summaryrefslogtreecommitdiff
path: root/numpy/array_api/_statistical_functions.py
blob: 5bc831ac29653fe403984b79b1e09f0ce490987d (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
from __future__ import annotations

from ._dtypes import (
    _floating_dtypes,
    _numeric_dtypes,
)
from ._array_object import Array
from ._creation_functions import asarray
from ._dtypes import float32, float64

from typing import TYPE_CHECKING, Optional, Tuple, Union

if TYPE_CHECKING:
    from ._typing import Dtype

import numpy as np


def max(
    x: Array,
    /,
    *,
    axis: Optional[Union[int, Tuple[int, ...]]] = None,
    keepdims: bool = False,
) -> Array:
    if x.dtype not in _numeric_dtypes:
        raise TypeError("Only numeric dtypes are allowed in max")
    return Array._new(np.max(x._array, axis=axis, keepdims=keepdims))


def mean(
    x: Array,
    /,
    *,
    axis: Optional[Union[int, Tuple[int, ...]]] = None,
    keepdims: bool = False,
) -> Array:
    if x.dtype not in _floating_dtypes:
        raise TypeError("Only floating-point dtypes are allowed in mean")
    return Array._new(np.mean(x._array, axis=axis, keepdims=keepdims))


def min(
    x: Array,
    /,
    *,
    axis: Optional[Union[int, Tuple[int, ...]]] = None,
    keepdims: bool = False,
) -> Array:
    if x.dtype not in _numeric_dtypes:
        raise TypeError("Only numeric dtypes are allowed in min")
    return Array._new(np.min(x._array, axis=axis, keepdims=keepdims))


def prod(
    x: Array,
    /,
    *,
    axis: Optional[Union[int, Tuple[int, ...]]] = None,
    dtype: Optional[Dtype] = None,
    keepdims: bool = False,
) -> Array:
    if x.dtype not in _numeric_dtypes:
        raise TypeError("Only numeric dtypes are allowed in prod")
    # Note: sum() and prod() always upcast float32 to float64 for dtype=None
    # We need to do so here before computing the product to avoid overflow
    if dtype is None and x.dtype == float32:
        dtype = float64
    return Array._new(np.prod(x._array, dtype=dtype, axis=axis, keepdims=keepdims))


def std(
    x: Array,
    /,
    *,
    axis: Optional[Union[int, Tuple[int, ...]]] = None,
    correction: Union[int, float] = 0.0,
    keepdims: bool = False,
) -> Array:
    # Note: the keyword argument correction is different here
    if x.dtype not in _floating_dtypes:
        raise TypeError("Only floating-point dtypes are allowed in std")
    return Array._new(np.std(x._array, axis=axis, ddof=correction, keepdims=keepdims))


def sum(
    x: Array,
    /,
    *,
    axis: Optional[Union[int, Tuple[int, ...]]] = None,
    dtype: Optional[Dtype] = None,
    keepdims: bool = False,
) -> Array:
    if x.dtype not in _numeric_dtypes:
        raise TypeError("Only numeric dtypes are allowed in sum")
    # Note: sum() and prod() always upcast integers to (u)int64 and float32 to
    # float64 for dtype=None. `np.sum` does that too for integers, but not for
    # float32, so we need to special-case it here
    if dtype is None and x.dtype == float32:
        dtype = float64
    return Array._new(np.sum(x._array, axis=axis, dtype=dtype, keepdims=keepdims))


def var(
    x: Array,
    /,
    *,
    axis: Optional[Union[int, Tuple[int, ...]]] = None,
    correction: Union[int, float] = 0.0,
    keepdims: bool = False,
) -> Array:
    # Note: the keyword argument correction is different here
    if x.dtype not in _floating_dtypes:
        raise TypeError("Only floating-point dtypes are allowed in var")
    return Array._new(np.var(x._array, axis=axis, ddof=correction, keepdims=keepdims))