summaryrefslogtreecommitdiff
path: root/numpy/array_api/_linear_algebra_functions.py
blob: f13f9c5416935002a7c8315f1514832005408568 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
from __future__ import annotations

from ._array_object import Array
from ._dtypes import _numeric_dtypes, _result_type

from typing import Optional, Sequence, Tuple, Union

import numpy as np

# einsum is not yet implemented in the array API spec.

# def einsum():
#     """
#     Array API compatible wrapper for :py:func:`np.einsum <numpy.einsum>`.
#
#     See its docstring for more information.
#     """
#     return np.einsum()

def matmul(x1: Array, x2: Array, /) -> Array:
    """
    Array API compatible wrapper for :py:func:`np.matmul <numpy.matmul>`.

    See its docstring for more information.
    """
    # Note: the restriction to numeric dtypes only is different from
    # np.matmul.
    if x1.dtype not in _numeric_dtypes or x2.dtype not in _numeric_dtypes:
        raise TypeError('Only numeric dtypes are allowed in matmul')
    # Call result type here just to raise on disallowed type combinations
    _result_type(x1.dtype, x2.dtype)

    return Array._new(np.matmul(x1._array, x2._array))

# Note: axes must be a tuple, unlike np.tensordot where it can be an array or array-like.
def tensordot(x1: Array, x2: Array, /, *, axes: Union[int, Tuple[Sequence[int], Sequence[int]]] = 2) -> Array:
    # Note: the restriction to numeric dtypes only is different from
    # np.tensordot.
    if x1.dtype not in _numeric_dtypes or x2.dtype not in _numeric_dtypes:
        raise TypeError('Only numeric dtypes are allowed in tensordot')
    # Call result type here just to raise on disallowed type combinations
    _result_type(x1.dtype, x2.dtype)

    return Array._new(np.tensordot(x1._array, x2._array, axes=axes))

def transpose(x: Array, /, *, axes: Optional[Tuple[int, ...]] = None) -> Array:
    """
    Array API compatible wrapper for :py:func:`np.transpose <numpy.transpose>`.

    See its docstring for more information.
    """
    return Array._new(np.transpose(x._array, axes=axes))

# Note: vecdot is not in NumPy
def vecdot(x1: Array, x2: Array, /, *, axis: Optional[int] = None) -> Array:
    if axis is None:
        axis = -1
    return tensordot(x1, x2, axes=((axis,), (axis,)))