1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
|
from lib import add_newdoc
add_newdoc('numpy.core','dtype',
[('fields', "Fields of the data-type or None if no fields"),
('names', "Names of fields or None if no fields"),
('alignment', "Needed alignment for this data-type"),
('byteorder',
"Little-endian (<), big-endian (>), native (=), or "\
"not-applicable (|)"),
('char', "Letter typecode for this data-type"),
('type', "Type object associated with this data-type"),
('kind', "Character giving type-family of this data-type"),
('itemsize', "Size of each item"),
('hasobject', "Non-zero if Python objects are in "\
"this data-type"),
('num', "Internally-used number for builtin base"),
('newbyteorder',
"""self.newbyteorder(<endian>)
returns a copy of the dtype object with altered byteorders.
If <endian> is not given all byteorders are swapped.
Otherwise endian can be '>', '<', or '=' to force a particular
byteorder. Data-types in all fields are also updated in the
new dtype object.
"""),
("__reduce__", "self.__reduce__() for pickling"),
("__setstate__", "self.__setstate__() for pickling"),
("subdtype", "A tuple of (descr, shape) or None"),
("descr", "The array_interface data-type descriptor."),
("str", "The array interface typestring."),
("name", "The name of the true data-type"),
("base", "The base data-type or self if no subdtype"),
("shape", "The shape of the subdtype or (1,)"),
("isbuiltin", "Is this a built-in data-type?"),
("isnative", "Is the byte-order of this data-type native?")
]
)
add_newdoc('numpy.core', 'flatiter',
[('__array__',
"""__array__(type=None)
Get array from iterator"""),
('copy',
"""copy()
Get a copy of the iterator as a 1-d array"""),
('coords', "An N-d tuple of current coordinates.")
]
)
add_newdoc('numpy.core', 'broadcast',
[('size', "total size of broadcasted result"),
('index', "current index in broadcasted result"),
('shape', "shape of broadcasted result"),
('iters', "tuple of individual iterators"),
('numiter', "number of iterators"),
('nd', "number of dimensions of broadcasted result")
]
)
add_newdoc('numpy.core.multiarray','array',
"""array(object, dtype=None, copy=1,order=None, subok=0,ndmin=0)
Return an array from object with the specified date-type.
Inputs:
object - an array, any object exposing the array interface, any
object whose __array__ method returns an array, or any
(nested) sequence.
dtype - The desired data-type for the array. If not given, then
the type will be determined as the minimum type required
to hold the objects in the sequence. This argument can only
be used to 'upcast' the array. For downcasting, use the
.astype(t) method.
copy - If true, then force a copy. Otherwise a copy will only occur
if __array__ returns a copy, obj is a nested sequence, or
a copy is needed to satisfy any of the other requirements
order - Specify the order of the array. If order is 'C', then the
array will be in C-contiguous order (last-index varies the
fastest). If order is 'FORTRAN', then the returned array
will be in Fortran-contiguous order (first-index varies the
fastest). If order is None, then the returned array may
be in either C-, or Fortran-contiguous order or even
discontiguous.
subok - If True, then sub-classes will be passed-through, otherwise
the returned array will be forced to be a base-class array
ndmin - Specifies the minimum number of dimensions that the resulting
array should have. 1's will be pre-pended to the shape as
needed to meet this requirement.
""")
add_newdoc('numpy.core.multiarray','empty',
"""empty((d1,...,dn),dtype=float,order='C')
Return a new array of shape (d1,...,dn) and given type with all its
entries uninitialized. This can be faster than zeros.
""")
add_newdoc('numpy.core.multiarray','scalar',
"""scalar(dtype,obj)
Return a new scalar array of the given type initialized with
obj. Mainly for pickle support. The dtype must be a valid data-type
descriptor. If dtype corresponds to an OBJECT descriptor, then obj
can be any object, otherwise obj must be a string. If obj is not given
it will be interpreted as None for object type and zeros for all other
types.
""")
add_newdoc('numpy.core.multiarray','zeros',
"""zeros((d1,...,dn),dtype=float,order='C')
Return a new array of shape (d1,...,dn) and type typecode with all
it's entries initialized to zero.
""")
add_newdoc('numpy.core.multiarray','set_typeDict',
"""set_typeDict(dict)
Set the internal dictionary that can look up an array type using a
registered code.
""")
add_newdoc('numpy.core.multiarray','fromstring',
"""fromstring(string, dtype=float, count=-1, sep='')
Return a new 1d array initialized from the raw binary data in string.
If count is positive, the new array will have count elements, otherwise its
size is determined by the size of string. If sep is not empty then the
string is interpreted in ASCII mode and converted to the desired number type
using sep as the separator between elements (extra whitespace is ignored).
""")
add_newdoc('numpy.core.multiarray','fromstring',
"""fromiter(iterable, dtype, count=-1)
Return a new 1d array initialized from iterable. If count is
nonegative, the new array will have count elements, otherwise it's
size is determined by the generator.
""")
add_newdoc('numpy.core.multiarray','fromfile',
"""fromfile(file=, dtype=float, count=-1, sep='')
Return an array of the given data type from a (text or binary) file.
The file argument can be an open file or a string with the name of a
file to read from. If count==-1, then the entire file is read,
otherwise count is the number of items of the given type read in. If
sep is '' then read a binary file, otherwise it gives the separator
between elements in a text file.
WARNING: This function should be used sparingly, as it is not a
platform-independent method of persistence. But it can be useful to
read in simply-formatted or binary data quickly.
""")
add_newdoc('numpy.core.multiarray','frombuffer',
"""frombuffer(buffer=, dtype=float, count=-1, offset=0)
Returns a 1-d array of data type dtype from buffer. The buffer
argument must be an object that exposes the buffer interface. If
count is -1 then the entire buffer is used, otherwise, count is the
size of the output. If offset is given then jump that far into the
buffer. If the buffer has data that is out not in machine byte-order,
than use a propert data type descriptor. The data will not be
byteswapped, but the array will manage it in future operations.
""")
add_newdoc('numpy.core.multiarray','concatenate',
"""concatenate((a1, a2, ...), axis=0)
Join arrays together.
The tuple of sequences (a1, a2, ...) are joined along the given axis
(default is the first one) into a single numpy array.
Example:
>>> concatenate( ([0,1,2], [5,6,7]) )
array([0, 1, 2, 5, 6, 7])
""")
add_newdoc('numpy.core.multiarray','inner',
"""inner(a,b)
Returns the dot product of two arrays, which has shape a.shape[:-1] +
b.shape[:-1] with elements computed by the product of the elements
from the last dimensions of a and b.
""")
add_newdoc('numpy.core','fastCopyAndTranspose',
"""_fastCopyAndTranspose(a)""")
add_newdoc('numpy.core.multiarray','correlate',
"""cross_correlate(a,v, mode=0)""")
add_newdoc('numpy.core.multiarray','arange',
"""arange([start,] stop[, step,], dtype=None)
For integer arguments, just like range() except it returns an array
whose type can be specified by the keyword argument dtype. If dtype
is not specified, the type of the result is deduced from the type of
the arguments.
For floating point arguments, the length of the result is ceil((stop -
start)/step). This rule may result in the last element of the result
being greater than stop.
""")
add_newdoc('numpy.core.multiarray','_get_ndarray_c_version',
"""_get_ndarray_c_version()
Return the compile time NDARRAY_VERSION number.
""")
add_newdoc('numpy.core.multiarray','_reconstruct',
"""_reconstruct(subtype, shape, dtype)
Construct an empty array. Used by Pickles.
""")
add_newdoc('numpy.core.multiarray','set_string_function',
"""set_string_function(f, repr=1)
Set the python function f to be the function used to obtain a pretty
printable string version of an array whenever an array is printed.
f(M) should expect an array argument M, and should return a string
consisting of the desired representation of M for printing.
""")
add_newdoc('numpy.core.multiarray','set_numeric_ops',
"""set_numeric_ops(op=func, ...)
Set some or all of the number methods for all array objects. Don't
forget **dict can be used as the argument list. Return the functions
that were replaced, which can be stored and set later.
""")
add_newdoc('numpy.core.multiarray','where',
"""where(condition, | x, y)
The result is shaped like condition and has elements of x and y where
condition is respectively true or false. If x or y are not given,
then it is equivalent to condition.nonzero().
To group the indices by element, rather than dimension, use
transpose(where(condition, | x, y))
instead. This always results in a 2d array, with a row of indices for
each element that satisfies the condition.
""")
add_newdoc('numpy.core.multiarray','lexsort',
"""lexsort(keys=, axis=-1)
Return an array of indices similar to argsort, except the sorting is
done using the provided sorting keys. First the sort is done using
key[0], then the resulting list of indices is further manipulated by
sorting on key[1], and so forth. The result is a sort on multiple
keys. If the keys represented columns of a spreadsheet, for example,
this would sort using multiple columns. The keys argument must be a
sequence of things that can be converted to arrays of the same shape.
""")
add_newdoc('numpy.core.multiarray','can_cast',
"""can_cast(from=d1, to=d2)
Returns True if data type d1 can be cast to data type d2 without
losing precision.
""")
add_newdoc('numpy.core.multiarray','newbuffer',
"""newbuffer(size)
Return a new uninitialized buffer object of size bytes
""")
add_newdoc('numpy.core.multiarray','getbuffer',
"""getbuffer(obj [,offset[, size]])
Create a buffer object from the given object referencing a slice of
length size starting at offset. Default is the entire buffer. A
read-write buffer is attempted followed by a read-only buffer.
""")
##############################################################################
#
# Documentation for ndarray attributes and methods
#
# Todo:
#
# expand and reformat documentation.
#
# do all methods prior to Extended methods added 2005
#
##############################################################################
##############################################################################
#
# ndarray object
#
##############################################################################
add_newdoc('numpy.core.multiarray', 'ndarray',
"""An array object represents a multidimensional, homogeneous array
of fixed-size items. An associated data-type-descriptor object
details the data-type in an array (including byteorder and any
fields). An array can be constructed using the numpy.array
command. Arrays are sequence, mapping and numeric objects.
More information is available in the numpy module and by looking
at the methods and attributes of an array.
ndarray.__new__(subtype, shape=, dtype=float, buffer=None,
offset=0, strides=None, order=None)
There are two modes of creating an array using __new__:
1) If buffer is None, then only shape, dtype, and order
are used
2) If buffer is an object exporting the buffer interface, then
all keywords are interpreted.
The dtype parameter can be any object that can be interpreted
as a numpy.dtype object.
No __init__ method is needed because the array is fully
initialized after the __new__ method.
""")
##############################################################################
#
# ndarray attributes
#
##############################################################################
add_newdoc('numpy.core.multiarray', 'ndarray', ('__array_interface__',
"""Array protocol: Python side."""))
add_newdoc('numpy.core.multiarray', 'ndarray', ('__array_finalize__',
"""None."""))
add_newdoc('numpy.core.multiarray', 'ndarray', ('__array_priority__',
"""Array priority."""))
add_newdoc('numpy.core.multiarray', 'ndarray', ('__array_struct__',
"""Array protocol: C-struct side."""))
add_newdoc('numpy.core.multiarray', 'ndarray', ('_as_parameter_',
"""Allow the array to be interpreted as a ctypes object by returning the
data-memory location as an integer"""))
add_newdoc('numpy.core.multiarray', 'ndarray', ('base',
"""Base object if memory is from some other object."""))
add_newdoc('numpy.core.multiarray', 'ndarray', ('ctypes',
"""A ctypes interface object."""))
add_newdoc('numpy.core.multiarray', 'ndarray', ('data',
"""Buffer object pointing to the start of the data."""))
add_newdoc('numpy.core.multiarray', 'ndarray', ('dtype',
"""Data-type for the array."""))
add_newdoc('numpy.core.multiarray', 'ndarray', ('imag',
"""Imaginary part of the array."""))
add_newdoc('numpy.core.multiarray', 'ndarray', ('itemsize',
"""Length of one element in bytes."""))
add_newdoc('numpy.core.multiarray', 'ndarray', ('flags',
"""Special object providing array flags."""))
add_newdoc('numpy.core.multiarray', 'ndarray', ('flat',
"""A 1-d flat iterator."""))
add_newdoc('numpy.core.multiarray', 'ndarray', ('nbytes',
"""Number of bytes in the array."""))
add_newdoc('numpy.core.multiarray', 'ndarray', ('ndim',
"""Number of array dimensions."""))
add_newdoc('numpy.core.multiarray', 'ndarray', ('real',
"""Real part of the array."""))
add_newdoc('numpy.core.multiarray', 'ndarray', ('shape',
"""Tuple of array dimensions."""))
add_newdoc('numpy.core.multiarray', 'ndarray', ('size',
"""Number of elements in the array."""))
add_newdoc('numpy.core.multiarray', 'ndarray', ('strides',
"""Tuple of bytes to step in each dimension."""))
add_newdoc('numpy.core.multiarray', 'ndarray', ('T',
"""Equivalent to self.transpose() except self is returned for self.ndim < 2."""))
##############################################################################
#
# ndarray methods
#
##############################################################################
add_newdoc('numpy.core.multiarray', 'ndarray', ('all',
""" a.all(axis=None)
"""))
add_newdoc('numpy.core.multiarray', 'ndarray', ('any',
""" a.any(axis=None, out=None)
"""))
add_newdoc('numpy.core.multiarray', 'ndarray', ('argmax',
""" a.argmax(axis=None, out=None)
"""))
add_newdoc('numpy.core.multiarray', 'ndarray', ('argmin',
""" a.argmin(axis=None, out=None)
"""))
add_newdoc('numpy.core.multiarray', 'ndarray', ('argsort',
"""a.argsort(axis=-1, kind='quicksort') -> indices that sort a along given axis.
Keyword arguments:
axis -- axis to be indirectly sorted (default -1)
kind -- sorting algorithm (default 'quicksort')
Possible values: 'quicksort', 'mergesort', or 'heapsort'
Returns: array of indices that sort a along the specified axis.
This method executes an indirect sort along the given axis using the
algorithm specified by the kind keyword. It returns an array of indices of
the same shape as a that index data along the given axis in sorted order.
The various sorts are characterized by average speed, worst case
performance, need for work space, and whether they are stable. A stable
sort keeps items with the same key in the same relative order. The three
available algorithms have the following properties:
|------------------------------------------------------|
| kind | speed | worst case | work space | stable|
|------------------------------------------------------|
|'quicksort'| 1 | o(n^2) | 0 | no |
|'mergesort'| 2 | o(n*log(n)) | ~n/2 | yes |
|'heapsort' | 3 | o(n*log(n)) | 0 | no |
|------------------------------------------------------|
All the sort algorithms make temporary copies of the data when the sort is not
along the last axis. Consequently, sorts along the last axis are faster and use
less space than sorts along other axis.
"""))
add_newdoc('numpy.core.multiarray', 'ndarray', ('choose',
""" a.choose(b0, b1, ..., bn, out=None, mode='raise')
Return an array that merges the b_i arrays together using 'a' as
the index The b_i arrays and 'a' must all be broadcastable to the
same shape. The output at a particular position is the input
array b_i at that position depending on the value of 'a' at that
position. Therefore, 'a' must be an integer array with entries
from 0 to n+1.;
"""))
add_newdoc('numpy.core.multiarray', 'ndarray', ('clip',
"""a.clip(min=, max=, out=None)
"""))
add_newdoc('numpy.core.multiarray', 'ndarray', ('compress',
"""a.compress(condition=, axis=None, out=None)
"""))
add_newdoc('numpy.core.multiarray', 'ndarray', ('conj',
"""a.conj()
"""))
add_newdoc('numpy.core.multiarray', 'ndarray', ('conjugate',
"""a.conjugate()
"""))
add_newdoc('numpy.core.multiarray', 'ndarray', ('cumprod',
"""a.cumprod(axis=None, dtype=None)
"""))
add_newdoc('numpy.core.multiarray', 'ndarray', ('cumsum',
"""a.cumsum(axis=None, dtype=None, out=None)
"""))
add_newdoc('numpy.core.multiarray', 'ndarray', ('diagonal',
"""a.diagonal(offset=0, axis1=0, axis2=1)
"""))
add_newdoc('numpy.core.multiarray', 'ndarray', ('fill',
"""a.fill(value) -> None. Fill the array with the scalar value.
"""))
add_newdoc('numpy.core.multiarray', 'ndarray', ('flatten',
"""a.flatten([fortran]) return a 1-d array (always copy)
"""))
add_newdoc('numpy.core.multiarray', 'ndarray', ('max',
"""a.max(axis=None)
"""))
add_newdoc('numpy.core.multiarray', 'ndarray', ('mean',
"""a.mean(axis=None, dtype=None)
Average the array over the given axis. If the axis is None,
average over all dimensions of the array. If an integer axis
is given, this equals:
a.sum(axis, dtype) * 1.0 / len(a).
If axis is None, this equals:
a.sum(axis, dtype) * 1.0 / product(a.shape)
The optional dtype argument is the data type for intermediate
calculations in the sum.;
"""))
add_newdoc('numpy.core.multiarray', 'ndarray', ('min',
"""a.min(axis=None)
"""))
add_newdoc('numpy.core.multiarray', 'ndarray', ('newbyteorder',
"""a.newbyteorder(<byteorder>) is equivalent to
a.view(a.dtype.newbytorder(<byteorder>))
"""))
add_newdoc('numpy.core.multiarray', 'ndarray', ('nonzero',
"""a.nonzero() returns a tuple of arrays
Returns a tuple of arrays, one for each dimension of a,
containing the indices of the non-zero elements in that
dimension. The corresponding non-zero values can be obtained
with
a[a.nonzero()].
To group the indices by element, rather than dimension, use
transpose(a.nonzero())
instead. The result of this is always a 2d array, with a row for
each non-zero element.;
"""))
add_newdoc('numpy.core.multiarray', 'ndarray', ('prod',
""" a.prod(axis=None, dtype=None)
"""))
add_newdoc('numpy.core.multiarray', 'ndarray', ('ptp',
"""a.ptp(axis=None) a.max(axis)-a.min(axis)
"""))
add_newdoc('numpy.core.multiarray', 'ndarray', ('put',
"""a.put(values, indices, mode) sets a.flat[n] = values[n] for
each n in indices. v can be scalar or shorter than indices, and
it will repeat.
"""))
add_newdoc('numpy.core.multiarray', 'ndarray', ('putmask',
"""a.putmask(values, mask) sets a.flat[n] = v[n] for each n where
mask.flat[n] is true. v can be scalar.
"""))
add_newdoc('numpy.core.multiarray', 'ndarray', ('ravel',
"""a.ravel([fortran]) return a 1-d array (copy only if needed)
"""))
add_newdoc('numpy.core.multiarray', 'ndarray', ('repeat',
"""a.repeat(repeats=, axis=none)
copy elements of a, repeats times. the repeats argument must
be a sequence of length a.shape[axis] or a scalar.;
"""))
add_newdoc('numpy.core.multiarray', 'ndarray', ('reshape',
"""a.reshape(d1, d2, ..., dn, order='c')
Return a new array from this one. The new array must have the
same number of elements as self. Also always returns a view or
raises a ValueError if that is impossible.;
"""))
add_newdoc('numpy.core.multiarray', 'ndarray', ('round',
"""a.round(decimals=0, out=None)
"""))
add_newdoc('numpy.core.multiarray', 'ndarray', ('searchsorted',
"""a.searchsorted(v)
Assuming that a is a 1-D array, in ascending order and represents
bin boundaries, then a.searchsorted(values) gives an array of bin
numbers, giving the bin into which each value would be placed.
This method is helpful for histograming. Note: No warning is
given if the boundaries, in a, are not in ascending order.;
"""))
add_newdoc('numpy.core.multiarray', 'ndarray', ('setflags',
"""a.setflags(write=None, align=None, uic=None)
"""))
add_newdoc('numpy.core.multiarray', 'ndarray', ('sort',
"""a.sort(axis=-1, kind='quicksort') -> None. Sort a along the given axis.
Keyword arguments:
axis -- axis to be sorted (default -1)
kind -- sorting algorithm (default 'quicksort')
Possible values: 'quicksort', 'mergesort', or 'heapsort'.
Returns: None.
This method sorts a in place along the given axis using the algorithm
specified by the kind keyword.
The various sorts may characterized by average speed, worst case
performance, need for work space, and whether they are stable. A stable
sort keeps items with the same key in the same relative order and is most
useful when used with argsort where the key might differ from the items
being sorted. The three available algorithms have the following properties:
|------------------------------------------------------|
| kind | speed | worst case | work space | stable|
|------------------------------------------------------|
|'quicksort'| 1 | o(n) | 0 | no |
|'mergesort'| 2 | o(n*log(n)) | ~n/2 | yes |
|'heapsort' | 3 | o(n*log(n)) | 0 | no |
|------------------------------------------------------|
All the sort algorithms make temporary copies of the data when the sort is
not along the last axis. Consequently, sorts along the last axis are faster
and use less space than sorts along other axis.
"""))
add_newdoc('numpy.core.multiarray', 'ndarray', ('squeeze',
"""m.squeeze() eliminate all length-1 dimensions
"""))
add_newdoc('numpy.core.multiarray', 'ndarray', ('std',
"""a.std(axis=None, dtype=None, out=None) -> standard deviation.
The standard deviation isa measure of the spread of a
distribution.
The standard deviation is the square root of the average of the
squared deviations from the mean, i.e.
std = sqrt(mean((x - x.mean())**2)).
For multidimensional arrays, std is computed by default along the
first axis.
"""))
add_newdoc('numpy.core.multiarray', 'ndarray', ('sum',
"""a.sum(axis=None, dtype=None) -> Sum of array over given axis.
Sum the array over the given axis. If the axis is None, sum over
all dimensions of the array.
The optional dtype argument is the data type for the returned
value and intermediate calculations. The default is to upcast
(promote) smaller integer types to the platform-dependent int.
For example, on 32-bit platforms:
a.dtype default sum() dtype
---------------------------------------------------
bool, int8, int16, int32 int32
Examples:
>>> array([0.5, 1.5]).sum()
2.0
>>> array([0.5, 1.5]).sum(dtype=int32)
1
>>> array([[0, 1], [0, 5]]).sum(axis=0)
array([0, 6])
>>> array([[0, 1], [0, 5]]).sum(axis=1)
array([1, 5])
"""))
add_newdoc('numpy.core.multiarray', 'ndarray', ('swapaxes',
"""a.swapaxes(axis1, axis2) -> new view with axes swapped.
"""))
add_newdoc('numpy.core.multiarray', 'ndarray', ('take',
"""a.take(indices, axis=None, out=None, mode='raise') -> new array.
The new array is formed from the elements of a indexed by indices along the
given axis.
"""))
add_newdoc('numpy.core.multiarray', 'ndarray', ('trace',
"""a.trace(offset=0, axis1=0, axis2=1, dtype=None, out=None)
return the sum along the offset diagonal of the arrays indicated
axis1 and axis2.
"""))
add_newdoc('numpy.core.multiarray', 'ndarray', ('transpose',
"""a.transpose(*axes)
Returns a view of 'a' with axes transposed. If no axes are given,
or None is passed, switches the order of the axes. For a 2-d
array, this is the usual matrix transpose. If axes are given,
they describe how the axes are permuted.
Example:
>>> a = array([[1,2],[3,4]])
>>> a
array([[1, 2],
[3, 4]])
>>> a.transpose()
array([[1, 3],
[2, 4]])
>>> a.transpose((1,0))
array([[1, 3],
[2, 4]])
>>> a.transpose(1,0)
array([[1, 3],
[2, 4]])
"""))
add_newdoc('numpy.core.multiarray', 'ndarray', ('var',
"""a.var(axis=None, dtype=None)
"""))
add_newdoc('numpy.core.multiarray', 'ndarray', ('view',
"""a.view(<type>) -> new view of array with same data.
Type can be either a new sub-type object or a data-descriptor object
"""))
|