1.5 , 1.75, 2. ])
>>> x = np.linspace(0, 2 * pi, 100) # useful to evaluate function at lots of points
>>> f = np.sin(x)
.. seealso::
`array`,
`zeros`,
`zeros_like`,
`ones`,
`ones_like`,
`empty`,
`empty_like`,
`arange`,
`linspace`,
`numpy.random.Generator.rand`,
`numpy.random.Generator.randn`,
`fromfunction`,
`fromfile`
Printing Arrays
---------------
When you print an array, NumPy displays it in a similar way to nested
lists, but with the following layout:
- the last axis is printed from left to right,
- the second-to-last is printed from top to bottom,
- the rest are also printed from top to bottom, with each slice
separated from the next by an empty line.
One-dimensional arrays are then printed as rows, bidimensionals as
matrices and tridimensionals as lists of matrices.
::
>>> a = np.arange(6) # 1d array
>>> print(a)
[0 1 2 3 4 5]
>>>
>>> b = np.arange(12).reshape(4, 3) # 2d array
>>> print(b)
[[ 0 1 2]
[ 3 4 5]
[ 6 7 8]
[ 9 10 11]]
>>>
>>> c = np.arange(24).reshape(2, 3, 4) # 3d array
>>> print(c)
[[[ 0 1 2 3]
[ 4 5 6 7]
[ 8 9 10 11]]
<BLANKLINE>
[[12 13 14 15]
[16 17 18 19]
[20 21 22 23]]]
See :ref:`below <quickstart.shape-manipulation>` to get
more details on ``reshape``.
If an array is too large to be printed, NumPy automatically skips the
central part of the array and only prints the corners::
>>> print(np.arange(10000))
[ 0 1 2 ... 9997 9998 9999]
>>>
>>> print(np.arange(10000).reshape(100, 100))
[[ 0 1 2 ... 97 98 99]
[ 100 101 102 ... 197 198 199]
[ 200 201 202 ... 297 298 299]
...
[9700 9701 9702 ... 9797 9798 9799]
[9800 9801 9802 ... 9897 9898 9899]
[9900 9901 9902 ... 9997 9998 9999]]
To disable this behaviour and force NumPy to print the entire array, you
can change the printing options using ``set_printoptions``.
::
>>> np.set_printoptions(threshold=sys.maxsize) # sys module should be imported
.. _quickstart.basic-operations:
Basic Operations
----------------
Arithmetic operators on arrays apply *elementwise*. A new array is
created and filled with the result.
::
>>> a = np.array([20, 30, 40, 50])
>>> b = np.arange(4)
>>> b
array([0, 1, 2, 3])
>>> c = a - b
>>> c
array([20, 29, 38, 47])
>>> b**2
array([0, 1, 4, 9])
>>> 10 * np.sin(a)
array([ 9.12945251, -9.88031624, 7.4511316 , -2.62374854])
>>> a < 35
array([ True, True, False, False])
Unlike in many matrix languages, the product operator ``*`` operates
elementwise in NumPy arrays. The matrix product can be performed using
the ``@`` operator (in python >=3.5) or the ``dot`` function or method::
>>> A = np.array([[1, 1],
... [0, 1]])
>>> B = np.array([[2, 0],
... [3, 4]])
>>> A * B # elementwise product
array([[2, 0],
[0, 4]])
>>> A @ B # matrix product
array([[5, 4],
[3, 4]])
>>> A.dot(B) # another matrix product
array([[5, 4],
[3, 4]])
Some operations, such as ``+=`` and ``*=``, act in place to modify an
existing array rather than create a new one.
::
>>> rg = np.random.default_rng(1) # create instance of default random number generator
>>> a = np.ones((2, 3), dtype=int)
>>> b = rg.random((2, 3))
>>> a *= 3
>>> a
array([[3, 3, 3],
[3, 3, 3]])
>>> b += a
>>> b
array([[3.51182162, 3.9504637 , 3.14415961],
[3.94864945, 3.31183145, 3.42332645]])
>>> a += b # b is not automatically converted to integer type
Traceback (most recent call last):
...
numpy.core._exceptions._UFuncOutputCastingError: Cannot cast ufunc 'add' output from dtype('float64') to dtype('int64') with casting rule 'same_kind'
When operating with arrays of different types, the type of the resulting
array corresponds to the more general or precise one (a behavior known
as upcasting).
::
>>> a = np.ones(3, dtype=np.int32)
>>> b = np.linspace(0, pi, 3)
>>> b.dtype.name
'float64'
>>> c = a + b
>>> c
array([1. , 2.57079633, 4.14159265])
>>> c.dtype.name
'float64'
>>> d = np.exp(c * 1j)
>>> d
array([ 0.54030231+0.84147098j, -0.84147098+0.54030231j,
-0.54030231-0.84147098j])
>>> d.dtype.name
'complex128'
Many unary operations, such as computing the sum of all the elements in
the array, are implemented as methods of the ``ndarray`` class.
::
>>> a = rg.random((2, 3))
>>> a
array([[0.82770259, 0.40919914, 0.54959369],
[0.02755911, 0.75351311, 0.53814331]])
>>> a.sum()
3.1057109529998157
>>> a.min()
0.027559113243068367
>>> a.max()
0.8277025938204418
By default, these operations apply to the array as though it were a list
of numbers, regardless of its shape. However, by specifying the ``axis``
parameter you can apply an operation along the specified axis of an
array::
>>> b = np.arange(12).reshape(3, 4)
>>> b
array([[ 0, 1, 2, 3],
[ 4, 5, 6, 7],
[ 8, 9, 10, 11]])
>>>
>>> b.sum(axis=0) # sum of each column
array([12, 15, 18, 21])
>>>
>>> b.min(axis=1) # min of each row
array([0, 4, 8])
>>>
>>> b.cumsum(axis=1) # cumulative sum along each row
array([[ 0, 1, 3, 6],
[ 4, 9, 15, 22],
[ 8, 17, 27, 38]])
Universal Functions
-------------------
NumPy provides familiar mathematical functions such as sin, cos, and
exp. In NumPy, these are called "universal
functions" (\ ``ufunc``). Within NumPy, these functions
operate elementwise on an array, producing an array as output.
::
>>> B = np.arange(3)
>>> B
array([0, 1, 2])
>>> np.exp(B)
array([1. , 2.71828183, 7.3890561 ])
>>> np.sqrt(B)
array([0. , 1. , 1.41421356])
>>> C = np.array([2., -1., 4.])
>>> np.add(B, C)
array([2., 0., 6.])
.. seealso::
`all`,
`any`,
`apply_along_axis`,
`argmax`,
`argmin`,
`argsort`,
`average`,
`bincount`,
`ceil`,
`clip`,
`conj`,
`corrcoef`,
`cov`,
`cross`,
`cumprod`,
`cumsum`,
`diff`,
`dot`,
`floor`,
`inner`,
`invert`,
`lexsort`,
`max`,
`maximum`,
`mean`,
`median`,
`min`,
`minimum`,
`nonzero`,
`outer`,
`prod`,
`re`,
`round`,
`sort`,
`std`,
`sum`,
`trace`,
`transpose`,
`var`,
`vdot`,
`vectorize`,
`where`
.. _quickstart.indexing-slicing-and-iterating:
Indexing, Slicing and Iterating
-------------------------------
**One-dimensional** arrays can be indexed, sliced and iterated over,
much like
`lists <https://docs.python.org/tutorial/introduction.html#lists>`__
and other Python sequences.
::
>>> a = np.arange(10)**3
>>> a
array([ 0, 1, 8, 27, 64, 125, 216, 343, 512, 729])
>>> a[2]
8
>>> a[2:5]
array([ 8, 27, 64])
>>> # equivalent to a[0:6:2] = 1000;
>>> # from start to position 6, exclusive, set every 2nd element to 1000
>>> a[:6:2] = 1000
>>> a
array([1000, 1, 1000, 27, 1000, 125, 216, 343, 512, 729])
>>> a[::-1] # reversed a
array([ 729, 512, 343, 216, 125, 1000, 27, 1000, 1, 1000])
>>> for i in a:
... print(i**(1 / 3.))
...
9.999999999999998
1.0
9.999999999999998
3.0
9.999999999999998
4.999999999999999
5.999999999999999
6.999999999999999
7.999999999999999
8.999999999999998
**Multidimensional** arrays can have one index per axis. These indices
are given in a tuple separated by commas::
>>> def f(x, y):
... return 10 * x + y
...
>>> b = np.fromfunction(f, (5, 4), dtype=int)
>>> b
array([[ 0, 1, 2, 3],
[10, 11, 12, 13],
[20, 21, 22, 23],
[30, 31, 32, 33],
[40, 41, 42, 43]])
>>> b[2, 3]
23
>>> b[0:5, 1] # each row in the second column of b
array([ 1, 11, 21, 31, 41])
>>> b[:, 1] # equivalent to the previous example
array([ 1, 11, 21, 31, 41])
>>> b[1:3, :] # each column in the second and third row of b
array([[10, 11, 12, 13],
[20, 21, 22, 23]])
When fewer indices are provided than the number of axes, the missing
indices are considered complete slices\ ``:``
::
>>> b[-1] # the last row. Equivalent to b[-1, :]
array([40, 41, 42, 43])
The expression within brackets in ``b[i]`` is treated as an ``i``
followed by as many instances of ``:`` as needed to represent the
remaining axes. NumPy also allows you to write this using dots as
``b[i, ...]``.
The **dots** (``...``) represent as many colons as needed to produce a
complete indexing tuple. For example, if ``x`` is an array with 5
axes, then
- ``x[1, 2, ...]`` is equivalent to ``x[1, 2, :, :, :]``,
- ``x[..., 3]`` to ``x[:, :, :, :, 3]`` and
- ``x[4, ..., 5, :]`` to ``x[4, :, :, 5, :]``.
::
>>> c = np.array([[[ 0, 1, 2], # a 3D array (two stacked 2D arrays)
... [ 10, 12, 13]],
... [[100, 101, 102],
... [110, 112, 113]]])
>>> c.shape
(2, 2, 3)
>>> c[1, ...] # same as c[1, :, :] or c[1]
array([[100, 101, 102],
[110, 112, 113]])
>>> c[..., 2] # same as c[:, :, 2]
array([[ 2, 13],
[102, 113]])
**Iterating** over multidimensional arrays is done with respect to the
first axis::
>>> for row in b:
... print(row)
...
[0 1 2 3]
[10 11 12 13]
[20 21 22 23]
[30 31 32 33]
[40 41 42 43]
However, if one wants to perform an operation on each element in the
array, one can use the ``flat`` attribute which is an
`iterator <https://docs.python.org/tutorial/classes.html#iterators>`__
over all the elements of the array::
>>> for element in b.flat:
... print(element)
...
0
1
2
3
10
11
12
13
20
21
22
23
30
31
32
33
40
41
42
43
.. seealso::
:ref:`basics.indexing`,
:ref:`arrays.indexing` (reference),
`newaxis`,
`ndenumerate`,
`indices`
.. _quickstart.shape-manipulation:
Shape Manipulation
==================
Changing the shape of an array
------------------------------
An array has a shape given by the number of elements along each axis::
>>> a = np.floor(10 * rg.random((3, 4)))
>>> a
array([[3., 7., 3., 4.],
[1., 4., 2., 2.],
[7., 2., 4., 9.]])
>>> a.shape
(3, 4)
The shape of an array can be changed with various commands. Note that the
following three commands all return a modified array, but do not change
the original array::
>>> a.ravel() # returns the array, flattened
array([3., 7., 3., 4., 1., 4., 2., 2., 7., 2., 4., 9.])
>>> a.reshape(6, 2) # returns the array with a modified shape
array([[3., 7.],
[3., 4.],
[1., 4.],
[2., 2.],
[7., 2.],
[4., 9.]])
>>> a.T # returns the array, transposed
array([[3., 1., 7.],
[7., 4., 2.],
[3., 2., 4.],
[4., 2., 9.]])
>>> a.T.shape
(4, 3)
>>> a.shape
(3, 4)
The order of the elements in the array resulting from ``ravel`` is
normally "C-style", that is, the rightmost index "changes the fastest",
so the element after ``a[0, 0]`` is ``a[0, 1]``. If the array is reshaped to some
other shape, again the array is treated as "C-style". NumPy normally
creates arrays stored in this order, so ``ravel`` will usually not need to
copy its argument, but if the array was made by taking slices of another
array or created with unusual options, it may need to be copied. The
functions ``ravel`` and ``reshape`` can also be instructed, using an
optional argument, to use FORTRAN-style arrays, in which the leftmost
index changes the fastest.
The `reshape` function returns its
argument with a modified shape, whereas the
`ndarray.resize` method modifies the array
itself::
>>> a
array([[3., 7., 3., 4.],
[1., 4., 2., 2.],
[7., 2., 4., 9.]])
>>> a.resize((2, 6))
>>> a
array([[3., 7., 3., 4., 1., 4.],
[2., 2., 7., 2., 4., 9.]])
If a dimension is given as ``-1`` in a reshaping operation, the other
dimensions are automatically calculated::
>>> a.reshape(3, -1)
array([[3., 7., 3., 4.],
[1., 4., 2., 2.],
[7., 2., 4., 9.]])
.. seealso::
`ndarray.shape`,
`reshape`,
`resize`,
`ravel`
.. _quickstart.stacking-arrays:
Stacking together different arrays
----------------------------------
Several arrays can be stacked together along different axes::
>>> a = np.floor(10 * rg.random((2, 2)))
>>> a
array([[9., 7.],
[5., 2.]])
>>> b = np.floor(10 * rg.random((2, 2)))
>>> b
array([[1., 9.],
[5., 1.]])
>>> np.vstack((a, b))
array([[9., 7.],
[5., 2.],
[1., 9.],
[5., 1.]])
>>> np.hstack((a, b))
array([[9., 7., 1., 9.],
[5., 2., 5., 1.]])
The function `column_stack` stacks 1D arrays as columns into a 2D array.
It is equivalent to `hstack` only for 2D arrays::
>>> from numpy import newaxis
>>> np.column_stack((a, b)) # with 2D arrays
array([[9., 7., 1., 9.],
[5., 2., 5., 1.]])
>>> a = np.array([4., 2.])
>>> b = np.array([3., 8.])
>>> np.column_stack((a, b)) # returns a 2D array
array([[4., 3.],
[2., 8.]])
>>> np.hstack((a, b)) # the result is different
array([4., 2., 3., 8.])
>>> a[:, newaxis] # view `a` as a 2D column vector
array([[4.],
[2.]])
>>> np.column_stack((a[:, newaxis], b[:, newaxis]))
array([[4., 3.],
[2., 8.]])
>>> np.hstack((a[:, newaxis], b[:, newaxis])) # the result is the same
array([[4., 3.],
[2., 8.]])
On the other hand, the function `row_stack` is equivalent to `vstack`
for any input arrays. In fact, `row_stack` is an alias for `vstack`::
>>> np.column_stack is np.hstack
False
>>> np.row_stack is np.vstack
True
In general, for arrays with more than two dimensions,
`hstack` stacks along their second
axes, `vstack` stacks along their
first axes, and `concatenate`
allows for an optional arguments giving the number of the axis along
which the concatenation should happen.
**Note**
In complex cases, `r_` and `c_` are useful for creating arrays by stacking
numbers along one axis. They allow the use of range literals ``:``. ::
>>> np.r_[1:4, 0, 4]
array([1, 2, 3, 0, 4])
When used with arrays as arguments,
`r_` and
`c_` are similar to
`vstack` and
`hstack` in their default behavior,
but allow for an optional argument giving the number of the axis along
which to concatenate.
.. seealso::
`hstack`,
`vstack`,
`column_stack`,
`concatenate`,
`c_`,
`r_`
Splitting one array into several smaller ones
---------------------------------------------
Using `hsplit`, you can split an
array along its horizontal axis, either by specifying the number of
equally shaped arrays to return, or by specifying the columns after
which the division should occur::
>>> a = np.floor(10 * rg.random((2, 12)))
>>> a
array([[6., 7., 6., 9., 0., 5., 4., 0., 6., 8., 5., 2.],
[8., 5., 5., 7., 1., 8., 6., 7., 1., 8., 1., 0.]])
>>> # Split `a` into 3
>>> np.hsplit(a, 3)
[array([[6., 7., 6., 9.],
[8., 5., 5., 7.]]), array([[0., 5., 4., 0.],
[1., 8., 6., 7.]]), array([[6., 8., 5., 2.],
[1., 8., 1., 0.]])]
>>> # Split `a` after the third and the fourth column
>>> np.hsplit(a, (3, 4))
[array([[6., 7., 6.],
[8., 5., 5.]]), array([[9.],
[7.]]), array([[0., 5., 4., 0., 6., 8., 5., 2.],
[1., 8., 6., 7., 1., 8., 1., 0.]])]
`vsplit` splits along the vertical
axis, and `array_split` allows
one to specify along which axis to split.
.. _quickstart.copies-and-views:
Copies and Views
================
When operating and manipulating arrays, their data is sometimes copied
into a new array and sometimes not. This is often a source of confusion
for beginners. There are three cases:
No Copy at All
--------------
Simple assignments make no copy of objects or their data.
::
>>> a = np.array([[ 0, 1, 2, 3],
... [ 4, 5, 6, 7],
... [ 8, 9, 10, 11]])
>>> b = a # no new object is created
>>> b is a # a and b are two names for the same ndarray object
True
Python passes mutable objects as references, so function calls make no
copy.
::
>>> def f(x):
... print(id(x))
...
>>> id(a) # id is a unique identifier of an object #doctest: +SKIP
148293216 # may vary
>>> f(a) #doctest: +SKIP
148293216 # may vary
View or Shallow Copy
--------------------
Different array objects can share the same data. The ``view`` method
creates a new array object that looks at the same data.
::
>>> c = a.view()
>>> c is a
False
>>> c.base is a # c is a view of the data owned by a
True
>>> c.flags.owndata
False
>>>
>>> c = c.reshape((2, 6)) # a's shape doesn't change
>>> a.shape
(3, 4)
>>> c[0, 4] = 1234 # a's data changes
>>> a
array([[ 0, 1, 2, 3],
[1234, 5, 6, 7],
[ 8, 9, 10, 11]])
Slicing an array returns a view of it::
>>> s = a[:, 1:3]
>>> s[:] = 10 # s[:] is a view of s. Note the difference between s = 10 and s[:] = 10
>>> a
array([[ 0, 10, 10, 3],
[1234, 10, 10, 7],
[ 8, 10, 10, 11]])
Deep Copy
---------
The ``copy`` method makes a complete copy of the array and its data.
::
>>> d = a.copy() # a new array object with new data is created
>>> d is a
False
>>> d.base is a # d doesn't share anything with a
False
>>> d[0, 0] = 9999
>>> a
array([[ 0, 10, 10, 3],
[1234, 10, 10, 7],
[ 8, 10, 10, 11]])
Sometimes ``copy`` should be called after slicing if the original array is not required anymore.
For example, suppose ``a`` is a huge intermediate result and the final result ``b`` only contains
a small fraction of ``a``, a deep copy should be made when constructing ``b`` with slicing::
>>> a = np.arange(int(1e8))
>>> b = a[:100].copy()
>>> del a # the memory of ``a`` can be released.
If ``b = a[:100]`` is used instead, ``a`` is referenced by ``b`` and will persist in memory
even if ``del a`` is executed.
Functions and Methods Overview
------------------------------
Here is a list of some useful NumPy functions and methods names
ordered in categories. See :ref:`routines` for the full list.
Array Creation
`arange`,
`array`,
`copy`,
`empty`,
`empty_like`,
`eye`,
`fromfile`,
`fromfunction`,
`identity`,
`linspace`,
`logspace`,
`mgrid`,
`ogrid`,
`ones`,
`ones_like`,
`r_`,
`zeros`,
`zeros_like`
Conversions
`ndarray.astype`,
`atleast_1d`,
`atleast_2d`,
`atleast_3d`,
`mat`
Manipulations
`array_split`,
`column_stack`,
`concatenate`,
`diagonal`,
`dsplit`,
`dstack`,
`hsplit`,
`hstack`,
`ndarray.item`,
`newaxis`,
`ravel`,
`repeat`,
`reshape`,
`resize`,
`squeeze`,
`swapaxes`,
`take`,
`transpose`,
`vsplit`,
`vstack`
Questions
`all`,
`any`,
`nonzero`,
`where`
Ordering
`argmax`,
`argmin`,
`argsort`,
`max`,
`min`,
`ptp`,
`searchsorted`,
`sort`
Operations
`choose`,
`compress`,
`cumprod`,
`cumsum`,
`inner`,
`ndarray.fill`,
`imag`,
`prod`,
`put`,
`putmask`,
`real`,
`sum`
Basic Statistics
`cov`,
`mean`,
`std`,
`var`
Basic Linear Algebra
`cross`,
`dot`,
`outer`,
`linalg.svd`,
`vdot`
Less Basic
==========
.. _broadcasting-rules:
Broadcasting rules
------------------
Broadcasting allows universal functions to deal in a meaningful way with
inputs that do not have exactly the same shape.
The first rule of broadcasting is that if all input arrays do not have
the same number of dimensions, a "1" will be repeatedly prepended to the
shapes of the smaller arrays until all the arrays have the same number
of dimensions.
The second rule of broadcasting ensures that arrays with a size of 1
along a particular dimension act as if they had the size of the array
with the largest shape along that dimension. The value of the array
element is assumed to be the same along that dimension for the
"broadcast" array.
After application of the broadcasting rules, the sizes of all arrays
must match. More details can be found in :ref:`basics.broadcasting`.
Advanced indexing and index tricks
==================================
NumPy offers more indexing facilities than regular Python sequences. In
addition to indexing by integers and slices, as we saw before, arrays
can be indexed by arrays of integers and arrays of booleans.
Indexing with Arrays of Indices
-------------------------------
::
>>> a = np.arange(12)**2 # the first 12 square numbers
>>> i = np.array([1, 1, 3, 8, 5]) # an array of indices
>>> a[i] # the elements of `a` at the positions `i`
array([ 1, 1, 9, 64, 25])
>>>
>>> j = np.array([[3, 4], [9, 7]]) # a bidimensional array of indices
>>> a[j] # the same shape as `j`
array([[ 9, 16],
[81, 49]])
When the indexed array ``a`` is multidimensional, a single array of
indices refers to the first dimension of ``a``. The following example
shows this behavior by converting an image of labels into a color image
using a palette.
::
>>> palette = np.array([[0, 0, 0], # black
... [255, 0, 0], # red
... [0, 255, 0], # green
... [0, 0, 255], # blue
... [255, 255, 255]]) # white
>>> image = np.array([[0, 1, 2, 0], # each value corresponds to a color in the palette
... [0, 3, 4, 0]])
>>> palette[image] # the (2, 4, 3) color image
array([[[ 0, 0, 0],
[255, 0, 0],
[ 0, 255, 0],
[ 0, 0, 0]],
<BLANKLINE>
[[ 0, 0, 0],
[ 0, 0, 255],
[255, 255, 255],
[ 0, 0, 0]]])
We can also give indexes for more than one dimension. The arrays of
indices for each dimension must have the same shape.
::
>>> a = np.arange(12).reshape(3, 4)
>>> a
array([[ 0, 1, 2, 3],
[ 4, 5, 6, 7],
[ 8, 9, 10, 11]])
>>> i = np.array([[0, 1], # indices for the first dim of `a`
... [1, 2]])
>>> j = np.array([[2, 1], # indices for the second dim
... [3, 3]])
>>>
>>> a[i, j] # i and j must have equal shape
array([[ 2, 5],
[ 7, 11]])
>>>
>>> a[i, 2]
array([[ 2, 6],
[ 6, 10]])
>>>
>>> a[:, j]
array([[[ 2, 1],
[ 3, 3]],
<BLANKLINE>
[[ 6, 5],
[ 7, 7]],
<BLANKLINE>
[[10, 9],
[11, 11]]])
In Python, ``arr[i, j]`` is exactly the same as ``arr[(i, j)]``---so we can
put ``i`` and ``j`` in a ``tuple`` and then do the indexing with that.
::
>>> l = (i, j)
>>> # equivalent to a[i, j]
>>> a[l]
array([[ 2, 5],
[ 7, 11]])
However, we can not do this by putting ``i`` and ``j`` into an array,
because this array will be interpreted as indexing the first dimension
of ``a``.
::
>>> s = np.array([i, j])
>>> # not what we want
>>> a[s]
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
IndexError: index 3 is out of bounds for axis 0 with size 3
>>> # same as `a[i, j]`
>>> a[tuple(s)]
array([[ 2, 5],
[ 7, 11]])
Another common use of indexing with arrays is the search of the maximum
value of time-dependent series::
>>> time = np.linspace(20, 145, 5) # time scale
>>> data = np.sin(np.arange(20)).reshape(5, 4) # 4 time-dependent series
>>> time
array([ 20. , 51.25, 82.5 , 113.75, 145. ])
>>> data
array([[ 0. , 0.84147098, 0.90929743, 0.14112001],
[-0.7568025 , -0.95892427, -0.2794155 , 0.6569866 ],
[ 0.98935825, 0.41211849, -0.54402111, -0.99999021],
[-0.53657292, 0.42016704, 0.99060736, 0.65028784],
[-0.28790332, -0.96139749, -0.75098725, 0.14987721]])
>>> # index of the maxima for each series
>>> ind = data.argmax(axis=0)
>>> ind
array([2, 0, 3, 1])
>>> # times corresponding to the maxima
>>> time_max = time[ind]
>>>
>>> data_max = data[ind, range(data.shape[1])] # => data[ind[0], 0], data[ind[1], 1]...
>>> time_max
array([ 82.5 , 20. , 113.75, 51.25])
>>> data_max
array([0.98935825, 0.84147098, 0.99060736, 0.6569866 ])
>>> np.all(data_max == data.max(axis=0))
True
You can also use indexing with arrays as a target to assign to::
>>> a = np.arange(5)
>>> a
array([0, 1, 2, 3, 4])
>>> a[[1, 3, 4]] = 0
>>> a
array([0, 0, 2, 0, 0])
However, when the list of indices contains repetitions, the assignment
is done several times, leaving behind the last value::
>>> a = np.arange(5)
>>> a[[0, 0, 2]] = [1, 2, 3]
>>> a
array([2, 1, 3, 3, 4])
This is reasonable enough, but watch out if you want to use Python's
``+=`` construct, as it may not do what you expect::
>>> a = np.arange(5)
>>> a[[0, 0, 2]] += 1
>>> a
array([1, 1, 3, 3, 4])
Even though 0 occurs twice in the list of indices, the 0th element is
only incremented once. This is because Python requires ``a += 1`` to be
equivalent to ``a = a + 1``.
Indexing with Boolean Arrays
----------------------------
When we index arrays with arrays of (integer) indices we are providing
the list of indices to pick. With boolean indices the approach is
different; we explicitly choose which items in the array we want and
which ones we don't.
The most natural way one can think of for boolean indexing is to use
boolean arrays that have *the same shape* as the original array::
>>> a = np.arange(12).reshape(3, 4)
>>> b = a > 4
>>> b # `b` is a boolean with `a`'s shape
array([[False, False, False, False],
[False, True, True, True],
[ True, True, True, True]])
>>> a[b] # 1d array with the selected elements
array([ 5, 6, 7, 8, 9, 10, 11])
This property can be very useful in assignments::
>>> a[b] = 0 # All elements of `a` higher than 4 become 0
>>> a
array([[0, 1, 2, 3],
[4, 0, 0, 0],
[0, 0, 0, 0]])
You can look at the following
example to see
how to use boolean indexing to generate an image of the `Mandelbrot
set <https://en.wikipedia.org/wiki/Mandelbrot_set>`__:
.. plot::
>>> import numpy as np
>>> import matplotlib.pyplot as plt
>>> def mandelbrot(h, w, maxit=20, r=2):
... """Returns an image of the Mandelbrot fractal of size (h,w)."""
... x = np.linspace(-2.5, 1.5, 4*h+1)
... y = np.linspace(-1.5, 1.5, 3*w+1)
... A, B = np.meshgrid(x, y)
... C = A + B*1j
... z = np.zeros_like(C)
... divtime = maxit + np.zeros(z.shape, dtype=int)
...
... for i in range(maxit):
... z = z**2 + C
... diverge = abs(z) > r # who is diverging
... div_now = diverge & (divtime == maxit) # who is diverging now
... divtime[div_now] = i # note when
... z[diverge] = r # avoid diverging too much
...
... return divtime
>>> plt.clf()
>>> plt.imshow(mandelbrot(400, 400))
The second way of indexing with booleans is more similar to integer
indexing; for each dimension of the array we give a 1D boolean array
selecting the slices we want::
>>> a = np.arange(12).reshape(3, 4)
>>> b1 = np.array([False, True, True]) # first dim selection
>>> b2 = np.array([True, False, True, False]) # second dim selection
>>>
>>> a[b1, :] # selecting rows
array([[ 4, 5, 6, 7],
[ 8, 9, 10, 11]])
>>>
>>> a[b1] # same thing
array([[ 4, 5, 6, 7],
[ 8, 9, 10, 11]])
>>>
>>> a[:, b2] # selecting columns
array([[ 0, 2],
[ 4, 6],
[ 8, 10]])
>>>
>>> a[b1, b2] # a weird thing to do
array([ 4, 10])
Note that the length of the 1D boolean array must coincide with the
length of the dimension (or axis) you want to slice. In the previous
example, ``b1`` has length 3 (the number of *rows* in ``a``), and
``b2`` (of length 4) is suitable to index the 2nd axis (columns) of
``a``.
The ix_() function
-------------------
The `ix_` function can be used to combine different vectors so as to
obtain the result for each n-uplet. For example, if you want to compute
all the a+b\*c for all the triplets taken from each of the vectors a, b
and c::
>>> a = np.array([2, 3, 4, 5])
>>> b = np.array([8, 5, 4])
>>> c = np.array([5, 4, 6, 8, 3])
>>> ax, bx, cx = np.ix_(a, b, c)
>>> ax
array([[[2]],
<BLANKLINE>
[[3]],
<BLANKLINE>
[[4]],
<BLANKLINE>
[[5]]])
>>> bx
array([[[8],
[5],
[4]]])
>>> cx
array([[[5, 4, 6, 8, 3]]])
>>> ax.shape, bx.shape, cx.shape
((4, 1, 1), (1, 3, 1), (1, 1, 5))
>>> result = ax + bx * cx
>>> result
array([[[42, 34, 50, 66, 26],
[27, 22, 32, 42, 17],
[22, 18, 26, 34, 14]],
<BLANKLINE>
[[43, 35, 51, 67, 27],
[28, 23, 33, 43, 18],
[23, 19, 27, 35, 15]],
<BLANKLINE>
[[44, 36, 52, 68, 28],
[29, 24, 34, 44, 19],
[24, 20, 28, 36, 16]],
<BLANKLINE>
[[45, 37, 53, 69, 29],
[30, 25, 35, 45, 20],
[25, 21, 29, 37, 17]]])
>>> result[3, 2, 4]
17
>>> a[3] + b[2] * c[4]
17
You could also implement the reduce as follows::
>>> def ufunc_reduce(ufct, *vectors):
... vs = np.ix_(*vectors)
... r = ufct.identity
... for v in vs:
... r = ufct(r, v)
... return r
and then use it as::
>>> ufunc_reduce(np.add, a, b, c)
array([[[15, 14, 16, 18, 13],
[12, 11, 13, 15, 10],
[11, 10, 12, 14, 9]],
<BLANKLINE>
[[16, 15, 17, 19, 14],
[13, 12, 14, 16, 11],
[12, 11, 13, 15, 10]],
<BLANKLINE>
[[17, 16, 18, 20, 15],
[14, 13, 15, 17, 12],
[13, 12, 14, 16, 11]],
<BLANKLINE>
[[18, 17, 19, 21, 16],
[15, 14, 16, 18, 13],
[14, 13, 15, 17, 12]]])
The advantage of this version of reduce compared to the normal
ufunc.reduce is that it makes use of the
:ref:`broadcasting rules <broadcasting-rules>`
in order to avoid creating an argument array the size of the output
times the number of vectors.
Indexing with strings
---------------------
See :ref:`structured_arrays`.
Tricks and Tips
===============
Here we give a list of short and useful tips.
"Automatic" Reshaping
---------------------
To change the dimensions of an array, you can omit one of the sizes
which will then be deduced automatically::
>>> a = np.arange(30)
>>> b = a.reshape((2, -1, 3)) # -1 means "whatever is needed"
>>> b.shape
(2, 5, 3)
>>> b
array([[[ 0, 1, 2],
[ 3, 4, 5],
[ 6, 7, 8],
[ 9, 10, 11],
[12, 13, 14]],
<BLANKLINE>
[[15, 16, 17],
[18, 19, 20],
[21, 22, 23],
[24, 25, 26],
[27, 28, 29]]])
Vector Stacking
---------------
How do we construct a 2D array from a list of equally-sized row vectors?
In MATLAB this is quite easy: if ``x`` and ``y`` are two vectors of the
same length you only need do ``m=[x;y]``. In NumPy this works via the
functions ``column_stack``, ``dstack``, ``hstack`` and ``vstack``,
depending on the dimension in which the stacking is to be done. For
example::
>>> x = np.arange(0, 10, 2)
>>> y = np.arange(5)
>>> m = np.vstack([x, y])
>>> m
array([[0, 2, 4, 6, 8],
[0, 1, 2, 3, 4]])
>>> xy = np.hstack([x, y])
>>> xy
array([0, 2, 4, 6, 8, 0, 1, 2, 3, 4])
The logic behind those functions in more than two dimensions can be
strange.
.. seealso::
:doc:`numpy-for-matlab-users`
Histograms
----------
The NumPy ``histogram`` function applied to an array returns a pair of
vectors: the histogram of the array and a vector of the bin edges. Beware:
``matplotlib`` also has a function to build histograms (called ``hist``,
as in Matlab) that differs from the one in NumPy. The main difference is
that ``pylab.hist`` plots the histogram automatically, while
``numpy.histogram`` only generates the data.
.. plot::
>>> import numpy as np
>>> rg = np.random.default_rng(1)
>>> import matplotlib.pyplot as plt
>>> # Build a vector of 10000 normal deviates with variance 0.5^2 and mean 2
>>> mu, sigma = 2, 0.5
>>> v = rg.normal(mu, sigma, 10000)
>>> # Plot a normalized histogram with 50 bins
>>> plt.hist(v, bins=50, density=True) # matplotlib version (plot)
(array...)
>>> # Compute the histogram with numpy and then plot it
>>> (n, bins) = np.histogram(v, bins=50, density=True) # NumPy version (no plot)
>>> plt.plot(.5 * (bins[1:] + bins[:-1]), n) #doctest: +SKIP
With Matplotlib >=3.4 you can also use ``plt.stairs(n, bins)``.
Further reading
===============
- The `Python tutorial <https://docs.python.org/tutorial/>`__
- :ref:`reference`
- `SciPy Tutorial <https://docs.scipy.org/doc/scipy/tutorial/index.html>`__
- `SciPy Lecture Notes <https://scipy-lectures.org>`__
- A `matlab, R, IDL, NumPy/SciPy dictionary <http://mathesaurus.sf.net/>`__
- :doc:`tutorial-svd <numpy-tutorials:content/tutorial-svd>`
|