1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
|
#A place for code to be called from C-code
# that implements more complicated stuff.
import re
import sys
#from _mx_datetime_parser import *
if (sys.byteorder == 'little'):
_nbo = '<'
else:
_nbo = '>'
def _makenames_list(adict):
from multiarray import dtype
allfields = []
fnames = adict.keys()
for fname in fnames:
obj = adict[fname]
n = len(obj)
if not isinstance(obj, tuple) or n not in [2,3]:
raise ValueError, "entry not a 2- or 3- tuple"
if (n > 2) and (obj[2] == fname):
continue
num = int(obj[1])
if (num < 0):
raise ValueError, "invalid offset."
format = dtype(obj[0])
if (format.itemsize == 0):
raise ValueError, "all itemsizes must be fixed."
if (n > 2):
title = obj[2]
else:
title = None
allfields.append((fname, format, num, title))
# sort by offsets
allfields.sort(lambda x,y: cmp(x[2],y[2]))
names = [x[0] for x in allfields]
formats = [x[1] for x in allfields]
offsets = [x[2] for x in allfields]
titles = [x[3] for x in allfields]
return names, formats, offsets, titles
# Called in PyArray_DescrConverter function when
# a dictionary without "names" and "formats"
# fields is used as a data-type descriptor.
def _usefields(adict, align):
from multiarray import dtype
try:
names = adict[-1]
except KeyError:
names = None
if names is None:
names, formats, offsets, titles = _makenames_list(adict)
else:
formats = []
offsets = []
titles = []
for name in names:
res = adict[name]
formats.append(res[0])
offsets.append(res[1])
if (len(res) > 2):
titles.append(res[2])
else:
titles.append(None)
return dtype({"names" : names,
"formats" : formats,
"offsets" : offsets,
"titles" : titles}, align)
# construct an array_protocol descriptor list
# from the fields attribute of a descriptor
# This calls itself recursively but should eventually hit
# a descriptor that has no fields and then return
# a simple typestring
def _array_descr(descriptor):
from multiarray import METADATA_DTSTR
fields = descriptor.fields
if fields is None:
subdtype = descriptor.subdtype
if subdtype is None:
if descriptor.metadata is None:
return descriptor.str
else:
new = descriptor.metadata.copy()
# Eliminate any key related to internal implementation
_ = new.pop(METADATA_DTSTR, None)
return (descriptor.str, new)
else:
return (_array_descr(subdtype[0]), subdtype[1])
names = descriptor.names
ordered_fields = [fields[x] + (x,) for x in names]
result = []
offset = 0
for field in ordered_fields:
if field[1] > offset:
num = field[1] - offset
result.append(('','|V%d' % num))
offset += num
if len(field) > 3:
name = (field[2],field[3])
else:
name = field[2]
if field[0].subdtype:
tup = (name, _array_descr(field[0].subdtype[0]),
field[0].subdtype[1])
else:
tup = (name, _array_descr(field[0]))
offset += field[0].itemsize
result.append(tup)
return result
# Build a new array from the information in a pickle.
# Note that the name numpy.core._internal._reconstruct is embedded in
# pickles of ndarrays made with NumPy before release 1.0
# so don't remove the name here, or you'll
# break backward compatibilty.
def _reconstruct(subtype, shape, dtype):
from multiarray import ndarray
return ndarray.__new__(subtype, shape, dtype)
# format_re and _split were taken from numarray by J. Todd Miller
def _split(input):
"""Split the input formats string into field formats without splitting
the tuple used to specify multi-dimensional arrays."""
newlist = []
hold = ''
listinput = input.split(',')
for element in listinput:
if hold != '':
item = hold + ',' + element
else:
item = element
left = item.count('(')
right = item.count(')')
# if the parenthesis is not balanced, hold the string
if left > right :
hold = item
# when balanced, append to the output list and reset the hold
elif left == right:
newlist.append(item.strip())
hold = ''
# too many close parenthesis is unacceptable
else:
raise SyntaxError, item
# if there is string left over in hold
if hold != '':
raise SyntaxError, hold
return newlist
format_datetime = re.compile(r"""(?P<typecode>M8|m8|datetime64|timedelta64)
([[]
((?P<num>\d+)?
(?P<baseunit>Y|M|W|B|D|h|m|s|ms|us|ns|ps|fs|as)
(/(?P<den>\d+))?
[]])
(//(?P<events>\d+))?)?""", re.X)
# Return (baseunit, num, den, events), datetime
# from date-time string
def _datetimestring(astr):
res = format_datetime.match(astr)
if res is None:
raise ValueError, "Incorrect date-time string."
typecode = res.group('typecode')
datetime = (typecode == 'M8' or typecode == 'datetime64')
defaults = ['us', 1, 1, 1]
names = ['baseunit', 'num', 'den', 'events']
func = [str, int, int, int]
dt_tuple = []
for i, name in enumerate(names):
value = res.group(name)
if value:
dt_tuple.append(func[i](value))
else:
dt_tuple.append(defaults[i])
return tuple(dt_tuple), datetime
format_re = re.compile(r'(?P<order1>[<>|=]?)(?P<repeats> *[(]?[ ,0-9]*[)]? *)(?P<order2>[<>|=]?)(?P<dtype>[A-Za-z0-9.]*)')
# astr is a string (perhaps comma separated)
_convorder = {'=': _nbo,
'|': '|',
'>': '>',
'<': '<'}
def _commastring(astr):
res = _split(astr)
if (len(res)) < 1:
raise ValueError, "unrecognized formant"
result = []
for k,item in enumerate(res):
# convert item
try:
(order1, repeats, order2, dtype) = format_re.match(item).groups()
except (TypeError, AttributeError):
raise ValueError('format %s is not recognized' % item)
if order2 == '':
order = order1
elif order1 == '':
order = order2
else:
order1 = _convorder[order1]
order2 = _convorder[order2]
if (order1 != order2):
raise ValueError('in-consistent byte-order specification %s and %s' % (order1, order2))
order = order1
if order in ['|', '=', _nbo]:
order = ''
dtype = '%s%s' % (order, dtype)
if (repeats == ''):
newitem = dtype
else:
newitem = (dtype, eval(repeats))
result.append(newitem)
return result
def _getintp_ctype():
from multiarray import dtype
val = _getintp_ctype.cache
if val is not None:
return val
char = dtype('p').char
import ctypes
if (char == 'i'):
val = ctypes.c_int
elif char == 'l':
val = ctypes.c_long
elif char == 'q':
val = ctypes.c_longlong
else:
val = ctypes.c_long
_getintp_ctype.cache = val
return val
_getintp_ctype.cache = None
# Used for .ctypes attribute of ndarray
class _missing_ctypes(object):
def cast(self, num, obj):
return num
def c_void_p(self, num):
return num
class _ctypes(object):
def __init__(self, array, ptr=None):
try:
import ctypes
self._ctypes = ctypes
except ImportError:
self._ctypes = _missing_ctypes()
self._arr = array
self._data = ptr
if self._arr.ndim == 0:
self._zerod = True
else:
self._zerod = False
def data_as(self, obj):
return self._ctypes.cast(self._data, obj)
def shape_as(self, obj):
if self._zerod:
return None
return (obj*self._arr.ndim)(*self._arr.shape)
def strides_as(self, obj):
if self._zerod:
return None
return (obj*self._arr.ndim)(*self._arr.strides)
def get_data(self):
return self._data
def get_shape(self):
if self._zerod:
return None
return (_getintp_ctype()*self._arr.ndim)(*self._arr.shape)
def get_strides(self):
if self._zerod:
return None
return (_getintp_ctype()*self._arr.ndim)(*self._arr.strides)
def get_as_parameter(self):
return self._ctypes.c_void_p(self._data)
data = property(get_data, None, doc="c-types data")
shape = property(get_shape, None, doc="c-types shape")
strides = property(get_strides, None, doc="c-types strides")
_as_parameter_ = property(get_as_parameter, None, doc="_as parameter_")
# Given a datatype and an order object
# return a new names tuple
# with the order indicated
def _newnames(datatype, order):
oldnames = datatype.names
nameslist = list(oldnames)
if isinstance(order, str):
order = [order]
if isinstance(order, (list, tuple)):
for name in order:
try:
nameslist.remove(name)
except ValueError:
raise ValueError, "unknown field name: %s" % (name,)
return tuple(list(order) + nameslist)
raise ValueError, "unsupported order value: %s" % (order,)
# Given an array with fields and a sequence of field names
# construct a new array with just those fields copied over
def _index_fields(ary, fields):
from multiarray import empty, dtype
dt = ary.dtype
new_dtype = [(name, dt[name]) for name in dt.names if name in fields]
if ary.flags.f_contiguous:
order = 'F'
else:
order = 'C'
newarray = empty(ary.shape, dtype=new_dtype, order=order)
for name in fields:
newarray[name] = ary[name]
return newarray
|