summaryrefslogtreecommitdiff
path: root/numpy/add_newdocs.py
blob: c61ffcab8f8e9a1a2e5146449ebe8a31e8a47603 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
# This is only meant to add docs to
#  objects defined in C-extension modules.
# The purpose is to allow easier editing of the
#  docstrings without requiring a re-compile.
from lib import add_newdoc

add_newdoc('numpy.core', 'dtype',
"""Create a data type.

A numpy array is homogeneous, and contains elements described by a
dtype.  A dtype can be constructed from different combinations of
fundamental numeric types, as illustrated below.

Examples
--------

Using array-scalar type:
>>> dtype(int16)
dtype('int16')

Record, one field name 'f1', containing int16:
>>> dtype([('f1', int16)])
dtype([('f1', '<i2')])

Record, one field named 'f1', in itself containing a record with one field:
>>> dtype([('f1', [('f1', int16)])])
dtype([('f1', [('f1', '<i2')])])

Record, two fields: the first field contains an unsigned int, the
second an int32:
>>> dtype([('f1', uint), ('f2', int32)])
dtype([('f1', '<u4'), ('f2', '<i4')])

Using array-protocol type strings:
>>> dtype([('a','f8'),('b','S10')])
dtype([('a', '<f8'), ('b', '|S10')])

Using comma-separated field formats.  The shape is (2,3):
>>> dtype("i4, (2,3)f8")
dtype([('f0', '<i4'), ('f1', '<f8', (2, 3))])

Using tuples.  ``int`` is a fixed type, 3 the field's shape.  ``void``
is a flexible type, here of size 10:
>>> dtype([('hello',(int,3)),('world',void,10)])
dtype([('hello', '<i4', 3), ('world', '|V10')])

Subdivide ``int16`` into 2 ``int8``'s, called x and y.  0 and 1 are
the offsets in bytes:
>>> dtype((int16, {'x':(int8,0), 'y':(int8,1)}))
dtype(('<i2', [('x', '|i1'), ('y', '|i1')]))

Using dictionaries.  Two fields named 'gender' and 'age':
>>> dtype({'names':['gender','age'], 'formats':['S1',uint8]})
dtype([('gender', '|S1'), ('age', '|u1')])

Offsets in bytes, here 0 and 25:
>>> dtype({'surname':('S25',0),'age':(uint8,25)})
dtype([('surname', '|S25'), ('age', '|u1')])

""")

add_newdoc('numpy.core','dtype',
           [('fields', "Fields of the data-type or None if no fields"),
            ('names', "Names of fields or None if no fields"),
            ('alignment', "Needed alignment for this data-type"),
            ('byteorder',
             "Little-endian (<), big-endian (>), native (=), or "\
             "not-applicable (|)"),
            ('char', "Letter typecode for this data-type"),
            ('type', "Type object associated with this data-type"),
            ('kind', "Character giving type-family of this data-type"),
            ('itemsize', "Size of each item"),
            ('hasobject', "Non-zero if Python objects are in "\
             "this data-type"),
            ('num', "Internally-used number for builtin base"),
            ('newbyteorder',
"""self.newbyteorder(<endian>)
returns a copy of the dtype object with altered byteorders.
If <endian> is not given all byteorders are swapped.
Otherwise endian can be '>', '<', or '=' to force a particular
byteorder.  Data-types in all fields are also updated in the
new dtype object.
"""),
            ("__reduce__", "self.__reduce__() for pickling"),
            ("__setstate__", "self.__setstate__() for pickling"),
            ("subdtype", "A tuple of (descr, shape) or None"),
            ("descr", "The array_interface data-type descriptor."),
            ("str", "The array interface typestring."),
            ("name", "The name of the true data-type"),
            ("base", "The base data-type or self if no subdtype"),
            ("shape", "The shape of the subdtype or (1,)"),
            ("isbuiltin", "Is this a built-in data-type?"),
            ("isnative", "Is the byte-order of this data-type native?")
            ]
           )

###############################################################################
#
# flatiter
#
# flatiter needs a toplevel description
#
###############################################################################

# attributes
add_newdoc('numpy.core', 'flatiter', ('base',
    """documentation needed

    """))



add_newdoc('numpy.core', 'flatiter', ('coords',
    """An N-d tuple of current coordinates.

    """))



add_newdoc('numpy.core', 'flatiter', ('index',
    """documentation needed

    """))



# functions
add_newdoc('numpy.core', 'flatiter', ('__array__',
    """__array__(type=None) Get array from iterator

    """))


add_newdoc('numpy.core', 'flatiter', ('copy',
    """copy() Get a copy of the iterator as a 1-d array

    """))


###############################################################################
#
# broadcast
#
###############################################################################

# attributes
add_newdoc('numpy.core', 'broadcast', ('index',
    """current index in broadcasted result

    """))


add_newdoc('numpy.core', 'broadcast', ('iters',
    """tuple of individual iterators

    """))


add_newdoc('numpy.core', 'broadcast', ('nd',
    """number of dimensions of broadcasted result

    """))


add_newdoc('numpy.core', 'broadcast', ('numiter',
    """number of iterators

    """))


add_newdoc('numpy.core', 'broadcast', ('shape',
    """shape of broadcasted result

    """))


add_newdoc('numpy.core', 'broadcast', ('size',
    """total size of broadcasted result

    """))


###############################################################################
#
# numpy functions
#
###############################################################################

add_newdoc('numpy.core.multiarray','array',
    """array(object, dtype=None, copy=1,order=None, subok=0,ndmin=0)

    Return an array from object with the specified date-type.

    Parameters
    ----------
    object : array-like
        an array, any object exposing the array interface, any
        object whose __array__ method returns an array, or any
        (nested) sequence.
    dtype : data-type
        The desired data-type for the array.  If not given, then
        the type will be determined as the minimum type required
        to hold the objects in the sequence.  This argument can only
        be used to 'upcast' the array.  For downcasting, use the
        .astype(t) method.
    copy : bool
        If true, then force a copy.  Otherwise a copy will only occur
        if __array__ returns a copy, obj is a nested sequence, or
        a copy is needed to satisfy any of the other requirements
    order : {'C', 'F', 'A' (None)}
        Specify the order of the array.  If order is 'C', then the
        array will be in C-contiguous order (last-index varies the
        fastest).  If order is 'FORTRAN', then the returned array
        will be in Fortran-contiguous order (first-index varies the
        fastest).  If order is None, then the returned array may
        be in either C-, or Fortran-contiguous order or even
        discontiguous.
    subok : bool
        If True, then sub-classes will be passed-through, otherwise
        the returned array will be forced to be a base-class array
    ndmin : int
        Specifies the minimum number of dimensions that the resulting
        array should have.  1's will be pre-pended to the shape as
        needed to meet this requirement.

    """)

add_newdoc('numpy.core.multiarray','empty',
    """empty((d1,...,dn),dtype=float,order='C')

    Return a new array of shape (d1,...,dn) and given type with all its
    entries uninitialized. This can be faster than zeros.

    """)


add_newdoc('numpy.core.multiarray','scalar',
    """scalar(dtype,obj)

    Return a new scalar array of the given type initialized with
    obj. Mainly for pickle support.  The dtype must be a valid data-type
    descriptor.  If dtype corresponds to an OBJECT descriptor, then obj
    can be any object, otherwise obj must be a string. If obj is not given
    it will be interpreted as None for object type and zeros for all other
    types.

    """)

add_newdoc('numpy.core.multiarray','zeros',
    """zeros((d1,...,dn),dtype=float,order='C')

    Return a new array of shape (d1,...,dn) and type typecode with all
    it's entries initialized to zero.

    """)

add_newdoc('numpy.core.multiarray','set_typeDict',
    """set_typeDict(dict)

    Set the internal dictionary that can look up an array type using a
    registered code.

    """)

add_newdoc('numpy.core.multiarray','fromstring',
    """fromstring(string, dtype=float, count=-1, sep='')

    Return a new 1d array initialized from the raw binary data in string.

    If count is positive, the new array will have count elements, otherwise its
    size is determined by the size of string.  If sep is not empty then the
    string is interpreted in ASCII mode and converted to the desired number type
    using sep as the separator between elements (extra whitespace is ignored).
    ASCII integer conversions are base-10; octal and hex are not supported.

    """)

add_newdoc('numpy.core.multiarray','fromiter',
    """fromiter(iterable, dtype, count=-1)

    Return a new 1d array initialized from iterable. If count is
    nonegative, the new array will have count elements, otherwise it's
    size is determined by the generator.

    """)

add_newdoc('numpy.core.multiarray','fromfile',
    """fromfile(file=, dtype=float, count=-1, sep='') -> array.

    Parameters
    ----------
    file : file or string
        open file object or string containing file name.
    dtype : data-type
        data type of the returned array
    count : int
        number of items to read (-1 mean 'all')
    sep : string
        separater between items if file is a text file (default "")

    Return an array of the given data type from a text or binary file. The
    'file' argument can be an open file or a string with the name of a file to
    read from.  If 'count' == -1 the entire file is read, otherwise count is the
    number of items of the given type to read in.  If 'sep' is "" it means to
    read binary data from the file using the specified dtype, otherwise it gives
    the separator between elements in a text file. The 'dtype' value is also
    used to determine the size and order of the items in binary files.

    Data written using the tofile() method can be conveniently recovered using
    this function.

    WARNING: This function should be used sparingly as the binary files are not
    platform independent. In particular, they contain no endianess or datatype
    information. Nevertheless it can be useful for reading in simply formatted
    or binary data quickly.

    """)

add_newdoc('numpy.core.multiarray','frombuffer',
    """frombuffer(buffer=, dtype=float, count=-1, offset=0)

    Returns a 1-d array of data type dtype from buffer. The buffer
    argument must be an object that exposes the buffer interface.  If
    count is -1 then the entire buffer is used, otherwise, count is the
    size of the output.  If offset is given then jump that far into the
    buffer. If the buffer has data that is out not in machine byte-order,
    than use a propert data type descriptor. The data will not be
    byteswapped, but the array will manage it in future operations.

    """)

add_newdoc('numpy.core.multiarray','concatenate',
    """concatenate((a1, a2, ...), axis=0)

    Join arrays together.

    The tuple of sequences (a1, a2, ...) are joined along the given axis
    (default is the first one) into a single numpy array.

    Examples
    --------
    >>> concatenate( ([0,1,2], [5,6,7]) )
    array([0, 1, 2, 5, 6, 7])

    """)

add_newdoc('numpy.core.multiarray','inner',
    """inner(a,b)

    Returns the dot product of two arrays, which has shape a.shape[:-1] +
    b.shape[:-1] with elements computed by the product of the elements
    from the last dimensions of a and b.

    """)

add_newdoc('numpy.core','fastCopyAndTranspose',
    """_fastCopyAndTranspose(a)""")

add_newdoc('numpy.core.multiarray','correlate',
    """cross_correlate(a,v, mode=0)""")

add_newdoc('numpy.core.multiarray','arange',
    """arange([start,] stop[, step,], dtype=None)

    For integer arguments, just like range() except it returns an array
    whose type can be specified by the keyword argument dtype.  If dtype
    is not specified, the type of the result is deduced from the type of
    the arguments.

    For floating point arguments, the length of the result is ceil((stop -
    start)/step).  This rule may result in the last element of the result
    being greater than stop.

    """)

add_newdoc('numpy.core.multiarray','_get_ndarray_c_version',
    """_get_ndarray_c_version()

    Return the compile time NDARRAY_VERSION number.

    """)

add_newdoc('numpy.core.multiarray','_reconstruct',
    """_reconstruct(subtype, shape, dtype)

    Construct an empty array. Used by Pickles.

    """)


add_newdoc('numpy.core.multiarray','set_string_function',
    """set_string_function(f, repr=1)

    Set the python function f to be the function used to obtain a pretty
    printable string version of an array whenever an array is printed.
    f(M) should expect an array argument M, and should return a string
    consisting of the desired representation of M for printing.

    """)

add_newdoc('numpy.core.multiarray','set_numeric_ops',
    """set_numeric_ops(op=func, ...)

    Set some or all of the number methods for all array objects.  Do not
    forget **dict can be used as the argument list.  Return the functions
    that were replaced, which can be stored and set later.

    """)

add_newdoc('numpy.core.multiarray','where',
    """where(condition, x, y) or where(condition)

    Return elements from `x` or `y`, depending on `condition`.

    Parameters
    ----------
    condition : array of bool
        When True, yield x, otherwise yield y.
    x,y : 1-dimensional arrays
        Values from which to choose.

    Notes
    -----
    This is equivalent to

        [xv if c else yv for (c,xv,yv) in zip(condition,x,y)]

    The result is shaped like `condition` and has elements of `x`
    or `y` where `condition` is respectively True or False.

    In the special case, where only `condition` is given, the
    tuple condition.nonzero() is returned, instead.

    Examples
    --------
    >>> where([True,False,True],[1,2,3],[4,5,6])
    array([1, 5, 3])

    """)


add_newdoc('numpy.core.multiarray','lexsort',
    """lexsort(keys=, axis=-1) -> array of indices. Argsort with list of keys.

    Perform an indirect sort using a list of keys. The first key is sorted,
    then the second, and so on through the list of keys. At each step the
    previous order is preserved when equal keys are encountered. The result is
    a sort on multiple keys.  If the keys represented columns of a spreadsheet,
    for example, this would sort using multiple columns (the last key being
    used for the primary sort order, the second-to-last key for the secondary
    sort order, and so on).  The keys argument must be a sequence of things
    that can be converted to arrays of the same shape.

    Parameters
    ----------
    keys : (k,N) array or tuple of (N,) sequences
        Array containing values that the returned indices should sort.

    axis : integer
        Axis to be indirectly sorted.  Default is -1 (i.e. last axis).

    Returns
    -------
    indices : (N,) integer array
        Array of indices that sort the keys along the specified axis.

    See Also
    --------
    argsort : indirect sort
    sort : inplace sort

    Examples
    --------
    >>> a = [1,5,1,4,3,6,7]
    >>> b = [9,4,0,4,0,4,3]
    >>> ind = lexsort((b,a))
    >>> print ind
    [2 0 4 3 1 5 6]
    >>> print take(a,ind)
    [1 1 3 4 5 6 7]
    >>> print take(b,ind)
    [0 9 0 4 4 4 3]

    """)

add_newdoc('numpy.core.multiarray','can_cast',
    """can_cast(from=d1, to=d2)

    Returns True if data type d1 can be cast to data type d2 without
    losing precision.

    """)

add_newdoc('numpy.core.multiarray','newbuffer',
    """newbuffer(size)

    Return a new uninitialized buffer object of size bytes

    """)

add_newdoc('numpy.core.multiarray','getbuffer',
    """getbuffer(obj [,offset[, size]])

    Create a buffer object from the given object referencing a slice of
    length size starting at offset.  Default is the entire buffer. A
    read-write buffer is attempted followed by a read-only buffer.

    """)

##############################################################################
#
# Documentation for ndarray attributes and methods
#
##############################################################################


##############################################################################
#
# ndarray object
#
##############################################################################


add_newdoc('numpy.core.multiarray', 'ndarray',
    """An array object represents a multidimensional, homogeneous array
    of fixed-size items.  An associated data-type-descriptor object
    details the data-type in an array (including byteorder and any
    fields).  An array can be constructed using the numpy.array
    command. Arrays are sequence, mapping and numeric objects.
    More information is available in the numpy module and by looking
    at the methods and attributes of an array.

    ndarray.__new__(subtype, shape=, dtype=float, buffer=None,
                    offset=0, strides=None, order=None)

     There are two modes of creating an array using __new__:
     1) If buffer is None, then only shape, dtype, and order
        are used
     2) If buffer is an object exporting the buffer interface, then
        all keywords are interpreted.
     The dtype parameter can be any object that can be interpreted
        as a numpy.dtype object.

     No __init__ method is needed because the array is fully
     initialized after the __new__ method.

    """)


##############################################################################
#
# ndarray attributes
#
##############################################################################


add_newdoc('numpy.core.multiarray', 'ndarray', ('__array_interface__',
    """Array protocol: Python side."""))


add_newdoc('numpy.core.multiarray', 'ndarray', ('__array_finalize__',
    """None."""))


add_newdoc('numpy.core.multiarray', 'ndarray', ('__array_priority__',
    """Array priority."""))


add_newdoc('numpy.core.multiarray', 'ndarray', ('__array_struct__',
    """Array protocol: C-struct side."""))


add_newdoc('numpy.core.multiarray', 'ndarray', ('_as_parameter_',
    """Allow the array to be interpreted as a ctypes object by returning the
    data-memory location as an integer

    """))


add_newdoc('numpy.core.multiarray', 'ndarray', ('base',
    """Base object if memory is from some other object.

    """))


add_newdoc('numpy.core.multiarray', 'ndarray', ('ctypes',
    """A ctypes interface object.

    """))


add_newdoc('numpy.core.multiarray', 'ndarray', ('data',
    """Buffer object pointing to the start of the data.

    """))


add_newdoc('numpy.core.multiarray', 'ndarray', ('dtype',
    """Data-type for the array.

    """))


add_newdoc('numpy.core.multiarray', 'ndarray', ('imag',
    """Imaginary part of the array.

    """))


add_newdoc('numpy.core.multiarray', 'ndarray', ('itemsize',
    """Length of one element in bytes.

    """))


add_newdoc('numpy.core.multiarray', 'ndarray', ('flags',
    """Special object providing array flags.

    """))


add_newdoc('numpy.core.multiarray', 'ndarray', ('flat',
    """A 1-d flat iterator.

    """))


add_newdoc('numpy.core.multiarray', 'ndarray', ('nbytes',
    """Number of bytes in the array.

    """))


add_newdoc('numpy.core.multiarray', 'ndarray', ('ndim',
    """Number of array dimensions.

    """))


add_newdoc('numpy.core.multiarray', 'ndarray', ('real',
    """Real part of the array.

    """))


add_newdoc('numpy.core.multiarray', 'ndarray', ('shape',
    """Tuple of array dimensions.

    """))


add_newdoc('numpy.core.multiarray', 'ndarray', ('size',
    """Number of elements in the array.

    """))


add_newdoc('numpy.core.multiarray', 'ndarray', ('strides',
    """Tuple of bytes to step in each dimension.

    """))


add_newdoc('numpy.core.multiarray', 'ndarray', ('T',
    """Same as self.transpose() except self is returned for self.ndim < 2.

    """))


##############################################################################
#
# ndarray methods
#
##############################################################################


add_newdoc('numpy.core.multiarray', 'ndarray', ('__array__',
    """ a.__array__(|dtype) -> reference if type unchanged, copy otherwise.

    Returns either a new reference to self if dtype is not given or a new array
    of provided data type if dtype is different from the current dtype of the
    array.

    """))


add_newdoc('numpy.core.multiarray', 'ndarray', ('__array_wrap__',
    """a.__array_wrap__(obj) -> Object of same type as a from ndarray obj.

    """))


add_newdoc('numpy.core.multiarray', 'ndarray', ('__copy__',
    """a.__copy__(|order) -> copy, possibly with different order.

    Return a copy of the array.

    Parameters
    ----------
    order : {'C', 'F', 'A'}
        If order is 'C' (False) then the result is contiguous (default).
        If order is 'Fortran' (True) then the result has fortran order.
        If order is 'Any' (None) then the result has fortran order
        only if m is already in fortran order.;

    """))


add_newdoc('numpy.core.multiarray', 'ndarray', ('__deepcopy__',
    """a.__deepcopy__() -> Deep copy of array.

    Used if copy.deepcopy is called on an array.

    """))


add_newdoc('numpy.core.multiarray', 'ndarray', ('__reduce__',
    """a.__reduce__()

    For pickling.

    """))


add_newdoc('numpy.core.multiarray', 'ndarray', ('__setstate__',
    """a.__setstate__(version, shape, dtype, isfortran, rawdata)

    For unpickling.

    Parameters
    ----------
    version : int
        optional pickle version. If omitted defaults to 0.
    shape : tuple
    dtype : data-type
    isFortran : bool
    rawdata : string or list
        a binary string with the data (or a list if 'a' is an object array)

    """))


add_newdoc('numpy.core.multiarray', 'ndarray', ('all',
    """ a.all(axis=None)

    """))


add_newdoc('numpy.core.multiarray', 'ndarray', ('any',
    """ a.any(axis=None, out=None)

    """))


add_newdoc('numpy.core.multiarray', 'ndarray', ('argmax',
    """ a.argmax(axis=None, out=None)

    """))


add_newdoc('numpy.core.multiarray', 'ndarray', ('argmin',
    """ a.argmin(axis=None, out=None)

    """))


add_newdoc('numpy.core.multiarray', 'ndarray', ('argsort',
    """a.argsort(axis=-1, kind='quicksort', order=None) -> indices

    Perform an indirect sort along the given axis using the algorithm specified
    by the kind keyword. It returns an array of indices of the same shape as
    'a' that index data along the given axis in sorted order.

    Parameters
    ----------
    axis : integer
        Axis to be indirectly sorted. None indicates that the flattened
        array should be used. Default is -1.
    kind : string
        Sorting algorithm to use. Possible values are 'quicksort',
        'mergesort', or 'heapsort'. Default is 'quicksort'.
    order : list type or None
        When a is an array with fields defined, this argument specifies
        which fields to compare first, second, etc.  Not all fields need be
        specified.

    Returns
    -------
    indices : integer array
        Array of indices that sort 'a' along the specified axis.

    SeeAlso
    -------
    lexsort : indirect stable sort with multiple keys
    sort : inplace sort

    Notes
    -----

    The various sorts are characterized by average speed, worst case
    performance, need for work space, and whether they are stable. A stable
    sort keeps items with the same key in the same relative order. The three
    available algorithms have the following properties:

    |------------------------------------------------------|
    |    kind   | speed |  worst case | work space | stable|
    |------------------------------------------------------|
    |'quicksort'|   1   | O(n^2)      |     0      |   no  |
    |'mergesort'|   2   | O(n*log(n)) |    ~n/2    |   yes |
    |'heapsort' |   3   | O(n*log(n)) |     0      |   no  |
    |------------------------------------------------------|

    All the sort algorithms make temporary copies of the data when the sort is not
    along the last axis. Consequently, sorts along the last axis are faster and use
    less space than sorts along other axis.

    """))


add_newdoc('numpy.core.multiarray', 'ndarray', ('astype',
    """a.astype(t) -> Copy of array cast to type t.

    Cast array m to type t.  t can be either a string representing a typecode,
    or a python type object of type int, float, or complex.

    """))


add_newdoc('numpy.core.multiarray', 'ndarray', ('byteswap',
    """a.byteswap(False) -> View or copy. Swap the bytes in the array.

    Swap the bytes in the array.  Return the byteswapped array.  If the first
    argument is True, byteswap in-place and return a reference to self.

    """))


add_newdoc('numpy.core.multiarray', 'ndarray', ('choose',
    """ a.choose(b0, b1, ..., bn, out=None, mode='raise')

    Return an array that merges the b_i arrays together using 'a' as
    the index The b_i arrays and 'a' must all be broadcastable to the
    same shape.  The output at a particular position is the input
    array b_i at that position depending on the value of 'a' at that
    position.  Therefore, 'a' must be an integer array with entries
    from 0 to n+1.;

    """))


add_newdoc('numpy.core.multiarray', 'ndarray', ('clip',
    """a.clip(min=, max=, out=None)

    """))


add_newdoc('numpy.core.multiarray', 'ndarray', ('compress',
    """a.compress(condition=, axis=None, out=None)

    """))


add_newdoc('numpy.core.multiarray', 'ndarray', ('conj',
    """a.conj()

    """))


add_newdoc('numpy.core.multiarray', 'ndarray', ('conjugate',
    """a.conjugate()

    """))


add_newdoc('numpy.core.multiarray', 'ndarray', ('copy',
    """a.copy(|order) -> copy, possibly with different order.

    Return a copy of the array.

    Parameters
    ----------
    order : Order of returned copy (default 'C')
        If order is 'C' (False) then the result is contiguous (default).
        If order is 'Fortran' (True) then the result has fortran order.
        If order is 'Any' (None) then the result has fortran order
        only if m is already in fortran order.;

    """))


add_newdoc('numpy.core.multiarray', 'ndarray', ('cumprod',
    """a.cumprod(axis=None, dtype=None)

    """))


add_newdoc('numpy.core.multiarray', 'ndarray', ('cumsum',
    """a.cumsum(axis=None, dtype=None, out=None)

    """))


add_newdoc('numpy.core.multiarray', 'ndarray', ('diagonal',
    """a.diagonal(offset=0, axis1=0, axis2=1) -> diagonals

    If a is 2-d, return the diagonal of self with the given offset, i.e., the
    collection of elements of the form a[i,i+offset]. If a is n-d with n > 2,
    then the axes specified by axis1 and axis2 are used to determine the 2-d
    subarray whose diagonal is returned. The shape of the resulting array can
    be determined by removing axis1 and axis2 and appending an index to the
    right equal to the size of the resulting diagonals.

    Parameters
    ----------
    offset : integer
        Offset of the diagonal from the main diagonal. Can be both positive
        and negative. Defaults to main diagonal.
    axis1 : integer
        Axis to be used as the first axis of the 2-d subarrays from which
        the diagonals should be taken. Defaults to first index.
    axis2 : integer
        Axis to be used as the second axis of the 2-d subarrays from which
        the diagonals should be taken. Defaults to second index.

    Returns
    -------
    array_of_diagonals : same type as original array
        If a is 2-d, then a 1-d array containing the diagonal is returned.
        If a is n-d, n > 2, then an array of diagonals is returned.

    SeeAlso
    -------
    diag : matlab workalike for 1-d and 2-d arrays.
    diagflat : creates diagonal arrays
    trace : sum along diagonals

    Examples
    --------
    >>> a = arange(4).reshape(2,2)
    >>> a
    array([[0, 1],
           [2, 3]])
    >>> a.diagonal()
    array([0, 3])
    >>> a.diagonal(1)
    array([1])

    >>> a = arange(8).reshape(2,2,2)
    >>> a
    array([[[0, 1],
            [2, 3]],

           [[4, 5],
            [6, 7]]])
    >>> a.diagonal(0,-2,-1)
    array([[0, 3],
           [4, 7]])

    """))


add_newdoc('numpy.core.multiarray', 'ndarray', ('dump',
    """a.dump(file) Dump a pickle of the array to the specified file.

    The array can be read back with pickle.load or numpy.load

    Arguments:
        file -- string naming the dump file.

    """))


add_newdoc('numpy.core.multiarray', 'ndarray', ('dumps',
    """a.dumps() returns the pickle of the array as a string.

    pickle.loads or numpy.loads will convert the string back to an array.
    """))


add_newdoc('numpy.core.multiarray', 'ndarray', ('fill',
    """a.fill(value) -> None. Fill the array with the scalar value.

    """))


add_newdoc('numpy.core.multiarray', 'ndarray', ('flatten',
    """a.flatten([fortran]) return a 1-d array (always copy)

    """))


add_newdoc('numpy.core.multiarray', 'ndarray', ('getfield',
    """a.getfield(dtype, offset) -> field of array as given type.

    Returns a field of the given array as a certain type. A field is a view of
    the array data with each itemsize determined by the given type and the
    offset into the current array.

    """))


add_newdoc('numpy.core.multiarray', 'ndarray', ('item',
    """a.item() ->  copy of first array item as Python scalar.

    Copy the first element of array to a standard Python scalar and return
    it. The array must be of size one.

    """))


add_newdoc('numpy.core.multiarray', 'ndarray', ('max',
    """a.max(axis=None)

    """))


add_newdoc('numpy.core.multiarray', 'ndarray', ('mean',
    """a.mean(axis=None, dtype=None, out=None) -> mean

    Returns the average of the array elements.  The average is taken over the
    flattened array by default, otherwise over the specified axis.

    Parameters
    ----------
    axis : integer
        Axis along which the means are computed. The default is
        to compute the mean of the flattened array.
    dtype : type
        Type to use in computing the means. For arrays of
        integer type the default is float32, for arrays of float types it
        is the same as the array type.
    out : ndarray
        Alternative output array in which to place the result. It must have
        the same shape as the expected output but the type will be cast if
        necessary.

    Returns
    -------
    mean : The return type varies, see above.
        A new array holding the result is returned unless out is specified,
        in which case a reference to out is returned.

    SeeAlso
    -------
    var : variance
    std : standard deviation

    Notes
    -----
    The mean is the sum of the elements along the axis divided by the
    number of elements.

    """))


add_newdoc('numpy.core.multiarray', 'ndarray', ('min',
    """a.min(axis=None)

    """))


add_newdoc('numpy.core.multiarray', 'ndarray', ('newbyteorder',
    """a.newbyteorder(<byteorder>) is equivalent to
    a.view(a.dtype.newbytorder(<byteorder>))

    """))


add_newdoc('numpy.core.multiarray', 'ndarray', ('nonzero',
    """a.nonzero() returns a tuple of arrays

    Returns a tuple of arrays, one for each dimension of a,
    containing the indices of the non-zero elements in that
    dimension.  The corresponding non-zero values can be obtained
    with
        a[a.nonzero()].

    To group the indices by element, rather than dimension, use
        transpose(a.nonzero())
    instead. The result of this is always a 2d array, with a row for
    each non-zero element.;

    """))


add_newdoc('numpy.core.multiarray', 'ndarray', ('prod',
    """a.prod(axis=None, dtype=None)

    """))


add_newdoc('numpy.core.multiarray', 'ndarray', ('ptp',
    """a.ptp(axis=None) a.max(axis)-a.min(axis)

    """))


add_newdoc('numpy.core.multiarray', 'ndarray', ('put',
    """a.put(indices, values, mode) sets a.flat[n] = values[n] for
    each n in indices. If values is shorter than indices then it
    will repeat.
    """))


add_newdoc('numpy.core.multiarray', 'putmask',
    """putmask(a, mask, values) sets a.flat[n] = values[n] for each n where
    mask.flat[n] is true.  If values is not the same size of a and mask then
    it will repeat.  This gives different behavior than a[mask] = values.
    """)


add_newdoc('numpy.core.multiarray', 'ndarray', ('ravel',
    """a.ravel([fortran]) return a 1-d array (copy only if needed)

    """))


add_newdoc('numpy.core.multiarray', 'ndarray', ('repeat',
    """a.repeat(repeats=, axis=none)

    copy elements of a, repeats times.  the repeats argument must be a sequence
    of length a.shape[axis] or a scalar.

    """))


add_newdoc('numpy.core.multiarray', 'ndarray', ('reshape',
    """a.reshape(d1, d2, ..., dn, order='c')

    Return a new array from this one.  The new array must have the same number
    of elements as self.  Also always returns a view or raises a ValueError if
    that is impossible.

    """))


add_newdoc('numpy.core.multiarray', 'ndarray', ('resize',
    """a.resize(new_shape, refcheck=True, order=False) -> None. Change array shape.

    Change size and shape of self inplace.  Array must own its own memory and
    not be referenced by other arrays.    Returns None.

    """))


add_newdoc('numpy.core.multiarray', 'ndarray', ('round',
    """a.round(decimals=0, out=None) -> out (new). Rounds to 'decimals' places.

    Parameters
    ----------
    decimals : integer
        number of decimals to round to. May be negative.
    out : existing array to use for output (default new array).

    Returns
    -------
    Reference to out, where None specifies a new array.

    Round to the specified number of decimals. When 'decimals' is negative it
    specifies the number of positions to the left of the decimal point. The
    real and imaginary parts of complex numbers are rounded separately. Nothing
    is done if the array is not of float type and 'decimals' is >= 0.

    The keyword 'out' may be used to specify a different array to hold the
    result rather than the default new array. If the type of the array
    specified by 'out' differs from that of 'a', the result is cast to the
    new type, otherwise the original type is kept. Floats round to floats
    by default.

    Numpy rounds to even. Thus 1.5 and 2.5 round to 2.0, -0.5 and 0.5 round to
    0.0, etc. Results may also be surprising due to the inexact representation
    of decimal fractions in IEEE floating point and the errors introduced in
    scaling the numbers when 'decimals' is something other than 0.

    """))


add_newdoc('numpy.core.multiarray', 'ndarray', ('searchsorted',
    """a.searchsorted(v, side='left') -> index array.

    Find the indices into a sorted array such that if the corresponding keys in
    v were inserted before the indices the order of a would be preserved.  If
    side='left', then the first such index is returned. If side='right', then
    the last such index is returned. If there is no such index because the key
    is out of bounds, then the length of a is returned, i.e., the key would
    need to be appended. The returned index array has the same shape as v.

    Parameters
    ----------
    v : array or list type
        Array of keys to be searched for in a.
    side : string
        Possible values are : 'left', 'right'. Default is 'left'. Return
        the first or last index where the key could be inserted.

    Returns
    -------
    indices : integer array
        The returned array has the same shape as v.

    SeeAlso
    -------
    sort
    histogram

    Notes
    -----
    The array a must be 1-d and is assumed to be sorted in ascending order.
    Searchsorted uses binary search to find the required insertion points.
    """))


add_newdoc('numpy.core.multiarray', 'ndarray', ('setfield',
    """m.setfield(value, dtype, offset) -> None.
    places val into field of the given array defined by the data type and offset.

    """))


add_newdoc('numpy.core.multiarray', 'ndarray', ('setflags',
    """a.setflags(write=None, align=None, uic=None)

    """))


add_newdoc('numpy.core.multiarray', 'ndarray', ('sort',
    """a.sort(axis=-1, kind='quicksort', order=None) -> None.

    Perform an inplace sort along the given axis using the algorithm specified
    by the kind keyword.

    Parameters
    ----------
    axis : integer
        Axis to be sorted along. None indicates that the flattened array
        should be used. Default is -1.
    kind : string
        Sorting algorithm to use. Possible values are 'quicksort',
        'mergesort', or 'heapsort'. Default is 'quicksort'.
    order : list type or None
        When a is an array with fields defined, this argument specifies
        which fields to compare first, second, etc.  Not all fields need be
        specified.

    SeeAlso
    -------
    argsort : indirect sort
    lexsort : indirect stable sort on multiple keys
    searchsorted : find keys in sorted array

    Notes
    -----

    The various sorts are characterized by average speed, worst case
    performance, need for work space, and whether they are stable. A stable
    sort keeps items with the same key in the same relative order. The three
    available algorithms have the following properties:

    |------------------------------------------------------|
    |    kind   | speed |  worst case | work space | stable|
    |------------------------------------------------------|
    |'quicksort'|   1   | O(n^2)      |     0      |   no  |
    |'mergesort'|   2   | O(n*log(n)) |    ~n/2    |   yes |
    |'heapsort' |   3   | O(n*log(n)) |     0      |   no  |
    |------------------------------------------------------|

    All the sort algorithms make temporary copies of the data when the sort is
    not along the last axis. Consequently, sorts along the last axis are faster
    and use less space than sorts along other axis.
    """))


add_newdoc('numpy.core.multiarray', 'ndarray', ('squeeze',
    """m.squeeze() eliminate all length-1 dimensions

    """))


add_newdoc('numpy.core.multiarray', 'ndarray', ('std',
    """a.std(axis=None, dtype=None, out=None, ddof=0) -> standard deviation.

    Returns the standard deviation of the array elements, a measure of the
    spread of a distribution. The standard deviation is computed for the
    flattened array by default, otherwise over the specified axis.

    Parameters
    ----------
    axis : integer
        Axis along which the standard deviation is computed. The default is
        to compute the standard deviation of the flattened array.
    dtype : type
        Type to use in computing the standard deviation. For arrays of
        integer type the default is float32, for arrays of float types it
        is the same as the array type.
    out : ndarray
        Alternative output array in which to place the result. It must have
        the same shape as the expected output but the type will be cast if
        necessary.
    ddof : {0, integer}
        Means Delta Degrees of Freedom.  The divisor used in calculations
        is N-ddof.

    Returns
    -------
    standard deviation : The return type varies, see above.
        A new array holding the result is returned unless out is specified,
        in which case a reference to out is returned.

    SeeAlso
    -------
    var : variance
    mean : average

    Notes
    -----
    The standard deviation is the square root of the average of the squared
    deviations from the mean, i.e. var = sqrt(mean(abs(x - x.mean())**2)).
    The computed standard deviation is computed by dividing by the number of
    elements, N-ddof. The option ddof defaults to zero, that is, a
    biased estimate. Note that for complex numbers std takes the absolute
    value before squaring, so that the result is always real and nonnegative.

    """))


add_newdoc('numpy.core.multiarray', 'ndarray', ('sum',
    """a.sum(axis=None, dtype=None) -> Sum of array over given axis.

    Sum the array over the given axis.  If the axis is None, sum over
    all dimensions of the array.

    The optional dtype argument is the data type for the returned
    value and intermediate calculations.  The default is to upcast
    (promote) smaller integer types to the platform-dependent int.
    For example, on 32-bit platforms:

      a.dtype                         default sum dtype
      ---------------------------------------------------
      bool, int8, int16, int32        int32

    Warning: The arithmetic is modular and no error is raised on overflow.

    Examples
    --------
    >>> array([0.5, 1.5]).sum()
    2.0
    >>> array([0.5, 1.5]).sum(dtype=int32)
    1
    >>> array([[0, 1], [0, 5]]).sum(axis=0)
    array([0, 6])
    >>> array([[0, 1], [0, 5]]).sum(axis=1)
    array([1, 5])
    >>> ones(128, dtype=int8).sum(dtype=int8) # overflow!
    -128
    """))


add_newdoc('numpy.core.multiarray', 'ndarray', ('swapaxes',
    """a.swapaxes(axis1, axis2) -> new view with axes swapped.

    """))


add_newdoc('numpy.core.multiarray', 'ndarray', ('take',
    """a.take(indices, axis=None, out=None, mode='raise') -> new array.

    The new array is formed from the elements of a indexed by indices along the
    given axis.

    """))


add_newdoc('numpy.core.multiarray', 'ndarray', ('tofile',
    """a.tofile(fid, sep="", format="%s") -> None. Write the data to a file.

    Parameters
    ----------
    fid : file or string
        an open file object or a string containing a filename
    sep : string
        separation for text output.  Write binary if this is empty.
    format : string
        format string for text file output

    A convenience function for quick storage of array data. Information on
    endianess and precision is lost, so this method is not a good choice for
    files intended to archive data or transport data between machines with
    different endianess. Some of these problems can be overcome by outputting
    the data as text files at the expense of speed and file size.

    If 'sep' is empty this method is equivalent to file.write(a.tostring()). If
    'sep' is not empty each data item is converted to the nearest Python type
    and formatted using "format"%item. The resulting strings are written to the
    file separated by the contents of 'sep'. The data is always written in "C"
    (row major) order independent of the order of 'a'.

    The data produced by this method can be recovered by using the function
    fromfile().

    """))


add_newdoc('numpy.core.multiarray', 'ndarray', ('tolist',
    """a.tolist() -> Array as hierarchical list.

    Copy the data portion of the array to a hierarchical python list and return
    that list. Data items are converted to the nearest compatible Python type.

    """))


add_newdoc('numpy.core.multiarray', 'ndarray', ('tostring',
    """a.tostring(order='C') -> raw copy of array data as a Python string.

    Parameters
    ----------
    order : {'C', 'F', 'A', None}
        order of the data item in the copy

    Construct a Python string containing the raw bytes in the array. The order
    of the data in arrays with ndim > 1 is specified by the 'order' keyword and
    this keyword overrides the order of the array. The
    choices are:

        "C"       -- C order (row major)
        "Fortran" -- Fortran order (column major)
        "Any"     -- Current order of array.
        None      -- Same as "Any"

    """))


add_newdoc('numpy.core.multiarray', 'ndarray', ('trace',
    """a.trace(offset=0, axis1=0, axis2=1, dtype=None, out=None)
    return the sum along the offset diagonal of the array's indicated
    axis1 and axis2.

    """))


add_newdoc('numpy.core.multiarray', 'ndarray', ('transpose',
    """a.transpose(*axes)

    Returns a view of 'a' with axes transposed. If no axes are given,
    or None is passed, switches the order of the axes. For a 2-d
    array, this is the usual matrix transpose. If axes are given,
    they describe how the axes are permuted.

    Examples
    --------
    >>> a = array([[1,2],[3,4]])
    >>> a
    array([[1, 2],
           [3, 4]])
    >>> a.transpose()
    array([[1, 3],
           [2, 4]])
    >>> a.transpose((1,0))
    array([[1, 3],
           [2, 4]])
    >>> a.transpose(1,0)
    array([[1, 3],
           [2, 4]])

    """))


add_newdoc('numpy.core.multiarray', 'ndarray', ('var',
    """a.var(axis=None, dtype=None, out=None, ddof=0) -> variance

    Returns the variance of the array elements, a measure of the spread of a
    distribution.  The variance is computed for the flattened array by default,
    otherwise over the specified axis.

    Parameters
    ----------
    axis : integer
        Axis along which the variance is computed. The default is to
        compute the variance of the flattened array.
    dtype : data-type
        Type to use in computing the variance. For arrays of integer type
        the default is float32, for arrays of float types it is the same as
        the array type.
    out : ndarray
        Alternative output array in which to place the result. It must have
        the same shape as the expected output but the type will be cast if
        necessary.
    ddof : {0, integer},
        Means Delta Degrees of Freedom.  The divisor used in calculation is
        N - ddof.

    Returns
    -------
    variance : The return type varies, see above.
        A new array holding the result is returned unless out is specified,
        in which case a reference to out is returned.

    SeeAlso
    -------
    std : standard deviation
    mean: average

    Notes
    -----
    The variance is the average of the squared deviations from the mean,
    i.e.  var = mean(abs(x - x.mean())**2).  The mean is computed by
    dividing by N-ddof, where N is the number of elements. The argument
    ddof defaults to zero; for an unbiased estimate supply ddof=1. Note
    that for complex numbers the absolute value is taken before squaring,
    so that the result is always real and nonnegative.

    """))


add_newdoc('numpy.core.multiarray', 'ndarray', ('view',
    """a.view(<type>) -> new view of array with same data.

    Type can be either a new sub-type object or a data-descriptor object

    """))

add_newdoc('numpy.core.umath','geterrobj',
           """geterrobj()

           Used internally by `geterr`.

           Returns
           -------
           errobj : list
               Internal numpy buffer size, error mask, error callback function.

           """)

add_newdoc('numpy.core.umath','seterrobj',
           """seterrobj()

           Used internally by `seterr`.

           Parameters
           ----------
           errobj : list
               [buffer_size, error_mask, callback_func]

           See Also
           --------
           seterrcall

           """)