summaryrefslogtreecommitdiff
path: root/numpy/__init__.pyi
blob: e712801eba7efe3b788bdd75bd002ef714ae1844 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
import builtins
import sys
import datetime as dt
from abc import abstractmethod

from numpy.core._internal import _ctypes
from numpy.typing import ArrayLike, DtypeLike, _Shape, _ShapeLike
from numpy.typing._callable import (
    _BoolOp,
    _BoolSub,
    _BoolTrueDiv,
    _TD64Div,
    _IntTrueDiv,
    _UnsignedIntOp,
    _SignedIntOp,
    _FloatOp,
    _ComplexOp,
    _NumberOp,
)

from typing import (
    Any,
    ByteString,
    Callable,
    Container,
    Callable,
    Dict,
    Generic,
    IO,
    Iterable,
    List,
    Mapping,
    Optional,
    overload,
    Sequence,
    Sized,
    SupportsAbs,
    SupportsBytes,
    SupportsComplex,
    SupportsFloat,
    SupportsInt,
    Text,
    Tuple,
    Type,
    TypeVar,
    Union,
)

if sys.version_info >= (3, 8):
    from typing import Literal, Protocol, SupportsIndex
else:
    from typing_extensions import Literal, Protocol
    class SupportsIndex(Protocol):
        def __index__(self) -> int: ...

# Ensures that the stubs are picked up
from . import (
    char,
    compat,
    core,
    ctypeslib,
    emath,
    fft,
    lib,
    linalg,
    ma,
    matrixlib,
    polynomial,
    random,
    rec,
    testing,
    version,
)

from numpy.core.function_base import (
    linspace,
    logspace,
    geomspace,
)

from numpy.core.fromnumeric import (
    take,
    reshape,
    choose,
    repeat,
    put,
    swapaxes,
    transpose,
    partition,
    argpartition,
    sort,
    argsort,
    argmax,
    argmin,
    searchsorted,
    resize,
    squeeze,
    diagonal,
    trace,
    ravel,
    nonzero,
    shape,
    compress,
    clip,
    sum,
    all,
    any,
    cumsum,
    ptp,
    amax,
    amin,
    prod,
    cumprod,
    ndim,
    size,
    around,
    mean,
    std,
    var,
)

from numpy.core._asarray import (
    asarray as asarray,
    asanyarray as asanyarray,
    ascontiguousarray as ascontiguousarray,
    asfortranarray as asfortranarray,
    require as require,
)

# Add an object to `__all__` if their stubs are defined in an external file;
# their stubs will not be recognized otherwise.
# NOTE: This is redundant for objects defined within this file.
__all__ = [
    "linspace",
    "logspace",
    "geomspace",
    "take",
    "reshape",
    "choose",
    "repeat",
    "put",
    "swapaxes",
    "transpose",
    "partition",
    "argpartition",
    "sort",
    "argsort",
    "argmax",
    "argmin",
    "searchsorted",
    "resize",
    "squeeze",
    "diagonal",
    "trace",
    "ravel",
    "nonzero",
    "shape",
    "compress",
    "clip",
    "sum",
    "all",
    "any",
    "cumsum",
    "ptp",
    "amax",
    "amin",
    "prod",
    "cumprod",
    "ndim",
    "size",
    "around",
    "mean",
    "std",
    "var",
]

DataSource: Any
False_: Any
MachAr: Any
ScalarType: Any
True_: Any
UFUNC_PYVALS_NAME: Any
angle: Any
append: Any
apply_along_axis: Any
apply_over_axes: Any
arange: Any
array2string: Any
array_repr: Any
array_split: Any
array_str: Any
asarray_chkfinite: Any
asfarray: Any
asmatrix: Any
asscalar: Any
atleast_1d: Any
atleast_2d: Any
atleast_3d: Any
average: Any
bartlett: Any
bincount: Any
bitwise_not: Any
blackman: Any
block: Any
bmat: Any
bool8: Any
broadcast: Any
broadcast_arrays: Any
broadcast_to: Any
busday_count: Any
busday_offset: Any
busdaycalendar: Any
byte: Any
byte_bounds: Any
bytes0: Any
c_: Any
can_cast: Any
cast: Any
cdouble: Any
cfloat: Any
char: Any
chararray: Any
clongdouble: Any
clongfloat: Any
column_stack: Any
common_type: Any
compare_chararrays: Any
compat: Any
complex256: Any
complex_: Any
concatenate: Any
conj: Any
copy: Any
copyto: Any
corrcoef: Any
cov: Any
csingle: Any
ctypeslib: Any
cumproduct: Any
datetime_as_string: Any
datetime_data: Any
delete: Any
deprecate: Any
deprecate_with_doc: Any
diag: Any
diag_indices: Any
diag_indices_from: Any
diagflat: Any
diff: Any
digitize: Any
disp: Any
divide: Any
dot: Any
double: Any
dsplit: Any
dstack: Any
ediff1d: Any
einsum: Any
einsum_path: Any
emath: Any
errstate: Any
expand_dims: Any
extract: Any
eye: Any
fft: Any
fill_diagonal: Any
finfo: Any
fix: Any
flip: Any
fliplr: Any
flipud: Any
float128: Any
float_: Any
format_float_positional: Any
format_float_scientific: Any
format_parser: Any
frombuffer: Any
fromfile: Any
fromiter: Any
frompyfunc: Any
fromregex: Any
fromstring: Any
genfromtxt: Any
geomspace: Any
get_include: Any
get_printoptions: Any
getbufsize: Any
geterr: Any
geterrcall: Any
geterrobj: Any
gradient: Any
half: Any
hamming: Any
hanning: Any
histogram: Any
histogram2d: Any
histogram_bin_edges: Any
histogramdd: Any
hsplit: Any
hstack: Any
i0: Any
iinfo: Any
imag: Any
in1d: Any
index_exp: Any
info: Any
inner: Any
insert: Any
int0: Any
int_: Any
intc: Any
interp: Any
intersect1d: Any
intp: Any
is_busday: Any
iscomplex: Any
iscomplexobj: Any
isin: Any
isneginf: Any
isposinf: Any
isreal: Any
isrealobj: Any
iterable: Any
ix_: Any
kaiser: Any
kron: Any
lexsort: Any
lib: Any
linalg: Any
linspace: Any
load: Any
loads: Any
loadtxt: Any
logspace: Any
longcomplex: Any
longdouble: Any
longfloat: Any
longlong: Any
lookfor: Any
ma: Any
mafromtxt: Any
mask_indices: Any
mat: Any
math: Any
matrix: Any
matrixlib: Any
max: Any
may_share_memory: Any
median: Any
memmap: Any
meshgrid: Any
mgrid: Any
min: Any
min_scalar_type: Any
mintypecode: Any
mod: Any
msort: Any
nan_to_num: Any
nanargmax: Any
nanargmin: Any
nancumprod: Any
nancumsum: Any
nanmax: Any
nanmean: Any
nanmedian: Any
nanmin: Any
nanpercentile: Any
nanprod: Any
nanquantile: Any
nanstd: Any
nansum: Any
nanvar: Any
nbytes: Any
ndenumerate: Any
ndfromtxt: Any
ndindex: Any
nditer: Any
nested_iters: Any
newaxis: Any
numarray: Any
object0: Any
ogrid: Any
packbits: Any
pad: Any
percentile: Any
piecewise: Any
place: Any
poly: Any
poly1d: Any
polyadd: Any
polyder: Any
polydiv: Any
polyfit: Any
polyint: Any
polymul: Any
polynomial: Any
polysub: Any
polyval: Any
printoptions: Any
product: Any
promote_types: Any
put_along_axis: Any
putmask: Any
quantile: Any
r_: Any
random: Any
ravel_multi_index: Any
real: Any
real_if_close: Any
rec: Any
recarray: Any
recfromcsv: Any
recfromtxt: Any
record: Any
result_type: Any
roots: Any
rot90: Any
round: Any
round_: Any
row_stack: Any
s_: Any
save: Any
savetxt: Any
savez: Any
savez_compressed: Any
sctypeDict: Any
sctypes: Any
select: Any
set_printoptions: Any
set_string_function: Any
setbufsize: Any
setdiff1d: Any
seterr: Any
seterrcall: Any
seterrobj: Any
setxor1d: Any
shares_memory: Any
short: Any
show_config: Any
sinc: Any
single: Any
singlecomplex: Any
sort_complex: Any
source: Any
split: Any
stack: Any
str0: Any
string_: Any
sys: Any
take_along_axis: Any
testing: Any
tile: Any
trapz: Any
tri: Any
tril: Any
tril_indices: Any
tril_indices_from: Any
trim_zeros: Any
triu: Any
triu_indices: Any
triu_indices_from: Any
typeDict: Any
typecodes: Any
typename: Any
ubyte: Any
uint: Any
uint0: Any
uintc: Any
uintp: Any
ulonglong: Any
unicode_: Any
union1d: Any
unique: Any
unpackbits: Any
unravel_index: Any
unwrap: Any
ushort: Any
vander: Any
vdot: Any
vectorize: Any
version: Any
void0: Any
vsplit: Any
vstack: Any
where: Any
who: Any

_NdArraySubClass = TypeVar("_NdArraySubClass", bound=ndarray)
_ByteOrder = Literal["S", "<", ">", "=", "|", "L", "B", "N", "I"]

class dtype:
    names: Optional[Tuple[str, ...]]
    def __init__(
        self,
        dtype: DtypeLike,
        align: bool = ...,
        copy: bool = ...,
    ) -> None: ...
    def __eq__(self, other: DtypeLike) -> bool: ...
    def __ne__(self, other: DtypeLike) -> bool: ...
    def __gt__(self, other: DtypeLike) -> bool: ...
    def __ge__(self, other: DtypeLike) -> bool: ...
    def __lt__(self, other: DtypeLike) -> bool: ...
    def __le__(self, other: DtypeLike) -> bool: ...
    @property
    def alignment(self) -> int: ...
    @property
    def base(self) -> dtype: ...
    @property
    def byteorder(self) -> str: ...
    @property
    def char(self) -> str: ...
    @property
    def descr(self) -> List[Union[Tuple[str, str], Tuple[str, str, _Shape]]]: ...
    @property
    def fields(
        self,
    ) -> Optional[Mapping[str, Union[Tuple[dtype, int], Tuple[dtype, int, Any]]]]: ...
    @property
    def flags(self) -> int: ...
    @property
    def hasobject(self) -> bool: ...
    @property
    def isbuiltin(self) -> int: ...
    @property
    def isnative(self) -> bool: ...
    @property
    def isalignedstruct(self) -> bool: ...
    @property
    def itemsize(self) -> int: ...
    @property
    def kind(self) -> str: ...
    @property
    def metadata(self) -> Optional[Mapping[str, Any]]: ...
    @property
    def name(self) -> str: ...
    @property
    def num(self) -> int: ...
    @property
    def shape(self) -> _Shape: ...
    @property
    def ndim(self) -> int: ...
    @property
    def subdtype(self) -> Optional[Tuple[dtype, _Shape]]: ...
    def newbyteorder(self, __new_order: _ByteOrder = ...) -> dtype: ...
    # Leave str and type for end to avoid having to use `builtins.str`
    # everywhere. See https://github.com/python/mypy/issues/3775
    @property
    def str(self) -> builtins.str: ...
    @property
    def type(self) -> Type[generic]: ...

_Dtype = dtype  # to avoid name conflicts with ndarray.dtype

class _flagsobj:
    aligned: bool
    updateifcopy: bool
    writeable: bool
    writebackifcopy: bool
    @property
    def behaved(self) -> bool: ...
    @property
    def c_contiguous(self) -> bool: ...
    @property
    def carray(self) -> bool: ...
    @property
    def contiguous(self) -> bool: ...
    @property
    def f_contiguous(self) -> bool: ...
    @property
    def farray(self) -> bool: ...
    @property
    def fnc(self) -> bool: ...
    @property
    def forc(self) -> bool: ...
    @property
    def fortran(self) -> bool: ...
    @property
    def num(self) -> int: ...
    @property
    def owndata(self) -> bool: ...
    def __getitem__(self, key: str) -> bool: ...
    def __setitem__(self, key: str, value: bool) -> None: ...

_ArrayLikeInt = Union[
    int,
    integer,
    Sequence[Union[int, integer]],
    Sequence[Sequence[Any]],  # TODO: wait for support for recursive types
    ndarray
]

_FlatIterSelf = TypeVar("_FlatIterSelf", bound=flatiter)

class flatiter(Generic[_ArraySelf]):
    @property
    def base(self) -> _ArraySelf: ...
    @property
    def coords(self) -> _Shape: ...
    @property
    def index(self) -> int: ...
    def copy(self) -> _ArraySelf: ...
    def __iter__(self: _FlatIterSelf) -> _FlatIterSelf: ...
    def __next__(self) -> generic: ...
    def __len__(self) -> int: ...
    @overload
    def __getitem__(self, key: Union[int, integer]) -> generic: ...
    @overload
    def __getitem__(
        self, key: Union[_ArrayLikeInt, slice, ellipsis],
    ) -> _ArraySelf: ...
    def __array__(self, __dtype: DtypeLike = ...) -> ndarray: ...

_OrderKACF = Optional[Literal["K", "A", "C", "F"]]
_OrderACF = Optional[Literal["A", "C", "F"]]
_OrderCF = Optional[Literal["C", "F"]]

_ArraySelf = TypeVar("_ArraySelf", bound=_ArrayOrScalarCommon)

class _ArrayOrScalarCommon(
    SupportsInt, SupportsFloat, SupportsComplex, SupportsBytes, SupportsAbs[Any]
):
    @property
    def T(self: _ArraySelf) -> _ArraySelf: ...
    @property
    def base(self) -> Optional[ndarray]: ...
    @property
    def dtype(self) -> _Dtype: ...
    @property
    def data(self) -> memoryview: ...
    @property
    def flags(self) -> _flagsobj: ...
    @property
    def size(self) -> int: ...
    @property
    def itemsize(self) -> int: ...
    @property
    def nbytes(self) -> int: ...
    @property
    def ndim(self) -> int: ...
    @property
    def shape(self) -> _Shape: ...
    @property
    def strides(self) -> _Shape: ...
    def __array__(self, __dtype: DtypeLike = ...) -> ndarray: ...
    def __int__(self) -> int: ...
    def __float__(self) -> float: ...
    def __complex__(self) -> complex: ...
    def __bool__(self) -> bool: ...
    def __bytes__(self) -> bytes: ...
    def __str__(self) -> str: ...
    def __repr__(self) -> str: ...
    def __copy__(self: _ArraySelf) -> _ArraySelf: ...
    def __deepcopy__(self: _ArraySelf, __memo: Optional[dict] = ...) -> _ArraySelf: ...
    def __lt__(self, other): ...
    def __le__(self, other): ...
    def __eq__(self, other): ...
    def __ne__(self, other): ...
    def __gt__(self, other): ...
    def __ge__(self, other): ...
    def __mod__(self, other): ...
    def __rmod__(self, other): ...
    def __divmod__(self, other): ...
    def __rdivmod__(self, other): ...
    def __lshift__(self, other): ...
    def __rlshift__(self, other): ...
    def __rshift__(self, other): ...
    def __rrshift__(self, other): ...
    def __and__(self, other): ...
    def __rand__(self, other): ...
    def __xor__(self, other): ...
    def __rxor__(self, other): ...
    def __or__(self, other): ...
    def __ror__(self, other): ...
    def __neg__(self: _ArraySelf) -> _ArraySelf: ...
    def __pos__(self: _ArraySelf) -> _ArraySelf: ...
    def __abs__(self: _ArraySelf) -> _ArraySelf: ...
    def __invert__(self: _ArraySelf) -> _ArraySelf: ...
    def astype(
        self: _ArraySelf,
        dtype: DtypeLike,
        order: _OrderKACF = ...,
        casting: _Casting = ...,
        subok: bool = ...,
        copy: bool = ...,
    ) -> _ArraySelf: ...
    def byteswap(self: _ArraySelf, inplace: bool = ...) -> _ArraySelf: ...
    def copy(self: _ArraySelf, order: _OrderKACF = ...) -> _ArraySelf: ...
    def dump(self, file: str) -> None: ...
    def dumps(self) -> bytes: ...
    def fill(self, value: Any) -> None: ...
    @property
    def flat(self: _ArraySelf) -> flatiter[_ArraySelf]: ...
    def flatten(self: _ArraySelf, order: _OrderKACF = ...) -> _ArraySelf: ...
    def getfield(
        self: _ArraySelf, dtype: DtypeLike, offset: int = ...
    ) -> _ArraySelf: ...
    @overload
    def item(self, *args: int) -> Any: ...
    @overload
    def item(self, args: Tuple[int, ...]) -> Any: ...
    @overload
    def itemset(self, __value: Any) -> None: ...
    @overload
    def itemset(self, __item: _ShapeLike, __value: Any) -> None: ...
    def ravel(self: _ArraySelf, order: _OrderKACF = ...) -> _ArraySelf: ...
    @overload
    def reshape(
        self: _ArraySelf, shape: Sequence[int], *, order: _OrderACF = ...
    ) -> _ArraySelf: ...
    @overload
    def reshape(
        self: _ArraySelf, *shape: int, order: _OrderACF = ...
    ) -> _ArraySelf: ...
    @overload
    def resize(self, new_shape: Sequence[int], *, refcheck: bool = ...) -> None: ...
    @overload
    def resize(self, *new_shape: int, refcheck: bool = ...) -> None: ...
    def setflags(
        self, write: bool = ..., align: bool = ..., uic: bool = ...
    ) -> None: ...
    def squeeze(
        self: _ArraySelf, axis: Union[int, Tuple[int, ...]] = ...
    ) -> _ArraySelf: ...
    def swapaxes(self: _ArraySelf, axis1: int, axis2: int) -> _ArraySelf: ...
    def tobytes(self, order: _OrderKACF = ...) -> bytes: ...
    def tofile(
        self, fid: Union[IO[bytes], str], sep: str = ..., format: str = ...
    ) -> None: ...
    # generics and 0d arrays return builtin scalars
    def tolist(self) -> Any: ...
    @overload
    def transpose(self: _ArraySelf, axes: Sequence[int]) -> _ArraySelf: ...
    @overload
    def transpose(self: _ArraySelf, *axes: int) -> _ArraySelf: ...
    @overload
    def view(self, type: Type[_NdArraySubClass]) -> _NdArraySubClass: ...
    @overload
    def view(self: _ArraySelf, dtype: DtypeLike = ...) -> _ArraySelf: ...
    @overload
    def view(
        self, dtype: DtypeLike, type: Type[_NdArraySubClass]
    ) -> _NdArraySubClass: ...

    # TODO: Add proper signatures
    def __getitem__(self, key) -> Any: ...
    @property
    def __array_interface__(self): ...
    @property
    def __array_priority__(self): ...
    @property
    def __array_struct__(self): ...
    def __array_wrap__(array, context=...): ...
    def __setstate__(self, __state): ...
    def all(self, axis=..., out=..., keepdims=...): ...
    def any(self, axis=..., out=..., keepdims=...): ...
    def argmax(self, axis=..., out=...): ...
    def argmin(self, axis=..., out=...): ...
    def argpartition(self, kth, axis=..., kind=..., order=...): ...
    def argsort(self, axis=..., kind=..., order=...): ...
    def choose(self, choices, out=..., mode=...): ...
    def clip(self, min=..., max=..., out=..., **kwargs): ...
    def compress(self, condition, axis=..., out=...): ...
    def conj(self): ...
    def conjugate(self): ...
    def cumprod(self, axis=..., dtype=..., out=...): ...
    def cumsum(self, axis=..., dtype=..., out=...): ...
    def diagonal(self, offset=..., axis1=..., axis2=...): ...
    def dot(self, b, out=...): ...
    def max(self, axis=..., out=..., keepdims=..., initial=..., where=...): ...
    def mean(self, axis=..., dtype=..., out=..., keepdims=...): ...
    def min(self, axis=..., out=..., keepdims=..., initial=..., where=...): ...
    def newbyteorder(self, new_order=...): ...
    def nonzero(self): ...
    def partition(self, kth, axis=..., kind=..., order=...): ...
    def prod(self, axis=..., dtype=..., out=..., keepdims=..., initial=..., where=...): ...
    def ptp(self, axis=..., out=..., keepdims=...): ...
    def put(self, indices, values, mode=...): ...
    def repeat(self, repeats, axis=...): ...
    def round(self, decimals=..., out=...): ...
    def searchsorted(self, v, side=..., sorter=...): ...
    def setfield(self, val, dtype, offset=...): ...
    def sort(self, axis=..., kind=..., order=...): ...
    def std(self, axis=..., dtype=..., out=..., ddof=..., keepdims=...): ...
    def sum(self, axis=..., dtype=..., out=..., keepdims=..., initial=..., where=...): ...
    def take(self, indices, axis=..., out=..., mode=...): ...
    # NOTE: `tostring()` is deprecated and therefore excluded
    # def tostring(self, order=...): ...
    def trace(self, offset=..., axis1=..., axis2=..., dtype=..., out=...): ...
    def var(self, axis=..., dtype=..., out=..., ddof=..., keepdims=...): ...

_BufferType = Union[ndarray, bytes, bytearray, memoryview]
_Casting = Literal["no", "equiv", "safe", "same_kind", "unsafe"]

class ndarray(_ArrayOrScalarCommon, Iterable, Sized, Container):
    @property
    def real(self: _ArraySelf) -> _ArraySelf: ...
    @real.setter
    def real(self, value: ArrayLike) -> None: ...
    @property
    def imag(self: _ArraySelf) -> _ArraySelf: ...
    @imag.setter
    def imag(self, value: ArrayLike) -> None: ...
    def __new__(
        cls: Type[_ArraySelf],
        shape: Sequence[int],
        dtype: DtypeLike = ...,
        buffer: _BufferType = ...,
        offset: int = ...,
        strides: _ShapeLike = ...,
        order: _OrderKACF = ...,
    ) -> _ArraySelf: ...
    @property
    def dtype(self) -> _Dtype: ...
    @property
    def ctypes(self) -> _ctypes: ...
    @property
    def shape(self) -> _Shape: ...
    @shape.setter
    def shape(self, value: _ShapeLike): ...
    @property
    def strides(self) -> _Shape: ...
    @strides.setter
    def strides(self, value: _ShapeLike): ...
    # Many of these special methods are irrelevant currently, since protocols
    # aren't supported yet. That said, I'm adding them for completeness.
    # https://docs.python.org/3/reference/datamodel.html
    def __len__(self) -> int: ...
    def __setitem__(self, key, value): ...
    def __iter__(self) -> Any: ...
    def __contains__(self, key) -> bool: ...
    def __index__(self) -> int: ...
    def __matmul__(self, other): ...
    def __imatmul__(self, other): ...
    def __rmatmul__(self, other): ...
    def __add__(self, other: ArrayLike) -> Union[ndarray, generic]: ...
    def __radd__(self, other: ArrayLike) -> Union[ndarray, generic]: ...
    def __sub__(self, other: ArrayLike) -> Union[ndarray, generic]: ...
    def __rsub__(self, other: ArrayLike) -> Union[ndarray, generic]: ...
    def __mul__(self, other: ArrayLike) -> Union[ndarray, generic]: ...
    def __rmul__(self, other: ArrayLike) -> Union[ndarray, generic]: ...
    def __floordiv__(self, other: ArrayLike) -> Union[ndarray, generic]: ...
    def __rfloordiv__(self, other: ArrayLike) -> Union[ndarray, generic]: ...
    def __pow__(self, other: ArrayLike) -> Union[ndarray, generic]: ...
    def __rpow__(self, other: ArrayLike) -> Union[ndarray, generic]: ...
    def __truediv__(self, other: ArrayLike) -> Union[ndarray, generic]: ...
    def __rtruediv__(self, other: ArrayLike) -> Union[ndarray, generic]: ...
    # `np.generic` does not support inplace operations
    def __iadd__(self: _ArraySelf, other: ArrayLike) -> _ArraySelf: ...
    def __isub__(self: _ArraySelf, other: ArrayLike) -> _ArraySelf: ...
    def __imul__(self: _ArraySelf, other: ArrayLike) -> _ArraySelf: ...
    def __itruediv__(self: _ArraySelf, other: ArrayLike) -> _ArraySelf: ...
    def __ifloordiv__(self: _ArraySelf, other: ArrayLike) -> _ArraySelf: ...
    def __ipow__(self: _ArraySelf, other: ArrayLike) -> _ArraySelf: ...
    def __imod__(self, other): ...
    def __ilshift__(self, other): ...
    def __irshift__(self, other): ...
    def __iand__(self, other): ...
    def __ixor__(self, other): ...
    def __ior__(self, other): ...

# NOTE: while `np.generic` is not technically an instance of `ABCMeta`,
# the `@abstractmethod` decorator is herein used to (forcefully) deny
# the creation of `np.generic` instances.
# The `# type: ignore` comments are necessary to silence mypy errors regarding
# the missing `ABCMeta` metaclass.

# See https://github.com/numpy/numpy-stubs/pull/80 for more details.

_CharLike = Union[str, bytes]
_BoolLike = Union[bool, bool_]
_IntLike = Union[int, integer]
_FloatLike = Union[_IntLike, float, floating]
_ComplexLike = Union[_FloatLike, complex, complexfloating]
_NumberLike = Union[int, float, complex, number, bool_]

class generic(_ArrayOrScalarCommon):
    @abstractmethod
    def __init__(self, *args: Any, **kwargs: Any) -> None: ...
    @property
    def base(self) -> None: ...

class number(generic):  # type: ignore
    @property
    def real(self: _ArraySelf) -> _ArraySelf: ...
    @property
    def imag(self: _ArraySelf) -> _ArraySelf: ...
    # Ensure that objects annotated as `number` support arithmetic operations
    __add__: _NumberOp
    __radd__: _NumberOp
    __sub__: _NumberOp
    __rsub__: _NumberOp
    __mul__: _NumberOp
    __rmul__: _NumberOp
    __floordiv__: _NumberOp
    __rfloordiv__: _NumberOp
    __pow__: _NumberOp
    __rpow__: _NumberOp
    __truediv__: _NumberOp
    __rtruediv__: _NumberOp

class bool_(generic):
    def __init__(self, __value: object = ...) -> None: ...
    @property
    def real(self: _ArraySelf) -> _ArraySelf: ...
    @property
    def imag(self: _ArraySelf) -> _ArraySelf: ...
    __add__: _BoolOp[bool_]
    __radd__: _BoolOp[bool_]
    __sub__: _BoolSub
    __rsub__: _BoolSub
    __mul__: _BoolOp[bool_]
    __rmul__: _BoolOp[bool_]
    __floordiv__: _BoolOp[int8]
    __rfloordiv__: _BoolOp[int8]
    __pow__: _BoolOp[int8]
    __rpow__: _BoolOp[int8]
    __truediv__: _BoolTrueDiv
    __rtruediv__: _BoolTrueDiv

class object_(generic):
    def __init__(self, __value: object = ...) -> None: ...
    @property
    def real(self: _ArraySelf) -> _ArraySelf: ...
    @property
    def imag(self: _ArraySelf) -> _ArraySelf: ...

class datetime64(generic):
    @overload
    def __init__(
        self,
        __value: Union[None, datetime64, _CharLike, dt.datetime] = ...,
        __format: Union[_CharLike, Tuple[_CharLike, _IntLike]] = ...,
    ) -> None: ...
    @overload
    def __init__(
        self,
        __value: int,
        __format: Union[_CharLike, Tuple[_CharLike, _IntLike]]
    ) -> None: ...
    def __add__(self, other: Union[timedelta64, _IntLike, _BoolLike]) -> datetime64: ...
    def __radd__(self, other: Union[timedelta64, _IntLike, _BoolLike]) -> datetime64: ...
    @overload
    def __sub__(self, other: datetime64) -> timedelta64: ...
    @overload
    def __sub__(self, other: Union[timedelta64, _IntLike, _BoolLike]) -> datetime64: ...
    def __rsub__(self, other: datetime64) -> timedelta64: ...

# Support for `__index__` was added in python 3.8 (bpo-20092)
if sys.version_info >= (3, 8):
    _IntValue = Union[SupportsInt, _CharLike, SupportsIndex]
    _FloatValue = Union[None, _CharLike, SupportsFloat, SupportsIndex]
    _ComplexValue = Union[None, _CharLike, SupportsFloat, SupportsComplex, SupportsIndex]
else:
    _IntValue = Union[SupportsInt, _CharLike]
    _FloatValue = Union[None, _CharLike, SupportsFloat]
    _ComplexValue = Union[None, _CharLike, SupportsFloat, SupportsComplex]

class integer(number):  # type: ignore
    # NOTE: `__index__` is technically defined in the bottom-most
    # sub-classes (`int64`, `uint32`, etc)
    def __index__(self) -> int: ...
    __truediv__: _IntTrueDiv
    __rtruediv__: _IntTrueDiv

class signedinteger(integer):  # type: ignore
    __add__: _SignedIntOp
    __radd__: _SignedIntOp
    __sub__: _SignedIntOp
    __rsub__: _SignedIntOp
    __mul__: _SignedIntOp
    __rmul__: _SignedIntOp
    __floordiv__: _SignedIntOp
    __rfloordiv__: _SignedIntOp
    __pow__: _SignedIntOp
    __rpow__: _SignedIntOp

class int8(signedinteger):
    def __init__(self, __value: _IntValue = ...) -> None: ...

class int16(signedinteger):
    def __init__(self, __value: _IntValue = ...) -> None: ...

class int32(signedinteger):
    def __init__(self, __value: _IntValue = ...) -> None: ...

class int64(signedinteger):
    def __init__(self, __value: _IntValue = ...) -> None: ...

class timedelta64(generic):
    def __init__(
        self,
        __value: Union[None, int, _CharLike, dt.timedelta, timedelta64] = ...,
        __format: Union[_CharLike, Tuple[_CharLike, _IntLike]] = ...,
    ) -> None: ...
    def __add__(self, other: Union[timedelta64, _IntLike, _BoolLike]) -> timedelta64: ...
    def __radd__(self, other: Union[timedelta64, _IntLike, _BoolLike]) -> timedelta64: ...
    def __sub__(self, other: Union[timedelta64, _IntLike, _BoolLike]) -> timedelta64: ...
    def __rsub__(self, other: Union[timedelta64, _IntLike, _BoolLike]) -> timedelta64: ...
    def __mul__(self, other: Union[_FloatLike, _BoolLike]) -> timedelta64: ...
    def __rmul__(self, other: Union[_FloatLike, _BoolLike]) -> timedelta64: ...
    __truediv__: _TD64Div[float64]
    __floordiv__: _TD64Div[signedinteger]
    def __rtruediv__(self, other: timedelta64) -> float64: ...
    def __rfloordiv__(self, other: timedelta64) -> signedinteger: ...
    def __mod__(self, other: timedelta64) -> timedelta64: ...

class unsignedinteger(integer):  # type: ignore
    # NOTE: `uint64 + signedinteger -> float64`
    __add__: _UnsignedIntOp
    __radd__: _UnsignedIntOp
    __sub__: _UnsignedIntOp
    __rsub__: _UnsignedIntOp
    __mul__: _UnsignedIntOp
    __rmul__: _UnsignedIntOp
    __floordiv__: _UnsignedIntOp
    __rfloordiv__: _UnsignedIntOp
    __pow__: _UnsignedIntOp
    __rpow__: _UnsignedIntOp

class uint8(unsignedinteger):
    def __init__(self, __value: _IntValue = ...) -> None: ...

class uint16(unsignedinteger):
    def __init__(self, __value: _IntValue = ...) -> None: ...

class uint32(unsignedinteger):
    def __init__(self, __value: _IntValue = ...) -> None: ...

class uint64(unsignedinteger):
    def __init__(self, __value: _IntValue = ...) -> None: ...

class inexact(number): ...  # type: ignore

class floating(inexact):  # type: ignore
    __add__: _FloatOp
    __radd__: _FloatOp
    __sub__: _FloatOp
    __rsub__: _FloatOp
    __mul__: _FloatOp
    __rmul__: _FloatOp
    __truediv__: _FloatOp
    __rtruediv__: _FloatOp
    __floordiv__: _FloatOp
    __rfloordiv__: _FloatOp
    __pow__: _FloatOp
    __rpow__: _FloatOp

_FloatType = TypeVar('_FloatType', bound=floating)

class float16(floating):
    def __init__(self, __value: _FloatValue = ...) -> None: ...

class float32(floating):
    def __init__(self, __value: _FloatValue = ...) -> None: ...

class float64(floating, float):
    def __init__(self, __value: _FloatValue = ...) -> None: ...

class complexfloating(inexact, Generic[_FloatType]):  # type: ignore
    @property
    def real(self) -> _FloatType: ...  # type: ignore[override]
    @property
    def imag(self) -> _FloatType: ...  # type: ignore[override]
    def __abs__(self) -> _FloatType: ...  # type: ignore[override]
    __add__: _ComplexOp
    __radd__: _ComplexOp
    __sub__: _ComplexOp
    __rsub__: _ComplexOp
    __mul__: _ComplexOp
    __rmul__: _ComplexOp
    __truediv__: _ComplexOp
    __rtruediv__: _ComplexOp
    __floordiv__: _ComplexOp
    __rfloordiv__: _ComplexOp
    __pow__: _ComplexOp
    __rpow__: _ComplexOp

class complex64(complexfloating[float32]):
    def __init__(self, __value: _ComplexValue = ...) -> None: ...

class complex128(complexfloating[float64], complex):
    def __init__(self, __value: _ComplexValue = ...) -> None: ...

class flexible(generic): ...  # type: ignore

class void(flexible):
    def __init__(self, __value: Union[_IntLike, _BoolLike, bytes]): ...
    @property
    def real(self: _ArraySelf) -> _ArraySelf: ...
    @property
    def imag(self: _ArraySelf) -> _ArraySelf: ...

class character(flexible): ...  # type: ignore

# NOTE: Most `np.bytes_` / `np.str_` methods return their
# builtin `bytes` / `str` counterpart

class bytes_(character, bytes):
    @overload
    def __init__(self, __value: object = ...) -> None: ...
    @overload
    def __init__(
        self, __value: str, encoding: str = ..., errors: str = ...
    ) -> None: ...

class str_(character, str):
    @overload
    def __init__(self, __value: object = ...) -> None: ...
    @overload
    def __init__(
        self, __value: bytes, encoding: str = ..., errors: str = ...
    ) -> None: ...

# TODO(alan): Platform dependent types
# longcomplex, longdouble, longfloat
# bytes, short, intc, intp, longlong
# half, single, double, longdouble
# uint_, int_, float_, complex_
# float128, complex256
# float96

def array(
    object: object,
    dtype: DtypeLike = ...,
    *,
    copy: bool = ...,
    order: _OrderKACF = ...,
    subok: bool = ...,
    ndmin: int = ...,
    like: ArrayLike = ...,
) -> ndarray: ...
def zeros(
    shape: _ShapeLike,
    dtype: DtypeLike = ...,
    order: _OrderCF = ...,
    *,
    like: ArrayLike = ...,
) -> ndarray: ...
def ones(
    shape: _ShapeLike,
    dtype: DtypeLike = ...,
    order: _OrderCF = ...,
    *,
    like: ArrayLike = ...,
) -> ndarray: ...
def empty(
    shape: _ShapeLike,
    dtype: DtypeLike = ...,
    order: _OrderCF = ...,
    *,
    like: ArrayLike = ...,
) -> ndarray: ...
def zeros_like(
    a: ArrayLike,
    dtype: DtypeLike = ...,
    order: _OrderKACF = ...,
    subok: bool = ...,
    shape: Optional[Union[int, Sequence[int]]] = ...,
) -> ndarray: ...
def ones_like(
    a: ArrayLike,
    dtype: DtypeLike = ...,
    order: _OrderKACF = ...,
    subok: bool = ...,
    shape: Optional[_ShapeLike] = ...,
) -> ndarray: ...
def empty_like(
    a: ArrayLike,
    dtype: DtypeLike = ...,
    order: _OrderKACF = ...,
    subok: bool = ...,
    shape: Optional[_ShapeLike] = ...,
) -> ndarray: ...
def full(
    shape: _ShapeLike,
    fill_value: Any,
    dtype: DtypeLike = ...,
    order: _OrderCF = ...,
    *,
    like: ArrayLike = ...,
) -> ndarray: ...
def full_like(
    a: ArrayLike,
    fill_value: Any,
    dtype: DtypeLike = ...,
    order: _OrderKACF = ...,
    subok: bool = ...,
    shape: Optional[_ShapeLike] = ...,
) -> ndarray: ...
def count_nonzero(
    a: ArrayLike, axis: Optional[Union[int, Tuple[int], Tuple[int, int]]] = ...
) -> Union[int, ndarray]: ...
def isfortran(a: ndarray) -> bool: ...
def argwhere(a: ArrayLike) -> ndarray: ...
def flatnonzero(a: ArrayLike) -> ndarray: ...

_CorrelateMode = Literal["valid", "same", "full"]

def correlate(a: ArrayLike, v: ArrayLike, mode: _CorrelateMode = ...) -> ndarray: ...
def convolve(a: ArrayLike, v: ArrayLike, mode: _CorrelateMode = ...) -> ndarray: ...
def outer(a: ArrayLike, b: ArrayLike, out: ndarray = ...) -> ndarray: ...
def tensordot(
    a: ArrayLike,
    b: ArrayLike,
    axes: Union[
        int, Tuple[int, int], Tuple[Tuple[int, int], ...], Tuple[List[int, int], ...]
    ] = ...,
) -> ndarray: ...
def roll(
    a: ArrayLike,
    shift: Union[int, Tuple[int, ...]],
    axis: Optional[Union[int, Tuple[int, ...]]] = ...,
) -> ndarray: ...
def rollaxis(a: ArrayLike, axis: int, start: int = ...) -> ndarray: ...
def moveaxis(
    a: ndarray,
    source: Union[int, Sequence[int]],
    destination: Union[int, Sequence[int]],
) -> ndarray: ...
def cross(
    a: ArrayLike,
    b: ArrayLike,
    axisa: int = ...,
    axisb: int = ...,
    axisc: int = ...,
    axis: Optional[int] = ...,
) -> ndarray: ...
def indices(
    dimensions: Sequence[int], dtype: dtype = ..., sparse: bool = ...
) -> Union[ndarray, Tuple[ndarray, ...]]: ...
def fromfunction(
    function: Callable,
    shape: Tuple[int, int],
    *,
    like: ArrayLike = ...,
    **kwargs,
) -> Any: ...
def isscalar(element: Any) -> bool: ...
def binary_repr(num: int, width: Optional[int] = ...) -> str: ...
def base_repr(number: int, base: int = ..., padding: int = ...) -> str: ...
def identity(n: int, dtype: DtypeLike = ..., *, like: ArrayLike = ...) -> ndarray: ...
def allclose(
    a: ArrayLike,
    b: ArrayLike,
    rtol: float = ...,
    atol: float = ...,
    equal_nan: bool = ...,
) -> bool: ...
def isclose(
    a: ArrayLike,
    b: ArrayLike,
    rtol: float = ...,
    atol: float = ...,
    equal_nan: bool = ...,
) -> Union[bool_, ndarray]: ...
def array_equal(a1: ArrayLike, a2: ArrayLike) -> bool: ...
def array_equiv(a1: ArrayLike, a2: ArrayLike) -> bool: ...

#
# Constants
#

Inf: float
Infinity: float
NAN: float
NINF: float
NZERO: float
NaN: float
PINF: float
PZERO: float
e: float
euler_gamma: float
inf: float
infty: float
nan: float
pi: float

ALLOW_THREADS: int
BUFSIZE: int
CLIP: int
ERR_CALL: int
ERR_DEFAULT: int
ERR_IGNORE: int
ERR_LOG: int
ERR_PRINT: int
ERR_RAISE: int
ERR_WARN: int
FLOATING_POINT_SUPPORT: int
FPE_DIVIDEBYZERO: int
FPE_INVALID: int
FPE_OVERFLOW: int
FPE_UNDERFLOW: int
MAXDIMS: int
MAY_SHARE_BOUNDS: int
MAY_SHARE_EXACT: int
RAISE: int
SHIFT_DIVIDEBYZERO: int
SHIFT_INVALID: int
SHIFT_OVERFLOW: int
SHIFT_UNDERFLOW: int
UFUNC_BUFSIZE_DEFAULT: int
WRAP: int
little_endian: int
tracemalloc_domain: int

class ufunc:
    @property
    def __name__(self) -> str: ...
    def __call__(
        self,
        *args: ArrayLike,
        out: Optional[Union[ndarray, Tuple[ndarray, ...]]] = ...,
        where: Optional[ndarray] = ...,
        # The list should be a list of tuples of ints, but since we
        # don't know the signature it would need to be
        # Tuple[int, ...]. But, since List is invariant something like
        # e.g. List[Tuple[int, int]] isn't a subtype of
        # List[Tuple[int, ...]], so we can't type precisely here.
        axes: List[Any] = ...,
        axis: int = ...,
        keepdims: bool = ...,
        casting: _Casting = ...,
        order: _OrderKACF = ...,
        dtype: DtypeLike = ...,
        subok: bool = ...,
        signature: Union[str, Tuple[str]] = ...,
        # In reality this should be a length of list 3 containing an
        # int, an int, and a callable, but there's no way to express
        # that.
        extobj: List[Union[int, Callable]] = ...,
    ) -> Union[ndarray, generic]: ...
    @property
    def nin(self) -> int: ...
    @property
    def nout(self) -> int: ...
    @property
    def nargs(self) -> int: ...
    @property
    def ntypes(self) -> int: ...
    @property
    def types(self) -> List[str]: ...
    # Broad return type because it has to encompass things like
    #
    # >>> np.logical_and.identity is True
    # True
    # >>> np.add.identity is 0
    # True
    # >>> np.sin.identity is None
    # True
    #
    # and any user-defined ufuncs.
    @property
    def identity(self) -> Any: ...
    # This is None for ufuncs and a string for gufuncs.
    @property
    def signature(self) -> Optional[str]: ...
    # The next four methods will always exist, but they will just
    # raise a ValueError ufuncs with that don't accept two input
    # arguments and return one output argument. Because of that we
    # can't type them very precisely.
    @property
    def reduce(self) -> Any: ...
    @property
    def accumulate(self) -> Any: ...
    @property
    def reduceat(self) -> Any: ...
    @property
    def outer(self) -> Any: ...
    # Similarly at won't be defined for ufuncs that return multiple
    # outputs, so we can't type it very precisely.
    @property
    def at(self) -> Any: ...

absolute: ufunc
add: ufunc
arccos: ufunc
arccosh: ufunc
arcsin: ufunc
arcsinh: ufunc
arctan2: ufunc
arctan: ufunc
arctanh: ufunc
bitwise_and: ufunc
bitwise_or: ufunc
bitwise_xor: ufunc
cbrt: ufunc
ceil: ufunc
conjugate: ufunc
copysign: ufunc
cos: ufunc
cosh: ufunc
deg2rad: ufunc
degrees: ufunc
divmod: ufunc
equal: ufunc
exp2: ufunc
exp: ufunc
expm1: ufunc
fabs: ufunc
float_power: ufunc
floor: ufunc
floor_divide: ufunc
fmax: ufunc
fmin: ufunc
fmod: ufunc
frexp: ufunc
gcd: ufunc
greater: ufunc
greater_equal: ufunc
heaviside: ufunc
hypot: ufunc
invert: ufunc
isfinite: ufunc
isinf: ufunc
isnan: ufunc
isnat: ufunc
lcm: ufunc
ldexp: ufunc
left_shift: ufunc
less: ufunc
less_equal: ufunc
log10: ufunc
log1p: ufunc
log2: ufunc
log: ufunc
logaddexp2: ufunc
logaddexp: ufunc
logical_and: ufunc
logical_not: ufunc
logical_or: ufunc
logical_xor: ufunc
matmul: ufunc
maximum: ufunc
minimum: ufunc
modf: ufunc
multiply: ufunc
negative: ufunc
nextafter: ufunc
not_equal: ufunc
positive: ufunc
power: ufunc
rad2deg: ufunc
radians: ufunc
reciprocal: ufunc
remainder: ufunc
right_shift: ufunc
rint: ufunc
sign: ufunc
signbit: ufunc
sin: ufunc
sinh: ufunc
spacing: ufunc
sqrt: ufunc
square: ufunc
subtract: ufunc
tan: ufunc
tanh: ufunc
true_divide: ufunc
trunc: ufunc

abs = absolute

# Warnings
class ModuleDeprecationWarning(DeprecationWarning): ...
class VisibleDeprecationWarning(UserWarning): ...
class ComplexWarning(RuntimeWarning): ...
class RankWarning(UserWarning): ...

# Errors
class TooHardError(RuntimeError): ...

class AxisError(ValueError, IndexError):
    def __init__(
        self, axis: int, ndim: Optional[int] = ..., msg_prefix: Optional[str] = ...
    ) -> None: ...

# Functions from np.core.numerictypes
_DefaultType = TypeVar("_DefaultType")

def maximum_sctype(t: DtypeLike) -> dtype: ...
def issctype(rep: object) -> bool: ...
@overload
def obj2sctype(rep: object) -> Optional[generic]: ...
@overload
def obj2sctype(rep: object, default: None) -> Optional[generic]: ...
@overload
def obj2sctype(
    rep: object, default: Type[_DefaultType]
) -> Union[generic, Type[_DefaultType]]: ...
def issubclass_(arg1: object, arg2: Union[object, Tuple[object, ...]]) -> bool: ...
def issubsctype(
    arg1: Union[ndarray, DtypeLike], arg2: Union[ndarray, DtypeLike]
) -> bool: ...
def issubdtype(arg1: DtypeLike, arg2: DtypeLike) -> bool: ...
def sctype2char(sctype: object) -> str: ...
def find_common_type(
    array_types: Sequence[DtypeLike], scalar_types: Sequence[DtypeLike]
) -> dtype: ...