1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
|
from lib import add_newdoc
add_newdoc('numpy.core','dtype',
[('fields', "Fields of the data-type or None if no fields"),
('names', "Names of fields or None if no fields"),
('alignment', "Needed alignment for this data-type"),
('byteorder',
"Little-endian (<), big-endian (>), native (=), or "\
"not-applicable (|)"),
('char', "Letter typecode for this data-type"),
('type', "Type object associated with this data-type"),
('kind', "Character giving type-family of this data-type"),
('itemsize', "Size of each item"),
('hasobject', "Non-zero if Python objects are in "\
"this data-type"),
('num', "Internally-used number for builtin base"),
('newbyteorder',
"""self.newbyteorder(<endian>)
returns a copy of the dtype object with altered byteorders.
If <endian> is not given all byteorders are swapped.
Otherwise endian can be '>', '<', or '=' to force a particular
byteorder. Data-types in all fields are also updated in the
new dtype object.
"""),
("__reduce__", "self.__reduce__() for pickling"),
("__setstate__", "self.__setstate__() for pickling"),
("subdtype", "A tuple of (descr, shape) or None"),
("descr", "The array_interface data-type descriptor."),
("str", "The array interface typestring."),
("name", "The name of the true data-type"),
("base", "The base data-type or self if no subdtype"),
("shape", "The shape of the subdtype or (1,)"),
("isbuiltin", "Is this a built-in data-type?"),
("isnative", "Is the byte-order of this data-type native?")
]
)
###############################################################################
#
# flatiter
#
# flatiter needs a toplevel description
#
###############################################################################
# attributes
add_newdoc('numpy.core', 'flatiter', ('base',
"""documentation needed
"""))
add_newdoc('numpy.core', 'flatiter', ('coords',
"""An N-d tuple of current coordinates.
"""))
add_newdoc('numpy.core', 'flatiter', ('index',
"""documentation needed
"""))
# functions
add_newdoc('numpy.core', 'flatiter', ('__array__',
"""__array__(type=None) Get array from iterator
"""))
add_newdoc('numpy.core', 'flatiter', ('copy',
"""copy() Get a copy of the iterator as a 1-d array
"""))
###############################################################################
#
# broadcast
#
###############################################################################
# attributes
add_newdoc('numpy.core', 'broadcast', ('index',
"""current index in broadcasted result
"""))
add_newdoc('numpy.core', 'broadcast', ('iters',
"""tuple of individual iterators
"""))
add_newdoc('numpy.core', 'broadcast', ('nd',
"""number of dimensions of broadcasted result
"""))
add_newdoc('numpy.core', 'broadcast', ('numiter',
"""number of iterators
"""))
add_newdoc('numpy.core', 'broadcast', ('shape',
"""shape of broadcasted result
"""))
add_newdoc('numpy.core', 'broadcast', ('size',
"""total size of broadcasted result
"""))
###############################################################################
#
# numpy functions
#
###############################################################################
add_newdoc('numpy.core.multiarray','array',
"""array(object, dtype=None, copy=1,order=None, subok=0,ndmin=0)
Return an array from object with the specified date-type.
Inputs:
object - an array, any object exposing the array interface, any
object whose __array__ method returns an array, or any
(nested) sequence.
dtype - The desired data-type for the array. If not given, then
the type will be determined as the minimum type required
to hold the objects in the sequence. This argument can only
be used to 'upcast' the array. For downcasting, use the
.astype(t) method.
copy - If true, then force a copy. Otherwise a copy will only occur
if __array__ returns a copy, obj is a nested sequence, or
a copy is needed to satisfy any of the other requirements
order - Specify the order of the array. If order is 'C', then the
array will be in C-contiguous order (last-index varies the
fastest). If order is 'FORTRAN', then the returned array
will be in Fortran-contiguous order (first-index varies the
fastest). If order is None, then the returned array may
be in either C-, or Fortran-contiguous order or even
discontiguous.
subok - If True, then sub-classes will be passed-through, otherwise
the returned array will be forced to be a base-class array
ndmin - Specifies the minimum number of dimensions that the resulting
array should have. 1's will be pre-pended to the shape as
needed to meet this requirement.
""")
add_newdoc('numpy.core.multiarray','empty',
"""empty((d1,...,dn),dtype=float,order='C')
Return a new array of shape (d1,...,dn) and given type with all its
entries uninitialized. This can be faster than zeros.
""")
add_newdoc('numpy.core.multiarray','scalar',
"""scalar(dtype,obj)
Return a new scalar array of the given type initialized with
obj. Mainly for pickle support. The dtype must be a valid data-type
descriptor. If dtype corresponds to an OBJECT descriptor, then obj
can be any object, otherwise obj must be a string. If obj is not given
it will be interpreted as None for object type and zeros for all other
types.
""")
add_newdoc('numpy.core.multiarray','zeros',
"""zeros((d1,...,dn),dtype=float,order='C')
Return a new array of shape (d1,...,dn) and type typecode with all
it's entries initialized to zero.
""")
add_newdoc('numpy.core.multiarray','set_typeDict',
"""set_typeDict(dict)
Set the internal dictionary that can look up an array type using a
registered code.
""")
add_newdoc('numpy.core.multiarray','fromstring',
"""fromstring(string, dtype=float, count=-1, sep='')
Return a new 1d array initialized from the raw binary data in string.
If count is positive, the new array will have count elements, otherwise its
size is determined by the size of string. If sep is not empty then the
string is interpreted in ASCII mode and converted to the desired number type
using sep as the separator between elements (extra whitespace is ignored).
""")
add_newdoc('numpy.core.multiarray','fromiter',
"""fromiter(iterable, dtype, count=-1)
Return a new 1d array initialized from iterable. If count is
nonegative, the new array will have count elements, otherwise it's
size is determined by the generator.
""")
add_newdoc('numpy.core.multiarray','fromfile',
"""fromfile(file=, dtype=float, count=-1, sep='') -> array.
Required arguments:
file -- open file object or string containing file name.
Keyword arguments:
dtype -- type and order of the returned array (default float)
count -- number of items to input (default all)
sep -- separater between items if file is a text file (default "")
Return an array of the given data type from a text or binary file. The
'file' argument can be an open file or a string with the name of a file to
read from. If 'count' == -1 the entire file is read, otherwise count is the
number of items of the given type to read in. If 'sep' is "" it means to
read binary data from the file using the specified dtype, otherwise it gives
the separator between elements in a text file. The 'dtype' value is also
used to determine the size and order of the items in binary files.
Data written using the tofile() method can be conveniently recovered using
this function.
WARNING: This function should be used sparingly as the binary files are not
platform independent. In particular, they contain no endianess or datatype
information. Nevertheless it can be useful for reading in simply formatted
or binary data quickly.
""")
add_newdoc('numpy.core.multiarray','frombuffer',
"""frombuffer(buffer=, dtype=float, count=-1, offset=0)
Returns a 1-d array of data type dtype from buffer. The buffer
argument must be an object that exposes the buffer interface. If
count is -1 then the entire buffer is used, otherwise, count is the
size of the output. If offset is given then jump that far into the
buffer. If the buffer has data that is out not in machine byte-order,
than use a propert data type descriptor. The data will not be
byteswapped, but the array will manage it in future operations.
""")
add_newdoc('numpy.core.multiarray','concatenate',
"""concatenate((a1, a2, ...), axis=0)
Join arrays together.
The tuple of sequences (a1, a2, ...) are joined along the given axis
(default is the first one) into a single numpy array.
Example:
>>> concatenate( ([0,1,2], [5,6,7]) )
array([0, 1, 2, 5, 6, 7])
""")
add_newdoc('numpy.core.multiarray','inner',
"""inner(a,b)
Returns the dot product of two arrays, which has shape a.shape[:-1] +
b.shape[:-1] with elements computed by the product of the elements
from the last dimensions of a and b.
""")
add_newdoc('numpy.core','fastCopyAndTranspose',
"""_fastCopyAndTranspose(a)""")
add_newdoc('numpy.core.multiarray','correlate',
"""cross_correlate(a,v, mode=0)""")
add_newdoc('numpy.core.multiarray','arange',
"""arange([start,] stop[, step,], dtype=None)
For integer arguments, just like range() except it returns an array
whose type can be specified by the keyword argument dtype. If dtype
is not specified, the type of the result is deduced from the type of
the arguments.
For floating point arguments, the length of the result is ceil((stop -
start)/step). This rule may result in the last element of the result
being greater than stop.
""")
add_newdoc('numpy.core.multiarray','_get_ndarray_c_version',
"""_get_ndarray_c_version()
Return the compile time NDARRAY_VERSION number.
""")
add_newdoc('numpy.core.multiarray','_reconstruct',
"""_reconstruct(subtype, shape, dtype)
Construct an empty array. Used by Pickles.
""")
add_newdoc('numpy.core.multiarray','set_string_function',
"""set_string_function(f, repr=1)
Set the python function f to be the function used to obtain a pretty
printable string version of an array whenever an array is printed.
f(M) should expect an array argument M, and should return a string
consisting of the desired representation of M for printing.
""")
add_newdoc('numpy.core.multiarray','set_numeric_ops',
"""set_numeric_ops(op=func, ...)
Set some or all of the number methods for all array objects. Do not
forget **dict can be used as the argument list. Return the functions
that were replaced, which can be stored and set later.
""")
add_newdoc('numpy.core.multiarray','where',
"""where(condition, | x, y)
The result is shaped like condition and has elements of x and y where
condition is respectively true or false. If x or y are not given,
then it is equivalent to condition.nonzero().
To group the indices by element, rather than dimension, use
transpose(where(condition, | x, y))
instead. This always results in a 2d array, with a row of indices for
each element that satisfies the condition.
""")
add_newdoc('numpy.core.multiarray','lexsort',
"""lexsort(keys=, axis=-1) -> array of indices. Argsort with list of keys.
Perform an indirect sort using a list of keys. The first key is sorted,
then the second, and so on through the list of keys. At each step the
previous order is preserved when equal keys are encountered. The result is
a sort on multiple keys. If the keys represented columns of a spreadsheet,
for example, this would sort using multiple columns (the last key being
used for the primary sort order, the second-to-last key for the secondary
sort order, and so on). The keys argument must be a sequence of things
that can be converted to arrays of the same shape.
Parameters:
a : array type
Array containing values that the returned indices should sort.
axis : integer
Axis to be indirectly sorted. None indicates that the flattened
array should be used. Default is -1.
Returns:
indices : integer array
Array of indices that sort the keys along the specified axis. The
array has the same shape as the keys.
SeeAlso:
argsort : indirect sort
sort : inplace sort
""")
add_newdoc('numpy.core.multiarray','can_cast',
"""can_cast(from=d1, to=d2)
Returns True if data type d1 can be cast to data type d2 without
losing precision.
""")
add_newdoc('numpy.core.multiarray','newbuffer',
"""newbuffer(size)
Return a new uninitialized buffer object of size bytes
""")
add_newdoc('numpy.core.multiarray','getbuffer',
"""getbuffer(obj [,offset[, size]])
Create a buffer object from the given object referencing a slice of
length size starting at offset. Default is the entire buffer. A
read-write buffer is attempted followed by a read-only buffer.
""")
##############################################################################
#
# Documentation for ndarray attributes and methods
#
##############################################################################
##############################################################################
#
# ndarray object
#
##############################################################################
add_newdoc('numpy.core.multiarray', 'ndarray',
"""An array object represents a multidimensional, homogeneous array
of fixed-size items. An associated data-type-descriptor object
details the data-type in an array (including byteorder and any
fields). An array can be constructed using the numpy.array
command. Arrays are sequence, mapping and numeric objects.
More information is available in the numpy module and by looking
at the methods and attributes of an array.
ndarray.__new__(subtype, shape=, dtype=float, buffer=None,
offset=0, strides=None, order=None)
There are two modes of creating an array using __new__:
1) If buffer is None, then only shape, dtype, and order
are used
2) If buffer is an object exporting the buffer interface, then
all keywords are interpreted.
The dtype parameter can be any object that can be interpreted
as a numpy.dtype object.
No __init__ method is needed because the array is fully
initialized after the __new__ method.
""")
##############################################################################
#
# ndarray attributes
#
##############################################################################
add_newdoc('numpy.core.multiarray', 'ndarray', ('__array_interface__',
"""Array protocol: Python side."""))
add_newdoc('numpy.core.multiarray', 'ndarray', ('__array_finalize__',
"""None."""))
add_newdoc('numpy.core.multiarray', 'ndarray', ('__array_priority__',
"""Array priority."""))
add_newdoc('numpy.core.multiarray', 'ndarray', ('__array_struct__',
"""Array protocol: C-struct side."""))
add_newdoc('numpy.core.multiarray', 'ndarray', ('_as_parameter_',
"""Allow the array to be interpreted as a ctypes object by returning the
data-memory location as an integer
"""))
add_newdoc('numpy.core.multiarray', 'ndarray', ('base',
"""Base object if memory is from some other object.
"""))
add_newdoc('numpy.core.multiarray', 'ndarray', ('ctypes',
"""A ctypes interface object.
"""))
add_newdoc('numpy.core.multiarray', 'ndarray', ('data',
"""Buffer object pointing to the start of the data.
"""))
add_newdoc('numpy.core.multiarray', 'ndarray', ('dtype',
"""Data-type for the array.
"""))
add_newdoc('numpy.core.multiarray', 'ndarray', ('imag',
"""Imaginary part of the array.
"""))
add_newdoc('numpy.core.multiarray', 'ndarray', ('itemsize',
"""Length of one element in bytes.
"""))
add_newdoc('numpy.core.multiarray', 'ndarray', ('flags',
"""Special object providing array flags.
"""))
add_newdoc('numpy.core.multiarray', 'ndarray', ('flat',
"""A 1-d flat iterator.
"""))
add_newdoc('numpy.core.multiarray', 'ndarray', ('nbytes',
"""Number of bytes in the array.
"""))
add_newdoc('numpy.core.multiarray', 'ndarray', ('ndim',
"""Number of array dimensions.
"""))
add_newdoc('numpy.core.multiarray', 'ndarray', ('real',
"""Real part of the array.
"""))
add_newdoc('numpy.core.multiarray', 'ndarray', ('shape',
"""Tuple of array dimensions.
"""))
add_newdoc('numpy.core.multiarray', 'ndarray', ('size',
"""Number of elements in the array.
"""))
add_newdoc('numpy.core.multiarray', 'ndarray', ('strides',
"""Tuple of bytes to step in each dimension.
"""))
add_newdoc('numpy.core.multiarray', 'ndarray', ('T',
"""Same as self.transpose() except self is returned for self.ndim < 2.
"""))
##############################################################################
#
# ndarray methods
#
##############################################################################
add_newdoc('numpy.core.multiarray', 'ndarray', ('__array__',
""" a.__array__(|dtype) -> reference if type unchanged, copy otherwise.
Returns either a new reference to self if dtype is not given or a new array
of provided data type if dtype is different from the current dtype of the
array.
"""))
add_newdoc('numpy.core.multiarray', 'ndarray', ('__array_wrap__',
"""a.__array_wrap__(obj) -> Object of same type as a from ndarray obj.
"""))
add_newdoc('numpy.core.multiarray', 'ndarray', ('__copy__',
"""a.__copy__(|order) -> copy, possibly with different order.
Return a copy of the array.
Argument:
order -- Order of returned copy (default 'C')
If order is 'C' (False) then the result is contiguous (default).
If order is 'Fortran' (True) then the result has fortran order.
If order is 'Any' (None) then the result has fortran order
only if m is already in fortran order.;
"""))
add_newdoc('numpy.core.multiarray', 'ndarray', ('__deepcopy__',
"""a.__deepcopy__() -> Deep copy of array.
Used if copy.deepcopy is called on an array.
"""))
add_newdoc('numpy.core.multiarray', 'ndarray', ('__reduce__',
"""a.__reduce__()
For pickling.
"""))
add_newdoc('numpy.core.multiarray', 'ndarray', ('__setstate__',
"""a.__setstate__(version, shape, typecode, isfortran, rawdata)
For unpickling.
Arguments:
version -- optional pickle version. If omitted defaults to 0.
shape -- a tuple giving the shape
typecode -- a typecode
isFortran -- a bool stating if Fortran or no
rawdata -- a binary string with the data (or a list if Object array)
"""))
add_newdoc('numpy.core.multiarray', 'ndarray', ('all',
""" a.all(axis=None)
"""))
add_newdoc('numpy.core.multiarray', 'ndarray', ('any',
""" a.any(axis=None, out=None)
"""))
add_newdoc('numpy.core.multiarray', 'ndarray', ('argmax',
""" a.argmax(axis=None, out=None)
"""))
add_newdoc('numpy.core.multiarray', 'ndarray', ('argmin',
""" a.argmin(axis=None, out=None)
"""))
add_newdoc('numpy.core.multiarray', 'ndarray', ('argsort',
"""a.argsort(axis=-1, kind='quicksort', order=None) -> indices
Perform an indirect sort along the given axis using the algorithm specified
by the kind keyword. It returns an array of indices of the same shape as
'a' that index data along the given axis in sorted order.
:Parameters:
axis : integer
Axis to be indirectly sorted. None indicates that the flattened
array should be used. Default is -1.
kind : string
Sorting algorithm to use. Possible values are 'quicksort',
'mergesort', or 'heapsort'. Default is 'quicksort'.
order : list type or None
When a is an array with fields defined, this argument specifies
which fields to compare first, second, etc. Not all fields need be
specified.
:Returns:
indices : integer array
Array of indices that sort 'a' along the specified axis.
:SeeAlso:
- lexsort : indirect stable sort with multiple keys
- sort : inplace sort
:Notes:
------
The various sorts are characterized by average speed, worst case
performance, need for work space, and whether they are stable. A stable
sort keeps items with the same key in the same relative order. The three
available algorithms have the following properties:
|------------------------------------------------------|
| kind | speed | worst case | work space | stable|
|------------------------------------------------------|
|'quicksort'| 1 | O(n^2) | 0 | no |
|'mergesort'| 2 | O(n*log(n)) | ~n/2 | yes |
|'heapsort' | 3 | O(n*log(n)) | 0 | no |
|------------------------------------------------------|
All the sort algorithms make temporary copies of the data when the sort is not
along the last axis. Consequently, sorts along the last axis are faster and use
less space than sorts along other axis.
"""))
add_newdoc('numpy.core.multiarray', 'ndarray', ('astype',
"""a.astype(t) -> Copy of array cast to type t.
Cast array m to type t. t can be either a string representing a typecode,
or a python type object of type int, float, or complex.
"""))
add_newdoc('numpy.core.multiarray', 'ndarray', ('byteswap',
"""a.byteswap(False) -> View or copy. Swap the bytes in the array.
Swap the bytes in the array. Return the byteswapped array. If the first
argument is True, byteswap in-place and return a reference to self.
"""))
add_newdoc('numpy.core.multiarray', 'ndarray', ('choose',
""" a.choose(b0, b1, ..., bn, out=None, mode='raise')
Return an array that merges the b_i arrays together using 'a' as
the index The b_i arrays and 'a' must all be broadcastable to the
same shape. The output at a particular position is the input
array b_i at that position depending on the value of 'a' at that
position. Therefore, 'a' must be an integer array with entries
from 0 to n+1.;
"""))
add_newdoc('numpy.core.multiarray', 'ndarray', ('clip',
"""a.clip(min=, max=, out=None)
"""))
add_newdoc('numpy.core.multiarray', 'ndarray', ('compress',
"""a.compress(condition=, axis=None, out=None)
"""))
add_newdoc('numpy.core.multiarray', 'ndarray', ('conj',
"""a.conj()
"""))
add_newdoc('numpy.core.multiarray', 'ndarray', ('conjugate',
"""a.conjugate()
"""))
add_newdoc('numpy.core.multiarray', 'ndarray', ('copy',
"""a.copy(|order) -> copy, possibly with different order.
Return a copy of the array.
Argument:
order -- Order of returned copy (default 'C')
If order is 'C' (False) then the result is contiguous (default).
If order is 'Fortran' (True) then the result has fortran order.
If order is 'Any' (None) then the result has fortran order
only if m is already in fortran order.;
"""))
add_newdoc('numpy.core.multiarray', 'ndarray', ('cumprod',
"""a.cumprod(axis=None, dtype=None)
"""))
add_newdoc('numpy.core.multiarray', 'ndarray', ('cumsum',
"""a.cumsum(axis=None, dtype=None, out=None)
"""))
add_newdoc('numpy.core.multiarray', 'ndarray', ('diagonal',
"""a.diagonal(offset=0, axis1=0, axis2=1) -> diagonals
If a is 2-d, return the diagonal of self with the given offset, i.e., the
collection of elements of the form a[i,i+offset]. If a is n-d with n > 2,
then the axes specified by axis1 and axis2 are used to determine the 2-d
subarray whose diagonal is returned. The shape of the resulting array can
be determined by removing axis1 and axis2 and appending an index to the
right equal to the size of the resulting diagonals.
:Parameters:
offset : integer
Offset of the diagonal from the main diagonal. Can be both positive
and negative. Defaults to main diagonal.
axis1 : integer
Axis to be used as the first axis of the 2-d subarrays from which
the diagonals should be taken. Defaults to first index.
axis2 : integer
Axis to be used as the second axis of the 2-d subarrays from which
the diagonals should be taken. Defaults to second index.
:Returns:
array_of_diagonals : same type as original array
If a is 2-d, then a 1-d array containing the diagonal is returned.
If a is n-d, n > 2, then an array of diagonals is returned.
:SeeAlso:
- diag : matlab workalike for 1-d and 2-d arrays.
- diagflat : creates diagonal arrays
- trace : sum along diagonals
Examples
--------
>>> a = arange(4).reshape(2,2)
>>> a
array([[0, 1],
[2, 3]])
>>> a.diagonal()
array([0, 3])
>>> a.diagonal(1)
array([1])
>>> a = arange(8).reshape(2,2,2)
>>> a
array([[[0, 1],
[2, 3]],
[[4, 5],
[6, 7]]])
>>> a.diagonal(0,-2,-1)
array([[0, 3],
[4, 7]])
"""))
add_newdoc('numpy.core.multiarray', 'ndarray', ('dump',
"""a.dump(file) Dump a pickle of the array to the specified file.
The array can be read back with pickle.load or numpy.load
Arguments:
file -- string naming the dump file.
"""))
add_newdoc('numpy.core.multiarray', 'ndarray', ('dumps',
"""a.dumps() returns the pickle of the array as a string.
pickle.loads or numpy.loads will convert the string back to an array.
"""))
add_newdoc('numpy.core.multiarray', 'ndarray', ('fill',
"""a.fill(value) -> None. Fill the array with the scalar value.
"""))
add_newdoc('numpy.core.multiarray', 'ndarray', ('flatten',
"""a.flatten([fortran]) return a 1-d array (always copy)
"""))
add_newdoc('numpy.core.multiarray', 'ndarray', ('getfield',
"""a.getfield(dtype, offset) -> field of array as given type.
Returns a field of the given array as a certain type. A field is a view of
the array data with each itemsize determined by the given type and the
offset into the current array.
"""))
add_newdoc('numpy.core.multiarray', 'ndarray', ('item',
"""a.item() -> copy of first array item as Python scalar.
Copy the first element of array to a standard Python scalar and return
it. The array must be of size one.
"""))
add_newdoc('numpy.core.multiarray', 'ndarray', ('max',
"""a.max(axis=None)
"""))
add_newdoc('numpy.core.multiarray', 'ndarray', ('mean',
"""a.mean(axis=None, dtype=None, out=None) -> mean
Returns the average of the array elements. The average is taken over the
flattened array by default, otherwise over the specified axis.
:Parameters:
axis : integer
Axis along which the means are computed. The default is
to compute the standard deviation of the flattened array.
dtype : type
Type to use in computing the means. For arrays of
integer type the default is float32, for arrays of float types it
is the same as the array type.
out : ndarray
Alternative output array in which to place the result. It must have
the same shape as the expected output but the type will be cast if
necessary.
:Returns:
mean : The return type varies, see above.
A new array holding the result is returned unless out is specified,
in which case a reference to out is returned.
:SeeAlso:
- var : variance
- std : standard deviation
Notes
-----
The mean is the sum of the elements along the axis divided by the
number of elements.
"""))
add_newdoc('numpy.core.multiarray', 'ndarray', ('min',
"""a.min(axis=None)
"""))
add_newdoc('numpy.core.multiarray', 'ndarray', ('newbyteorder',
"""a.newbyteorder(<byteorder>) is equivalent to
a.view(a.dtype.newbytorder(<byteorder>))
"""))
add_newdoc('numpy.core.multiarray', 'ndarray', ('nonzero',
"""a.nonzero() returns a tuple of arrays
Returns a tuple of arrays, one for each dimension of a,
containing the indices of the non-zero elements in that
dimension. The corresponding non-zero values can be obtained
with
a[a.nonzero()].
To group the indices by element, rather than dimension, use
transpose(a.nonzero())
instead. The result of this is always a 2d array, with a row for
each non-zero element.;
"""))
add_newdoc('numpy.core.multiarray', 'ndarray', ('prod',
"""a.prod(axis=None, dtype=None)
"""))
add_newdoc('numpy.core.multiarray', 'ndarray', ('ptp',
"""a.ptp(axis=None) a.max(axis)-a.min(axis)
"""))
add_newdoc('numpy.core.multiarray', 'ndarray', ('put',
"""a.put(indices, values, mode) sets a.flat[n] = values[n] for
each n in indices. If values is shorter than indices then it
will repeat.
"""))
add_newdoc('numpy.core.multiarray', 'putmask',
"""putmask(a, mask, values) sets a.flat[n] = values[n] for each n where
mask.flat[n] is true. If values is not the same size of a and mask then
it will repeat. This gives different behavior than a[mask] = values.
""")
add_newdoc('numpy.core.multiarray', 'ndarray', ('ravel',
"""a.ravel([fortran]) return a 1-d array (copy only if needed)
"""))
add_newdoc('numpy.core.multiarray', 'ndarray', ('repeat',
"""a.repeat(repeats=, axis=none)
copy elements of a, repeats times. the repeats argument must be a sequence
of length a.shape[axis] or a scalar.
"""))
add_newdoc('numpy.core.multiarray', 'ndarray', ('reshape',
"""a.reshape(d1, d2, ..., dn, order='c')
Return a new array from this one. The new array must have the same number
of elements as self. Also always returns a view or raises a ValueError if
that is impossible.
"""))
add_newdoc('numpy.core.multiarray', 'ndarray', ('resize',
"""a.resize(new_shape, refcheck=True, order=False) -> None. Change array shape.
Change size and shape of self inplace. Array must own its own memory and
not be referenced by other arrays. Returns None.
"""))
add_newdoc('numpy.core.multiarray', 'ndarray', ('round',
"""a.round(decimals=0, out=None) -> out (a). Rounds to 'decimals' places.
Keyword arguments:
decimals -- number of decimals to round to (default 0). May be negative.
out -- existing array to use for output (default a).
Return:
Reference to out, where None specifies the original array a.
Round to the specified number of decimals. When 'decimals' is negative it
specifies the number of positions to the left of the decimal point. The
real and imaginary parts of complex numbers are rounded separately. Nothing
is done if the array is not of float type and 'decimals' is >= 0.
The keyword 'out' may be used to specify a different array to hold the
result rather than the default 'a'. If the type of the array specified by
'out' differs from that of 'a', the result is cast to the new type,
otherwise the original type is kept. Floats round to floats by default.
Numpy rounds to even. Thus 1.5 and 2.5 round to 2.0, -0.5 and 0.5 round to
0.0, etc. Results may also be surprising due to the inexact representation
of decimal fractions in IEEE floating point and the errors introduced in
scaling the numbers when 'decimals' is something other than 0.
"""))
add_newdoc('numpy.core.multiarray', 'ndarray', ('searchsorted',
"""a.searchsorted(v, side='left') -> index array.
Find the indices into a sorted array such that if the corresponding keys in
v were inserted before the indices the order of a would be preserved. If
side='left', then the first such index is returned. If side='right', then
the last such index is returned. If there is no such index because the key
is out of bounds, then the length of a is returned, i.e., the key would
need to be appended. The returned index array has the same shape as v.
:Parameters:
v : array or list type
Array of keys to be searched for in a.
side : string
Possible values are : 'left', 'right'. Default is 'left'. Return
the first or last index where the key could be inserted.
:Returns:
indices : integer array
The returned array has the same shape as v.
:SeeAlso:
- sort
- histogram
:Notes:
-------
The array a must be 1-d and is assumed to be sorted in ascending order.
Searchsorted uses binary search to find the required insertion points.
"""))
add_newdoc('numpy.core.multiarray', 'ndarray', ('setfield',
"""m.setfield(value, dtype, offset) -> None.
places val into field of the given array defined by the data type and offset.
"""))
add_newdoc('numpy.core.multiarray', 'ndarray', ('setflags',
"""a.setflags(write=None, align=None, uic=None)
"""))
add_newdoc('numpy.core.multiarray', 'ndarray', ('sort',
"""a.sort(axis=-1, kind='quicksort', order=None) -> None.
Perform an inplace sort along the given axis using the algorithm specified
by the kind keyword.
:Parameters:
axis : integer
Axis to be sorted along. None indicates that the flattened array
should be used. Default is -1.
kind : string
Sorting algorithm to use. Possible values are 'quicksort',
'mergesort', or 'heapsort'. Default is 'quicksort'.
order : list type or None
When a is an array with fields defined, this argument specifies
which fields to compare first, second, etc. Not all fields need be
specified.
:Returns:
None
:SeeAlso:
- argsort : indirect sort
- lexsort : indirect stable sort on multiple keys
- searchsorted : find keys in sorted array
:Notes:
------
The various sorts are characterized by average speed, worst case
performance, need for work space, and whether they are stable. A stable
sort keeps items with the same key in the same relative order. The three
available algorithms have the following properties:
|------------------------------------------------------|
| kind | speed | worst case | work space | stable|
|------------------------------------------------------|
|'quicksort'| 1 | O(n^2) | 0 | no |
|'mergesort'| 2 | O(n*log(n)) | ~n/2 | yes |
|'heapsort' | 3 | O(n*log(n)) | 0 | no |
|------------------------------------------------------|
All the sort algorithms make temporary copies of the data when the sort is not
along the last axis. Consequently, sorts along the last axis are faster and use
less space than sorts along other axis.
"""))
add_newdoc('numpy.core.multiarray', 'ndarray', ('squeeze',
"""m.squeeze() eliminate all length-1 dimensions
"""))
add_newdoc('numpy.core.multiarray', 'ndarray', ('std',
"""a.std(axis=None, dtype=None, out=None) -> standard deviation.
Returns the standard deviation of the array elements, a measure of the
spread of a distribution. The standard deviation is computed for the
flattened array by default, otherwise over the specified axis.
:Parameters:
axis : integer
Axis along which the standard deviation is computed. The default is
to compute the standard deviation of the flattened array.
dtype : type
Type to use in computing the standard deviation. For arrays of
integer type the default is float32, for arrays of float types it
is the same as the array type.
out : ndarray
Alternative output array in which to place the result. It must have
the same shape as the expected output but the type will be cast if
necessary.
:Returns:
standard deviation : The return type varies, see above.
A new array holding the result is returned unless out is specified,
in which case a reference to out is returned.
:SeeAlso:
- var : variance
- mean : average
Notes
-----
The standard deviation is the square root of the average of the squared
deviations from the mean, i.e. var = sqrt(mean((x - x.mean())**2)). The
computed standard deviation is biased, i.e., the mean is computed by
dividing by the number of elements, N, rather than by N-1.
"""))
add_newdoc('numpy.core.multiarray', 'ndarray', ('sum',
"""a.sum(axis=None, dtype=None) -> Sum of array over given axis.
Sum the array over the given axis. If the axis is None, sum over
all dimensions of the array.
The optional dtype argument is the data type for the returned
value and intermediate calculations. The default is to upcast
(promote) smaller integer types to the platform-dependent int.
For example, on 32-bit platforms:
a.dtype default sum dtype
---------------------------------------------------
bool, int8, int16, int32 int32
Warning: The arithmetic is modular and no error is raised on overflow.
Examples:
>>> array([0.5, 1.5]).sum()
2.0
>>> array([0.5, 1.5]).sum(dtype=int32)
1
>>> array([[0, 1], [0, 5]]).sum(axis=0)
array([0, 6])
>>> array([[0, 1], [0, 5]]).sum(axis=1)
array([1, 5])
>>> ones(128, dtype=int8).sum(dtype=int8) # overflow!
-128
"""))
add_newdoc('numpy.core.multiarray', 'ndarray', ('swapaxes',
"""a.swapaxes(axis1, axis2) -> new view with axes swapped.
"""))
add_newdoc('numpy.core.multiarray', 'ndarray', ('take',
"""a.take(indices, axis=None, out=None, mode='raise') -> new array.
The new array is formed from the elements of a indexed by indices along the
given axis.
"""))
add_newdoc('numpy.core.multiarray', 'ndarray', ('tofile',
"""a.tofile(fid, sep="", format="%s") -> None. Write the data to a file.
Required arguments:
file -- an open file object or a string containing a filename
Keyword arguments:
sep -- separator for text output. Write binary if empty (default "")
format -- format string for text file output (default "%s")
A convenience function for quick storage of array data. Information on
endianess and precision is lost, so this method is not a good choice for
files intended to archive data or transport data between machines with
different endianess. Some of these problems can be overcome by outputting
the data as text files at the expense of speed and file size.
If 'sep' is empty this method is equivalent to file.write(a.tostring()). If
'sep' is not empty each data item is converted to the nearest Python type
and formatted using "format"%item. The resulting strings are written to the
file separated by the contents of 'sep'. The data is always written in "C"
(row major) order independent of the order of 'a'.
The data produced by this method can be recovered by using the function
fromfile().
"""))
add_newdoc('numpy.core.multiarray', 'ndarray', ('tolist',
"""a.tolist() -> Array as hierarchical list.
Copy the data portion of the array to a hierarchical python list and return
that list. Data items are converted to the nearest compatible Python type.
"""))
add_newdoc('numpy.core.multiarray', 'ndarray', ('tostring',
"""a.tostring(order='C') -> raw copy of array data as a Python string.
Keyword arguments:
order -- order of the data item in the copy {"C","F","A"} (default "C")
Construct a Python string containing the raw bytes in the array. The order
of the data in arrays with ndim > 1 is specified by the 'order' keyword and
this keyword overrides the order of the array. The
choices are:
"C" -- C order (row major)
"Fortran" -- Fortran order (column major)
"Any" -- Current order of array.
None -- Same as "Any"
"""))
add_newdoc('numpy.core.multiarray', 'ndarray', ('trace',
"""a.trace(offset=0, axis1=0, axis2=1, dtype=None, out=None)
return the sum along the offset diagonal of the array's indicated
axis1 and axis2.
"""))
add_newdoc('numpy.core.multiarray', 'ndarray', ('transpose',
"""a.transpose(*axes)
Returns a view of 'a' with axes transposed. If no axes are given,
or None is passed, switches the order of the axes. For a 2-d
array, this is the usual matrix transpose. If axes are given,
they describe how the axes are permuted.
Example:
>>> a = array([[1,2],[3,4]])
>>> a
array([[1, 2],
[3, 4]])
>>> a.transpose()
array([[1, 3],
[2, 4]])
>>> a.transpose((1,0))
array([[1, 3],
[2, 4]])
>>> a.transpose(1,0)
array([[1, 3],
[2, 4]])
"""))
add_newdoc('numpy.core.multiarray', 'ndarray', ('var',
"""a.var(axis=None, dtype=None, out=None) -> variance
Returns the variance of the array elements, a measure of the spread of a
distribution. The variance is computed for the flattened array by default,
otherwise over the specified axis.
:Parameters:
axis : integer
Axis along which the variance is computed. The default is to
compute the variance of the flattened array.
dtype : type
Type to use in computing the variance. For arrays of integer type
the default is float32, for arrays of float types it is the same as
the array type.
out : ndarray
Alternative output array in which to place the result. It must have
the same shape as the expected output but the type will be cast if
necessary.
:Returns:
variance : The return type varies, see above.
A new array holding the result is returned unless out is specified,
in which case a reference to out is returned.
:SeeAlso:
- std : standard deviation
- mean: average
Notes
-----
The variance is the average of the squared deviations from the mean, i.e.
var = mean((x - x.mean())**2). The computed variance is biased, i.e.,
the mean is computed by dividing by the number of elements, N, rather
than by N-1.
"""))
add_newdoc('numpy.core.multiarray', 'ndarray', ('view',
"""a.view(<type>) -> new view of array with same data.
Type can be either a new sub-type object or a data-descriptor object
"""))
|