1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
|
# This is only meant to add docs to objects defined in C-extension modules.
# The purpose is to allow easier editing of the docstrings without
# requiring a re-compile.
# NOTE: Many of the methods of ndarray have corresponding functions.
# If you update these docstrings, please keep also the ones in
# core/fromnumeric.py, core/defmatrix.py up-to-date.
from lib import add_newdoc
add_newdoc('numpy.core', 'dtype',
"""Create a data type.
A numpy array is homogeneous, and contains elements described by a
dtype. A dtype can be constructed from different combinations of
fundamental numeric types, as illustrated below.
Examples
--------
Using array-scalar type:
>>> np.dtype(np.int16)
dtype('int16')
Record, one field name 'f1', containing int16:
>>> np.dtype([('f1', np.int16)])
dtype([('f1', '<i2')])
Record, one field named 'f1', in itself containing a record with one field:
>>> np.dtype([('f1', [('f1', np.int16)])])
dtype([('f1', [('f1', '<i2')])])
Record, two fields: the first field contains an unsigned int, the
second an int32:
>>> np.dtype([('f1', np.uint), ('f2', np.int32)])
dtype([('f1', '<u4'), ('f2', '<i4')])
Using array-protocol type strings:
>>> np.dtype([('a','f8'),('b','S10')])
dtype([('a', '<f8'), ('b', '|S10')])
Using comma-separated field formats. The shape is (2,3):
>>> np.dtype("i4, (2,3)f8")
dtype([('f0', '<i4'), ('f1', '<f8', (2, 3))])
Using tuples. ``int`` is a fixed type, 3 the field's shape. ``void``
is a flexible type, here of size 10:
>>> np.dtype([('hello',(np.int,3)),('world',np.void,10)])
dtype([('hello', '<i4', 3), ('world', '|V10')])
Subdivide ``int16`` into 2 ``int8``'s, called x and y. 0 and 1 are
the offsets in bytes:
>>> np.dtype((np.int16, {'x':(np.int8,0), 'y':(np.int8,1)}))
dtype(('<i2', [('x', '|i1'), ('y', '|i1')]))
Using dictionaries. Two fields named 'gender' and 'age':
>>> np.dtype({'names':['gender','age'], 'formats':['S1',np.uint8]})
dtype([('gender', '|S1'), ('age', '|u1')])
Offsets in bytes, here 0 and 25:
>>> np.dtype({'surname':('S25',0),'age':(np.uint8,25)})
dtype([('surname', '|S25'), ('age', '|u1')])
""")
add_newdoc('numpy.core', 'dtype',
"""
dtype(obj, align=False, copy=False)
Create a data type object.
A numpy array is homogeneous, and contains elements described by a
dtype object. A dtype object can be constructed from different
combinations of fundamental numeric types.
Parameters
----------
obj
Object to be converted to a data type object.
align : bool, optional
Add padding to the fields to match what a C compiler would output
for a similar C-struct. Can be ``True`` only if `obj` is a dictionary
or a comma-separated string.
copy : bool, optional
Make a new copy of the data-type object. If ``False``, the result
may just be a reference to a built-in data-type object.
Examples
--------
Using array-scalar type:
>>> np.dtype(np.int16)
dtype('int16')
Record, one field name 'f1', containing int16:
>>> np.dtype([('f1', np.int16)])
dtype([('f1', '<i2')])
Record, one field named 'f1', in itself containing a record with one field:
>>> np.dtype([('f1', [('f1', np.int16)])])
dtype([('f1', [('f1', '<i2')])])
Record, two fields: the first field contains an unsigned int, the
second an int32:
>>> np.dtype([('f1', np.uint), ('f2', np.int32)])
dtype([('f1', '<u4'), ('f2', '<i4')])
Using array-protocol type strings:
>>> np.dtype([('a','f8'),('b','S10')])
dtype([('a', '<f8'), ('b', '|S10')])
Using comma-separated field formats. The shape is (2,3):
>>> np.dtype("i4, (2,3)f8")
dtype([('f0', '<i4'), ('f1', '<f8', (2, 3))])
Using tuples. ``int`` is a fixed type, 3 the field's shape. ``void``
is a flexible type, here of size 10:
>>> np.dtype([('hello',(np.int,3)),('world',np.void,10)])
dtype([('hello', '<i4', 3), ('world', '|V10')])
Subdivide ``int16`` into 2 ``int8``'s, called x and y. 0 and 1 are
the offsets in bytes:
>>> np.dtype((np.int16, {'x':(np.int8,0), 'y':(np.int8,1)}))
dtype(('<i2', [('x', '|i1'), ('y', '|i1')]))
Using dictionaries. Two fields named 'gender' and 'age':
>>> np.dtype({'names':['gender','age'], 'formats':['S1',np.uint8]})
dtype([('gender', '|S1'), ('age', '|u1')])
Offsets in bytes, here 0 and 25:
>>> np.dtype({'surname':('S25',0),'age':(np.uint8,25)})
dtype([('surname', '|S25'), ('age', '|u1')])
""")
###############################################################################
#
# flatiter
#
# flatiter needs a toplevel description
#
###############################################################################
# attributes
add_newdoc('numpy.core', 'flatiter', ('base',
"""documentation needed
"""))
add_newdoc('numpy.core', 'flatiter', ('coords',
"""An N-d tuple of current coordinates.
"""))
add_newdoc('numpy.core', 'flatiter', ('index',
"""documentation needed
"""))
# functions
add_newdoc('numpy.core', 'flatiter', ('__array__',
"""__array__(type=None) Get array from iterator
"""))
add_newdoc('numpy.core', 'flatiter', ('copy',
"""copy() Get a copy of the iterator as a 1-d array
"""))
###############################################################################
#
# broadcast
#
###############################################################################
# attributes
add_newdoc('numpy.core', 'broadcast', ('index',
"""current index in broadcasted result
"""))
add_newdoc('numpy.core', 'broadcast', ('iters',
"""tuple of individual iterators
"""))
add_newdoc('numpy.core', 'broadcast', ('nd',
"""number of dimensions of broadcasted result
"""))
add_newdoc('numpy.core', 'broadcast', ('numiter',
"""number of iterators
"""))
add_newdoc('numpy.core', 'broadcast', ('shape',
"""shape of broadcasted result
"""))
add_newdoc('numpy.core', 'broadcast', ('size',
"""total size of broadcasted result
"""))
###############################################################################
#
# numpy functions
#
###############################################################################
add_newdoc('numpy.core.multiarray', 'array',
"""
array(object, dtype=None, copy=True, order=None, subok=True, ndmin=True)
Create an array.
Parameters
----------
object : array_like
An array, any object exposing the array interface, an
object whose __array__ method returns an array, or any
(nested) sequence.
dtype : data-type, optional
The desired data-type for the array. If not given, then
the type will be determined as the minimum type required
to hold the objects in the sequence. This argument can only
be used to 'upcast' the array. For downcasting, use the
.astype(t) method.
copy : bool, optional
If true (default), then the object is copied. Otherwise, a copy
will only be made if __array__ returns a copy, if obj is a
nested sequence, or if a copy is needed to satisfy any of the other
requirements (`dtype`, `order`, etc.).
order : {'C', 'F', 'A'}, optional
Specify the order of the array. If order is 'C' (default), then the
array will be in C-contiguous order (last-index varies the
fastest). If order is 'F', then the returned array
will be in Fortran-contiguous order (first-index varies the
fastest). If order is 'A', then the returned array may
be in any order (either C-, Fortran-contiguous, or even
discontiguous).
subok : bool, optional
If True, then sub-classes will be passed-through, otherwise
the returned array will be forced to be a base-class array.
ndmin : int, optional
Specifies the minimum number of dimensions that the resulting
array should have. Ones will be pre-pended to the shape as
needed to meet this requirement.
Examples
--------
>>> np.array([1, 2, 3])
array([1, 2, 3])
Upcasting:
>>> np.array([1, 2, 3.0])
array([ 1., 2., 3.])
More than one dimension:
>>> np.array([[1, 2], [3, 4]])
array([[1, 2],
[3, 4]])
Minimum dimensions 2:
>>> np.array([1, 2, 3], ndmin=2)
array([[1, 2, 3]])
Type provided:
>>> np.array([1, 2, 3], dtype=complex)
array([ 1.+0.j, 2.+0.j, 3.+0.j])
Data-type consisting of more than one element:
>>> x = np.array([(1,2),(3,4)],dtype=[('a','<i4'),('b','<i4')])
>>> x['a']
array([1, 3])
Creating an array from sub-classes:
>>> np.array(np.mat('1 2; 3 4'))
array([[1, 2],
[3, 4]])
>>> np.array(np.mat('1 2; 3 4'), subok=True)
matrix([[1, 2],
[3, 4]])
""")
add_newdoc('numpy.core.multiarray', 'empty',
"""
empty(shape, dtype=float, order='C')
Return a new array of given shape and type, without initialising entries.
Parameters
----------
shape : {tuple of int, int}
Shape of the empty array
dtype : data-type, optional
Desired output data-type.
order : {'C', 'F'}, optional
Whether to store multi-dimensional data in C (row-major) or
Fortran (column-major) order in memory.
See Also
--------
empty_like, zeros
Notes
-----
`empty`, unlike `zeros`, does not set the array values to zero,
and may therefore be marginally faster. On the other hand, it requires
the user to manually set all the values in the array, and should be
used with caution.
Examples
--------
>>> np.empty([2, 2])
array([[ -9.74499359e+001, 6.69583040e-309], #random data
[ 2.13182611e-314, 3.06959433e-309]])
>>> np.empty([2, 2], dtype=int)
array([[-1073741821, -1067949133], #random data
[ 496041986, 19249760]])
""")
add_newdoc('numpy.core.multiarray','scalar',
"""scalar(dtype,obj)
Return a new scalar array of the given type initialized with
obj. Mainly for pickle support. The dtype must be a valid data-type
descriptor. If dtype corresponds to an OBJECT descriptor, then obj
can be any object, otherwise obj must be a string. If obj is not given
it will be interpreted as None for object type and zeros for all other
types.
""")
add_newdoc('numpy.core.multiarray', 'zeros',
"""
zeros(shape, dtype=float, order='C')
Return a new array of given shape and type, filled with zeros.
Parameters
----------
shape : {tuple of ints, int}
Shape of the new array, e.g., ``(2, 3)`` or ``2``.
dtype : data-type, optional
The desired data-type for the array, e.g., `numpy.int8`. Default is
`numpy.float64`.
order : {'C', 'F'}, optional
Whether to store multidimensional data in C- or Fortran-contiguous
(row- or column-wise) order in memory.
Returns
-------
out : ndarray
Array of zeros with the given shape, dtype, and order.
See Also
--------
numpy.zeros_like : Return an array of zeros with shape and type of input.
numpy.ones_like : Return an array of ones with shape and type of input.
numpy.empty_like : Return an empty array with shape and type of input.
numpy.ones : Return a new array setting values to one.
numpy.empty : Return a new uninitialized array.
Examples
--------
>>> np.zeros(5)
array([ 0., 0., 0., 0., 0.])
>>> np.zeros((5,), dtype=numpy.int)
array([0, 0, 0, 0, 0])
>>> np.zeros((2, 1))
array([[ 0.],
[ 0.]])
>>> s = (2,2)
>>> np.zeros(s)
array([[ 0., 0.],
[ 0., 0.]])
>>> np.zeros((2,), dtype=[('x', 'i4'), ('y', 'i4')])
array([(0, 0), (0, 0)],
dtype=[('x', '<i4'), ('y', '<i4')])
""")
add_newdoc('numpy.core.multiarray','set_typeDict',
"""set_typeDict(dict)
Set the internal dictionary that can look up an array type using a
registered code.
""")
add_newdoc('numpy.core.multiarray', 'fromstring',
"""
fromstring(string, dtype=float, count=-1, sep='')
Return a new 1d array initialized from raw binary or text data in
string.
Parameters
----------
string : str
A string containing the data.
dtype : dtype, optional
The data type of the array. For binary input data, the data must be
in exactly this format.
count : int, optional
Read this number of `dtype` elements from the data. If this is
negative, then the size will be determined from the length of the
data.
sep : str, optional
If provided and not empty, then the data will be interpreted as
ASCII text with decimal numbers. This argument is interpreted as the
string separating numbers in the data. Extra whitespace between
elements is also ignored.
Returns
-------
arr : array
The constructed array.
Raises
------
ValueError
If the string is not the correct size to satisfy the requested
`dtype` and `count`.
Examples
--------
>>> np.fromstring('\\x01\\x02', dtype=np.uint8)
array([1, 2], dtype=uint8)
>>> np.fromstring('1 2', dtype=int, sep=' ')
array([1, 2])
>>> np.fromstring('1, 2', dtype=int, sep=',')
array([1, 2])
>>> np.fromstring('\\x01\\x02\\x03\\x04\\x05', dtype=np.uint8, count=3)
array([1, 2, 3], dtype=uint8)
Invalid inputs:
>>> np.fromstring('\\x01\\x02\\x03\\x04\\x05', dtype=np.int32)
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
ValueError: string size must be a multiple of element size
>>> np.fromstring('\\x01\\x02', dtype=np.uint8, count=3)
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
ValueError: string is smaller than requested size
""")
add_newdoc('numpy.core.multiarray', 'fromiter',
"""
fromiter(iterable, dtype, count=-1)
Create a new 1-dimensional array from an iterable object.
Parameters
----------
iterable : iterable object
An iterable object providing data for the array.
dtype : data-type
The data type of the returned array.
count : int, optional
The number of items to read from iterable. The default is -1,
which means all data is read.
Returns
-------
out : ndarray
The output array.
Notes
-----
Specify ``count`` to improve performance. It allows
``fromiter`` to pre-allocate the output array, instead of
resizing it on demand.
Examples
--------
>>> iterable = (x*x for x in range(5))
>>> np.fromiter(iterable, np.float)
array([ 0., 1., 4., 9., 16.])
""")
add_newdoc('numpy.core.multiarray', 'fromfile',
"""
fromfile(file, dtype=float, count=-1, sep='')
Construct an array from data in a text or binary file.
A highly efficient way of reading binary data with a known data-type,
as well as parsing simply formatted text files. Data written using the
`tofile` method can be read using this function.
Parameters
----------
file : file or string
Open file object or filename.
dtype : data-type
Data type of the returned array.
For binary files, it is used to determine the size and byte-order
of the items in the file.
count : int
Number of items to read. ``-1`` means all items (i.e., the complete
file).
sep : string
Separator between items if file is a text file.
Empty ("") separator means the file should be treated as binary.
Spaces (" ") in the separator match zero or more whitespace characters.
A separator consisting only of spaces must match at least one
whitespace.
See also
--------
load, save
ndarray.tofile
loadtxt : More flexible way of loading data from a text file.
Notes
-----
Do not rely on the combination of `tofile` and `fromfile` for
data storage, as the binary files generated are are not platform
independent. In particular, no byte-order or data-type information is
saved. Data can be stored in the platform independent ``.npy`` format
using `save` and `load` instead.
Examples
--------
Construct an ndarray:
>>> dt = np.dtype([('time', [('min', int), ('sec', int)]),
... ('temp', float)])
>>> x = np.zeros((1,), dtype=dt)
>>> x['time']['min'] = 10; x['temp'] = 98.25
>>> x
array([((10, 0), 98.25)],
dtype=[('time', [('min', '<i4'), ('sec', '<i4')]), ('temp', '<f8')])
Save the raw data to disk:
>>> import os
>>> fname = os.tmpnam()
>>> x.tofile(fname)
Read the raw data from disk:
>>> np.fromfile(fname, dtype=dt)
array([((10, 0), 98.25)],
dtype=[('time', [('min', '<i4'), ('sec', '<i4')]), ('temp', '<f8')])
The recommended way to store and load data:
>>> np.save(fname, x)
>>> np.load(fname + '.npy')
array([((10, 0), 98.25)],
dtype=[('time', [('min', '<i4'), ('sec', '<i4')]), ('temp', '<f8')])
""")
add_newdoc('numpy.core.multiarray', 'frombuffer',
"""
frombuffer(buffer, dtype=float, count=-1, offset=0)
Interpret a buffer as a 1-dimensional array.
Parameters
----------
buffer
An object that exposes the buffer interface.
dtype : data-type, optional
Data type of the returned array.
count : int, optional
Number of items to read. ``-1`` means all data in the buffer.
offset : int, optional
Start reading the buffer from this offset.
Notes
-----
If the buffer has data that is not in machine byte-order, this
should be specified as part of the data-type, e.g.::
>>> dt = np.dtype(int)
>>> dt = dt.newbyteorder('>')
>>> np.frombuffer(buf, dtype=dt)
The data of the resulting array will not be byteswapped,
but will be interpreted correctly.
Examples
--------
>>> s = 'hello world'
>>> np.frombuffer(s, dtype='S1', count=5, offset=6)
array(['w', 'o', 'r', 'l', 'd'],
dtype='|S1')
""")
add_newdoc('numpy.core.multiarray', 'concatenate',
"""
concatenate((a1, a2, ...), axis=0)
Join a sequence of arrays together.
Parameters
----------
a1, a2, ... : sequence of ndarrays
The arrays must have the same shape, except in the dimension
corresponding to `axis` (the first, by default).
axis : int, optional
The axis along which the arrays will be joined. Default is 0.
Returns
-------
res : ndarray
The concatenated array.
See Also
--------
array_split : Split an array into multiple sub-arrays of equal or
near-equal size.
split : Split array into a list of multiple sub-arrays of equal size.
hsplit : Split array into multiple sub-arrays horizontally (column wise)
vsplit : Split array into multiple sub-arrays vertically (row wise)
dsplit : Split array into multiple sub-arrays along the 3rd axis (depth).
hstack : Stack arrays in sequence horizontally (column wise)
vstack : Stack arrays in sequence vertically (row wise)
dstack : Stack arrays in sequence depth wise (along third dimension)
Examples
--------
>>> a = np.array([[1, 2], [3, 4]])
>>> b = np.array([[5, 6]])
>>> np.concatenate((a, b), axis=0)
array([[1, 2],
[3, 4],
[5, 6]])
""")
add_newdoc('numpy.core.multiarray', 'inner',
"""
inner(a, b)
Inner product of two arrays.
Ordinary inner product of vectors for 1-D arrays (without complex
conjugation), in higher dimensions a sum product over the last axes.
Parameters
----------
a, b : array_like
If `a` and `b` are nonscalar, their last dimensions of must match.
Returns
-------
out : ndarray
`out.shape = a.shape[:-1] + b.shape[:-1]`
Raises
------
ValueError
If the last dimension of `a` and `b` has different size.
See Also
--------
tensordot : Sum products over arbitrary axes.
dot : Generalised matrix product, using second last dimension of `b`.
Notes
-----
For vectors (1-D arrays) it computes the ordinary inner-product::
np.inner(a, b) = sum(a[:]*b[:])
More generally, if `ndim(a) = r > 0` and `ndim(b) = s > 0`::
np.inner(a, b) = np.tensordot(a, b, axes=(-1,-1))
or explicitly::
np.inner(a, b)[i0,...,ir-1,j0,...,js-1]
= sum(a[i0,...,ir-1,:]*b[j0,...,js-1,:])
In addition `a` or `b` may be scalars, in which case::
np.inner(a,b) = a*b
Examples
--------
Ordinary inner product for vectors:
>>> a = np.array([1,2,3])
>>> b = np.array([0,1,0])
>>> np.inner(a, b)
2
A multidimensional example:
>>> a = np.arange(24).reshape((2,3,4))
>>> b = np.arange(4)
>>> np.inner(a, b)
array([[ 14, 38, 62],
[ 86, 110, 134]])
An example where `b` is a scalar:
>>> np.inner(np.eye(2), 7)
array([[ 7., 0.],
[ 0., 7.]])
""")
add_newdoc('numpy.core','fastCopyAndTranspose',
"""_fastCopyAndTranspose(a)""")
add_newdoc('numpy.core.multiarray','correlate',
"""cross_correlate(a,v, mode=0)""")
add_newdoc('numpy.core.multiarray', 'arange',
"""
arange([start,] stop[, step,], dtype=None)
Return evenly spaced values within a given interval.
Values are generated within the half-open interval ``[start, stop)``
(in other words, the interval including `start` but excluding `stop`).
For integer arguments the function is equivalent to the Python built-in
`range <http://docs.python.org/lib/built-in-funcs.html>`_ function,
but returns a ndarray rather than a list.
Parameters
----------
start : number, optional
Start of interval. The interval includes this value. The default
start value is 0.
stop : number
End of interval. The interval does not include this value.
step : number, optional
Spacing between values. For any output `out`, this is the distance
between two adjacent values, ``out[i+1] - out[i]``. The default
step size is 1. If `step` is specified, `start` must also be given.
dtype : dtype
The type of the output array. If `dtype` is not given, infer the data
type from the other input arguments.
Returns
-------
out : ndarray
Array of evenly spaced values.
For floating point arguments, the length of the result is
``ceil((stop - start)/step)``. Because of floating point overflow,
this rule may result in the last element of `out` being greater
than `stop`.
See Also
--------
linspace : Evenly spaced numbers with careful handling of endpoints.
ogrid: Arrays of evenly spaced numbers in N-dimensions
mgrid: Grid-shaped arrays of evenly spaced numbers in N-dimensions
Examples
--------
>>> np.arange(3)
array([0, 1, 2])
>>> np.arange(3.0)
array([ 0., 1., 2.])
>>> np.arange(3,7)
array([3, 4, 5, 6])
>>> np.arange(3,7,2)
array([3, 5])
""")
add_newdoc('numpy.core.multiarray','_get_ndarray_c_version',
"""_get_ndarray_c_version()
Return the compile time NDARRAY_VERSION number.
""")
add_newdoc('numpy.core.multiarray','_reconstruct',
"""_reconstruct(subtype, shape, dtype)
Construct an empty array. Used by Pickles.
""")
add_newdoc('numpy.core.multiarray', 'set_string_function',
"""
set_string_function(f, repr=1)
Set a Python function to be used when pretty printing arrays.
Parameters
----------
f : Python function
Function to be used to pretty print arrays. The function should expect
a single array argument and return a string of the representation of
the array.
repr : int
Unknown.
Examples
--------
>>> def pprint(arr):
... return 'HA! - What are you going to do now?'
...
>>> np.set_string_function(pprint)
>>> a = np.arange(10)
>>> a
HA! - What are you going to do now?
>>> print a
[0 1 2 3 4 5 6 7 8 9]
""")
add_newdoc('numpy.core.multiarray', 'set_numeric_ops',
"""
set_numeric_ops(op1=func1, op2=func2, ...)
Set numerical operators for array objects.
Parameters
----------
op1, op2, ... : callable
Each ``op = func`` pair describes an operator to be replaced.
For example, ``add = lambda x, y: np.add(x, y) % 5`` would replace
addition by modulus 5 addition.
Returns
-------
saved_ops : list of callables
A list of all operators, stored before making replacements.
Notes
-----
.. WARNING::
Use with care! Incorrect usage may lead to memory errors.
A function replacing an operator cannot make use of that operator.
For example, when replacing add, you may not use ``+``. Instead,
directly call ufuncs:
>>> def add_mod5(x, y):
... return np.add(x, y) % 5
...
>>> old_funcs = np.set_numeric_ops(add=add_mod5)
>>> x = np.arange(12).reshape((3, 4))
>>> x + x
array([[0, 2, 4, 1],
[3, 0, 2, 4],
[1, 3, 0, 2]])
>>> ignore = np.set_numeric_ops(**old_funcs) # restore operators
""")
add_newdoc('numpy.core.multiarray', 'where',
"""
where(condition, [x, y])
Return elements, either from `x` or `y`, depending on `condition`.
If only `condition` is given, return ``condition.nonzero()``.
Parameters
----------
condition : array_like, bool
When True, yield `x`, otherwise yield `y`.
x, y : array_like, optional
Values from which to choose.
Returns
-------
out : ndarray or tuple of ndarrays
If both `x` and `y` are specified, the output array, shaped like
`condition`, contains elements of `x` where `condition` is True,
and elements from `y` elsewhere.
If only `condition` is given, return the tuple
``condition.nonzero()``, the indices where `condition` is True.
See Also
--------
nonzero, choose
Notes
-----
If `x` and `y` are given and input arrays are 1-D, `where` is
equivalent to::
[xv if c else yv for (c,xv,yv) in zip(condition,x,y)]
Examples
--------
>>> x = np.arange(9.).reshape(3, 3)
>>> np.where( x > 5 )
(array([2, 2, 2]), array([0, 1, 2]))
>>> x[np.where( x > 3.0 )] # Note: result is 1D.
array([ 4., 5., 6., 7., 8.])
>>> np.where(x < 5, x, -1) # Note: broadcasting.
array([[ 0., 1., 2.],
[ 3., 4., -1.],
[-1., -1., -1.]])
>>> np.where([[True, False], [True, True]],
... [[1, 2], [3, 4]],
... [[9, 8], [7, 6]])
array([[1, 8],
[3, 4]])
>>> np.where([[0, 1], [1, 0]])
(array([0, 1]), array([1, 0]))
""")
add_newdoc('numpy.core.multiarray', 'lexsort',
"""
lexsort(keys, axis=-1)
Perform an indirect sort using a list of keys.
Imagine three input keys, ``a``, ``b`` and ``c``. These can be seen as
columns in a spreadsheet. The first row of the spreadsheet would
therefore be ``a[0], b[0], c[0]``. Lexical sorting orders the different
rows by first sorting on the on first column (key), then the second,
and so forth. At each step, the previous ordering is preserved
when equal keys are encountered.
Parameters
----------
keys : (k,N) array or tuple containing k (N,)-shaped sequences
The `k` different "columns" to be sorted. The last column is the
primary sort column.
axis : int, optional
Axis to be indirectly sorted. By default, sort over the last axis.
Returns
-------
indices : (N,) ndarray of ints
Array of indices that sort the keys along the specified axis.
See Also
--------
argsort : Indirect sort.
ndarray.sort : In-place sort.
sort : Return a sorted copy of an array.
Examples
--------
Sort names: first by surname, then by name.
>>> surnames = ('Hertz', 'Galilei', 'Hertz')
>>> first_names = ('Heinrich', 'Galileo', 'Gustav')
>>> ind = np.lexsort((first_names, surnames))
>>> ind
array([1, 2, 0])
>>> [surnames[i] + ", " + first_names[i] for i in ind]
['Galilei, Galileo', 'Hertz, Gustav', 'Hertz, Heinrich']
Sort two columns of numbers:
>>> a = [1,5,1,4,3,4,4] # First column
>>> b = [9,4,0,4,0,2,1] # Second column
>>> ind = np.lexsort((b,a)) # Sort by second, then first column
>>> print ind
[2 0 4 6 5 3 1]
>>> [(a[i],b[i]) for i in ind]
[(1, 0), (1, 9), (3, 0), (4, 1), (4, 2), (4, 4), (5, 4)]
Note that the first elements are sorted. For each first element,
the second elements are also sorted.
A normal ``argsort`` would have yielded:
>>> [(a[i],b[i]) for i in np.argsort(a)]
[(1, 9), (1, 0), (3, 0), (4, 4), (4, 2), (4, 1), (5, 4)]
Structured arrays are sorted lexically:
>>> x = np.array([(1,9), (5,4), (1,0), (4,4), (3,0), (4,2), (4,1)],
... dtype=np.dtype([('x', int), ('y', int)]))
>>> np.argsort(x) # or np.argsort(x, order=('x', 'y'))
array([2, 0, 4, 6, 5, 3, 1])
""")
add_newdoc('numpy.core.multiarray', 'can_cast',
"""
can_cast(from=d1, to=d2)
Returns True if cast between data types can occur without losing precision.
Parameters
----------
from: data type code
Data type code to cast from.
to: data type code
Data type code to cast to.
Returns
-------
out : bool
True if cast can occur without losing precision.
""")
add_newdoc('numpy.core.multiarray','newbuffer',
"""newbuffer(size)
Return a new uninitialized buffer object of size bytes
""")
add_newdoc('numpy.core.multiarray','getbuffer',
"""getbuffer(obj [,offset[, size]])
Create a buffer object from the given object referencing a slice of
length size starting at offset. Default is the entire buffer. A
read-write buffer is attempted followed by a read-only buffer.
""")
##############################################################################
#
# Documentation for ndarray attributes and methods
#
##############################################################################
##############################################################################
#
# ndarray object
#
##############################################################################
add_newdoc('numpy.core.multiarray', 'ndarray',
"""
ndarray(shape, dtype=float, buffer=None, offset=0,
strides=None, order=None)
An array object represents a multidimensional, homogeneous array
of fixed-size items. An associated data-type object
describes the format of each element in the array (its byte-order,
how many bytes it occupies in memory, whether it is an integer or
a floating point number, etc.).
Arrays should be constructed using `array`, `zeros` or `empty` (refer to
the ``See Also`` section below). The parameters given here describe
a low-level method for instantiating an array (`ndarray(...)`).
For more information, refer to the `numpy` module and examine the
the methods and attributes of an array.
Attributes
----------
T : ndarray
Transponent of the array.
data : buffer
Array data in memory.
dtype : data type
Data type, describing the format of the elements in the array.
flags : dict
Dictionary containing information related to memory use, e.g.,
'C_CONTIGUOUS', 'OWNDATA', 'WRITEABLE', and others.
flat : ndarray
Return flattened version of the array as an iterator. The iterator
allows assignments, e.g., ``x.flat = 3``.
imag : ndarray
Imaginary part of the array.
real : ndarray
Real part of the array.
size : int
Number of elements in the array.
itemsize : int
The size of each element in memory (in bytes).
nbytes : int
The total number of bytes required to store the array data,
i.e., ``itemsize * size``.
shape : tuple of ints
Shape of the array.
strides : tuple of ints
The step-size required to move from one element to the next in memory.
For example, a contiguous ``(3, 4)`` array of type ``int16`` in C-order
has strides ``(8, 2)``. This implies that to move from element to
element in memory requires jumps of 2 bytes. To move from row-to-row,
one needs to jump 6 bytes at a time (``2 * 4``).
ctypes : ctypes object
Class containing properties of the array needed for interaction
with ctypes.
base : ndarray
If the array is a view on another array, that array is
its `base` (unless that array is also a view). The `base` array
is where the array data is ultimately stored.
Parameters
----------
shape : tuple of ints
Shape of created array.
dtype : data type, optional
Any object that can be interpreted a numpy data type.
buffer : object exposing buffer interface, optional
Used to fill the array with data.
offset : int, optional
Offset of array data in buffer.
strides : tuple of ints, optional
Strides of data in memory.
order : {'C', 'F'}, optional
Row-major or column-major order.
See Also
--------
array : Construct an array.
zeros : Create an array and fill its allocated memory with zeros.
empty : Create an array, but leave its allocated memory unchanged.
dtype : Create a data type.
Notes
-----
There are two modes of creating an array using __new__:
1. If `buffer` is None, then only `shape`, `dtype`, and `order`
are used.
2. If `buffer` is an object exporting the buffer interface, then
all keywords are interpreted.
No __init__ method is needed because the array is fully initialized
after the __new__ method.
Examples
--------
These examples illustrate the low-level `ndarray` constructor. Refer
to the `See Also` section for easier ways of constructing an ndarray.
First mode, `buffer` is None:
>>> np.ndarray(shape=(2,2), dtype=float, order='F')
array([[ -1.13698227e+002, 4.25087011e-303],
[ 2.88528414e-306, 3.27025015e-309]])
Second mode:
>>> np.ndarray((2,), buffer=np.array([1,2,3]),
... offset=np.int_().itemsize,
... dtype=int) # offset = 1*itemsize, i.e. skip first element
array([2, 3])
""")
##############################################################################
#
# ndarray attributes
#
##############################################################################
add_newdoc('numpy.core.multiarray', 'ndarray', ('__array_interface__',
"""Array protocol: Python side."""))
add_newdoc('numpy.core.multiarray', 'ndarray', ('__array_finalize__',
"""None."""))
add_newdoc('numpy.core.multiarray', 'ndarray', ('__array_priority__',
"""Array priority."""))
add_newdoc('numpy.core.multiarray', 'ndarray', ('__array_struct__',
"""Array protocol: C-struct side."""))
add_newdoc('numpy.core.multiarray', 'ndarray', ('_as_parameter_',
"""Allow the array to be interpreted as a ctypes object by returning the
data-memory location as an integer
"""))
add_newdoc('numpy.core.multiarray', 'ndarray', ('base',
"""
Base object if memory is from some other object.
Examples
--------
Base of an array owning its memory is None:
>>> x = np.array([1,2,3,4])
>>> x.base is None
True
Slicing creates a view, and the memory is shared with x:
>>> y = x[2:]
>>> y.base is x
True
"""))
add_newdoc('numpy.core.multiarray', 'ndarray', ('ctypes',
"""A ctypes interface object.
"""))
add_newdoc('numpy.core.multiarray', 'ndarray', ('data',
"""Buffer object pointing to the start of the data.
"""))
add_newdoc('numpy.core.multiarray', 'ndarray', ('dtype',
"""Data-type for the array.
"""))
add_newdoc('numpy.core.multiarray', 'ndarray', ('imag',
"""
The imaginary part of the array.
Examples
--------
>>> x = np.sqrt([1+0j, 0+1j])
>>> x.imag
array([ 0. , 0.70710678])
>>> x.imag.dtype
dtype('float64')
"""))
add_newdoc('numpy.core.multiarray', 'ndarray', ('itemsize',
"""
Length of one element in bytes.
Examples
--------
>>> x = np.array([1,2,3], dtype=np.float64)
>>> x.itemsize
8
>>> x = np.array([1,2,3], dtype=np.complex128)
>>> x.itemsize
16
"""))
add_newdoc('numpy.core.multiarray', 'ndarray', ('flags',
"""
Information about the memory layout of the array.
Attributes
----------
C_CONTIGUOUS (C)
The data is in a single, C-style contiguous segment.
F_CONTIGUOUS (F)
The data is in a single, Fortran-style contiguous segment.
OWNDATA (O)
The array owns the memory it uses or borrows it from another object.
WRITEABLE (W)
The data area can be written to.
ALIGNED (A)
The data and strides are aligned appropriately for the hardware.
UPDATEIFCOPY (U)
This array is a copy of some other array. When this array is
deallocated, the base array will be updated with the contents of
this array.
FNC
F_CONTIGUOUS and not C_CONTIGUOUS.
FORC
F_CONTIGUOUS or C_CONTIGUOUS (one-segment test).
BEHAVED (B)
ALIGNED and WRITEABLE.
CARRAY (CA)
BEHAVED and C_CONTIGUOUS.
FARRAY (FA)
BEHAVED and F_CONTIGUOUS and not C_CONTIGUOUS.
Notes
-----
The `flags` object can be also accessed dictionary-like, and using
lowercased attribute names. Short flag names are only supported in
dictionary access.
Only the UPDATEIFCOPY, WRITEABLE, and ALIGNED flags can be changed by
the user, via assigning to ``flags['FLAGNAME']`` or `ndarray.setflags`.
The array flags cannot be set arbitrarily:
- UPDATEIFCOPY can only be set ``False``.
- ALIGNED can only be set ``True`` if the data is truly aligned.
- WRITEABLE can only be set ``True`` if the array owns its own memory
or the ultimate owner of the memory exposes a writeable buffer
interface or is a string.
"""))
add_newdoc('numpy.core.multiarray', 'ndarray', ('flat',
"""
A 1-d flat iterator.
Examples
--------
>>> x = np.arange(3*4*5)
>>> x.shape = (3,4,5)
>>> x.flat[19]
19
>>> x.T.flat[19]
31
"""))
add_newdoc('numpy.core.multiarray', 'ndarray', ('nbytes',
"""
Number of bytes in the array.
Examples
--------
>>> x = np.zeros((3,5,2), dtype=np.complex128)
>>> x.nbytes
480
>>> np.prod(x.shape) * x.itemsize
480
"""))
add_newdoc('numpy.core.multiarray', 'ndarray', ('ndim',
"""
Number of array dimensions.
Examples
--------
>>> x = np.array([1,2,3])
>>> x.ndim
1
>>> y = np.zeros((2,3,4))
>>> y.ndim
3
"""))
add_newdoc('numpy.core.multiarray', 'ndarray', ('real',
"""
The real part of the array.
Examples
--------
>>> x = np.sqrt([1+0j, 0+1j])
>>> x.real
array([ 1. , 0.70710678])
>>> x.real.dtype
dtype('float64')
"""))
add_newdoc('numpy.core.multiarray', 'ndarray', ('shape',
"""
Tuple of array dimensions.
Examples
--------
>>> x = np.array([1,2,3,4])
>>> x.shape
(4,)
>>> y = np.zeros((4,5,6))
>>> y.shape
(4, 5, 6)
>>> y.shape = (2, 5, 2, 3, 2)
>>> y.shape
(2, 5, 2, 3, 2)
"""))
add_newdoc('numpy.core.multiarray', 'ndarray', ('size',
"""
Number of elements in the array.
Examples
--------
>>> x = np.zeros((3,5,2), dtype=np.complex128)
>>> x.size
30
"""))
add_newdoc('numpy.core.multiarray', 'ndarray', ('strides',
"""
Tuple of bytes to step in each dimension.
The byte offset of element ``(i[0], i[1], ..., i[n])`` in an array `a`
is::
offset = sum(np.array(i) * a.strides)
Examples
--------
>>> x = np.reshape(np.arange(5*6*7*8), (5,6,7,8)).transpose(2,3,1,0)
>>> x.strides
(32, 4, 224, 1344)
>>> i = np.array([3,5,2,2])
>>> offset = sum(i * x.strides)
>>> x[3,5,2,2]
813
>>> offset / x.itemsize
813
"""))
add_newdoc('numpy.core.multiarray', 'ndarray', ('T',
"""
Same as self.transpose() except self is returned for self.ndim < 2.
Examples
--------
>>> x = np.array([[1.,2.],[3.,4.]])
>>> x.T
array([[ 1., 3.],
[ 2., 4.]])
"""))
##############################################################################
#
# ndarray methods
#
##############################################################################
add_newdoc('numpy.core.multiarray', 'ndarray', ('__array__',
""" a.__array__(|dtype) -> reference if type unchanged, copy otherwise.
Returns either a new reference to self if dtype is not given or a new array
of provided data type if dtype is different from the current dtype of the
array.
"""))
add_newdoc('numpy.core.multiarray', 'ndarray', ('__array_wrap__',
"""a.__array_wrap__(obj) -> Object of same type as a from ndarray obj.
"""))
add_newdoc('numpy.core.multiarray', 'ndarray', ('__copy__',
"""a.__copy__([order])
Return a copy of the array.
Parameters
----------
order : {'C', 'F', 'A'}, optional
If order is 'C' (False) then the result is contiguous (default).
If order is 'Fortran' (True) then the result has fortran order.
If order is 'Any' (None) then the result has fortran order
only if the array already is in fortran order.
"""))
add_newdoc('numpy.core.multiarray', 'ndarray', ('__deepcopy__',
"""a.__deepcopy__() -> Deep copy of array.
Used if copy.deepcopy is called on an array.
"""))
add_newdoc('numpy.core.multiarray', 'ndarray', ('__reduce__',
"""a.__reduce__()
For pickling.
"""))
add_newdoc('numpy.core.multiarray', 'ndarray', ('__setstate__',
"""a.__setstate__(version, shape, dtype, isfortran, rawdata)
For unpickling.
Parameters
----------
version : int
optional pickle version. If omitted defaults to 0.
shape : tuple
dtype : data-type
isFortran : bool
rawdata : string or list
a binary string with the data (or a list if 'a' is an object array)
"""))
add_newdoc('numpy.core.multiarray', 'ndarray', ('all',
"""
a.all(axis=None, out=None)
Returns True if all elements evaluate to True.
Refer to `numpy.all` for full documentation.
See Also
--------
numpy.all : equivalent function
"""))
add_newdoc('numpy.core.multiarray', 'ndarray', ('any',
"""
a.any(axis=None, out=None)
Check if any of the elements of `a` are true.
Refer to `numpy.any` for full documentation.
See Also
--------
numpy.any : equivalent function
"""))
add_newdoc('numpy.core.multiarray', 'ndarray', ('argmax',
"""
a.argmax(axis=None, out=None)
Return indices of the maximum values along the given axis of `a`.
Parameters
----------
axis : int, optional
Axis along which to operate. By default flattened input is used.
out : ndarray, optional
Alternative output array in which to place the result. Must
be of the same shape and buffer length as the expected output.
Returns
-------
index_array : ndarray
An array of indices or single index value, or a reference to `out`
if it was specified.
Examples
--------
>>> a = np.arange(6).reshape(2,3)
>>> a.argmax()
5
>>> a.argmax(0)
array([1, 1, 1])
>>> a.argmax(1)
array([2, 2])
"""))
add_newdoc('numpy.core.multiarray', 'ndarray', ('argmin',
"""
a.argmin(axis=None, out=None)
Return indices of the minimum values along the given axis of `a`.
Refer to `numpy.ndarray.argmax` for detailed documentation.
"""))
add_newdoc('numpy.core.multiarray', 'ndarray', ('argsort',
"""
a.argsort(axis=-1, kind='quicksort', order=None)
Returns the indices that would sort this array.
Refer to `numpy.argsort` for full documentation.
See Also
--------
numpy.argsort : equivalent function
"""))
add_newdoc('numpy.core.multiarray', 'ndarray', ('astype',
"""
a.astype(t)
Copy of the array, cast to a specified type.
Parameters
----------
t : string or dtype
Typecode or data-type to which the array is cast.
Examples
--------
>>> x = np.array([1, 2, 2.5])
>>> x
array([ 1. , 2. , 2.5])
>>> x.astype(int)
array([1, 2, 2])
"""))
add_newdoc('numpy.core.multiarray', 'ndarray', ('byteswap',
"""
a.byteswap(inplace)
Swap the bytes of the array elements
Toggle between low-endian and big-endian data representation by
returning a byteswapped array, optionally swapped in-place.
Parameters
----------
inplace: bool, optional
If ``True``, swap bytes in-place, default is ``False``.
Returns
-------
out: ndarray
The byteswapped array. If `inplace` is ``True``, this is
a view to self.
Examples
--------
>>> A = np.array([1, 256, 8755], dtype=np.int16)
>>> map(hex, A)
['0x1', '0x100', '0x2233']
>>> A.byteswap(True)
array([ 256, 1, 13090], dtype=int16)
>>> map(hex, A)
['0x100', '0x1', '0x3322']
Arrays of strings are not swapped
>>> A = np.array(['ceg', 'fac'])
>>> A.byteswap()
array(['ceg', 'fac'],
dtype='|S3')
"""))
add_newdoc('numpy.core.multiarray', 'ndarray', ('choose',
"""
a.choose(choices, out=None, mode='raise')
Use an index array to construct a new array from a set of choices.
Refer to `numpy.choose` for full documentation.
See Also
--------
numpy.choose : equivalent function
"""))
add_newdoc('numpy.core.multiarray', 'ndarray', ('clip',
"""
a.clip(a_min, a_max, out=None)
Return an array whose values are limited to ``[a_min, a_max]``.
Refer to `numpy.clip` for full documentation.
See Also
--------
numpy.clip : equivalent function
"""))
add_newdoc('numpy.core.multiarray', 'ndarray', ('compress',
"""
a.compress(condition, axis=None, out=None)
Return selected slices of this array along given axis.
Refer to `numpy.compress` for full documentation.
See Also
--------
numpy.compress : equivalent function
"""))
add_newdoc('numpy.core.multiarray', 'ndarray', ('conj',
"""a.conj()
Return an array with all complex-valued elements conjugated.
"""))
add_newdoc('numpy.core.multiarray', 'ndarray', ('conjugate',
"""a.conjugate()
Return an array with all complex-valued elements conjugated.
"""))
add_newdoc('numpy.core.multiarray', 'ndarray', ('copy',
"""
a.copy(order='C')
Return a copy of the array.
Parameters
----------
order : {'C', 'F', 'A'}, optional
By default, the result is stored in C-contiguous (row-major) order in
memory. If `order` is `F`, the result has 'Fortran' (column-major)
order. If order is 'A' ('Any'), then the result has the same order
as the input.
Examples
--------
>>> x = np.array([[1,2,3],[4,5,6]], order='F')
>>> y = x.copy()
>>> x.fill(0)
>>> x
array([[0, 0, 0],
[0, 0, 0]])
>>> y
array([[1, 2, 3],
[4, 5, 6]])
>>> y.flags['C_CONTIGUOUS']
True
"""))
add_newdoc('numpy.core.multiarray', 'ndarray', ('cumprod',
"""
a.cumprod(axis=None, dtype=None, out=None)
Return the cumulative product of the elements along the given axis.
Refer to `numpy.cumprod` for full documentation.
See Also
--------
numpy.cumprod : equivalent function
"""))
add_newdoc('numpy.core.multiarray', 'ndarray', ('cumsum',
"""
a.cumsum(axis=None, dtype=None, out=None)
Return the cumulative sum of the elements along the given axis.
Refer to `numpy.cumsum` for full documentation.
See Also
--------
numpy.cumsum : equivalent function
"""))
add_newdoc('numpy.core.multiarray', 'ndarray', ('diagonal',
"""
a.diagonal(offset=0, axis1=0, axis2=1)
Return specified diagonals.
Refer to `numpy.diagonal` for full documentation.
See Also
--------
numpy.diagonal : equivalent function
"""))
add_newdoc('numpy.core.multiarray', 'ndarray', ('dump',
"""a.dump(file)
Dump a pickle of the array to the specified file.
The array can be read back with pickle.load or numpy.load.
Parameters
----------
file : str
A string naming the dump file.
"""))
add_newdoc('numpy.core.multiarray', 'ndarray', ('dumps',
"""a.dumps()
Returns the pickle of the array as a string.
pickle.loads or numpy.loads will convert the string back to an array.
"""))
add_newdoc('numpy.core.multiarray', 'ndarray', ('fill',
"""
a.fill(value)
Fill the array with a scalar value.
Parameters
----------
a : ndarray
Input array
value : scalar
All elements of `a` will be assigned this value.
Examples
--------
>>> a = np.array([1, 2])
>>> a.fill(0)
>>> a
array([0, 0])
>>> a = np.empty(2)
>>> a.fill(1)
>>> a
array([ 1., 1.])
"""))
add_newdoc('numpy.core.multiarray', 'ndarray', ('flatten',
"""
a.flatten(order='C')
Collapse an array into one dimension.
Parameters
----------
order : {'C', 'F'}, optional
Whether to flatten in C (row-major) or Fortran (column-major) order.
The default is 'C'.
Returns
-------
y : ndarray
A copy of the input array, flattened to one dimension.
Examples
--------
>>> a = np.array([[1,2], [3,4]])
>>> a.flatten()
array([1, 2, 3, 4])
>>> a.flatten('F')
array([1, 3, 2, 4])
"""))
add_newdoc('numpy.core.multiarray', 'ndarray', ('getfield',
"""a.getfield(dtype, offset)
Returns a field of the given array as a certain type. A field is a view of
the array data with each itemsize determined by the given type and the
offset into the current array.
"""))
add_newdoc('numpy.core.multiarray', 'ndarray', ('item',
"""a.item()
Copy the first element of array to a standard Python scalar and return
it. The array must be of size one.
"""))
add_newdoc('numpy.core.multiarray', 'ndarray', ('max',
"""
a.max(axis=None, out=None)
Return the maximum along a given axis.
Refer to `numpy.amax` for full documentation.
See Also
--------
numpy.amax : equivalent function
"""))
add_newdoc('numpy.core.multiarray', 'ndarray', ('mean',
"""
a.mean(axis=None, dtype=None, out=None)
Returns the average of the array elements along given axis.
Refer to `numpy.mean` for full documentation.
See Also
--------
numpy.mean : equivalent function
"""))
add_newdoc('numpy.core.multiarray', 'ndarray', ('min',
"""
a.min(axis=None, out=None)
Return the minimum along a given axis.
Refer to `numpy.amin` for full documentation.
See Also
--------
numpy.amin : equivalent function
"""))
add_newdoc('numpy.core.multiarray', 'ndarray', ('newbyteorder',
"""a.newbyteorder(byteorder)
Equivalent to a.view(a.dtype.newbytorder(byteorder))
Return array with dtype changed to interpret array data as
specified byte order.
Changes are also made in all fields and sub-arrays of the array
data type.
Parameters
----------
new_order : string, optional
Byte order to force; a value from the byte order
specifications below. The default value ('S') results in
swapping the current byte order.
`new_order` codes can be any of:
* {'<', 'L'} - little endian
* {'>', 'B'} - big endian
* {'=', 'N'} - native order
* 'S' - swap dtype from current to opposite endian
* {'|', 'I'} - ignore (no change to byte order)
The code does a case-insensitive check on the first letter of
`new_order` for these alternatives. For example, any of '>'
or 'B' or 'b' or 'brian' are valid to specify big-endian.
Returns
-------
new_arr : array
array with the given change to the dtype byte order.
"""))
add_newdoc('numpy.core.multiarray', 'ndarray', ('nonzero',
"""
a.nonzero()
Return the indices of the elements that are non-zero.
Refer to `numpy.nonzero` for full documentation.
See Also
--------
numpy.nonzero : equivalent function
"""))
add_newdoc('numpy.core.multiarray', 'ndarray', ('prod',
"""
a.prod(axis=None, dtype=None, out=None)
Return the product of the array elements over the given axis
Refer to `numpy.prod` for full documentation.
See Also
--------
numpy.prod : equivalent function
"""))
add_newdoc('numpy.core.multiarray', 'ndarray', ('ptp',
"""
a.ptp(axis=None, out=None)
Peak to peak (maximum - minimum) value along a given axis.
Refer to `numpy.ptp` for full documentation.
See Also
--------
numpy.ptp : equivalent function
"""))
add_newdoc('numpy.core.multiarray', 'ndarray', ('put',
"""
a.put(indices, values, mode='raise')
Set a.flat[n] = values[n] for all n in indices.
Refer to `numpy.put` for full documentation.
See Also
--------
numpy.put : equivalent function
"""))
add_newdoc('numpy.core.multiarray', 'putmask',
"""
putmask(a, mask, values)
Changes elements of an array based on conditional and input values.
Sets `a`.flat[n] = `values`\\[n] for each n where `mask`.flat[n] is true.
If `values` is not the same size as `a` and `mask` then it will repeat.
This gives behavior different from `a[mask] = values`.
Parameters
----------
a : array_like
Array to put data into
mask : array_like
Boolean mask array
values : array_like
Values to put
See Also
--------
place, put, take
Examples
--------
>>> a = np.array([10,20,30,40])
>>> mask = np.array([True,False,True,True])
>>> a.putmask([60,70,80,90], mask)
>>> a
array([60, 20, 80, 90])
>>> a = np.array([10,20,30,40])
>>> a[mask]
array([60, 80, 90])
>>> a[mask] = np.array([60,70,80,90])
>>> a
array([60, 20, 70, 80])
>>> a.putmask([10,90], mask)
>>> a
array([10, 20, 10, 90])
>>> np.putmask(a, mask, [60,70,80,90])
""")
add_newdoc('numpy.core.multiarray', 'ndarray', ('ravel',
"""
a.ravel([order])
Return a flattened array.
Refer to `numpy.ravel` for full documentation.
See Also
--------
numpy.ravel : equivalent function
"""))
add_newdoc('numpy.core.multiarray', 'ndarray', ('repeat',
"""
a.repeat(repeats, axis=None)
Repeat elements of an array.
Refer to `numpy.repeat` for full documentation.
See Also
--------
numpy.repeat : equivalent function
"""))
add_newdoc('numpy.core.multiarray', 'ndarray', ('reshape',
"""
a.reshape(shape, order='C')
Returns an array containing the same data with a new shape.
Refer to `numpy.reshape` for full documentation.
See Also
--------
numpy.reshape : equivalent function
"""))
add_newdoc('numpy.core.multiarray', 'ndarray', ('resize',
"""
a.resize(new_shape, refcheck=True, order=False)
Change shape and size of array in-place.
Parameters
----------
a : ndarray
Input array.
new_shape : {tuple, int}
Shape of resized array.
refcheck : bool, optional
If False, memory referencing will not be checked. Default is True.
order : bool, optional
<needs an explanation>. Default if False.
Returns
-------
None
Raises
------
ValueError
If `a` does not own its own data, or references or views to it exist.
Examples
--------
Shrinking an array: array is flattened in C-order, resized, and reshaped:
>>> a = np.array([[0,1],[2,3]])
>>> a.resize((2,1))
>>> a
array([[0],
[1]])
Enlarging an array: as above, but missing entries are filled with zeros:
>>> b = np.array([[0,1],[2,3]])
>>> b.resize((2,3))
>>> b
array([[0, 1, 2],
[3, 0, 0]])
Referencing an array prevents resizing:
>>> c = a
>>> a.resize((1,1))
Traceback (most recent call last):
...
ValueError: cannot resize an array that has been referenced ...
"""))
add_newdoc('numpy.core.multiarray', 'ndarray', ('round',
"""
a.round(decimals=0, out=None)
Return an array rounded a to the given number of decimals.
Refer to `numpy.around` for full documentation.
See Also
--------
numpy.around : equivalent function
"""))
add_newdoc('numpy.core.multiarray', 'ndarray', ('searchsorted',
"""
a.searchsorted(v, side='left')
Find indices where elements of v should be inserted in a to maintain order.
For full documentation, see `numpy.searchsorted`
See Also
--------
numpy.searchsorted : equivalent function
"""))
add_newdoc('numpy.core.multiarray', 'ndarray', ('setfield',
"""m.setfield(value, dtype, offset) -> None.
places val into field of the given array defined by the data type and offset.
"""))
add_newdoc('numpy.core.multiarray', 'ndarray', ('setflags',
"""a.setflags(write=None, align=None, uic=None)
"""))
add_newdoc('numpy.core.multiarray', 'ndarray', ('sort',
"""
a.sort(axis=-1, kind='quicksort', order=None)
Sort an array, in-place.
Parameters
----------
axis : int, optional
Axis along which to sort. Default is -1, which means sort along the
last axis.
kind : {'quicksort', 'mergesort', 'heapsort'}, optional
Sorting algorithm. Default is 'quicksort'.
order : list, optional
When `a` is an array with fields defined, this argument specifies
which fields to compare first, second, etc. Not all fields need be
specified.
See Also
--------
numpy.sort : Return a sorted copy of an array.
argsort : Indirect sort.
lexsort : Indirect stable sort on multiple keys.
searchsorted : Find elements in sorted array.
Notes
-----
See ``sort`` for notes on the different sorting algorithms.
Examples
--------
>>> a = np.array([[1,4], [3,1]])
>>> a.sort(axis=1)
>>> a
array([[1, 4],
[1, 3]])
>>> a.sort(axis=0)
>>> a
array([[1, 3],
[1, 4]])
Use the `order` keyword to specify a field to use when sorting a
structured array:
>>> a = np.array([('a', 2), ('c', 1)], dtype=[('x', 'S1'), ('y', int)])
>>> a.sort(order='y')
>>> a
array([('c', 1), ('a', 2)],
dtype=[('x', '|S1'), ('y', '<i4')])
"""))
add_newdoc('numpy.core.multiarray', 'ndarray', ('squeeze',
"""
a.squeeze()
Remove single-dimensional entries from the shape of `a`.
Refer to `numpy.squeeze` for full documentation.
See Also
--------
numpy.squeeze : equivalent function
"""))
add_newdoc('numpy.core.multiarray', 'ndarray', ('std',
"""
a.std(axis=None, dtype=None, out=None, ddof=0)
Returns the standard deviation of the array elements along given axis.
Refer to `numpy.std` for full documentation.
See Also
--------
numpy.std : equivalent function
"""))
add_newdoc('numpy.core.multiarray', 'ndarray', ('sum',
"""
a.sum(axis=None, dtype=None, out=None)
Return the sum of the array elements over the given axis.
Refer to `numpy.sum` for full documentation.
See Also
--------
numpy.sum : equivalent function
"""))
add_newdoc('numpy.core.multiarray', 'ndarray', ('swapaxes',
"""
a.swapaxes(axis1, axis2)
Return a view of the array with `axis1` and `axis2` interchanged.
Refer to `numpy.swapaxes` for full documentation.
See Also
--------
numpy.swapaxes : equivalent function
"""))
add_newdoc('numpy.core.multiarray', 'ndarray', ('take',
"""
a.take(indices, axis=None, out=None, mode='raise')
Return an array formed from the elements of a at the given indices.
Refer to `numpy.take` for full documentation.
See Also
--------
numpy.take : equivalent function
"""))
add_newdoc('numpy.core.multiarray', 'ndarray', ('tofile',
"""
a.tofile(fid, sep="", format="%s")
Write array to a file as text or binary.
Data is always written in 'C' order, independently of the order of `a`.
The data produced by this method can be recovered by using the function
fromfile().
This is a convenience function for quick storage of array data.
Information on endianess and precision is lost, so this method is not a
good choice for files intended to archive data or transport data between
machines with different endianess. Some of these problems can be overcome
by outputting the data as text files at the expense of speed and file size.
Parameters
----------
fid : file or string
An open file object or a string containing a filename.
sep : string
Separator between array items for text output.
If "" (empty), a binary file is written, equivalently to
file.write(a.tostring()).
format : string
Format string for text file output.
Each entry in the array is formatted to text by converting it to the
closest Python type, and using "format" % item.
"""))
add_newdoc('numpy.core.multiarray', 'ndarray', ('tolist',
"""
a.tolist()
Return the array as a possibly nested list.
Return a copy of the array data as a hierarchical Python list.
Data items are converted to the nearest compatible Python type.
Parameters
----------
none
Returns
-------
y : list
The possibly nested list of array elements.
Notes
-----
The array may be recreated, ``a = np.array(a.tolist())``.
Examples
--------
>>> a = np.array([1, 2])
>>> a.tolist()
[1, 2]
>>> a = np.array([[1, 2], [3, 4]])
>>> list(a)
[array([1, 2]), array([3, 4])]
>>> a.tolist()
[[1, 2], [3, 4]]
"""))
add_newdoc('numpy.core.multiarray', 'ndarray', ('tostring',
"""a.tostring(order='C')
Construct a Python string containing the raw data bytes in the array.
Parameters
----------
order : {'C', 'F', None}
Order of the data for multidimensional arrays:
C, Fortran, or the same as for the original array.
"""))
add_newdoc('numpy.core.multiarray', 'ndarray', ('trace',
"""
a.trace(offset=0, axis1=0, axis2=1, dtype=None, out=None)
Return the sum along diagonals of the array.
Refer to `numpy.trace` for full documentation.
See Also
--------
numpy.trace : equivalent function
"""))
add_newdoc('numpy.core.multiarray', 'ndarray', ('transpose',
"""a.transpose(*axes)
Returns a view of 'a' with axes transposed. If no axes are given,
or None is passed, switches the order of the axes. For a 2-d
array, this is the usual matrix transpose. If axes are given,
they describe how the axes are permuted.
Examples
--------
>>> a = np.array([[1,2],[3,4]])
>>> a
array([[1, 2],
[3, 4]])
>>> a.transpose()
array([[1, 3],
[2, 4]])
>>> a.transpose((1,0))
array([[1, 3],
[2, 4]])
>>> a.transpose(1,0)
array([[1, 3],
[2, 4]])
"""))
add_newdoc('numpy.core.multiarray', 'ndarray', ('var',
"""
a.var(axis=None, dtype=None, out=None, ddof=0)
Returns the variance of the array elements, along given axis.
Refer to `numpy.var` for full documentation.
See Also
--------
numpy.var : equivalent function
"""))
add_newdoc('numpy.core.multiarray', 'ndarray', ('view',
"""
a.view(dtype=None, type=None)
New view of array with the same data.
Parameters
----------
dtype : data-type
Data-type descriptor of the returned view, e.g. float32 or int16.
type : python type
Type of the returned view, e.g. ndarray or matrix.
Examples
--------
>>> x = np.array([(1, 2)], dtype=[('a', np.int8), ('b', np.int8)])
Viewing array data using a different type and dtype:
>>> y = x.view(dtype=np.int16, type=np.matrix)
>>> print y.dtype
int16
>>> print type(y)
<class 'numpy.core.defmatrix.matrix'>
Using a view to convert an array to a record array:
>>> z = x.view(np.recarray)
>>> z.a
array([1], dtype=int8)
Views share data:
>>> x[0] = (9, 10)
>>> z[0]
(9, 10)
"""))
add_newdoc('numpy.core.umath','geterrobj',
"""geterrobj()
Used internally by `geterr`.
Returns
-------
errobj : list
Internal numpy buffer size, error mask, error callback function.
""")
add_newdoc('numpy.core.umath', 'seterrobj',
"""
seterrobj(errobj)
Used internally by `seterr`.
Parameters
----------
errobj : list
[buffer_size, error_mask, callback_func]
See Also
--------
seterrcall
""")
add_newdoc('numpy.core', 'ufunc',
"""
Functions that operate element by element on whole arrays.
Unary ufuncs:
=============
op(X, out=None)
Apply op to X elementwise
Parameters
----------
X : array_like
Input array
out : array_like
An array to store the output. Must be the same shape as X.
Returns
-------
r : array_like
r will have the same shape as X; if out is provided, r will be
equal to out.
Binary ufuncs:
==============
op(X, Y, out=None)
Apply op to X and Y elementwise. May "broadcast" to make
the shapes of X and Y congruent.
The broadcasting rules are:
* Dimensions of length 1 may be prepended to either array
* Arrays may be repeated along dimensions of length 1
Parameters
----------
X : array_like
First input array
Y : array_like
Second input array
out : array-like
An array to store the output. Must be the same shape as the
output would have.
Returns
-------
r : array-like
The return value; if out is provided, r will be equal to out.
""")
add_newdoc('numpy.core', 'ufunc', ('reduce',
"""
reduce(array, axis=0, dtype=None, out=None)
Reduce applies the operator to all elements of the array.
For a one-dimensional array, reduce produces results equivalent to:
::
r = op.identity
for i in xrange(len(A)):
r = op(r,A[i])
return r
For example, add.reduce() is equivalent to sum().
Parameters
----------
array : array_like
The array to act on.
axis : integer, optional
The axis along which to apply the reduction.
dtype : data-type-code, optional
The type used to represent the intermediate results. Defaults
to the data type of the output array if this is provided, or
the data type of the input array if no output array is provided.
out : array_like, optional
A location into which the result is stored. If not provided a
freshly-allocated array is returned.
Returns
-------
r : ndarray
The reduced values. If out was supplied, r is equal to out.
Examples
--------
>>> np.multiply.reduce([2,3,5])
30
"""))
add_newdoc('numpy.core', 'ufunc', ('accumulate',
"""
accumulate(array, axis=None, dtype=None, out=None)
Accumulate the result of applying the operator to all elements.
For a one-dimensional array, accumulate produces results equivalent to:
::
r = np.empty(len(A))
t = op.identity
for i in xrange(len(A)):
t = op(t,A[i])
r[i] = t
return r
For example, add.accumulate() is equivalent to cumsum().
Parameters
----------
array : array_like
The array to act on.
axis : int, optional
The axis along which to apply the accumulation.
dtype : data-type-code, optional
The type used to represent the intermediate results. Defaults
to the data type of the output array if this is provided, or
the data type of the input array if no output array is provided.
out : ndarray, optional
A location into which the result is stored. If not provided a
freshly-allocated array is returned.
Returns
-------
r : ndarray
The accumulated values. If `out` was supplied, `r` is equal to
`out`.
Examples
--------
>>> np.multiply.accumulate([2,3,5])
array([2,6,30])
"""))
add_newdoc('numpy.core', 'ufunc', ('reduceat',
"""
reduceat(self, array, indices, axis=None, dtype=None, out=None)
Reduceat performs a reduce with specified slices over an axis.
Computes op.reduce(`array[indices[i]:indices[i+1]]`)
for i=0..end with an implicit `indices[i+1]` = len(`array`)
assumed when i = end - 1.
If `indices[i]` >= `indices[i + 1]`
then the result is `array[indices[i]]` for that value.
The function op.accumulate(`array`) is the same as
op.reduceat(`array`, `indices`)[::2]
where `indices` is range(len(`array`)-1) with a zero placed
in every other sample:
`indices` = zeros(len(`array`)*2 - 1)
`indices[1::2]` = range(1, len(`array`))
The output shape is based on the size of `indices`.
Parameters
----------
array : array_like
The array to act on.
indices : array_like
Paired indices specifying slices to reduce.
axis : int, optional
The axis along which to apply the reduceat.
dtype : data-type-code, optional
The type used to represent the intermediate results. Defaults
to the data type of the output array if this is provided, or
the data type of the input array if no output array is provided.
out : ndarray, optional
A location into which the result is stored. If not provided a
freshly-allocated array is returned.
Returns
-------
r : array
The reduced values. If `out` was supplied, `r` is equal to `out`.
Examples
--------
To take the running sum of four successive values:
>>> np.add.reduceat(np.arange(8),[0,4, 1,5, 2,6, 3,7])[::2]
array([ 6, 10, 14, 18])
"""))
add_newdoc('numpy.core', 'ufunc', ('outer',
"""
outer(A,B)
Compute the result of applying op to all pairs (a,b)
op.outer(A,B) is equivalent to
op(A[:,:,...,:,newaxis,...,newaxis]*B[newaxis,...,newaxis,:,...,:])
where A has B.ndim new axes appended and B has A.ndim new axes prepended.
For A and B one-dimensional, this is equivalent to
::
r = empty(len(A),len(B))
for i in xrange(len(A)):
for j in xrange(len(B)):
r[i,j] = A[i]*B[j]
If A and B are higher-dimensional, the result has dimension A.ndim+B.ndim
Parameters
----------
A : array_like
First term
B : array_like
Second term
Returns
-------
r : ndarray
Output array
Examples
--------
>>> np.multiply.outer([1,2,3],[4,5,6])
array([[ 4, 5, 6],
[ 8, 10, 12],
[12, 15, 18]])
"""))
add_newdoc('numpy.core', 'dtype', ('newbyteorder',
'''
newbyteorder(new_order='S')
Return a new dtype with a different byte order.
Changes are also made in all fields and sub-arrays of the data type.
Parameters
----------
new_order : string, optional
Byte order to force; a value from the byte order
specifications below. The default value ('S') results in
swapping the current byte order.
`new_order` codes can be any of:
* {'<', 'L'} - little endian
* {'>', 'B'} - big endian
* {'=', 'N'} - native order
* 'S' - swap dtype from current to opposite endian
* {'|', 'I'} - ignore (no change to byte order)
The code does a case-insensitive check on the first letter of
`new_order` for these alternatives. For example, any of '>'
or 'B' or 'b' or 'brian' are valid to specify big-endian.
Returns
-------
new_dtype : dtype
New dtype object with the given change to the byte order.
Examples
--------
>>> import sys
>>> sys_is_le = sys.byteorder == 'little'
>>> native_code = sys_is_le and '<' or '>'
>>> swapped_code = sys_is_le and '>' or '<'
>>> native_dt = np.dtype(native_code+'i2')
>>> swapped_dt = np.dtype(swapped_code+'i2')
>>> native_dt.newbyteorder('S') == swapped_dt
True
>>> native_dt.newbyteorder() == swapped_dt
True
>>> native_dt == swapped_dt.newbyteorder('S')
True
>>> native_dt == swapped_dt.newbyteorder('=')
True
>>> native_dt == swapped_dt.newbyteorder('N')
True
>>> native_dt == native_dt.newbyteorder('|')
True
>>> np.dtype('<i2') == native_dt.newbyteorder('<')
True
>>> np.dtype('<i2') == native_dt.newbyteorder('L')
True
>>> np.dtype('>i2') == native_dt.newbyteorder('>')
True
>>> np.dtype('>i2') == native_dt.newbyteorder('B')
True
'''))
add_newdoc('numpy.core', 'dtype', ('byteorder',
'''
dt.byteorder
String giving byteorder of dtype
One of:
* '=' - native byteorder
* '<' - little endian
* '>' - big endian
* '|' - endian not relevant
Examples
--------
>>> dt = np.dtype('i2')
>>> dt.byteorder
'='
>>> # endian is not relevant for 8 bit numbers
>>> np.dtype('i1').byteorder
'|'
>>> # or ASCII strings
>>> np.dtype('S2').byteorder
'|'
>>> # Even if specific code is given, and it is native
>>> # '=' is the byteorder
>>> import sys
>>> sys_is_le = sys.byteorder == 'little'
>>> native_code = sys_is_le and '<' or '>'
>>> swapped_code = sys_is_le and '>' or '<'
>>> dt = np.dtype(native_code + 'i2')
>>> dt.byteorder
'='
>>> # Swapped code shows up as itself
>>> dt = np.dtype(swapped_code + 'i2')
>>> dt.byteorder == swapped_code
True
'''))
|