summaryrefslogtreecommitdiff
path: root/numpy/_typing/_add_docstring.py
blob: f84d19271c23f19c86729545de59e8cae4a50f05 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
"""A module for creating docstrings for sphinx ``data`` domains."""

import re
import textwrap

from ._array_like import NDArray

_docstrings_list = []


def add_newdoc(name: str, value: str, doc: str) -> None:
    """Append ``_docstrings_list`` with a docstring for `name`.

    Parameters
    ----------
    name : str
        The name of the object.
    value : str
        A string-representation of the object.
    doc : str
        The docstring of the object.

    """
    _docstrings_list.append((name, value, doc))


def _parse_docstrings() -> str:
    """Convert all docstrings in ``_docstrings_list`` into a single
    sphinx-legible text block.

    """
    type_list_ret = []
    for name, value, doc in _docstrings_list:
        s = textwrap.dedent(doc).replace("\n", "\n    ")

        # Replace sections by rubrics
        lines = s.split("\n")
        new_lines = []
        indent = ""
        for line in lines:
            m = re.match(r'^(\s+)[-=]+\s*$', line)
            if m and new_lines:
                prev = textwrap.dedent(new_lines.pop())
                if prev == "Examples":
                    indent = ""
                    new_lines.append(f'{m.group(1)}.. rubric:: {prev}')
                else:
                    indent = 4 * " "
                    new_lines.append(f'{m.group(1)}.. admonition:: {prev}')
                new_lines.append("")
            else:
                new_lines.append(f"{indent}{line}")

        s = "\n".join(new_lines)
        s_block = f""".. data:: {name}\n    :value: {value}\n    {s}"""
        type_list_ret.append(s_block)
    return "\n".join(type_list_ret)


add_newdoc('ArrayLike', 'typing.Union[...]',
    """
    A `~typing.Union` representing objects that can be coerced
    into an `~numpy.ndarray`.

    Among others this includes the likes of:

    * Scalars.
    * (Nested) sequences.
    * Objects implementing the `~class.__array__` protocol.

    .. versionadded:: 1.20

    See Also
    --------
    :term:`array_like`:
        Any scalar or sequence that can be interpreted as an ndarray.

    Examples
    --------
    .. code-block:: python

        >>> import numpy as np
        >>> import numpy.typing as npt

        >>> def as_array(a: npt.ArrayLike) -> np.ndarray:
        ...     return np.array(a)

    """)

add_newdoc('DTypeLike', 'typing.Union[...]',
    """
    A `~typing.Union` representing objects that can be coerced
    into a `~numpy.dtype`.

    Among others this includes the likes of:

    * :class:`type` objects.
    * Character codes or the names of :class:`type` objects.
    * Objects with the ``.dtype`` attribute.

    .. versionadded:: 1.20

    See Also
    --------
    :ref:`Specifying and constructing data types <arrays.dtypes.constructing>`
        A comprehensive overview of all objects that can be coerced
        into data types.

    Examples
    --------
    .. code-block:: python

        >>> import numpy as np
        >>> import numpy.typing as npt

        >>> def as_dtype(d: npt.DTypeLike) -> np.dtype:
        ...     return np.dtype(d)

    """)

add_newdoc('NDArray', repr(NDArray),
    """
    A :term:`generic <generic type>` version of
    `np.ndarray[Any, np.dtype[+ScalarType]] <numpy.ndarray>`.

    Can be used during runtime for typing arrays with a given dtype
    and unspecified shape.

    .. versionadded:: 1.21

    Examples
    --------
    .. code-block:: python

        >>> import numpy as np
        >>> import numpy.typing as npt

        >>> print(npt.NDArray)
        numpy.ndarray[typing.Any, numpy.dtype[+ScalarType]]

        >>> print(npt.NDArray[np.float64])
        numpy.ndarray[typing.Any, numpy.dtype[numpy.float64]]

        >>> NDArrayInt = npt.NDArray[np.int_]
        >>> a: NDArrayInt = np.arange(10)

        >>> def func(a: npt.ArrayLike) -> npt.NDArray[Any]:
        ...     return np.array(a)

    """)

_docstrings = _parse_docstrings()