summaryrefslogtreecommitdiff
path: root/numpy/add_newdocs.py
blob: 86f80a87092b69a95d38a08efab3481c177ec0c2 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
# This is only meant to add docs to objects defined in C-extension modules.
# The purpose is to allow easier editing of the docstrings without
# requiring a re-compile.

# NOTE: Many of the methods of ndarray have corresponding functions.
#       If you update these docstrings, please keep also the ones in
#       core/fromnumeric.py, core/defmatrix.py up-to-date.

from lib import add_newdoc

add_newdoc('numpy.core', 'dtype',
"""Create a data type.

A numpy array is homogeneous, and contains elements described by a
dtype.  A dtype can be constructed from different combinations of
fundamental numeric types, as illustrated below.

Examples
--------

Using array-scalar type:
>>> dtype(int16)
dtype('int16')

Record, one field name 'f1', containing int16:
>>> dtype([('f1', int16)])
dtype([('f1', '<i2')])

Record, one field named 'f1', in itself containing a record with one field:
>>> dtype([('f1', [('f1', int16)])])
dtype([('f1', [('f1', '<i2')])])

Record, two fields: the first field contains an unsigned int, the
second an int32:
>>> dtype([('f1', uint), ('f2', int32)])
dtype([('f1', '<u4'), ('f2', '<i4')])

Using array-protocol type strings:
>>> dtype([('a','f8'),('b','S10')])
dtype([('a', '<f8'), ('b', '|S10')])

Using comma-separated field formats.  The shape is (2,3):
>>> dtype("i4, (2,3)f8")
dtype([('f0', '<i4'), ('f1', '<f8', (2, 3))])

Using tuples.  ``int`` is a fixed type, 3 the field's shape.  ``void``
is a flexible type, here of size 10:
>>> dtype([('hello',(int,3)),('world',void,10)])
dtype([('hello', '<i4', 3), ('world', '|V10')])

Subdivide ``int16`` into 2 ``int8``'s, called x and y.  0 and 1 are
the offsets in bytes:
>>> dtype((int16, {'x':(int8,0), 'y':(int8,1)}))
dtype(('<i2', [('x', '|i1'), ('y', '|i1')]))

Using dictionaries.  Two fields named 'gender' and 'age':
>>> dtype({'names':['gender','age'], 'formats':['S1',uint8]})
dtype([('gender', '|S1'), ('age', '|u1')])

Offsets in bytes, here 0 and 25:
>>> dtype({'surname':('S25',0),'age':(uint8,25)})
dtype([('surname', '|S25'), ('age', '|u1')])

""")

add_newdoc('numpy.core','dtype',
           [('fields', "Fields of the data-type or None if no fields"),
            ('names', "Names of fields or None if no fields"),
            ('alignment', "Needed alignment for this data-type"),
            ('byteorder',
             "Little-endian (<), big-endian (>), native (=), or "\
             "not-applicable (|)"),
            ('char', "Letter typecode for this data-type"),
            ('type', "Type object associated with this data-type"),
            ('kind', "Character giving type-family of this data-type"),
            ('itemsize', "Size of each item"),
            ('hasobject', "Non-zero if Python objects are in "\
             "this data-type"),
            ('num', "Internally-used number for builtin base"),
            ('newbyteorder',
"""self.newbyteorder(endian)

Returns a copy of the dtype object with altered byteorders.
If `endian` is not given all byteorders are swapped.
Otherwise endian can be '>', '<', or '=' to force a particular
byteorder.  Data-types in all fields are also updated in the
new dtype object.
"""),
            ("__reduce__", "self.__reduce__() for pickling"),
            ("__setstate__", "self.__setstate__() for pickling"),
            ("subdtype", "A tuple of (descr, shape) or None"),
            ("descr", "The array_interface data-type descriptor."),
            ("str", "The array interface typestring."),
            ("name", "The name of the true data-type"),
            ("base", "The base data-type or self if no subdtype"),
            ("shape", "The shape of the subdtype or (1,)"),
            ("isbuiltin", "Is this a built-in data-type?"),
            ("isnative", "Is the byte-order of this data-type native?")
            ]
           )

###############################################################################
#
# flatiter
#
# flatiter needs a toplevel description
#
###############################################################################

# attributes
add_newdoc('numpy.core', 'flatiter', ('base',
    """documentation needed

    """))



add_newdoc('numpy.core', 'flatiter', ('coords',
    """An N-d tuple of current coordinates.

    """))



add_newdoc('numpy.core', 'flatiter', ('index',
    """documentation needed

    """))



# functions
add_newdoc('numpy.core', 'flatiter', ('__array__',
    """__array__(type=None) Get array from iterator

    """))


add_newdoc('numpy.core', 'flatiter', ('copy',
    """copy() Get a copy of the iterator as a 1-d array

    """))


###############################################################################
#
# broadcast
#
###############################################################################

# attributes
add_newdoc('numpy.core', 'broadcast', ('index',
    """current index in broadcasted result

    """))


add_newdoc('numpy.core', 'broadcast', ('iters',
    """tuple of individual iterators

    """))


add_newdoc('numpy.core', 'broadcast', ('nd',
    """number of dimensions of broadcasted result

    """))


add_newdoc('numpy.core', 'broadcast', ('numiter',
    """number of iterators

    """))


add_newdoc('numpy.core', 'broadcast', ('shape',
    """shape of broadcasted result

    """))


add_newdoc('numpy.core', 'broadcast', ('size',
    """total size of broadcasted result

    """))


###############################################################################
#
# numpy functions
#
###############################################################################

add_newdoc('numpy.core.multiarray','array',
    """array(object, dtype=None, copy=1,order=None, subok=0,ndmin=0)

    Return an array from object with the specified data-type.

    Parameters
    ----------
    object : array-like
        an array, any object exposing the array interface, any
        object whose __array__ method returns an array, or any
        (nested) sequence.
    dtype : data-type
        The desired data-type for the array.  If not given, then
        the type will be determined as the minimum type required
        to hold the objects in the sequence.  This argument can only
        be used to 'upcast' the array.  For downcasting, use the
        .astype(t) method.
    copy : bool
        If true, then force a copy.  Otherwise a copy will only occur
        if __array__ returns a copy, obj is a nested sequence, or
        a copy is needed to satisfy any of the other requirements
    order : {'C', 'F', 'A' (None)}
        Specify the order of the array.  If order is 'C', then the
        array will be in C-contiguous order (last-index varies the
        fastest).  If order is 'FORTRAN', then the returned array
        will be in Fortran-contiguous order (first-index varies the
        fastest).  If order is None, then the returned array may
        be in either C-, or Fortran-contiguous order or even
        discontiguous.
    subok : bool
        If True, then sub-classes will be passed-through, otherwise
        the returned array will be forced to be a base-class array
    ndmin : int
        Specifies the minimum number of dimensions that the resulting
        array should have.  1's will be pre-pended to the shape as
        needed to meet this requirement.

    """)

add_newdoc('numpy.core.multiarray','empty',
    """empty(shape, dtype=float, order='C')

    Return a new array of given shape and type with all entries uninitialized.
    This can be faster than zeros.

    Parameters
    ----------
    shape : tuple of integers
        Shape of the new array
    dtype : data-type
        The desired data-type for the array.
    order : {'C', 'F'}
        Whether to store multidimensional data in C or Fortran order.

    """)


add_newdoc('numpy.core.multiarray','scalar',
    """scalar(dtype,obj)

    Return a new scalar array of the given type initialized with
    obj. Mainly for pickle support.  The dtype must be a valid data-type
    descriptor.  If dtype corresponds to an OBJECT descriptor, then obj
    can be any object, otherwise obj must be a string. If obj is not given
    it will be interpreted as None for object type and zeros for all other
    types.

    """)

add_newdoc('numpy.core.multiarray','zeros',
    """zeros(shape, dtype=float, order='C')

    Return a new array of given shape and type, filled zeros.

    Parameters
    ----------
    shape : tuple of integers
        Shape of the new array
    dtype : data-type
        The desired data-type for the array.
    order : {'C', 'F'}
        Whether to store multidimensional data in C or Fortran order.

    """)

add_newdoc('numpy.core.multiarray','set_typeDict',
    """set_typeDict(dict)

    Set the internal dictionary that can look up an array type using a
    registered code.

    """)

add_newdoc('numpy.core.multiarray','fromstring',
    """fromstring(string, dtype=float, count=-1, sep='')

    Return a new 1d array initialized from the raw binary data in string.

    If count is positive, the new array will have count elements, otherwise its
    size is determined by the size of string.  If sep is not empty then the
    string is interpreted in ASCII mode and converted to the desired number type
    using sep as the separator between elements (extra whitespace is ignored).
    ASCII integer conversions are base-10; octal and hex are not supported.

    """)

add_newdoc('numpy.core.multiarray','fromiter',
    """fromiter(iterable, dtype, count=-1)

    Return a new 1d array initialized from iterable.

    Parameters
    ----------
    iterable
        Iterable object from which to obtain data
    dtype : data-type
        Data type of the returned array.
    count : int
        Number of items to read. -1 means all data in the iterable.

    Returns
    -------
    new_array : ndarray

    """)

add_newdoc('numpy.core.multiarray','fromfile',
    """fromfile(file=, dtype=float, count=-1, sep='')

    Return an array of the given data type from a text or binary file.

    Data written using the tofile() method can be conveniently recovered using
    this function.

    Parameters
    ----------
    file : file or string
        Open file object or string containing a file name.
    dtype : data-type
        Data type of the returned array.
        For binary files, it is also used to determine the size and order of
        the items in the file.
    count : int
        Number of items to read. -1 means all data in the whole file.
    sep : string
        Separator between items if file is a text file.
        Empty ("") separator means the file should be treated as binary.

    See also
    --------
    loadtxt : load data from text files

    Notes
    -----
    WARNING: This function should be used sparingly as the binary files are not
    platform independent. In particular, they contain no endianess or datatype
    information. Nevertheless it can be useful for reading in simply formatted
    or binary data quickly.

    """)

add_newdoc('numpy.core.multiarray','frombuffer',
    """frombuffer(buffer=, dtype=float, count=-1, offset=0)

    Returns a 1-d array of data type dtype from buffer.

    Parameters
    ----------
    buffer
        An object that exposes the buffer interface
    dtype : data-type
        Data type of the returned array.
    count : int
        Number of items to read. -1 means all data in the buffer.
    offset : int
        Number of bytes to jump from the start of the buffer before reading

    Notes
    -----
    If the buffer has data that is not in machine byte-order, then
    use a proper data type descriptor. The data will not be
    byteswapped, but the array will manage it in future operations.

    """)

add_newdoc('numpy.core.multiarray','concatenate',
    """concatenate((a1, a2, ...), axis=0)

    Join arrays together.

    The tuple of sequences (a1, a2, ...) are joined along the given axis
    (default is the first one) into a single numpy array.

    Examples
    --------
    >>> concatenate( ([0,1,2], [5,6,7]) )
    array([0, 1, 2, 5, 6, 7])

    """)

add_newdoc('numpy.core.multiarray','inner',
    """inner(a,b)

    Returns the dot product of two arrays, which has shape a.shape[:-1] +
    b.shape[:-1] with elements computed by the product of the elements
    from the last dimensions of a and b.

    """)

add_newdoc('numpy.core','fastCopyAndTranspose',
    """_fastCopyAndTranspose(a)""")

add_newdoc('numpy.core.multiarray','correlate',
    """cross_correlate(a,v, mode=0)""")

add_newdoc('numpy.core.multiarray','arange',
    """arange([start,] stop[, step,], dtype=None)

    For integer arguments, just like range() except it returns an array
    whose type can be specified by the keyword argument dtype.  If dtype
    is not specified, the type of the result is deduced from the type of
    the arguments.

    For floating point arguments, the length of the result is ceil((stop -
    start)/step).  This rule may result in the last element of the result
    being greater than stop.

    """)

add_newdoc('numpy.core.multiarray','_get_ndarray_c_version',
    """_get_ndarray_c_version()

    Return the compile time NDARRAY_VERSION number.

    """)

add_newdoc('numpy.core.multiarray','_reconstruct',
    """_reconstruct(subtype, shape, dtype)

    Construct an empty array. Used by Pickles.

    """)


add_newdoc('numpy.core.multiarray','set_string_function',
    """set_string_function(f, repr=1)

    Set the python function f to be the function used to obtain a pretty
    printable string version of an array whenever an array is printed.
    f(M) should expect an array argument M, and should return a string
    consisting of the desired representation of M for printing.

    """)

add_newdoc('numpy.core.multiarray','set_numeric_ops',
    """set_numeric_ops(op=func, ...)

    Set some or all of the number methods for all array objects.  Do not
    forget **dict can be used as the argument list.  Return the functions
    that were replaced, which can be stored and set later.

    """)

add_newdoc('numpy.core.multiarray','where',
    """where(condition, x, y) or where(condition)

    Return elements from `x` or `y`, depending on `condition`.

    Parameters
    ----------
    condition : array of bool
        When True, yield x, otherwise yield y.
    x,y : 1-dimensional arrays
        Values from which to choose.

    Notes
    -----
    This is equivalent to

        [xv if c else yv for (c,xv,yv) in zip(condition,x,y)]

    The result is shaped like `condition` and has elements of `x`
    or `y` where `condition` is respectively True or False.

    In the special case, where only `condition` is given, the
    tuple condition.nonzero() is returned, instead.

    Examples
    --------
    >>> where([True,False,True],[1,2,3],[4,5,6])
    array([1, 5, 3])

    """)


add_newdoc('numpy.core.multiarray','lexsort',
    """lexsort(keys=, axis=-1) -> array of indices. Argsort with list of keys.

    Perform an indirect sort using a list of keys. The first key is sorted,
    then the second, and so on through the list of keys. At each step the
    previous order is preserved when equal keys are encountered. The result is
    a sort on multiple keys.  If the keys represented columns of a spreadsheet,
    for example, this would sort using multiple columns (the last key being
    used for the primary sort order, the second-to-last key for the secondary
    sort order, and so on).

    Parameters
    ----------
    keys : (k,N) array or tuple of (N,) sequences
        Array containing values that the returned indices should sort, or
        a sequence of things that can be converted to arrays of the same shape.

    axis : integer
        Axis to be indirectly sorted.  Default is -1 (i.e. last axis).

    Returns
    -------
    indices : (N,) integer array
        Array of indices that sort the keys along the specified axis.

    See Also
    --------
    argsort : indirect sort
    sort : inplace sort

    Examples
    --------
    >>> a = [1,5,1,4,3,6,7]
    >>> b = [9,4,0,4,0,4,3]
    >>> ind = lexsort((b,a))
    >>> print ind
    [2 0 4 3 1 5 6]
    >>> print take(a,ind)
    [1 1 3 4 5 6 7]
    >>> print take(b,ind)
    [0 9 0 4 4 4 3]

    """)

add_newdoc('numpy.core.multiarray','can_cast',
    """can_cast(from=d1, to=d2)

    Returns True if data type d1 can be cast to data type d2 without
    losing precision.

    """)

add_newdoc('numpy.core.multiarray','newbuffer',
    """newbuffer(size)

    Return a new uninitialized buffer object of size bytes

    """)

add_newdoc('numpy.core.multiarray','getbuffer',
    """getbuffer(obj [,offset[, size]])

    Create a buffer object from the given object referencing a slice of
    length size starting at offset.  Default is the entire buffer. A
    read-write buffer is attempted followed by a read-only buffer.

    """)

##############################################################################
#
# Documentation for ndarray attributes and methods
#
##############################################################################


##############################################################################
#
# ndarray object
#
##############################################################################


add_newdoc('numpy.core.multiarray', 'ndarray',
    """An array object represents a multidimensional, homogeneous array
    of fixed-size items.  An associated data-type-descriptor object
    details the data-type in an array (including byteorder and any
    fields).  An array can be constructed using the numpy.array
    command. Arrays are sequence, mapping and numeric objects.
    More information is available in the numpy module and by looking
    at the methods and attributes of an array.

    ndarray.__new__(subtype, shape=, dtype=float, buffer=None,
                    offset=0, strides=None, order=None)

     There are two modes of creating an array using __new__:
     1) If buffer is None, then only shape, dtype, and order
        are used
     2) If buffer is an object exporting the buffer interface, then
        all keywords are interpreted.
     The dtype parameter can be any object that can be interpreted
        as a numpy.dtype object.

     No __init__ method is needed because the array is fully
     initialized after the __new__ method.

    """)


##############################################################################
#
# ndarray attributes
#
##############################################################################


add_newdoc('numpy.core.multiarray', 'ndarray', ('__array_interface__',
    """Array protocol: Python side."""))


add_newdoc('numpy.core.multiarray', 'ndarray', ('__array_finalize__',
    """None."""))


add_newdoc('numpy.core.multiarray', 'ndarray', ('__array_priority__',
    """Array priority."""))


add_newdoc('numpy.core.multiarray', 'ndarray', ('__array_struct__',
    """Array protocol: C-struct side."""))


add_newdoc('numpy.core.multiarray', 'ndarray', ('_as_parameter_',
    """Allow the array to be interpreted as a ctypes object by returning the
    data-memory location as an integer

    """))


add_newdoc('numpy.core.multiarray', 'ndarray', ('base',
    """Base object if memory is from some other object.

    """))


add_newdoc('numpy.core.multiarray', 'ndarray', ('ctypes',
    """A ctypes interface object.

    """))


add_newdoc('numpy.core.multiarray', 'ndarray', ('data',
    """Buffer object pointing to the start of the data.

    """))


add_newdoc('numpy.core.multiarray', 'ndarray', ('dtype',
    """Data-type for the array.

    """))


add_newdoc('numpy.core.multiarray', 'ndarray', ('imag',
    """Imaginary part of the array.

    """))


add_newdoc('numpy.core.multiarray', 'ndarray', ('itemsize',
    """Length of one element in bytes.

    """))


add_newdoc('numpy.core.multiarray', 'ndarray', ('flags',
    """Special object providing array flags.

    """))


add_newdoc('numpy.core.multiarray', 'ndarray', ('flat',
    """A 1-d flat iterator.

    """))


add_newdoc('numpy.core.multiarray', 'ndarray', ('nbytes',
    """Number of bytes in the array.

    """))


add_newdoc('numpy.core.multiarray', 'ndarray', ('ndim',
    """Number of array dimensions.

    """))


add_newdoc('numpy.core.multiarray', 'ndarray', ('real',
    """Real part of the array.

    """))


add_newdoc('numpy.core.multiarray', 'ndarray', ('shape',
    """Tuple of array dimensions.

    """))


add_newdoc('numpy.core.multiarray', 'ndarray', ('size',
    """Number of elements in the array.

    """))


add_newdoc('numpy.core.multiarray', 'ndarray', ('strides',
    """Tuple of bytes to step in each dimension.

    """))


add_newdoc('numpy.core.multiarray', 'ndarray', ('T',
    """Same as self.transpose() except self is returned for self.ndim < 2.

    """))


##############################################################################
#
# ndarray methods
#
##############################################################################


add_newdoc('numpy.core.multiarray', 'ndarray', ('__array__',
    """ a.__array__(|dtype) -> reference if type unchanged, copy otherwise.

    Returns either a new reference to self if dtype is not given or a new array
    of provided data type if dtype is different from the current dtype of the
    array.

    """))


add_newdoc('numpy.core.multiarray', 'ndarray', ('__array_wrap__',
    """a.__array_wrap__(obj) -> Object of same type as a from ndarray obj.

    """))


add_newdoc('numpy.core.multiarray', 'ndarray', ('__copy__',
    """a.__copy__([order])

    Return a copy of the array.

    Parameters
    ----------
    order : {'C', 'F', 'A'}, optional
        If order is 'C' (False) then the result is contiguous (default).
        If order is 'Fortran' (True) then the result has fortran order.
        If order is 'Any' (None) then the result has fortran order
        only if the array already is in fortran order.

    """))


add_newdoc('numpy.core.multiarray', 'ndarray', ('__deepcopy__',
    """a.__deepcopy__() -> Deep copy of array.

    Used if copy.deepcopy is called on an array.

    """))


add_newdoc('numpy.core.multiarray', 'ndarray', ('__reduce__',
    """a.__reduce__()

    For pickling.

    """))


add_newdoc('numpy.core.multiarray', 'ndarray', ('__setstate__',
    """a.__setstate__(version, shape, dtype, isfortran, rawdata)

    For unpickling.

    Parameters
    ----------
    version : int
        optional pickle version. If omitted defaults to 0.
    shape : tuple
    dtype : data-type
    isFortran : bool
    rawdata : string or list
        a binary string with the data (or a list if 'a' is an object array)

    """))


add_newdoc('numpy.core.multiarray', 'ndarray', ('all',
    """a.all(axis=None, out=None)

    Check if all of the elements of `a` are true.

    Performs a logical_and over the given axis and returns the result

    Parameters
    ----------
    axis : {None, integer}
        Axis to perform the operation over.
        If None, perform over flattened array.
    out : {None, array}, optional
        Array into which the result can be placed. Its type is preserved
        and it must be of the right shape to hold the output.

    See Also
    --------
    all : equivalent function

     """))


add_newdoc('numpy.core.multiarray', 'ndarray', ('any',
    """a.any(axis=None, out=None)

    Check if any of the elements of `a` are true.

    Performs a logical_or over the given axis and returns the result

    Parameters
    ----------
    axis : {None, integer}
        Axis to perform the operation over.
        If None, perform over flattened array and return a scalar.
    out : {None, array}, optional
        Array into which the result can be placed. Its type is preserved
        and it must be of the right shape to hold the output.

    See Also
    --------
    any : equivalent function

    """))


add_newdoc('numpy.core.multiarray', 'ndarray', ('argmax',
    """a.argmax(axis=None, out=None)

    Returns array of indices of the maximum values along the given axis.

    Parameters
    ----------
    axis : {None, integer}
        If None, the index is into the flattened array, otherwise along
        the specified axis
    out : {None, array}, optional
        Array into which the result can be placed. Its type is preserved
        and it must be of the right shape to hold the output.

    Returns
    -------
    index_array : {integer_array}

    Examples
    --------
    >>> a = arange(6).reshape(2,3)
    >>> a.argmax()
    5
    >>> a.argmax(0)
    array([1, 1, 1])
    >>> a.argmax(1)
    array([2, 2])

    """))


add_newdoc('numpy.core.multiarray', 'ndarray', ('argmin',
    """a.argmin(axis=None, out=None)

    Return array of indices to the minimum values along the given axis.

    Parameters
    ----------
    axis : {None, integer}
        If None, the index is into the flattened array, otherwise along
        the specified axis
    out : {None, array}, optional
        Array into which the result can be placed. Its type is preserved
        and it must be of the right shape to hold the output.

    Returns
    -------
    index_array : {integer_array}

    Examples
    --------
    >>> a = arange(6).reshape(2,3)
    >>> a.argmin()
    0
    >>> a.argmin(0)
    array([0, 0, 0])
    >>> a.argmin(1)
    array([0, 0])

    """))


add_newdoc('numpy.core.multiarray', 'ndarray', ('argsort',
    """a.argsort(axis=-1, kind='quicksort', order=None) -> indices

    Perform an indirect sort along the given axis using the algorithm specified
    by the kind keyword. It returns an array of indices of the same shape as
    'a' that index data along the given axis in sorted order.

    Parameters
    ----------
    axis : integer
        Axis to be indirectly sorted. None indicates that the flattened
        array should be used. Default is -1.
    kind : string
        Sorting algorithm to use. Possible values are 'quicksort',
        'mergesort', or 'heapsort'. Default is 'quicksort'.
    order : list type or None
        When a is an array with fields defined, this argument specifies
        which fields to compare first, second, etc.  Not all fields need be
        specified.

    Returns
    -------
    indices : integer array
        Array of indices that sort 'a' along the specified axis.

    SeeAlso
    -------
    lexsort : indirect stable sort with multiple keys
    sort : inplace sort

    Notes
    -----
    The various sorts are characterized by average speed, worst case
    performance, need for work space, and whether they are stable. A stable
    sort keeps items with the same key in the same relative order. The three
    available algorithms have the following properties:

    ============ ======= ============= ============ ========
        kind      speed    worst case   work space   stable
    ============ ======= ============= ============ ========
     'quicksort'    1     O(n^2)            0         no
     'mergesort'    2     O(n*log(n))      ~n/2       yes
     'heapsort'     3     O(n*log(n))       0         no
    ============ ======= ============= ============ ========

    All the sort algorithms make temporary copies of the data when the
    sort is not along the last axis. Consequently, sorts along the
    last axis are faster and use less space than sorts along other
    axis.

    """))


add_newdoc('numpy.core.multiarray', 'ndarray', ('astype',
    """a.astype(t) -> Copy of array cast to type t.

    Cast array m to type t.  t can be either a string representing a typecode,
    or a python type object of type int, float, or complex.

    """))


add_newdoc('numpy.core.multiarray', 'ndarray', ('byteswap',
    """a.byteswap(False) -> View or copy. Swap the bytes in the array.

    Swap the bytes in the array.  Return the byteswapped array.  If the first
    argument is True, byteswap in-place and return a reference to self.

    """))


add_newdoc('numpy.core.multiarray', 'ndarray', ('choose',
    """a.choose(choices, out=None, mode='raise')
    a.choose(*choices, out=None, mode='raise')

    Use an index array to construct a new array from a set of choices.

    Given an array of integers and a set of n choice arrays, this method
    will create a new array that merges each of the choice arrays.  Where a
    value in `a` is i, the new array will have the value that choices[i]
    contains in the same place.

    Parameters
    ----------
    choices : sequence of arrays
        Choice arrays. The index array and all of the choices should be
        broadcastable to the same shape.
    out : array, optional
        If provided, the result will be inserted into this array. It should
        be of the appropriate shape and dtype
    mode : {'raise', 'wrap', 'clip'}, optional
        Specifies how out-of-bounds indices will behave.
        'raise' : raise an error
        'wrap' : wrap around
        'clip' : clip to the range

    Returns
    -------
    merged_array : array

    See Also
    --------
    choose : equivalent function

    Examples
    --------
    >>> choices = [[0, 1, 2, 3], [10, 11, 12, 13],
    ...   [20, 21, 22, 23], [30, 31, 32, 33]]
    >>> a = array([2, 3, 1, 0], dtype=int)
    >>> a.choose(choices)
    array([20, 31, 12,  3])
    >>> a = array([2, 4, 1, 0], dtype=int)
    >>> a.choose(choices, mode='clip')
    array([20, 31, 12,  3])
    >>> a.choose(choices, mode='wrap')
    array([20,  1, 12,  3])

    """))


add_newdoc('numpy.core.multiarray', 'ndarray', ('clip',
    """a.clip(a_min, a_max, out=None)

    Return an array whose values are limited to [a_min, a_max].

    Parameters
    ----------
    a_min
        Minimum value
    a_max
        Maximum value
    out : {None, array}, optional
        Array into which the clipped values can be placed.  Its type
        is preserved and it must be of the right shape to hold the
        output.

    Returns
    -------
    clipped_array : array
        A new array whose elements are same as for a, but values
        < a_min are replaced with a_min, and > a_max with a_max.

    """))


add_newdoc('numpy.core.multiarray', 'ndarray', ('compress',
    """a.compress(condition, axis=None, out=None)

    Return selected slices of an array along given axis.

    Parameters
    ----------
    condition : {array}
        Boolean 1-d array selecting which entries to return. If len(condition)
        is less than the size of a along the axis, then output is truncated
        to length of condition array.
    axis : {None, integer}
        Axis along which to take slices. If None, work on the flattened array.
    out : array, optional
        Output array.  Its type is preserved and it must be of the right
        shape to hold the output.

    Returns
    -------
    compressed_array : array
        A copy of a, without the slices along axis for which condition is false.

    Examples
    --------
    >>> a = np.array([[1, 2], [3, 4]])
    >>> a.compress([0, 1], axis=0)
    array([[3, 4]])
    >>> a.compress([1], axis=1)
    array([[1],
           [3]])
    >>> a.compress([0,1,1])
    array([2, 3])

    """))


add_newdoc('numpy.core.multiarray', 'ndarray', ('conj',
    """a.conj()

    Return an array with all complex-valued elements conjugated.

    """))


add_newdoc('numpy.core.multiarray', 'ndarray', ('conjugate',
    """a.conjugate()

    Return an array with all complex-valued elements conjugated.

    """))


add_newdoc('numpy.core.multiarray', 'ndarray', ('copy',
    """a.copy([order])

    Return a copy of the array.

    Parameters
    ----------
    order : {'C', 'F', 'A'}, optional
        If order is 'C' (False) then the result is contiguous (default).
        If order is 'Fortran' (True) then the result has fortran order.
        If order is 'Any' (None) then the result has fortran order
        only if the array already is in fortran order.

    """))


add_newdoc('numpy.core.multiarray', 'ndarray', ('cumprod',
    """a.cumprod(axis=None, dtype=None, out=None)

    Return the cumulative product of the elements along the given axis.

    The cumulative product is taken over the flattened array by
    default, otherwise over the specified axis.

    Parameters
    ----------
    axis : {None, -1, int}, optional
        Axis along which the product is computed. The default
        (``axis``= None) is to compute over the flattened array.
    dtype : {None, dtype}, optional
        Determines the type of the returned array and of the accumulator
        where the elements are multiplied. If dtype has the value None and
        the type of a is an integer type of precision less than the default
        platform integer, then the default platform integer precision is
        used.  Otherwise, the dtype is the same as that of a.
    out : ndarray, optional
        Alternative output array in which to place the result. It must
        have the same shape and buffer length as the expected output
        but the type will be cast if necessary.

    Returns
    -------
    cumprod : ndarray.
        A new array holding the result is returned unless out is
        specified, in which case a reference to out is returned.

    Notes
    -----
    Arithmetic is modular when using integer types, and no error is
    raised on overflow.

    """))


add_newdoc('numpy.core.multiarray', 'ndarray', ('cumsum',
    """a.cumsum(axis=None, dtype=None, out=None)

    Return the cumulative sum of the elements along the given axis.

    The cumulative sum is calculated over the flattened array by
    default, otherwise over the specified axis.

    Parameters
    ----------
    axis : {None, -1, int}, optional
        Axis along which the sum is computed. The default
        (``axis``= None) is to compute over the flattened array.
    dtype : {None, dtype}, optional
        Determines the type of the returned array and of the accumulator
        where the elements are summed. If dtype has the value None and
        the type of a is an integer type of precision less than the default
        platform integer, then the default platform integer precision is
        used.  Otherwise, the dtype is the same as that of a.
    out : ndarray, optional
        Alternative output array in which to place the result. It must
        have the same shape and buffer length as the expected output
        but the type will be cast if necessary.

    Returns
    -------
    cumsum : ndarray.
        A new array holding the result is returned unless ``out`` is
        specified, in which case a reference to ``out`` is returned.

    Notes
    -----
    Arithmetic is modular when using integer types, and no error is
    raised on overflow.

    """))


add_newdoc('numpy.core.multiarray', 'ndarray', ('diagonal',
    """a.diagonal(offset=0, axis1=0, axis2=1) -> diagonals

    If a is 2-d, return the diagonal of self with the given offset, i.e., the
    collection of elements of the form a[i,i+offset]. If a is n-d with n > 2,
    then the axes specified by axis1 and axis2 are used to determine the 2-d
    subarray whose diagonal is returned. The shape of the resulting array can
    be determined by removing axis1 and axis2 and appending an index to the
    right equal to the size of the resulting diagonals.

    Parameters
    ----------
    offset : integer
        Offset of the diagonal from the main diagonal. Can be both positive
        and negative. Defaults to main diagonal.
    axis1 : integer
        Axis to be used as the first axis of the 2-d subarrays from which
        the diagonals should be taken. Defaults to first index.
    axis2 : integer
        Axis to be used as the second axis of the 2-d subarrays from which
        the diagonals should be taken. Defaults to second index.

    Returns
    -------
    array_of_diagonals : same type as original array
        If a is 2-d, then a 1-d array containing the diagonal is returned.
        If a is n-d, n > 2, then an array of diagonals is returned.

    SeeAlso
    -------
    diag : matlab workalike for 1-d and 2-d arrays.
    diagflat : creates diagonal arrays
    trace : sum along diagonals

    Examples
    --------
    >>> a = arange(4).reshape(2,2)
    >>> a
    array([[0, 1],
           [2, 3]])
    >>> a.diagonal()
    array([0, 3])
    >>> a.diagonal(1)
    array([1])

    >>> a = arange(8).reshape(2,2,2)
    >>> a
    array([[[0, 1],
            [2, 3]],

           [[4, 5],
            [6, 7]]])
    >>> a.diagonal(0,-2,-1)
    array([[0, 3],
           [4, 7]])

    """))


add_newdoc('numpy.core.multiarray', 'ndarray', ('dump',
    """a.dump(file)

    Dump a pickle of the array to the specified file.
    The array can be read back with pickle.load or numpy.load.

    Parameters
    ----------
    file : str
        A string naming the dump file.

    """))


add_newdoc('numpy.core.multiarray', 'ndarray', ('dumps',
    """a.dumps()

    Returns the pickle of the array as a string.
    pickle.loads or numpy.loads will convert the string back to an array.

    """))


add_newdoc('numpy.core.multiarray', 'ndarray', ('fill',
    """a.fill(value)

    Fill the array with a scalar value.

    """))


add_newdoc('numpy.core.multiarray', 'ndarray', ('flatten',
    """a.flatten([order])

    Return a 1-d array (always copy)

    Parameters
    ----------
    order : {'C', 'F'}
        Whether to flatten in C or Fortran order.

    Notes
    -----
    a.flatten('F') == a.T.flatten('C')

    """))


add_newdoc('numpy.core.multiarray', 'ndarray', ('getfield',
    """a.getfield(dtype, offset)

    Returns a field of the given array as a certain type. A field is a view of
    the array data with each itemsize determined by the given type and the
    offset into the current array.

    """))


add_newdoc('numpy.core.multiarray', 'ndarray', ('item',
    """a.item()

    Copy the first element of array to a standard Python scalar and return
    it. The array must be of size one.

    """))


add_newdoc('numpy.core.multiarray', 'ndarray', ('max',
    """a.max(axis=None, out=None)

    Return the maximum along a given axis.

    Parameters
    ----------
    axis : {None, int}, optional
        Axis along which to operate.  By default, ``axis`` is None and the
        flattened input is used.
    out : array_like, optional
        Alternative output array in which to place the result.  Must
        be of the same shape and buffer length as the expected output.

    Results
    -------
    amax : array_like
        New array holding the result.
        If ``out`` was specified, ``out`` is returned.

    """))


add_newdoc('numpy.core.multiarray', 'ndarray', ('mean',
    """a.mean(axis=None, dtype=None, out=None) -> mean

    Returns the average of the array elements.  The average is taken over the
    flattened array by default, otherwise over the specified axis.

    Parameters
    ----------
    axis : integer
        Axis along which the means are computed. The default is
        to compute the mean of the flattened array.
    dtype : type
        Type to use in computing the means. For arrays of
        integer type the default is float32, for arrays of float types it
        is the same as the array type.
    out : ndarray
        Alternative output array in which to place the result. It must have
        the same shape as the expected output but the type will be cast if
        necessary.

    Returns
    -------
    mean : The return type varies, see above.
        A new array holding the result is returned unless out is specified,
        in which case a reference to out is returned.

    SeeAlso
    -------
    var : variance
    std : standard deviation

    Notes
    -----
    The mean is the sum of the elements along the axis divided by the
    number of elements.

    """))


add_newdoc('numpy.core.multiarray', 'ndarray', ('min',
    """a.min(axis=None, out=None)

    Return the minimum along a given axis.

    Parameters
    ----------
    axis : {None, int}, optional
        Axis along which to operate.  By default, ``axis`` is None and the
        flattened input is used.
    out : array_like, optional
        Alternative output array in which to place the result.  Must
        be of the same shape and buffer length as the expected output.

    Results
    -------
    amin : array_like
        New array holding the result.
        If ``out`` was specified, ``out`` is returned.

    """))


add_newdoc('numpy.core.multiarray', 'ndarray', ('newbyteorder',
    """a.newbyteorder(byteorder)

    Equivalent to a.view(a.dtype.newbytorder(byteorder))

    """))


add_newdoc('numpy.core.multiarray', 'ndarray', ('nonzero',
    """a.nonzero()

    Returns a tuple of arrays, one for each dimension of a, containing
    the indices of the non-zero elements in that dimension. The
    corresponding non-zero values can be obtained with::

        a[a.nonzero()].

    To group the indices by element, rather than dimension, use::

        transpose(a.nonzero())

    instead. The result of this is always a 2d array, with a row for
    each non-zero element.

    """))


add_newdoc('numpy.core.multiarray', 'ndarray', ('prod',
    """a.prod(axis=None, dtype=None, out=None)

    Return the product of the array elements over the given axis

    Parameters
    ----------
    axis : {None, integer}
        Axis over which the product is taken. If None is used, then the
        product is over all the array elements.
    dtype : {None, dtype}, optional
        Determines the type of the returned array and of the accumulator
        where the elements are multiplied. If dtype has the value None and
        the type of a is an integer type of precision less than the default
        platform integer, then the default platform integer precision is
        used.  Otherwise, the dtype is the same as that of a.
    out : {None, array}, optional
        Alternative output array in which to place the result. It must have
        the same shape as the expected output but the type will be cast if
        necessary.

    Returns
    -------
    product_along_axis : {array, scalar}, see dtype parameter above.
        Returns an array whose shape is the same as a with the specified
        axis removed. Returns a 0d array when a is 1d or axis=None.
        Returns a reference to the specified output array if specified.

    See Also
    --------
    prod : equivalent function

    Examples
    --------
    >>> prod([1.,2.])
    2.0
    >>> prod([1.,2.], dtype=int32)
    2
    >>> prod([[1.,2.],[3.,4.]])
    24.0
    >>> prod([[1.,2.],[3.,4.]], axis=1)
    array([  2.,  12.])

    Notes
    -----
    Arithmetic is modular when using integer types, and no error is
    raised on overflow.

    """))


add_newdoc('numpy.core.multiarray', 'ndarray', ('ptp',
    """a.ptp(axis=None, out=None)

    Return (maximum - minimum) along the the given dimension
    (i.e. peak-to-peak value).

    Parameters
    ----------
    axis : {None, int}, optional
        Axis along which to find the peaks.  If None (default) the
        flattened array is used.
    out : array_like
        Alternative output array in which to place the result. It must
        have the same shape and buffer length as the expected output
        but the type will be cast if necessary.

    Returns
    -------
    ptp : ndarray.
        A new array holding the result, unless ``out`` was
        specified, in which case a reference to ``out`` is returned.

    Examples
    --------
    >>> x = np.arange(4).reshape((2,2))
    >>> x
    array([[0, 1],
           [2, 3]])
    >>> x.ptp(0)
    array([2, 2])
    >>> x.ptp(1)
    array([1, 1])

    """))


add_newdoc('numpy.core.multiarray', 'ndarray', ('put',
    """a.put(indices, values, mode='raise')

    Set a.flat[n] = values[n] for all n in indices.
    If values is shorter than indices, it will repeat.

    Parameters
    ----------
    indices : array_like
        Target indices, interpreted as integers.
    values : array_like
        Values to place in `a` at target indices.
    mode : {'raise', 'wrap', 'clip'}
        Specifies how out-of-bounds indices will behave.
        'raise' -- raise an error
        'wrap' -- wrap around
        'clip' -- clip to the range

    Notes
    -----
    If v is shorter than mask it will be repeated as necessary.  In particular v
    can be a scalar or length 1 array.  The routine put is the equivalent of the
    following (although the loop is in C for speed):

        ind = array(indices, copy=False)
        v = array(values, copy=False).astype(a.dtype)
        for i in ind: a.flat[i] = v[i]

    Examples
    --------
    >>> x = np.arange(5)
    >>> x.put([0,2,4],[-1,-2,-3])
    >>> print x
    [-1  1 -2  3 -3]

    """))


add_newdoc('numpy.core.multiarray', 'putmask',
    """putmask(a, mask, values)

    Sets a.flat[n] = values[n] for each n where mask.flat[n] is true.

    If values is not the same size as `a` and `mask` then it will repeat.
    This gives behavior different from a[mask] = values.

    Parameters
    ----------
    a : {array_like}
        Array to put data into
    mask : {array_like}
        Boolean mask array
    values : {array_like}
        Values to put

    """)


add_newdoc('numpy.core.multiarray', 'ndarray', ('ravel',
    """a.ravel([order])

    Return a 1d array containing the elements of a (copy only if needed).

    The elements in the new array are taken in the order specified by
    the order keyword. The new array is a view of a if possible,
    otherwise it is a copy.

    Parameters
    ----------
    order : {'C','F'}, optional
        If order is 'C' the elements are taken in row major order. If order
        is 'F' they are taken in column major order.

    Returns
    -------
    1d_array : {array}

    See Also
    --------
    ndarray.flat : 1d iterator over the array.
    ndarray.flatten : 1d array copy of the elements of a in C order.

    Examples
    --------
    >>> x = array([[1,2,3],[4,5,6]])
    >>> x
    array([[1, 2, 3],
          [4, 5, 6]])
    >>> x.ravel()
    array([1, 2, 3, 4, 5, 6])

    """))


add_newdoc('numpy.core.multiarray', 'ndarray', ('repeat',
    """a.repeat(repeats, axis=None)

    Repeat elements of an array.

    Parameters
    ----------
    a : {array_like}
        Input array.
    repeats : {integer, integer_array}
        The number of repetitions for each element. If a plain integer, then
        it is applied to all elements. If an array, it needs to be of the
        same length as the chosen axis.
    axis : {None, integer}, optional
        The axis along which to repeat values. If None, then this method
        will operated on the flattened array `a` and return a similarly flat
        result.

    Returns
    -------
    repeated_array : array

    See also
    --------
    tile : tile an array

    Examples
    --------
    >>> x = array([[1,2],[3,4]])
    >>> x.repeat(2)
    array([1, 1, 2, 2, 3, 3, 4, 4])
    >>> x.repeat(3, axis=1)
    array([[1, 1, 1, 2, 2, 2],
           [3, 3, 3, 4, 4, 4]])
    >>> x.repeat([1, 2], axis=0)
    array([[1, 2],
           [3, 4],
           [3, 4]])

    """))


add_newdoc('numpy.core.multiarray', 'ndarray', ('reshape',
    """a.reshape(shape, order='C')
    a.reshape(*shape, order='C')

    Returns an array containing the data of a, but with a new shape.

    The result is a view to the original array; if this is not possible,
    a ValueError is raised.

    Parameters
    ----------
    shape : shape tuple or int
       The new shape should be compatible with the original shape. If an
       integer, then the result will be a 1D array of that length.
    order : {'C', 'F'}, optional
        Determines whether the array data should be viewed as in C
        (row-major) order or FORTRAN (column-major) order.

    Returns
    -------
    reshaped_array : array
        A new view to the array.

    """))


add_newdoc('numpy.core.multiarray', 'ndarray', ('resize',
    """a.resize(new_shape, refcheck=True, order=False)

    Change size and shape of self inplace.  Array must own its own memory and
    not be referenced by other arrays. Returns None.

    """))


add_newdoc('numpy.core.multiarray', 'ndarray', ('round',
    """a.round(decimals=0, out=None)

    Return an array rounded a to the given number of decimals.

    The real and imaginary parts of complex numbers are rounded separately. The
    result of rounding a float is a float so the type must be cast if integers
    are desired.  Nothing is done if the input is an integer array and the
    decimals parameter has a value >= 0.

    Parameters
    ----------
    decimals : {0, integer}, optional
        Number of decimal places to round to. When decimals is negative it
        specifies the number of positions to the left of the decimal point.
    out : {None, array}, optional
        Alternative output array in which to place the result. It must have
        the same shape as the expected output but the type will be cast if
        necessary.

    Returns
    -------
    rounded_array : {array}
        If out=None, returns a new array of the same type as a containing
        the rounded values, otherwise a reference to the output array is
        returned.

    See Also
    --------
    around : equivalent function

    Notes
    -----
    Numpy rounds to even. Thus 1.5 and 2.5 round to 2.0, -0.5 and 0.5 round
    to 0.0, etc. Results may also be surprising due to the inexact
    representation of decimal fractions in IEEE floating point and the
    errors introduced when scaling by powers of ten.

    Examples
    --------
    >>> x = array([.5, 1.5, 2.5, 3.5, 4.5])
    >>> x.round()
    array([ 0.,  2.,  2.,  4.,  4.])
    >>> x = array([1,2,3,11])
    >>> x.round(decimals=1)
    array([ 1,  2,  3, 11])
    >>> x.round(decimals=-1)
    array([ 0,  0,  0, 10])

    """))


add_newdoc('numpy.core.multiarray', 'ndarray', ('searchsorted',
    """a.searchsorted(v, side='left')

    Find the indices into a sorted array such that if the corresponding keys in
    v were inserted before the indices the order of a would be preserved.  If
    side='left', then the first such index is returned. If side='right', then
    the last such index is returned. If there is no such index because the key
    is out of bounds, then the length of a is returned, i.e., the key would
    need to be appended. The returned index array has the same shape as v.

    Parameters
    ----------
    v : array or list type
        Array of keys to be searched for in a.
    side : string
        Possible values are : 'left', 'right'. Default is 'left'. Return
        the first or last index where the key could be inserted.

    Returns
    -------
    indices : integer array
        The returned array has the same shape as v.

    See also
    --------
    sort
    histogram

    Notes
    -----
    The array a must be 1-d and is assumed to be sorted in ascending order.
    Searchsorted uses binary search to find the required insertion points.

    """))


add_newdoc('numpy.core.multiarray', 'ndarray', ('setfield',
    """m.setfield(value, dtype, offset) -> None.
    places val into field of the given array defined by the data type and offset.

    """))


add_newdoc('numpy.core.multiarray', 'ndarray', ('setflags',
    """a.setflags(write=None, align=None, uic=None)

    """))


add_newdoc('numpy.core.multiarray', 'ndarray', ('sort',
    """a.sort(axis=-1, kind='quicksort', order=None) -> None.

    Perform an inplace sort along the given axis using the algorithm specified
    by the kind keyword.

    Parameters
    ----------
    axis : integer
        Axis to be sorted along. None indicates that the flattened array
        should be used. Default is -1.
    kind : string
        Sorting algorithm to use. Possible values are 'quicksort',
        'mergesort', or 'heapsort'. Default is 'quicksort'.
    order : list type or None
        When a is an array with fields defined, this argument specifies
        which fields to compare first, second, etc.  Not all fields need be
        specified.

    SeeAlso
    -------
    argsort : indirect sort
    lexsort : indirect stable sort on multiple keys
    searchsorted : find keys in sorted array

    Notes
    -----

    The various sorts are characterized by average speed, worst case
    performance, need for work space, and whether they are stable. A stable
    sort keeps items with the same key in the same relative order. The three
    available algorithms have the following properties:

    =========== ======= ============= ============ =======
       kind      speed   worst case    work space  stable
    =========== ======= ============= ============ =======
    'quicksort'    1     O(n^2)            0          no
    'mergesort'    2     O(n*log(n))      ~n/2        yes
    'heapsort'     3     O(n*log(n))       0          no
    =========== ======= ============= ============ =======

    All the sort algorithms make temporary copies of the data when the sort is
    not along the last axis. Consequently, sorts along the last axis are faster
    and use less space than sorts along other axis.
    """))


add_newdoc('numpy.core.multiarray', 'ndarray', ('squeeze',
    """m.squeeze()

    Remove single-dimensional entries from the shape of a.

    Examples
    --------
    >>> x = array([[[1,1,1],[2,2,2],[3,3,3]]])
    >>> x.shape
    (1, 3, 3)
    >>> x.squeeze().shape
    (3, 3)

    """))


add_newdoc('numpy.core.multiarray', 'ndarray', ('std',
    """a.std(axis=None, dtype=None, out=None, ddof=0)

    Returns the standard deviation of the array elements, a measure of the
    spread of a distribution. The standard deviation is computed for the
    flattened array by default, otherwise over the specified axis.

    Parameters
    ----------
    axis : integer
        Axis along which the standard deviation is computed. The default is
        to compute the standard deviation of the flattened array.
    dtype : type
        Type to use in computing the standard deviation. For arrays of
        integer type the default is float32, for arrays of float types it
        is the same as the array type.
    out : ndarray
        Alternative output array in which to place the result. It must have
        the same shape as the expected output but the type will be cast if
        necessary.
    ddof : {0, integer}
        Means Delta Degrees of Freedom.  The divisor used in calculations
        is N-ddof.

    Returns
    -------
    standard deviation : The return type varies, see above.
        A new array holding the result is returned unless out is specified,
        in which case a reference to out is returned.

    SeeAlso
    -------
    var : variance
    mean : average

    Notes
    -----
    The standard deviation is the square root of the average of the squared
    deviations from the mean, i.e. var = sqrt(mean(abs(x - x.mean())**2)).  The
    computed standard deviation is computed by dividing by the number of
    elements, N-ddof. The option ddof defaults to zero, that is, a biased
    estimate. Note that for complex numbers std takes the absolute value before
    squaring, so that the result is always real and nonnegative.

    """))


add_newdoc('numpy.core.multiarray', 'ndarray', ('sum',
    """a.sum(axis=None, dtype=None, out=None)

    Return the sum of the array elements over the given axis

    Parameters
    ----------
    axis : {None, integer}
        Axis over which the sum is taken. If None is used, then the sum is
        over all the array elements.
    dtype : {None, dtype}, optional
        Determines the type of the returned array and of the accumulator where
        the elements are summed. If dtype has the value None and the type of a
        is an integer type of precision less than the default platform integer,
        then the default platform integer precision is used.  Otherwise, the
        dtype is the same as that of a.
    out : {None, array}, optional
        Array into which the sum can be placed. Its type is preserved and it
        must be of the right shape to hold the output.

    Returns
    -------
    sum_along_axis : {array, scalar}, see dtype parameter above.
        Returns an array whose shape is the same as a with the specified axis
        removed. Returns a 0d array when a is 1d or axis=None.  Returns a
        reference to the specified output array if specified.

    See Also
    --------
    sum : equivalent function

    Examples
    --------
    >>> array([0.5, 1.5]).sum()
    2.0
    >>> array([0.5, 1.5]).sum(dtype=int32)
    1
    >>> array([[0, 1], [0, 5]]).sum(axis=0)
    array([0, 6])
    >>> array([[0, 1], [0, 5]]).sum(axis=1)
    array([1, 5])
    >>> ones(128, dtype=int8).sum(dtype=int8) # overflow!
    -128

    Notes
    -----
    Arithmetic is modular when using integer types, and no error is
    raised on overflow.

    """))


add_newdoc('numpy.core.multiarray', 'ndarray', ('swapaxes',
    """a.swapaxes(axis1, axis2)

    Return a view of the array with axis1 and axis2 interchanged.

    Parameters
    ----------
    axis1 : int
        First axis.
    axis2 : int
        Second axis.

    Examples
    --------
    >>> x = np.array([[1,2,3]])
    >>> x.swapaxes(0,1)
    array([[1],
           [2],
           [3]])

    >>> x = np.array([[[0,1],[2,3]],[[4,5],[6,7]]])
    >>> x
    array([[[0, 1],
            [2, 3]],

           [[4, 5],
            [6, 7]]])
    >>> x.swapaxes(0,2)
    array([[[0, 4],
            [2, 6]],

           [[1, 5],
            [3, 7]]])

    """))


add_newdoc('numpy.core.multiarray', 'ndarray', ('take',
    """a.take(indices, axis=None, out=None, mode='raise')

    Return an array formed from the elements of a at the given indices.

    This method does the same thing as "fancy" indexing; however, it can
    be easier to use if you need to specify a given axis.

    Parameters
    ----------
    indices : int array
        The indices of the values to extract.
    axis : {None, int}, optional
        The axis over which to select values. None signifies that the
        operation should be performed over the flattened array.
    out : {None, array}, optional
        If provided, the result will be inserted into this array. It should
        be of the appropriate shape and dtype.
    mode : {'raise', 'wrap', 'clip'}, optional
        Specifies how out-of-bounds indices will behave.
        'raise' -- raise an error
        'wrap' -- wrap around
        'clip' -- clip to the range

    Returns
    -------
    subarray : array
        The returned array has the same type as a.

    See Also
    --------
    take : equivalent function

    """))


add_newdoc('numpy.core.multiarray', 'ndarray', ('tofile',
    """a.tofile(fid, sep="", format="%s")

    Write the data to a file.

    Data is always written in 'C' order, independently of the order of `a`.
    The data produced by this method can be recovered by using the function
    fromfile().

    This is a convenience function for quick storage of array data.
    Information on endianess and precision is lost, so this method is not a
    good choice for files intended to archive data or transport data between
    machines with different endianess. Some of these problems can be overcome
    by outputting the data as text files at the expense of speed and file size.

    Parameters
    ----------
    fid : file or string
        An open file object or a string containing a filename.
    sep : string
        Separator between array items for text output.
        If "" (empty), a binary file is written, equivalently to
        file.write(a.tostring()).
    format : string
        Format string for text file output.
        Each entry in the array is formatted to text by converting it to the
        closest Python type, and using "format" % item.

    """))


add_newdoc('numpy.core.multiarray', 'ndarray', ('tolist',
    """a.tolist()

    Return the array as nested lists.

    Copy the data portion of the array to a hierarchical Python list and return
    that list. Data items are converted to the nearest compatible Python type.

    """))


add_newdoc('numpy.core.multiarray', 'ndarray', ('tostring',
    """a.tostring(order='C')

    Construct a Python string containing the raw data bytes in the array.

    Parameters
    ----------
    order : {'C', 'F', None}
        Order of the data for multidimensional arrays:
        C, Fortran, or the same as for the original array.

    """))


add_newdoc('numpy.core.multiarray', 'ndarray', ('trace',
    """a.trace(offset=0, axis1=0, axis2=1, dtype=None, out=None)

    Return the sum along diagonals of the array.

    If a is 2-d, returns the sum along the diagonal of self with the given
    offset, i.e., the collection of elements of the form a[i,i+offset]. If a
    has more than two dimensions, then the axes specified by axis1 and axis2
    are used to determine the 2-d subarray whose trace is returned. The shape
    of the resulting array can be determined by removing axis1 and axis2 and
    appending an index to the right equal to the size of the resulting
    diagonals.

    Parameters
    ----------
    offset : {0, integer}, optional
        Offset of the diagonal from the main diagonal. Can be both positive
        and negative. Defaults to main diagonal.
    axis1 : {0, integer}, optional
        Axis to be used as the first axis of the 2-d subarrays from which
        the diagonals should be taken. Defaults to first axis.
    axis2 : {1, integer}, optional
        Axis to be used as the second axis of the 2-d subarrays from which
        the diagonals should be taken. Defaults to second axis.
    dtype : {None, dtype}, optional
        Determines the type of the returned array and of the accumulator
        where the elements are summed. If dtype has the value None and a is
        of integer type of precision less than the default integer
        precision, then the default integer precision is used. Otherwise,
        the precision is the same as that of a.
    out : {None, array}, optional
        Array into which the sum can be placed. Its type is preserved and
        it must be of the right shape to hold the output.

    Returns
    -------
    sum_along_diagonals : array
        If a is 2-d, a 0-d array containing the diagonal is
        returned.  If a has larger dimensions, then an array of
        diagonals is returned.

    Examples
    --------
    >>> eye(3).trace()
    3.0
    >>> a = arange(8).reshape((2,2,2))
    >>> a.trace()
    array([6, 8])

    """))


add_newdoc('numpy.core.multiarray', 'ndarray', ('transpose',
    """a.transpose(*axes)

    Returns a view of 'a' with axes transposed. If no axes are given,
    or None is passed, switches the order of the axes. For a 2-d
    array, this is the usual matrix transpose. If axes are given,
    they describe how the axes are permuted.

    Examples
    --------
    >>> a = array([[1,2],[3,4]])
    >>> a
    array([[1, 2],
           [3, 4]])
    >>> a.transpose()
    array([[1, 3],
           [2, 4]])
    >>> a.transpose((1,0))
    array([[1, 3],
           [2, 4]])
    >>> a.transpose(1,0)
    array([[1, 3],
           [2, 4]])

    """))


add_newdoc('numpy.core.multiarray', 'ndarray', ('var',
    """a.var(axis=None, dtype=None, out=None, ddof=0) -> variance

    Returns the variance of the array elements, a measure of the spread of a
    distribution.  The variance is computed for the flattened array by default,
    otherwise over the specified axis.

    Parameters
    ----------
    axis : integer
        Axis along which the variance is computed. The default is to
        compute the variance of the flattened array.
    dtype : data-type
        Type to use in computing the variance. For arrays of integer type
        the default is float32, for arrays of float types it is the same as
        the array type.
    out : ndarray
        Alternative output array in which to place the result. It must have
        the same shape as the expected output but the type will be cast if
        necessary.
    ddof : {0, integer},
        Means Delta Degrees of Freedom.  The divisor used in calculation is
        N - ddof.

    Returns
    -------
    variance : The return type varies, see above.
        A new array holding the result is returned unless out is specified,
        in which case a reference to out is returned.

    SeeAlso
    -------
    std : standard deviation
    mean: average

    Notes
    -----
    The variance is the average of the squared deviations from the mean,
    i.e.  var = mean(abs(x - x.mean())**2).  The mean is computed by
    dividing by N-ddof, where N is the number of elements. The argument
    ddof defaults to zero; for an unbiased estimate supply ddof=1. Note
    that for complex numbers the absolute value is taken before squaring,
    so that the result is always real and nonnegative.

    """))


add_newdoc('numpy.core.multiarray', 'ndarray', ('view',
    """a.view(dtype=None, type=None)

    New view of array with the same data.

    Parameters
    ----------
    dtype : data-type
        Data-type descriptor of the returned view, e.g. float32 or int16.
    type : python type
        Type of the returned view, e.g. ndarray or matrix.

    Examples
    --------
    >>> x = np.array([(1,2)],dtype=[('a',np.int8),('b',np.int8)])
    >>> y = x.view(dtype=np.int16, type=np.matrix)

    >>> print y.dtype
    int16

    >>> print type(y)
    <class 'numpy.core.defmatrix.matrix'>

    """))

add_newdoc('numpy.core.umath','geterrobj',
    """geterrobj()

    Used internally by `geterr`.

    Returns
    -------
    errobj : list
        Internal numpy buffer size, error mask, error callback function.

    """)

add_newdoc('numpy.core.umath','seterrobj',
    """seterrobj()

    Used internally by `seterr`.

    Parameters
    ----------
    errobj : list
        [buffer_size, error_mask, callback_func]

    See Also
    --------
    seterrcall

    """)

add_newdoc("numpy.core","ufunc",
    """Functions that operate element by element on whole arrays.

    Unary ufuncs:
    =============

    op(X, out=None)
    Apply op to X elementwise

    Parameters
    ----------
    X : array-like
    out : array-like
        An array to store the output. Must be the same shape as X.

    Returns
    -------
    r : array-like
        r will have the same shape as X; if out is provided, r will be
        equal to out.

    Binary ufuncs:
    ==============

    op(X, Y, out=None)
    Apply op to X and Y elementwise. May "broadcast" to make
    the shapes of X and Y congruent.

    The broadcasting rules are:
    * Dimensions of length 1 may be prepended to either array
    * Arrays may be repeated along dimensions of length 1

    Parameters
    ----------
    X : array-like
    Y : array-like
    out : array-like
        An array to store the output. Must be the same shape as the
        output would have.

    Returns
    -------
    r : array-like
        The return value; if out is provided, r will be equal to out.

    """)


add_newdoc("numpy.core","ufunc",("reduce",
    """reduce(array,axis=0,dtype=None,out=None)

    Reduce applies the operator to all elements of the array producing
    a single result.

    For a one-dimensional array, reduce produces results equivalent to:
    r = op.identity
    for i in xrange(len(A)):
        r = op(r,A[i])
    return r

    For example, add.reduce() is equivalent to sum().

    Parameters:
    -----------

    array : array-like
        The array to act on.
    axis : integer
        The axis along which to apply the reduction.
    dtype : data type or None
        The type used to represent the intermediate results. Defaults
        to the data type of the output array if this is provided, or
        the data type of the input array if no output array is provided.
    out : array-like or None
        A location into which the result is stored. If not provided a
        freshly-allocated array is returned.

    Returns:
    --------

    r : array
        The reduced values. If out was supplied, r is equal to out.

    Example:
    --------
    >>> np.multiply.reduce([2,3,5])
    30

    """))

add_newdoc("numpy.core","ufunc",("accumulate",
    """accumulate(array,axis=None,dtype=None,out=None)

    Accumulate applies the operator to all elements of the array producing
    cumulative results.

    For a one-dimensional array, accumulate produces results equivalent to:
    r = np.empty(len(A))
    t = op.identity
    for i in xrange(len(A)):
        t = op(t,A[i])
        r[i] = t
    return r

    For example, add.accumulate() is equivalent to cumsum().

    Parameters:
    -----------

    array : array-like
        The array to act on.
    axis : integer
        The axis along which to apply the accumulation.
    dtype : data type or None
        The type used to represent the intermediate results. Defaults
        to the data type of the output array if this is provided, or
        the data type of the input array if no output array is provided.
    out : array-like or None
        A location into which the result is stored. If not provided a
        freshly-allocated array is returned.

    Returns:
    --------

    r : array
        The accumulated values. If out was supplied, r is equal to out.

    Example:
    --------
    >>> np.multiply.accumulate([2,3,5])
    array([2,6,30])

    """))

add_newdoc("numpy.core","ufunc",("reduceat",
    """reduceat(self,array,indices,axis=None,dtype=None,out=None)

    Reduceat performs a reduce over an axis using the indices as a guide

    op.reduceat(array,indices)  computes
    op.reduce(array[indices[i]:indices[i+1]])
    for i=0..end with an implicit indices[i+1]=len(array)
    assumed when i=end-1

    if indices[i+1] <= indices[i]+1
    then the result is array[indices[i]] for that value

    op.accumulate(array) is the same as
    op.reduceat(array,indices)[::2]
    where indices is range(len(array)-1) with a zero placed
    in every other sample:
    indices = zeros(len(array)*2-1)
    indices[1::2] = range(1,len(array))

    output shape is based on the size of indices

    Parameters:
    -----------

    array : array-like
        The array to act on.
    indices : array-like
        Indices specifying ranges to reduce.
    axis : integer
        The axis along which to apply the reduceat.
    dtype : data type or None
        The type used to represent the intermediate results. Defaults
        to the data type of the output array if this is provided, or
        the data type of the input array if no output array is provided.
    out : array-like or None
        A location into which the result is stored. If not provided a
        freshly-allocated array is returned.

    Returns:
    --------

    r : array
        The reduced values. If out was supplied, r is equal to out.

    Example:
    --------
    To take the running sum of four successive values:
    >>> np.multiply.reduceat(np.arange(8),[0,4, 1,5, 2,6, 3,7])[::2]
    array([ 6, 10, 14, 18])

    """))

add_newdoc("numpy.core","ufunc",("outer",
    """outer(A,B)

    Compute the result of applying op to all pairs (a,b)

    op.outer(A,B) is equivalent to
    op(A[:,:,...,:,newaxis,...,newaxis]*B[newaxis,...,newaxis,:,...,:])
    where A has B.ndim new axes appended and B has A.ndim new axes prepended.

    For A and B one-dimensional, this is equivalent to
    r = empty(len(A),len(B))
    for i in xrange(len(A)):
        for j in xrange(len(B)):
            r[i,j] = A[i]*B[j]
    If A and B are higher-dimensional, the result has dimension A.ndim+B.ndim

    Parameters:
    -----------

    A : array-like
    B : array-like

    Returns:
    --------

    r : array
    Example:
    --------
    >>> np.multiply.outer([1,2,3],[4,5,6])
    array([[ 4,  5,  6],
           [ 8, 10, 12],
           [12, 15, 18]])

    """))